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Sequential Importance Sampling Filtering for Target
Tracking in Image Sequences

Marcelo G. S. BrunpMember, IEEE

Abstract—\We propose in this letter a new approach to direct sequence using an approximate maximum-likelihood (AML)

target tracking in cluttered image sequences using sequential estimator [9], [10]. In Sections II-V, we detail the proposed
importance sampling (SIS). We use Gauss—Markov random field SIS trackers and discuss their performance
modeling to describe the clutter correlation and incorporate the ’

clutter and target signature models into the design of the SIS
tracking algorithm. We quantify the performance of the SIS II. TARGET MOTION MODEL

tracker using a simulated image sequence generated from real . . .
infrared airborne radar data and compare it to the performance We denote the two dimensions of the plane, respectively, by

of a grid-based hidden Markov model tracker. Simulation results the indexes = 1 andi = 2. Letx, ;, ¢« = 1,2, be a vector
show good performance for the proposed algorithms in a scenario that contains the position and velocity of the target centroid in
of very low target-to-clutter ratio. dimension: at instantt = nA, wheren is an integer number,

Index Terms—Bayesian estimation, Gauss—Markov random andA is the sampling period in time. The unknown target state
fields (GMRF), particle filters, sequential importance sampling, vector is defined as
target tracking. T

Xn =[x, X0l - )
I. INTRODUCTION

s . . We assume that the random sequenees; } and{x, »} are
E PRESENT in this letter new Bayesian algorithms f0§t tistically independent and that the centroid position and ve-

) automatlc ”ac"'”g 9f c!uttered targets in Ssequences f?)city in each dimension evolve in time according to the white-
two-dimensional (2-D) digital images. Most conventional aoise acceleration model [1]

proaches to target tracking from images [1], [2] are based on

the suboptimal association of a single frame image correlation 1 A .

filter and a linear Kalman—Bucy tracking filter (KBf). Such as- *n+1i = {0 1 } Xn,i + Un.i, n20,1=12 (2
sociation has been shown [3] to perform poorly in scenarios
of heavily cluttered targets. To overcome this limitation, we
propose instead a Bayesian methodology that allows for diredtereu,, ; is a zero-mean Gaussian vector such that
target tracking from the image sequence and fully incorporates

F

: : AT A7
the models for_target motion, target signature, and background B [umulT] i A 2 ®)
clutter correlation. o & A ’

We introduced in [3] a recursive point-mass hidden Markov —
model (HMM) filter for Bayesian tracking in image sequences. Q ]
The point-mass filter in [3] was shown to outperform the corrd? (3), E[.] denotes expected value or ensemble averagea
lation filter/KBf association, but it had the disadvantage of beirfPSitive real number that is assumed known; andis the 2-D
computationally intensive. Here, we adopt a different strate§{it Sample sequence such that = 11if (r,s) = (0,0) and
using a continuous-valued target state vector and sequential 7RO Otherwise.
portance sampling (SIS) [6], [7], also known as particle filtering.
We propose two different SIS trackers, based respectively on the l1l. OBSERVATION AND CLUTTER MODEL

sampling/importance resampling (SIR) or bootstrap filter [6], A remote sensing device generates raw measurements of a
[7] and on the auxiliary particle filter (APF) [8]. surveillance region that contains both targets of interest and un-
We adapt the SIS filters to the problem of direct trackingesired reflectors (clutter). For simplicity, we assume that there
from images by introducing a likelihood function that incoris only one single target of interest present at the scene at each
porates the target signature and clutter models. To descrifsor scan. The raw sensor measurements are sampled and pro-
the spatial correlation of the clutter, we use a 2-D noncaus@ssed to form a sequence of 2-D digital images, referred to as
Gauss—Markov random field (GMRf) model [9]. The paramfgmes Framen is modeled by the. x M matrix
eters of the GMrf clutter model are estimated from the image
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L, 1 < j < M} and is obtained from the continuous-valued
state vectok,, in (1) by making

¥ (1) :round(%) (5)

n
T

xy(2) :round<M> (6)
A'y

where A, and A, are the image resolutions, respectively, in

dimensions = 1 andi = 2.

Target Model: We assume that, in any given frame, the
clutter-free target image is contained in a bounded rectangular
region of size(r; + rs + 1) x (I; + Is + 1). In this notationy;
andr, denote the maximum vertical pixel distances in the target
image when we move away, respectively up and down, from
the target centroid. Analogously, and [, are the maximum
horizontal pixel distances in the target image when we move
away, respectively left and right, from the target centroid. For
each pixel centroid positiof¥, j) € L, the nonlinear function
H in (4) returns a spatial distribution of (real-valued) pixel

TABLE |

ALGORITHM |: BOOTSTRAPFILTER FOR TARGET TRACKING IN 2-D

CLUTTERED IMAGE SEQUENCES

1.Initialization For j =1,..., N,

e Draw Xéﬁ ~ p(x0,1), x5} ~ p(x0.2),

make w(()’) =1/N, and set n = 1.

2. Importance Sampling Step For j =1,..., N,
o Draw 5(53,)1 ~ N(Fx,(flh17 Q)

and 7} ~ N(FxY |, Q).

e Compute the importance weights

> p TN N (i
71)1(3)00'11’537)1 P(Yn | X’Ei)l’ Xg,)z Zji-)l wr(z]) =1
using equations (8), (9), and (10).

3. Selection Step

e Generate a new set of samples

{5 = [l 7]
such that P({xg) = fc,(f)}) = o).

o Make w4’ = 1/Np, 1 < j < Np.
e Set n =n + 1 and go back to step 2.

1<j<Ny

intensities{ay;}, —r; < k < r,, =l; <1 < [, centered at

(i, j) (see [3] for details). For simplicity, the coefficients 1},  with Dirichlet (identically zero) boundary conditions. Equation
referred to as the targstgnature parametersaare assumed in )isvalidforr;+1 < z*(1) < L—r,and,; +1 < 2(2) < M —

this letter to be deterministic, known and frame-invariant.  ; "ror centroid positions near the image borders, the summation

Clutter Model: The clutter returns at frame, V,,(i,j), 1 < |imits in (9) must be varied accordingly as explained in [3].
1 < L,1<j < M, are described by the first-order, noncausal

GMrf model [9]
VW(L>J) = /[70; [VW(L - 1>j) + Vn(L + 1J)]
05 Va(i, g = 1) + Va(i, g + D] +en(iy5)  (7)

where theunknownparametergl; andg;, are, respectively, the
vertical and horizontal predictor coefficients, andis the pre-
diction error such that?[V,, (i, j)en(l,7)] = 028i—1,j—r, With
o2 also unknown. The assumption of zero-mean clutter impl
a preprocessing of the data that subtracts the mean of the b
ground. We also assume that, after preprocessing, the C'“K‘?rBootstrap Tracker
frames{V, } are statistically independent.

IV. SEQUENTIAL IMPORTANCE SAMPLING TRACKER

Sequential importance sampling [4], [5] is a simulation ap-
proach to online Bayesian estimation where the posterior pdf
of the hidden target state is represented at each insthgta
set of particles with associated importance weights. From the
weighted particle set, we can then compute an estimate of the
itarget state using, for example, a minimum mean-square error
g(IY:?'I(MSE) or a maximuna posteriori(MAP) criterion.

The bootstrap filter [6] is a particular SIS algorithm that,
A. Likelihood Function at each instant, draws a new set of particles from the Mar-

Let be a one-dimensional lona-vector representation kfvian transition kerneb(x,, | x,—1), and updates the associ-
Yn e-al ! ong-veck pre lon Qted importance weights using the likelihood functjgy,, |
the frameY,, obtained by row lexicographic ordering and use ). A selection step [4], [6], consisting of resampling from
lowercasep to denote probability density functions (pdfs). Ass, """ = . P : .
suming a 2-D GMrf backaround as in (7) and deterministitg]e particle set with replacement according to the importance
. 9 ground 2 (7) . Weights, is added to prevent the distribution of particle weights
signature parametefs.; ; }, the likelihood function of the ob-

servednth frame is [3] from getting skewed as the number of iterations increase. Using
the matrice¥ andQ introduced in (2) and (3) and recalling the

likelihood function from Section IlI-A, we present in Table |

a bootstrap filter algorithm for 2-D target tracking in image

wherep is a target energy term that is constant away from tgquences.
image borders (see [3] for details). The functibin (8) is in
turn given by

2/\ n,l; 4n, -
(x 12:2 2) P] ®)

(&

P (Yn | Xn,1,Xn,2) 00 exp [

B. Auxiliary Particle Filter Tracker

An SIS alternative to the bootstrap filter is the auxiliary par-
ticle filter [8]. The intuitive idea is to select a set of particles at
e 1221, instantn which, when propagated to instamtt+ 1, will have a
wherea (i),i = 1,2 are obtained, respectively, from (5) andﬂgh Iik_gliho_od. This is formally accomplished by intro_ducing
(6), andu(1, ) is the output of the differential filter an auxiliary indext, 1 < k < N,,, and sampling at each instant
n from the joint mixture importance function
/L(lﬂ”) = Yn(lﬂ") - ﬂ}i [Yn(l./’l“ - 1) + Yn(l7T + 1)]

_/3; [Yn(l -1, T) + Yn(l +1, T)] (10)

T ls
A(Xn1Xn2) = > > agap(zh (1) +k2h(2) +1) (9)

7 (x| Y1) 00p (ya | 1®) p (30 | x02,) QD)
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TABLE I TABLE I
ALGORITHM Il: M ODIFIED IMPORTANCE SAMPLING STEP FORAPF TARGET AML PARAMETER ESTIMATION ALGORITHM FOR AN L x M GMRF
TRACKING IN 2-D CLUTTERED IMAGE SEQUENCES

a) Unnormalized sample correlations:

" : °Xh~2112 Yo(i, §)Yali, 5 +1).

Impor‘ranf; Samp 1ng(jS)tep For j=1,...,N, . X, Z ZJ Yol ) Yali 41, 5).
o Draw p/) ~ N(Fx;2,,,Q) b) Unnormahzed sample power:
and ﬁf(f)z N(Fxﬁ,{zm, Q). * 85y = Zf:l ij1 Y2(i, ).
e Compute the first-stage importance weights ¢) Make § = 1073, compute € = 0.5 — §

j ; ; , . _ (L-1)M
/\gf)oop(y” | E;J,)l’ HS’)Z) Zj\ﬁl An(d) =1 and a = <L(M—ll)
using equations (8), (9), and (10). d) Correlation coefficients estimates:
e Draw kU) ~ {1, 2, ...,(].;f,,} e 3 = |XUICOS(LH):-%IX;L\COS(MH)'

. .(G) — ; o i P Xu
with { {L 7} An }7 i=1,...,Np. . [3 o Teos(2 ) ol Teos ()
e Draw xf]) ~ N(Fx (k('l )] Q) e) Clutter power estimate:
and %9} ~ N(Fx ("(wQ) 002 = (S, — 258 % Xp — 285+ X,).
. Comput(‘ the second- qtage importance weights
9 o 1) _Pnl X X Np =) _
Wn " OO0 Wy, 1 p(ynl (k(l)) M(k(!))) Jj=1 Wn™ = 1

using equations (8) ( ), and (10).

wherey ) is, for example, the mean of or a draw fraitx,, |

x,(fll). Table Il summarizes the modifications to the importance

sampling step of the bootstrap tracker using auxiliary particles.
The initialization and selection steps are identical to the same
steps in Table | and are omitted accordingly.

C. Clutter Adaptation

We estimate the GMrf clutter parameters directly from each
frameY,, using the suboptimadpproximate maximum-likeli-
hood (AML) estimator introduced in [9]. The AML estimates
G5, B¢, ando? at each frame are then plugged into (8) and (10)
to computep(yn | xff)l, (3)) Table 1l summarizes the AML

parameter estimation algonthm given thex M frameY, (see
[9] and [10] for further details).

(b)
Fig. 1. (a) Simulated cluttered target image (PTCR= 7.3 dB). (b) Clutter-free

We compare next the tracking performances of the bootstragyet template shown as a binary image.
tracker, the APF tracker, and the HMM tracker using a simu-
lated image sequence that is generated from real infrared i e B
borne radar (IRAR) intensity imagery. The base image is a sce At AT doeotl |
from the Portage IRAR database at Johns Hopkins University ' !
Center for Imaging Sciences. We segmented the base image‘
estimated the spatially variant local means and the backgroi*
clutter parameters. Each frame in the simulated image seque“”
is then generated by adding the local means to a different G\ |
background sample synthetized with the estimated clutter ;

V. PERFORMANCERESULTS

°
@

o
@
x

1

RMSE (meters)
S o
s %

rameters. Finally, we add to the background sequence a s.. b vame number * iamenunber

ulated target template that moves according to a white—noise (@ (b)
acceleration model (see Section II), with parameters 10  Fig. 2. APF and bootstrap rmse in meters PTRC —5.7 dB. (a) Vertical
and A = 4 ms. The spatial resolution (pixel size)ds, = dimension. (b) Horizontal dimension.

A, = 20cm. The image frame extends from 0-30 m (150

pixels) in both the horizontal and vertical dimensions. The inat pixel location (40,40). In the simulated cluttered image, the
tial vertical and horizontal positions of the target are uniformlgeak target-to-clutter ratio (PTCR) is 7.3 dB.

distributed, respectively, between 4-12 m and between 4-8 mFig. 2(a) and (b) shows the rmse in meters of the MAP target
The initial vertical and horizontal target velocities are identieentroid position estimates, respectively in the vertical and hor-
cally distributed Gaussian variables with mean 10 m/s and starental directions, obtained by a 3400-particle bootstrap (solid
dard deviation 0.3162 m/s. Fig. 1(a) and (b) shows, respdiaie) filter and by a 2800-particle APF (dashed line) with PTCR

tively, the cluttered and clutter-free image of a target centertmvered to—5.7 dB. The SIS filters failed to converge to the true
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= Cpotsan ffr | ! ™| computational savings are considerable when we compare the
' HMM filter in [3] to the SIS trackers proposed in this letter.

o)

ES 2
o

VI. CONCLUSION

RMSE(# of pixels)

w

RMSE(# of pixels)

Conventional solutions to the problem of target tracking in
image sequences based on the association of correlation filters
and linear Kalman—Bucy filters are unreliable [3] in scenarios
® frame number | fame Rumber of very low target-to-clutter ratio. In this letter, we introduced

(a) (b) alternative nonlinear Bayesian algorithms based on sequential
Fig. 3. RMSE in number of pixels for the bootstrap tracker (solid) and tﬂgnportance Samp“”g that enable direct tracking from the 'm‘?‘ge
HMM tracker (dashed), PTCR= —5.7 dB, vertical dimension. (a) Original Sequence and fully incorporate the models for target motion,
scale. (b) Zoomed-in plot. target signature, and background clutter.

We tested the performance of the proposed algorithms

track in three out of 48 Monte Carlo runs. The error curves HFiNg simulated image sequences generated from real infrared

Fig. 2(a) and (b) were obtained excluding the divergent tracR¥Porne radar data. Monte Carlo simulation results show
from the average. The plots show, that despite the low cd#20d tracking performance for the basic bootstrap tracker
trast between the target and the background, the particle filtfing 3400 particles in a scenario with a very dim target
quickly acquired the target after an initial error and tracked {f TCR= —5.7 dB). The steady-state rmse for a 2800-particle

with a low (less than 1 pixel) rmse. The reduction in the numb&FF tracker was roughly identical to the steady-state rmse for
of particles in the APF tracker seems not to have significanﬁpe 3400-particle bootstrap filter suggesting that the additional
affected steady-state performance. algorithmic complexity of the APF is partly compensated by

For comparison purposes, we implemented a grid-bas%(H’OSSible reduction in the number of particles that are needed
HMM tracker using a rough approximation of the continI_O achieve similar performance. Overal_l, the_ proposed SIS
uous-valued motion model in Section Il by a discrete-valudtf€rs compared favorably to an alternative grid-based HMM
model consisting of a constant deterministic drift equal {acker by yielding similar rmse performance at a much lower

two pixels/frame plus a first-order 2-D discrete random walROMPutational cost.
with probability of fluctuation of one pixel in both dimensions
equal to 10%. Fig. 3(a) shows the rmse in number of pixels
of the MAP vertical target position estimates generated by theThe author would like to thank the anonymous reviewers for
bootstrap tracker (solid line) and the HMM filter (dashed linetheir comments, which helped to improve this letter.
Fig. 3(b) is a zoomed-in version of the same plot where the
two curves can be seen more clearly. The bootstrap filter in this REFERENCES
experiment failed to converge to the true track in three out of 1, v ga.shalom and X. Li, “Tracking with imaging sensors,” ifulti-
50 Monte Carlo runs, while the HMM filter acquired the target target-Multisensor Tracking: Principles and TechniqueStorrs, CT:
in all Monte Carlo simulations. The error curves in Fig. 3(a) 2 EB(S), 1992- K 4 Y. Bar-Shalom. “Precision tracking with
. . . . . . . Oron, A. K. Kumar, an . Bar-Shalom, “Precision trac Ing wi
a”q (b) were obtained considering only the SlmUIatlonS_m segmentation for imaging sensordZEE Trans. Aerosp. Electron. Syst.
which both trackers converged. The plots show that, excluding  vol. 29, pp. 977-987, July 1993.
the rare occasions when the bootstrap filter diverges, both thd3] 'Vll tCt5 _SbBtr_UHOI aﬂfi J.M.F. '\éOEuéaT “Multgrame déltecttlon/tgailz)?g in
HMM and the SIS tracker have good tracking performance g7 ;Fr,'. ggéTgigejuﬁ;";%%Cf' 1ans. AGTOSp. EISCHion. Sysko'
with a small target acquisition time. The slight deterioration in [4] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial
rmse for the HMM filter toward the final sequence frames may on particle filters for online nonlinear/non-Gaussian Bayesian tracking,”
. . IEEE Trans. Signal Processingol. 50, pp. 174-188, Feb. 2002.
reflect 'Fhe m'sr_natCh between the actual motion model _and th 5] A. Doucet, J. F. G. Freitas, and N. J. Gordon, “An introduction to se-
approximate discrete-state model assumed by the grid-based quential Monte Carlo methods,” Bequential Monte Carlo Methods in
tracker. The error curves for the horizontal position estimate gfa_C“CEQ/-DIOUCGZtég-lF-G-Ffe'tasy andN. J. Gordon, Eds.  New York:
S L . pringer-Verlag, .
are qualitatively similar and are omitted here for lack of space. g N3 Gordon, D. J. Salmond, and A. F. M. Smith, “Novel approach
We close with a brief comment on computational complexity. to nonlinear/non-Gaussian Bayesian state estimatimg. Inst. Elec.
The grid-based HMM filter from [3] requires the evaluation of - E”g-gv?j'- 143 goézi PPp. é‘”‘élé' é993- ‘Bavesian state estimati
. . . . . . . . . J. Goraon, D. J. Salmond, an . EWINg, ayeslan state estimation
the “ke“hoo_d functionin all pO_II’ltS of the iImage g”d' Assu_mlng for tracking and guidance using the bootstrap filtdrGuidance, Contr.,
anL x L grid, such computation has ca8f«L?), « < L, in Dynam, vol. 18, no. 6, pp. 1434—1443, 1995.
terms of required floating point multiplications. By contrast, the [8] M. K. Pittand N. Shephard, “Filtering via simulation: Auxiliary particle

. . . . T filters,” J. Amer. Stat. Assqovol. 94, no. 446, pp. 590-599, 1999.
bootstrap particle filter requires the evaluation of the likelihood g, ;"\ Moura and N. Balram, “Noncausal Gauss—Markov random

function for each particlén” only, or a computational cost of fields: Parameter structure and estimationZEE Trans. Inform.

orderO(aN,). The multinomial resampling routine in the se- __ Theory vol. 39, pp. 1333-1355, July 1993. .
lecti t fthe SIS filter is also implemented efficient] (See[lo] S. M. Schweizer and J. M. F. Moura, “Hyperspectral imagery: Clutter
ection step o ! I Imp ICI y adaptation in anomaly detectionEEE Trans. Inform. Theoryol. 46,

[4]) with computational cosO(N,,). Overall, if N, < L?, the pp. 1855-1871, Aug. 2000.
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