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Abstract

Through traditional statistical models, like ARMA
and Multilinear Regression, confidence intervals can
be computed for the short-term electric load
forecasting, assuming that the forecast errors follow a
normal probability distribution. In this paper, the 1-24
steps ahead load forecasts are obtained through Multi-
Layer Perceptrons trained by the back-propagation
algorithm. Three techniques for the computation of
confidence intervals for this neural network based
short-term load forecasting are presented: (i) Error
Output, (ii ) Resampling and (iii ) Multilinear
Regression adapted to neural networks. A comparison
of the three techniques is performed through
simulations of on-line forecasting.

1. Introduction

With power systems growth and the increase in their
complexity, many factors have become influential in
the electric power generation and consumption (load
management, energy exchange, spot pricing,
independent power producers, non-conventional
energy, etc.); therefore, the forecasting process has
become even more complex, and more accurate
forecasts are needed. The relationship between the load
and its exogenous factors is complex and non-linear,
making it quite diff icult to model through conventional
techniques, such as time series and linear regression
analysis. Besides not giving the required precision,
most of the traditional techniques are not robust
enough. They fail to produce accurate forecasts when
quick weather changes occur. Other problems include
noise immunity, portability and maintenance [1].

Neural Networks (NNs) have succeeded in several
power system problems, such as: planning; control;
analysis; protection; design; load forecasting; security
analysis; and fault diagnosis. The last three ones are the
most popular [2]. The NN abilit y in mapping complex
non-linear relationships is responsible for the growing
number of their applications to the Short-term Load
Forecasting (STLF) [3-5]. Several utilities over the
world have been applying NNs for load forecasting in
an experimental or operational basis [1, 2, 4].

Despite its success in that application, up to now the
uncertainty in the NN based forecasts and the
estimation of confidence intervals (CIs) have been
ignored. Box & Jenkins have studied the subject of CIs
in ARMA models [6, 7]. CIs can also be estimated for
forecasts through Multili near Regression [7]. However,
those models are based on normality and independence
assumptions which do not always hold in practical
applications.

One should not produce a forecast of any kind
without an idea of its reliabilit y. However, there are
many diff iculties in computing those indices for non-
linear models. The NN literature is almost devoid of
information on that subject [8, 9]. Confidence intervals
should be as narrow as possible, while encompassing a
number of true values that justifies its reliability.

In Section 2, three techniques for the computation
of CIs for the NN based STLF are presented; in Section
3, their implementation and the NN structure are
detailed; in Sections 4 and 5, those techniques are
compared through simulations of  on-line forecasting.

2. Techniques for CI estimation

Among the three presented techniques for CI
estimation, only the Multili near Regression (MR)
assumes that the forecasting errors follow normal
probabilit y distribution. The Resampling (RE) and
Error Output (EO) techniques do not make that
assumption.

The three methods are implemented through the
same structure of a three-layer, full y connected
Perceptron, trained by the back-propagation algorithm.

2.1. Error Output

In this technique, a NN with two outputs has been
trained with output patterns corresponding to the
hourly load and to the hourly load forecast error,
respectively. Thus, confidence intervals are inherent to
the forecasting process. That idea assumes that it is
possible to capture patterns possibly present in the
forecasting errors, as well as in the electric load.

In the NN training, the patterns for the error output
neuron are computed at each training epoch. Each time
the input training patterns are passed to the output, the
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load output errors are computed. Therefore, at each
epoch a different training pattern is used for the error
output.

As the training process converges for a set of
weights with low load forecasting errors, it is expected
that the error forecasts present low errors too, once the
training patterns for the error output become more
stable along the iterations. Otherwise, the training
process would diverge.

During the training process, the absolute percent
error of the load output neuron is taken as training
pattern for the error output neuron, because they seem
to be easier to be learned than the relative error. After
the NN training, the error output is added and
subtracted to the load forecast in order to create a
symmetric CI.

In this technique, the confidence degree is no pre-
defined. It is computed by counting the successful
estimations of the CI widths, for the test set.

2.2. Resampling

This is a technique for the computation of confidence
intervals [10] for the NN based STLF which does not
assume any probabilit y distribution for the load
forecasting errors.

For each forecasting lead time, it is assumed that
there is a resampling set with n errors obtained from a
test set, each of them corresponding to the difference
between the forecast load and the actual load value.
Considering that the resampling set is representative of
the actual data to be found in future forecasts, it can be
inferred that the magnitude  of the errors wil l be
preserved in the future. Those errors are collected
through a resampling window which moves one step
each time in the resampling set. At each time, one error
value is taken for each forecasting lead time. In Figure
1, a recursive forecasting process is shown with 3
lagged inputs, 1-4 steps ahead forecasts, with one-step
ahead NN training. The upper dotted line shows the
resampling window.

Fig. 1: Example of the resampling process

If that procedure is applied to the 1-24 steps ahead
recursive forecasting (i.e., load forecasts feed the NN)
with lagged inputs, the number of error measures for
each forecasting horizon is given by:

n = seriesl - maxlag - dist + 1 (1)
where

seriesl Æ total length of the load series used to
obtain the errors;

maxlag Æ maximum input lag used by the NN;
and

dist Æ maximum forecasting horizon .
Sorting the n errors in ascending order (considering

the signs), they can be represented by e(1), e(2),..., e(n).
The cumulative sampling distribution of the errors can
be defined as the following:
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that is to say, Sn(e) is a fraction of the collection of
errors containing those ones smaller or equal to e.

If n is taken large enough such that Sn(e) is close to
F(e), the true cumulative probabilit y distribution,
confidence intervals can be computed for forecasts by
using the limits of that truncated collection, according
to the desired confidence degree. These intervals are
computed so they are symmetrical in probability.

The number of cases to discard in each tail is np,
where p is the probabilit y in each tail. However, np is
generally a fractional number, so np is conservatively
truncated, and (np - 1) is taken as the number of cases
to discard in each tail.

Ep is denoted as an independent value of F, such
that there is a probabilit y p that an error is smaller or
equal to Ep. This indicates that Ep is the lower
confidence limit for future forecasts errors. Similarly,
E1-p is the upper limit.

The value n.Sn(Ep) represents the estimate of how
many elements in the collection of errors are smaller or
equal to Ep. Considering that the errors are independent
of each other, then m = n.Sn(Ep) follows a binomial
distribution:
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independently of the distribution F.
B(m,n,p) represents the probabilit y that exactly m,

among n cases randomly sampled, are smaller than Ep.
In fact, if B(m,n,p) is computed for m = 0, 1,..., n, it
can be shown that the largest probabilit y is obtained
when m = np.

Some conditions should be satisfied in the
computation of the confidence intervals:
• the resampling set reasonably represents  the actual
population;
• the error samples are independent and have the same,
although unknown, probability distributions.

2.3. Multilinear Regression adapted to NNs

In this technique, if linear activation functions are used
in the output neurons, a multili near regression model
(MR) [7] can be implemented, as shown in (4) and in
Figure 2; the inputs are taken as the outputs of the
hidden neurons, and the regression coefficients are
taken as the connection weights of the output neurons.
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The computation of the CIs is accomplished through
the estimate of the forecasting variance:

 (T - q)s2 =  
t

T

=
∑

1

( yt  - ~yt )2 (5)

where
s2  Æ load series variance estimate.
T  Æ number of elements in the training set;
q  Æ number of neurons in the hidden layer plus

one;
yt  Æ output pattern used in the NN training; and
~yt Æ NN output (load forecast).
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Fig. 2: Redefining the MR independent variables

In that way, with the variance estimate (5), with the
desired confidence degree and with the NN inputs for
the desired forecast, the corresponding confidence
intervals can be computed, considering that
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follows a normal distribution, where
 τ Æ time instant of the current load forecast;
~yτ Æ load forecast;

yτ  Æ true load value;

 s2 Æ y τ ’s variance estimate;

xτ  Æ column vector made up of the hidden

neurons outputs and the bias of the output
neuron (b1 in (4)); and

A = x xτ τ. '   (7)

That is,
~yτ -zα/2 s A1 1+ −x xτ τ' ≤ ≤yτ

~yτ +zα/2 s A1 1+ −x xτ τ'  (8)

where
α Æ total area of the unit normal distribution

tails, such that 1 - α equals the desired
confidence degree; and

zα/2 Æ value of the standard statistics such that the
probabilit y of the unit normal distribution
between ±  zα/2 is 1 - α.

3. NN structure and implementation

The selected NNs have seven inputs, three neurons in
the hidden layer and two neurons in the output layer,

with hyperbolic activation function in the hidden layer
and linear function in the output layer.

The NN inputs correspond to the lagged values of
the hourly load series, at 1h, 2h, 24h, 168h and 192h,
and two inputs ( )HS k k( ) sen  /= 2 24π  and

( )HC k k( ) cos  /= 2 24π  coding the hour of the day. The

outputs correspond to the load forecast and to the load
forecast error at hour k.

A seven-week window has been used for training
and testing, with data grouping according to the day of
the week. For each day of the week, a NN has been
trained, applying the back-propagation algorithm with
cross validation. The partition in training and test sets
are determined randomly for each 100 epochs.

After the seven NNs are trained for the EO method,
the same NNs are used for the RE and MR methods,
each of which requires only the load output values of
the NNs. Thus, the same forecast values are used to
compare the three techniques.

During the NN training and test there is no special
treatment for holidays. Special days have been excluded
from the training set. A load series from a utilit y at
Rio de Janeiro was used with load values from
December 1994, January 1995 and February 1995. The
load series has been scaled to values between 0 and 1.

After the one-step ahead training, the 1-24 steps
ahead recursive load forecasts and the estimation of CIs
were made for the 24 hours right after the training/test
set. After that, the training/test set and the validation
forecasts were moved one hour ahead to perform the
next on-line forecast, with adaptive NN training. This
procedure is repeated along all the validation period,
that is from 01/27/95 through 02/23/95, with 649
values of on-line forecasts for each one of the 24 lead
times of forecast. Results obtained for other seasons of
1995 and 1996 have been similar.

The confidence degrees of the EO method are
estimated by using test subsets to obtain the rate
between: (a) the number of actual load values lying
inside the confidence limits and (b) the number of
samples in the test subsets. This is done for each
forecasting lead time in a recursive manner. For a
reasonable comparison, those estimates are used as
reference confidence degrees by the other two methods.

During the validation period the actual load values
lying inside the confidence limits have been counted in
order to check the confidence degrees of the three
methods, and the percent confidence limits  have been
computed, for each forecasting lead time.

During the validation period, for those actual load
values lying inside the confidence intervals estimated
by the three methods, the rate between the absolute
forecast error and the CI width, for each forecasting
lead time, has also been computed:

RCI k
LOAD k LF(k

CL k LF(k
( )

| ( ) )|

| ( )  )|
=

−
−

                       (9)

where
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RCI(k) Æ relative confidence interval at hour k;
LOAD(k) Æ actual load value at hour k (MW);
LF(k) Æ load forecast at hour k (MW); and
CL(k) Æ lower limit (MW), if (LOAD(k) - LF(k))

< 0, or upper limit (MW), if (LOAD(k) - LF
(k)) > 0.

RCI ranges from 0 to 1 and indicates the relation
between the confidence limits and the forecasting
errors. If its value is close to 1, it means that the
confidence interval is just wide enough to encompass
the actual load value.

Finally, in the MR technique, for the computation of
s and A (equations (5) and (7)), the training set of the
last training epoch is used.

4. Tests

Initiall y, three simulations were carried out using the
last 1, 2 and 3 weeks of the test set to estimate the EO
confidence degree (used as reference to compute the RE
and MR confidence limits) and to build the resampling
set for the RE technique, for each on-line forecast.
However, the reference confidence degrees (CDs) are
too small (in general, below 50%); therefore  correction
factors (ε’s) are added to the NN error output, so that
the confidence degrees can be enlarged. In order to
obtain approximately the same CDs on different
forecasting lead times, the EO technique only works
with those correction factors. Different ε’ s have to be
used for different forecasting horizons.

With the correction factors, the simulations with 1, 2
and 3 weeks periods have produced very similar results.
For the MR technique, this period is irrelevant anyway.
The one-step ahead mean absolute percent training
error for the load output is 1,54% and the one-step
ahead mean absolute training error for the error output
is 0,94%. The one-step ahead test errors are 1,63% and
1,01%, respectively. Tables 1 to 4 show validation
results using the 1 week period. The following
evaluation indices are considered:
MAPE Æ 1-24 steps ahead mean absolute percent error

for the load output during validation;
MAE Æ 1-24 steps ahead mean absolute error for the

error output (%) during validation;
CD Æ 1-24 steps ahead mean reference confidence

degrees;
EO-CDÆ 1-24 steps ahead validation confidence

degrees for the EO technique;
RE-CDÆ 1-24 steps ahead validation confidence

degrees for the RE technique; and
MR-CDÆ 1-24 steps ahead validation confidence

degrees for the MR technique (%).
As shown in Table 1, MR-CDs are close to CDs in

the first hour, however it is too low on the others. EO-
CDs and RE-CDs are very similar on the 24 hour
forecasting.

Table 1: Reference and validation confidence degrees
HOUR MAPE

(%)
MAE
(%)

CD
(%)

EO-CD
(%)

RE-CD
(%)

MR-CD
(%)

1 1.96 1.18 84.2 73.5 74.7 76.9
2 3.00 1.93 83.1 70.4 71.3 58.6
3 3.48 2.43 83.4 68.6 69.7 52.5
4 3.76 2.66 83.2 69.7 68.4 49.9
5 3.91 2.83 82.1 66.6 65.2 47.9
6 4.03 2.89 81.5 64.1 64.4 48.1
7 4.08 2.96 81.2 65.0 65.3 47.0
8 4.08 2.99 80.9 65.5 65.2 47.5
9 4.10 2.98 80.8 66.0 63.5 46.8
10 4.11 2.97 80.8 65.3 63.6 45.9
11 4.10 2.99 80.9 65.0 63.2 46.4
12 4.09 2.97 80.9 64.1 65.5 47.2
13 4.13 2.99 80.9 64.1 63.9 46.2
14 4.11 2.99 80.9 64.7 64.1 45.3
15 4.13 3.00 80.9 63.8 64.6 46.8
16 4.09 2.97 80.9 63.9 64.3 46.7
17 4.08 2.94 80.9 65.8 65.6 48.1
18 4.10 2.95 80.8 64.9 65.5 46.7
19 4.05 2.96 80.8 63.8 64.9 48.2
20 4.07 2.93 80.8 64.7 66.4 48.1
21 4.09 2.95 80.7 65.2 66.9 48.1
22 4.07 2.98 80.7 64.4 63.9 45.2
23 4.06 2.95 80.6 63.9 66.0 47.9
24 4.12 3.01 80.6 64.9 64.1 47.3

MEAN  3.91 2.81 81.3 65.7 65.8 49.1
Table 2: Relative confidence intervals and percent limits

HOUR NP
EO-
RCI

RE-
RCI

MR-
RCI

ε
(%)

EO-
PL
(%)

RE-
PL1
(%)

RE-
PL2
(%)

MR-
PL
(%)

1 448 0.41 0.39 0.37 ±1.20 ±1.60 -3.14 2.65 ±3.10
2 371 0.36 0.35 0.46 ±2.30 ±1.59 -4.45 3.53 ±3.01
3 332 0.31 0.32 0.45 ±2.80 ±1.58 -5.16 3.92 ±3.08
4 313 0.30 0.31 0.46 ±3.00 ±1.58 -5.41 4.05 ±3.15
5 295 0.29 0.29 0.44 ±3.00 ±1.58 -5.52 3.98 ±3.17
6 297 0.30 0.30 0.47 ±3.00 ±1.58 -5.57 3.94 ±3.24
7 294 0.30 0.30 0.46 ±3.00 ±1.58 -5.63 3.90 ±3.33
8 294 0.29 0.29 0.44 ±3.00 ±1.59 -5.67 3.87 ±3.48
9 288 0.29 0.29 0.47 ±3.00 ±1.59 -5.69 3.85 ±3.61
10 281 0.29 0.29 0.44 ±3.00 ±1.59 -5.67 3.84 ±3.76
11 283 0.29 0.29 0.45 ±3.00 ±1.59 -5.66 3.83 ±3.89
12 291 0.30 0.31 0.45 ±3.00 ±1.59 -5.65 3.82 ±4.02
13 281 0.30 0.32 0.45 ±3.00 ±1.59 -5.65 3.81 ±4.16
14 274 0.28 0.29 0.42 ±3.00 ±1.59 -5.66 3.81 ±4.30
15 282 0.30 0.30 0.44 ±3.00 ±1.58 -5.66 3.80 ±4.45
16 284 0.30 0.30 0.42 ±3.00 ±1.58 -5.66 3.80 ±4.56
17 287 0.30 0.31 0.44 ±3.00 ±1.57 -5.66 3.79 ±4.66
18 282 0.30 0.31 0.43 ±3.00 ±1.57 -5.66 3.79 ±4.77
19 285 0.28 0.29 0.40 ±3.00 ±1.56 -5.66 3.80 ±4.88
20 286 0.30 0.31 0.41 ±3.00 ±1.56 -5.66 3.81 ±4.96
21 290 0.31 0.30 0.44 ±3.00 ±1.55 -5.64 3.81 ±5.06
22 273 0.28 0.28 0.38 ±3.00 ±1.54 -5.63 3.81 ±5.14
23 293 0.30 0.30 0.41 ±3.00 ±1.54 -5.62 3.81 ±5.24
24 278 0.29 0.29 0.40 ±3.00 ±1.55 -5.61 3.81 ±5.31

MEA N 299. 0.30 0.31 0.43 ±2.89 ±1.58 -5.46 3.78 ±4.10

The relative confidence intervals, Eq. (9), and the
percent confidence limits for the validation data are
shown in Table 2. The following indices are
considered:
NP Æ number of forecasts used to compute the

mean RCI;
EO-RCIÆ 1-24 steps ahead mean RCIs of the EO

technique;
RE-RCI Æ 1-24 steps ahead mean RCIs of the RE

technique;
MR-RCIÆ 1-24 steps ahead mean RCIs of the MR

technique;
EO-PL Æ 1-24 steps ahead mean EO percent limits;
RE-PL1 Æ 1-24 steps ahead RE mean lower percent

limits;



011

RE-PL2 Æ 1-24 steps ahead RE mean upper percent
limit; and

RM-PL Æ 1-24 steps ahead RM mean percent limits.
It can be seen from Tables 1 and 2 that the MR

technique  produces very low validation confidence
degrees, and higher relative confidence intervals than
the others. Again, the EO and RE results are very
similar to each other.

The following simulation has been carried out by
using actual forecasting errors to estimate the reference
confidence degrees and to build the resampling set for
the RE method. The one-step ahead NN training and
test errors, and the validation MAPE and MAE have
been the same as in the previous simulation. Since the
actual forecasting errors are needed, validation indices
could only be computed after 1 week of on-line
simulation. Notice that for the same ε’s defined in
Table 2, the corresponding CDs have gotten to values
lower than 80% as a result of using actual forecasting
errors instead of test errors. That has made EO-CDs
and RE-CDs much closer to CDs. MR-CD resulted in
lower values, as in the previous simulations.

Table 3 - Reference and validation confidence degrees
using actual errors

HOUR CD    (%) EO-CD (%) RE-CD (%) MR-CD (%)
1 73.8 73.0 75.1 67.6
2 70.9 71.0 68.8 47.4
3 68.9 67.8 67.6 41.2
4 69.8 68.5 69.0 37.6
5 66.1 64.5 64.9 35.6
6 63.2 61.8 60.5 33.7
7 64.0 62.7 61.5 32.4
8 64.3 62.9 63.0 34.1
9 65.4 63.7 64.2 34.1
10 64.0 62.0 63.4 33.1
11 62.8 61.6 61.8 30.4
12 61.8 60.6 62.0 31.2
13 62.7 61.4 61.1 29.9
14 63.2 62.0 62.2 32.2
15 62.3 60.6 62.8 30.2
16 63.1 61.4 63.2 32.6
17 64.4 63.7 64.9 33.7
18 63.6 62.5 64.0 33.3
19 63.0 61.0 63.6 33.5
20 64.3 62.0 64.2 34.7
21 63.8 62.5 64.9 34.1
22 63.1 62.2 63.6 34.9
23 62.4 61.2 63.2 35.1
24 63.8 62.5 64.9 34.3

MEAN  64.8 63.5 64.3 35.7

Table 4 presents the relative confidence intervals
and the mean percent confidence limits for the three
methods. Again, MR-RCIs resulted in greater values
than EO-RCIs and RE-RCIs. It means that the relative
MR confidence intervals are narrower than the EO and
RE ones, although their confidence is very low. When
actual forecasting errors are used for the EO and RE
techniques, their validation confidence degrees become
more reliable than when test errors are used. This
shows the difficulty to produce good generalization for
the confidence interval estimation. The relative
confidence intervals for the EO and RE techniques are
comparable.

In terms of computational costs for each adaptive
training, if previous weights can be used as
initialization for the NN training, 7 NNs with load and
error output neurons (used in the EO technique) take

24sec in a Pentium 233 MHz PC. On the other hand, 7
NNs with one load output neuron (used in the RE and
MR techniques) take 18sec to train. However, if
random weight initialization is used for the NN
training, 7 NNs with load and error output neurons take
9min20sec, while 7 NNs with one load output neuron
take 5min50sec. The one week resampling process
takes 10sec for each on-line forecasting (1-24 steps
ahead). Therefore, the computational costs are
comparable when previous connection weights are used
for retraining. In the case of random initialization, the
computational cost for the EO technique is almost twice
the others. The estimation time for A and s, Eqs. (5)
and (7), in the MR technique is negligible.

Table 4 - Relative confidence intervals and percent
limits using actual errors

HOUR NP
EO-
RCI

RE-
RCI

MR-
RCI

ε
(%)

EO-
PL
(%)

RE-
PL1
(%)

RE-
PL2
(%)

MR-
PL
(%)

1 310 0.381 0.365 0.430 ±1 20 ±1 52 -2.89 2.59 ±2 35
2 222 0.287 0.277 0.482 ±2.30 ±1.52 -4.09 3.65 ±2.22
3 197 0.242 0.252 0.472 ±2.80 ±1.52 -4.67 3.90 ±2.20
4 179 0.245 0.235 0.495 ±3.00 ±1.52 -4.92 4.56 ±2.31
5 168 0.221 0.230 0.482 ±3.00 ±1.51 -4.79 4.16 ±2.22
6 157 0.218 0.229 0.515 ±3.00 ±1.51 -4.73 4.04 ±2.19
7 151 0.213 0.216 0.479 ±3.00 ±1.52 -4.75 4.12 ±2.32
8 159 0.209 0.216 0.462 ±3.00 ±1.52 -4.71 4.18 ±2.47
9 159 0.237 0.235 0.524 ±3.00 ±1.52 -4.81 4.47 ±2.62
10 153 0.220 0.217 0.493 ±3.00 ±1.52 -4.63 4.45 ±2.72
11 139 0.202 0.196 0.451 ±3.00 ±1.52 -4.57 4.32 ±2.75
12 142 0.228 0.236 0.498 ±3.00 ±1.53 -4.35 4.28 ±2.81
13 136 0.220 0.217 0.495 ±3.00 ±1.53 -4.65 4.29 ±2.97
14 144 0.216 0.213 0.482 ±3.00 ±1.52 -4.66 4.26 ±3.09
15 136 0.211 0.212 0.465 ±3.00 ±1.52 -4.54 4.11 ±3.17
16 149 0.221 0.221 0.472 ±3.00 ±1.52 -4.76 4.00 ±3.32
17 152 0.220 0.210 0.467 ±3.00 ±1.52 -4.75 4.34 ±3.47
18 152 0.236 0.235 0.480 ±3.00 ±1.51 -4.58 4.09 ±3.54
19 152 0.215 0.220 0.441 ±3.00 ±1.50 -4.48 4.07 ±3.59
20 157 0.242 0.236 0.469 ±3.00 ±1.50 -4.65 4.11 ±3.77
21 155 0.235 0.224 0.460 ±3.00 ±1.50 -4.59 4.29 ±3.79
22 161 0.229 0.233 0.428 ±3.00 ±1.49 -4.67 4.05 ±3.74
23 160 0.238 0.233 0.467 ±3.00 ±1.49 -4.41 4.08 ±3.89
24 156 0.215 0.209 0.413 ±3.00 ±1.49 -4.66 4.33 ±4.05

MEA N 164. 0.23 0.23 0.47 ±2.89 ±1.51 -4.55 4.11 ±2.98
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Fig. 3: 1-24 hours load forecasts, Feb.11.1995

In Figure 3, a forecasting example is shown for Feb.
11th, 1995, Saturday, with 4,45% MAPE, up to 24
steps ahead. Table 5 shows the corresponding RCIs for
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each technique, whenever the forecast lies inside the
confidence interval.

Table 5 - Example widths
HOUR EO-RCI RE-RCI MR-RCI

1 0.265 0.236 0.264
2 0.051 0.052 0.073
3 0.319 0.367 0.520
4 0.244 0.263 0.397
5 0.153 0.137 0.248
6 0.670 0.537 -
7 - - -
8 - - -
9 0.785 0.609 -
10 0.615 0.472 0.900
11 0.577 0.439 0.840
12 - 0.841 -
13 - 0.887 -
14 0.951 0.738 -
15 - 0.999 -
16 - - -
17 - - -
18 - 0.999 -
19 0.803 0.775 -
20 0.690 0.664 -
21 0.979 0.875 -
22 - - -
23 - - -
24 - - -

Table 6 shows the cross correlation between the
validation MAPE and each of the mean percent limits.
High positi ve correlations indicate that the confidence
intervals predict well the ups and downs of the
forecasting errors. In Table 6, the following indices are
considered:
EO-CL Æ correlation between MAPE and |EO-PL|;
RE-CL1Æ correlation between MAPE and |RE-PL1|;
RE-CL2Æ correlation between MAPE and |RE-PL2|;
MR-CL Æ correlation between MAPE and |MR-PL|.
Case 1 refers to  the values from Tables 1 and 2, and
Case 2 refers to the values from Tables 3 and 4.

Table 6: Cross-correlation indices
EO-CL RE-CL1 RE-CL2 MR-CL

Case 1 -0.356 0.994 0.855 0.498
Case 2 -0.182 0.867 0.885 0.428

5. Conclusions

In this paper, it is shown that the performance of
the RE method strongly relies on the similarity between
the resampling data and the current data. In the EO and
MR methods, direct influence of the current data is
guaranteed by the NN inputs.

The MR technique assumes that the forecasting
errors follow a normal distribution, which is not always
true. Even if the NN inputs follow normal distributions,
after passing through non-linear functions in the
hidden layer the assumption does not hold anymore.
The MR technique has very low validation confidence
degrees, which indicates that its normality assumption
is too costly.

In the EO technique, the CI computation is inherent
to the NN training, which demands few additional
computations, besides the own load forecast. On the
other hand, its NN architecture is more complex,
demanding more training time.

The EO and RE techniques present some similar
indices, but the EO cannot cope with the 1-24 steps

ahead forecasting; it should predict the increasing
errors of the recursive load forecasting, which is not
confirmed by the correlation indices. For that reason,
RE confidence intervals are more reliable.

Recursive forecasting could be avoided by using
NNs with 24 outputs, one for each forecast hour. This
was not tried due to the difficulty presented by this kind
of architecture to adapt to changes in load dynamics
and to the high computational costs.

Larger NN structures have been tried, which have
not improved the errors of the NN error output. In fact,
choosing the NN architecture is an inherent difficulty
when applying the EO technique. Non-parametric NN
models should be investigated.
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