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Abstract

Through taditional statistical modek, like ARMA
and Multilinear Regesdon, confidence intwals can
be computed fo the short-term electic load
forecasting, asauming that the foecast erors follow a
normal probability distribution. In ths pape, the 1-24
steps ahead load frecasts are obtained through Multi-
Layer Perceptrons trained by thdack-propagation

algorithm. Three techniques for the computation of

confidene intervals for this neual network based

short-term load forecasting are presentedi) Error

Output, (i) Resampling and (i) Multilinear

Regressin adaptedto neural networks. A comparison
of the three techniques is performed
simulations of on-line forecasting.

1. Introduction

With power systems growth and the increase in their
complexity, many factors have bemme influential in
the dedric power generation and consumption (load
management, energy exchange, spot  pricing,
independent power producers, nhon-conventional
energy, €tc.); therefore, the farecasting process has
bemme even more complex, and more accurate
forecasts are nealed. The relationship between the load
and its exogenous factors is complex and non-linear,
making it quite difficult to model through conventional
techniques, such as time series and linear regresson
analysis. Besides not giving the required predsion,
most of the traditional techniques are not robust
enough. They fail to produce accurate forecasts when
quick weather changes ocar. Other problems include
noise immunity, portability and maintenance [1].

Neural Networks (NNs) have sicceeled in several
power system problems, such as. planning; control;
analysis, protedion; design; load forecasting; seaurity
analysis, and fault diagiosis. The last threeones are the
most popular [2]. The NN ability in mappng complex
non-linear relationships is responsible for the growing
number of their applications to the Short-term Load
Forecasting (STLF) [3-5]. Several utilities over the
world have beenapplying NNs for load forecasting in
an experimental or operational basis [1, 2, 4].
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Despite its successin that applecation, up © now the
uncetainty in the NN based foreasts and the
estimation of confidence intervals (Cls) have been
ignored. Box & Jenkins have studied the subject of Cls
in ARMA models [6, 7]. Cls can also be estimated for
forecasts through Multili near Regresson [7]. However,
those models are based on normality and independence
assuimptions which do not always hold in practical
applications.

One should not produce a foecast of any kind
without an icka of its reliability. However, there are
many difficulties in computing those indices for non-
linear models. The NN literature is almost devoid of
information on that subjed [8, 9]. Confidence intervals
should be as narrow as posshle, while encompassng a
number of true values that justifies its reliability.

In Sedion 2, tree techniques for the computaton
of Clsfor the NN based STLF are presented; in Sedion
3, their implementation and the NN dstructure are
detailed; in Sedions 4 and 5, hose techniques are
compared through simulations of on-line forecasting.

2. Techniques for Cl estimation

Among the three presated techniques for ClI
estimation, only the Multilinear Regresson (MR)
asaumes that the forecsting errors follow normal
probability distribution. The Resampling (RE) and
Error Output (EO) techniques do not malke that
assumption.

The three methods are implemented through te
same dructure of a threelayer, fully conneded

Perceptron, trained by the back-propagation algorithm.

2.1. Error Output

In this technique, a NN with two outputs has been
trained with output patérns corresponding to the
hourly load ad to the hourly load forecast error,
respedively. Thus, confidence intervals are inherent to
the foreasting process That idea ssaumes that it is
possble to captue paterns possbly present in the
forecasting errors, as well as in the electric load.

In the NN training, the paterns for the error output
neuron are compuied ateach training epoch. Each time
the input training paterns are passd to the output, the



load output errors are canputed. Therefore, at each
epoch a different training patern is used for the error
output.

As the training process converges for a set of
weights with low load forecasting errors, it is expected
that the error forecasts presant low errors too, ace the
training paterns for the error output become more
stable along the iterations. Otherwise, the training
process would diverge.

During the training process the absolute percent
error of the load output neuron is taken & training
patern for the error output neuron, because they seam
to be easier to be learned than the relative error. After
the NN training, the error output s addd and
subtracted to the load forecast in order to create a
symmetric CI.

In this technique, the canfidence degreeis no pre-
defined. It is computed by counting the succesdul
estimations of the CI widths, for the test set.

2.2.Resampling

This is a technique for the computaton of confidence
intervals [10] for the NN based STLF which does not
asume any probability distribution for the load
forecasting errors.

For each foreasting lead time, it is assumed that
there is a resampling set with n errors oltained from a
test set, each of them corresponding to the difference
between the foreast load and the actual load value.
Considering that the resampling set is representative of
the actud data b be found in future forecasts, it can be
inferred that the magitude of the errors will be
preseved in the future. Those erors are cdleded
through aresampling window which moves one step
each time in the resampling set. At each time, one error
value is taken for each forecasting lead time. In Figure
1, a rearsive forecasting process is shown with 3
lagged inputs, 1-4 s#ips dnead foreasts,with one-step
ahead NN taining. The upper dotted line shows the
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Fig. 1: Example of the resampling process

If that procedure is appled to the 1-24 seps dead
rearsive farecasting (i.e., load forecasts feedthe NN)
with lagged inputs, the number of error measures for
each forecasting horizon is given by:

n = seriesl - maxlag - dist + 1 (2)
where
saiesl - total length of the load series used to

obtain the errors;
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maxlag - maximum hput lag wsed by the NN;
and

dist - maximum forecasting horizon .

Sorting the n errorsin ascending order (considering
the sgns), they can be represanted by &), €2),..., &)
The cumulatve sampling distribution of the errors can
be defined as the following:

[0,

d e<qy
S,(8=rT/n,

€r) = €< &r+

2
e(n) <e

that is to say, S\(€) is a fraction of the collection of
errors containing those ones smaller or equal to e.

If n is taken large enough such that S,(€) is close to
F(e), the true cumulatve probability distribution,
confidence intervals @an be conputed for forecasts by
using the limits of that truncated coll ection, acoording
to the desired confidence degree These intervals are
computed so they are symmetrical in probability.

The number of cases to discard in each tail is np,
where p is the probability in each tail. However, np is
generally a fractional number, so np is conservatively
truncated, and (np - 1) is taken as the number of cases
to discard in each tail.

E, is denoted as an ndependent value of F, such
that there is a probability p that anerror is smaller or
equal b E,. This indicates that E, is the lower
confidence limit for future forecasts errors. Similarly,
Ei.p is the upper limit.

The value n.S§,(E,) represents the estimate of how
many elements in the coll ection of errors are smaller or
equal b E,. Considering that the errors are independent
of each dher, then m = n.S,(E;) follows a binomial
distribution:

Bmn,p = — " p"(1-p" "
mi(n—m)!
independently of the distribution F.

B(m,n,p) represents the probability that exactly m,
among n cases randomly sampled, ae smaller than E,.
In fact, if B(m,n,p) is compuied for m = 0, 1,.., n, it
can be shown that the largest probability is obtained
when m = np.

Some conditions should be satisfied
computation of the confidence intervals:

* the resampling set reasonably represents the actual
population;

« the error samples are independent and have the same,
although unknown, probability distributions.

©)

in the

2.3.Multilinear Regression adapted to NNs

In this technique, if linear activation functions are used
in the output neurons, a multilinear regresson model
(MR) [7] can be implemented, as Bown in (4) and in
Figure 2; the inputs are taken & the outputs of the
hidden neurons, and the regresson coefficients are

taken as the connection weights of the output neurons.



y=by+Wpxg + Wp.Xp + W3 X3 4
The computatbn of the Cls is accomplished through
the estimate of the forecasting variance:
T
T-0$= 5 (- %) (5)
t=1
where
& - load series variance estimate.
T - number of elements in the training set;
g —> number of neurons in the hidden layer plus
one;
y; = output pattern used in the NN training; and

¥+ = NN output (load forecast).

Fig. 2: Redefining the MR independent variables

In that way, with the variance estimate (5), with the
desired confidence degree and with the NN inputs for
the dedred forecast, the coregonding cmfidence
intervals can be computed, considering that

yr A
sy1+x¢' A'le

follows a normal distribution, where

(6)

T - time instant of the current load forecast;
y. > load forecast;

y. = true load value;

& = y,’svariance estimate;

X; =2 column vector made up of the hidden
neurons outputs and the bias of the output
neuron (R in (4)); and

A =X X'

That is,

7‘[ 'Zq/zS‘ l+ XT'A_:LX < y-[ < 7-[ +Zq/zs‘ l+ XT'A_:LXT (8)

where
a

(7)

- total aea of the unit norma distribution
tails, such that 1 - o equak the desired
confidence degree; and

- value of the standard statistics such that the
probability of the unit normd distribution
betwea + z,,is 1 -q.

Zai2

3. NN structure and implementation

The séeded NNshave s&en inputs, three neurons in
the hidden layer and two neurons in the output layer,

009

with hyperbolic activation function in the hidden layer
and linear function in the output layer.

The NN inputs correspond to the lagged values of
the hourly load ®ries, at h, 2h, 24h, 168h &ad 192,
and two inputs  HS(k) =sen(2mk / 24) and
HC(k) = cog(2mk / 24) coding the hour of the day. The

outputs correspond to the load forecast and to the load
forecast error at hour k.

A seven-week window has beenused for training
and testing, with data gouping according to the day of
the week. For each day of the week, a NN has been
trained, appVying the back-propagaton algorithm with
crossvalidation. The patition in training and test sets
are determined randomly for each 100 epochs.

After the s&en NNs are trained for the EO method,
the sme NNsare usedfor the RE and MR methods,
each of which requires only the load output values of
the NNs. Thus, the same foreast values are usedto
compare the three techniques.

During the NN training and test there is no special
treatment for holidays. Spedal days have been excluded
fromthetrainingset. A load series from a utility at
Rio de Janeiro was used with load values from
Decenber 1994, Jauary 1995 ad February 1995.The

load series has been scaled to values between 0 and 1.

After the one-step ahead taining, the 1-24 steps
aheadreaursive loadforeasts and the estimation of Cls
were mack for the 24 hours right after the training/test
set. After that, the training/test set and the validation
forecasts were moved one hour éhead D perform the
next on-line forecast, with adaptve NN training. This
procedure is repeated along all the validation period,
that is from 01/27/95 hrough 02/23/95, with 649
values of on-line foreasts for each one of the 24 lead
times of foreast. Results obtained for other seasons of
1995 and 1996 have been similar.

The cofidence degrees of the EO method are
estimated by using test subsets to obtain the rate
between: (a) the number of actual load values lying
inside the confidence limits and (b) the number of
sampks in the test subsets. This is done for each
foreasting lead tine in a rearsive manner. For a
reasonable compaison, those estimates are used as

reference confidence degrees by the other two methods.

During the validation period the actual load values
lying inside the confidence limits have been counted in
order to check the cofidence degrees of the three
methods, and the percent confidence limits have been
computed, for each forecasting lead time.

During the validation period, for those actual load
values lying inside the confidence intervals estimated
by the three methods, the rate between the absolute
forecast error and the CI width, for each forecasting
lead time, has also been computed:

RCI(K) = [LOAD(K) - LF(K)]
ICL(k) = LF(K)|

(9)

where



RCI(k) - relative confidence interval at hour k;
LOAD(k) - actual load value at hour k (MW);
LF(k) —> load forecast at hour k (MW); and
CL(k) - lower limit (MW), if (LOAD(K) - LF(k))
< 0, or upper limit (MW), if (LOAD(K) - LF
(k)) > 0.
RCI ranges from O b 1 and indicates the relation
between the confidence limits and the forecasting
errors. If its value is close to 1, it means that the
confidence interval is just wide enough b encompass
the actual load value.
Finally, in the MR tedhnique, for the computaton of
s and A (equatins (5) and (7)), the training set of the
last training epoch is used.

4. Tests

Initially, three smulations were carried out using the
last 1, 2 and 3 weeks of the test set to estimate the EO
confidence degree(usedas reference to compute the RE
and MR confidence limits) and to build the resampling
set for the RE tedhnique, for each on-line faecast.
Howeve, the refeence caofidence degrees(CDs) are
too small (in general, below 50%); herefore correction
factors (¢'s) are adaed to the NN error output, ® that
the confidence degreescan be elarged. In order to
obtain appoximatdy the same CDs on different
foreasting lead times, the EO tedhnique only works
with those corredion factors. Different €'s have to be
used for different forecasting horizons.

With the corredion factors, the smulations with 1, 2
and 3weeks periods have produced very similar results.
For the MR technique, this period is irrelevant anyway.
The one-step ahead nean dsolute percent training
error for the load output is 154% and the one-step
ahead nmean dsolute training error for the error output
is 0,94%. The one-step ehead esterrors are 1,63% and
1,01%, respedively. Tebles 1 o 4 show validation
results using the 1 week period. The following
evaluation indices are considered:

MAPE - 1-24 stepsahead nean dsolute percent error
for the load output during validation;

MAE - 1-24 seps dead nmean dsolute error for the
error output (%) during validation;

CD - 1-24 seps d&ead nean reference confidence
degrees;

EO-CD> 1-24 seps ahead validation confidence
degrees for the EO technique;

RE-CD> 1-24 steps ahead validation confidence
degrees for the RE technique; and

MR-CD-> 1-24 steps ahead validation confidence
degrees for the MR technique (%).

As chown in Table 1, MR-CDs are doseto CDs in
the first hour, however it is too low on the others. EO-
CDs and RE-CDs are very similar on the 24 hour
forecasting.
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Table 1: Reference and validation confidence degrees

HOUR [ MAPE MAE CD EO-CD RE-CD MR-CD
(%) (%) (%) (%) (%) (%)
1 1.96 1.18 84.2 73.5 74.7 76.9
2 300 193 81 704 713 586
3 348 243 834 686 697 525
4 376 266 832 697 684 499
5 391 28 81 666 652 479
6 4.03 2.89 81.5 64.1 64.4 48.1
7 408 296 812 650 653 470
8 408 299 809 655 652 475
9 410 298 808 660 635 4638
10 4.11 2.97 80.8 65.3 63.6 459
11 4.10 2.99 80.9 65.0 63.2 46.4
12 4.09 2.97 80.9 64.1 65.5 47.2
13 4.13 2.99 80.9 64.1 63.9 46.2
14 4.11 2.99 80.9 64.7 64.1 45.3
15 413 300 809 638 646 4638
16 409 297 809 639 643 467
17 4.08 2.94 80.9 65.8 65.6 48.1
18 4.10 2.95 80.8 64.9 65.5 46.7
19 405 296 808 638 649 482
20 4.07 2.93 80.8 64.7 66.4 48.1
21 4.09 2.95 80.7 65.2 66.9 48.1
22 4.07 2.98 80.7 64.4 63.9 452
23 406 295 806 639 660 479
24 4.12 3.01 80.6 64.9 64.1 47.3
MEAN | 3901 281 813 657 658 491
Table 2: Relative confidence intervals and percent limits
g EO- RE- RE- MR-
EO- RE- MR- . PL PLL PL2 PL
HOUR | NP _RCl RCl RCl ) () (%) (%) (%)
1 [448 0.41 0.39 0.37 +1.20 +1.60 -3.14 2.65 #3.10
2 |371 0.3 0.35 046 +2.30 +1.5 -4.45 3.5 +3.01
3 |33 031 0.2 045 2.8 #1558 -516 3.2 +3.08
4 [313 0.30 0.3l 0.46 #3.00 #+1.58 -5.41 4.06 +3.15
5 |29 029 029 044 +3.00 +1.58 -552 3.98 #3.17
6 |297 0.30 0.30 0.47 #3.00 +1.58 -5.57 3.9 +3.24
7 |29 030 0.30 046 #3.00 +1.58 -5.63 3.9 +3.33
8 |29 0.9 0.29 044 +3.00 +1.50 -5.67 3.87 +3.48
9 |28 0.9 0.29 047 #3.00 +1.50 -5.69 3.8 +3.61
10 | 281 0.29 0.29 0.4 +3.00 +1.59 -5.67 3.84 3.76
11 | 283 0.29 0.29 045 +3.00 +1.59 -5.66 3.83 3.89
12 | 291 0.3 031 045 +3.00 +1.59 -5.65 3.8 +4.02
13 | 281 0.30 0.2 045 +3.00 +1.59 -5.65 3.8l 4.16
14 | 274 0.28 0.29 042 +3.00 +1.59 -5.66 3.81 +4.30
15 | 282 0.3 0.30 0.4 +3.00 +1.58 -5.66 3.80 +4.45
16 | 284 0.0 0.30 0.42 +3.00 +1.58 -5.66 3.80 +4.56
17 | 287 0.3 031 0.4 =+3.00 +1.57 -5.66 3.79 +4.66
18 | 282 0.30 0.31 0.43 #3.00 +1.57 -5.66 3.79 +4.77
19 | 285 0.28 0.29 040 +3.00 +1.5 -5.66 3.80 +4.88
20 |28 0.30 0.31 041 #3.00 +1.5 -5.66 3.8l +4.96
21 |29 031 0.30 0.44 #3.00 +1.55 -5.64 3.8 +5.06
22 | 273 0.28 0.28 0.33 #3.00 +1.54 -5.63 3.8l #5.14
23 | 293 0.30 0.30 041 #3.00 +1.54 -5.62 3.8 #5.24
24 | 278 0.29 0.9 0.40 #3.00 +1.5 -5.61 3.81 +5.31
MEAN[299 0.30 0.31 0.43 +2.80 +1.58 -5.46 3.78 +4.10

The relative confidence intervals, Eq. (9), and the
percent confidence limits for the validation dat are

shown in Table 2. The following indices are

considered:

NP - number of foeasts used to compute the
mean RCI;

EORCI > 1-24 seps dead nean RCIs of the EO
technique;

RE-RCI - 1-24 steps ahead nean RCls of the RE
technique;

MR-RCI> 1-24 sgps dead nean RCls of the MR
technique;

EO-AL - 1-24 steps ahead mean EO percent limits;
RE-PL1 - 1-24 seps d&ead RE mean lower percent
limits;



RE-PL2 &> 1-24 sgps dead RE mean upmr percent
limit; and

RM-PL - 1-24 steps ahead RM mean percent limits.

It can be seen from Tables 1 and 2 that the MR
technique produces very low validation confidence
degrees, and higher relative confidence intervals than
the others. Again, the EO and RE results are very
similar to each other.

The following simulation has been carried out by
using actud forecasting errors to estimate the reference
confidence degrees and to build the resampling set for
the RE method. The one-step ahead NN training and
test errors, and the validaton MAPE and MAE have
been the same as in the previous simulation. Since the
actual forecasting errors are nealed, validation indices
could only be compukd d&ter 1 week of on-line
simulation. Notice that for the same €'s defined in
Table 2, the corresponding CDs have gotten to values
lower than 80% as a&esult of using actual forecasting
errors instead of test errors. That has madce EO-CDs
and RE-CDs much closer to CDs. MR-CD resulted in
lower values, as in the previous simulations.

Table 3 - Reference and validation confidence degrees

using actual errors

HOUR CD (%) | EO-CD (%) | RE-CD (%) | MR-CD (%)
1 73.8 73.0 75.1 67.6
2 70.9 71.0 68.8 47.4
3 68.9 67.8 67.6 41.2
4 69.8 68.5 69.0 37.6
5 66.1 64.5 64.9 35.6
6 63.2 61.8 60.5 33.7
7 64.0 62.7 61.5 324
8 64.3 62.9 63.0 34.1
9 65.4 63.7 64.2 341
10 64.0 62.0 63.4 331
11 62.8 61.6 61.8 30.4
12 61.8 60.6 62.0 31.2
13 62.7 61.4 61.1 29.9
14 63.2 62.0 62.2 32.2
15 62.3 60.6 62.8 30.2
16 63.1 61.4 63.2 32.6
17 64.4 63.7 64.9 33.7
18 63.6 62.5 64.0 33.3
19 63.0 61.0 63.6 335
20 64.3 62.0 64.2 34.7
21 63.8 62.5 64.9 34.1
22 63.1 62.2 63.6 34.9
23 62.4 61.2 63.2 35.1
24 63.8 62.5 64.9 34.3

MEAN 64.8 63.5 64.3 35.7

Table 4 presents the relative confidence intervals
and the mean percent confidence limits for the three
methods. Again, MR-RCIs resulted in greater values
than EO-RCIs and RE-RCls. It means that the relative
MR confidence intervals are narrower than he EO and
RE ones, although their confidence is very low. When
actud forecasting errors are used for the EO and RE
techniques, their validation confidence degrees become
more reliable than when test errors are used. This
shows the difficulty to produce good generalization for
the confidence interval estimation. The relative
confidence intervals for the EO and RE techniques are
comparable.

In terms of computatonal costs for each adaptve
training, if previous weights can be used as
initialization for the NN training, 7 NNs with load and
error output neurons (used in the EO tednique) take

24=c in a Pentium 233 MHz PC. On he other hand, 7
NNs with one load output neuron (usedin the RE and

MR techniques) take 18sec to train. However, if

random weight initialization is used for the NN

training, 7 NNswith load and eror output neurons take
9min20sec,while 7 NNswith one load output neuron

take 5min50sec. The ame week resanpling process
takes 10sc for each on-line forecastng (1-24 s#ps
ahead). Therefore, the computatonal costs are
compaable when previous connedion weights are used

for retraining. In the case of random initialization, the
computatbnal cost for the EO technique is almost twice
the others. The estimation time for A and s, Egs. (5)

and (7), in the MR technique is negligible.

Table 4 - Relative confidence intervals and percent

limits using actual errors
€ EO- RE- RE- MR-
EO- RE- MR- % PL PL1 PL2 PL
HOUR| NP Rcl Rl Rel () (@) (%) (%) (%)

1 310 0.38l 0.366 04D #120 *152 -2.89 259 235
2 222 0.287 0277 0482 #2.30 *152 -4.09 3.65 £222
3 197 0.282 0.2%2 0472 +152 -4.67 3.90 +2.20
4 179 0.246 0.2% 0.4% +152 -492 456 +231
5 168 0.221 0.2 0.4 +151 -479 416 1222
6
7
8

157 0.218 0.229 0.515 +151 -473 4.04 +2.19
151 0.213 0.216 0.4 +152 -475 412 1232
159 0.2 0.216 0.4& +152 -471 418 +247
9 159 0.2 0.2% 0.524 +152 -4.81 447 1262
10 153 0.2 0.217 0.4 +152 -4.63 445 1272
11 139 0.2 0.1% 0.451 +152 -457 432 1275
12 142 0.228 0.2% 0.48B
13 136 0.2 0.217 0.4%
14 144 0.216 0.213 0.48
15 136 0.211 0.212 0.4
16 149 0.220 0.220 0.472
17 152 0.220 0.210 0.467
18 152 0.2% 0.23% 0.48)
19 152 0.215 0.220 0.441
20 157 0.22 0.2% 0.4®
21 155 0.23% 0.224 0.4
22 161 0.20 0.233 0.4

+153 -435 428 1281
+153 -4.65 429 1297
+152 -466 4.26 +3.09
+152 -454 411 +3.17
+152 -476 4.00 +3.32
+1.52 -4.75 434 347
+151 -458 4.09 +354
+1.50 -4.48 4.07 359
+150 -4.65 4.11 377
+1.50 -459 429 +3.79
+1.49 -4.67 4.05 +3.74

O

NROOOOEOORRRDDRHRHGE®®®WNR
IBB883888838383888883838388888

23 160 0.238 0.233 0.467 +1.49 -441 4.08 +3.89
24 156 0.215 0.20 0.413 +149 -466 4.33 +405
MEAN |164 0.23 0.23 0.47 + +1.51 -455 411 +2.98
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Fig. 3: 1-24 hours load forecasts, Feb.11.1995

In Figure 3, aforecasting exampk is shown for Feb.
11th, 1995, Satuday, with 4,45% MAPE, up © 24
stepsahead. Table 5 $ows the correspnding RCls for



each technique, whenever the farecast lies inside the
confidence interval.

Table 5 - Example widths

HOUR EO-RCI RE-RCI MR-RCI
1 0.265 0.236 0.264
2 0.051 0.052 0.073
3 0.319 0.367 0.520
4 0.244 0.263 0.397
5 0.153 0.137 0.248
6 0.670 0.537 -

7 - -

8 - -

9 0.785 0.609 -
10 0.615 0.472 0.900
11 0.577 0.439 0.840
12 - 0.841 -
13 - 0.887

14 0.951 0.738

15 - 0.999

16 -

17 -

18 - 0.999

19 0.803 0.775

20 0.690 0.664

21 0.979 0.875

2 - -

23

24

Table 6 shows the cross corrdlation between the
validation MAPE and each of the mean pecent limits.
High positive corrdations indicate that the confidence
intervals predict well the ups and downs of the
foreasting errors. In Table 6, the following indices are
considered:

EO-CL - correlation between MAPE and |EO-PL];
RE-CL1-> correlation between MAPE and |RE-PL1|;
RE-CL2-> correlation between MAPE and |RE-PL2|;
MR-CL - correlation between MAPE and |MR-PL]|.
Case 1 refersto  the values from Tables 1 end 2, and
Case 2 refers to the values from Tables 3 and 4.

Table 6: Cross-correlation indices

EO-CL RE-CL1 RE-CL2 MR-CL
| Case 1 -0.356 0.994 0.855 0.498
Case 2 -0.182 0.867 0.885 0.428

5. Conclusions

In this paper, it is shown that the performance of
the RE method strongly relies on the similarity between
the resampling data ad the current data. In he EO and
MR methods, dired influence of the current dat is
guaranteed by the NN inputs.

The MR tedhnique assumes that the forecasting
errors follow anormal distribution, which is not always
true. Even if the NN inputs follow norma distributions,
after passng through non-linear functions in the
hidden layer the assumption does not hold anymore.
The MR technique has very low validation confidence
degrees, which indicates that its normality assumption
is too costly.

In the EO technique, the Cl computatbn is inherent
to the NN training, which demands few additional
computatbns, besides the own load foreast. On the
other hand, its NN architedure is more complex,
demanding more training time.

The EO and RE techniques present some similar
indices, but the EO cannot cope with the 1-24 séps
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ahead forecasting; it should predict the increasing
errors of the rearrsive load forecsting, which is not
confirmed by the correlation indices. For that reason,
RE confidence intervals are more reliable.

Reaursive foreasting could be avoided by using
NNs with 24 outputs, one for each forecast hour. This
was not tried due to the difficulty presented by this kind
of architedure to adapt o changes in load dynamics
and to the high computational costs.

Larger NN structures have been tried, which have
not improved the errors of the NN error output. In fact,
choosing the NN architedure is an nherent difficulty
when appying the EO technique. Non-parametric NN
models should be investigated.
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