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Abstract

This paper describes the experiments conducted in
determining the initial temperature distribution on a
slab with adiabatic boundary conditions, from a
transient temperature distribution, obtained at a given
time. This is an ill-posed inverse problem, where the
initial condition has to be estimated. Two different
artificial neural networks have been applied to address
the problem: backpropagation and radial basis
functions (RBF). Both approaches use the whole
temperature history mapping. In our simulations, RBF
presented better solutions, faster training, but higher
noise sensitiveness, as compared to backpropagation.

1. Introduction

This paper describes a neural network based
approach to the problem of determining the initial
temperature distribution on a slab with adiabatic
boundary conditions, from a transient temperature
distribution, obtained at a given time. The problem is
considered to be an ill-posed inverse problem, where
the initial condition has to be estimated [4]. Two neural
network (NN) models were used: a feedforward
network with backpropagation and a radial basis
function (RBF) network, both of which differ in
topology and use different training strategies. Our
simulations have proved their effectiveness for solving
the inverse problem at hand, under the problem
approach of using the whole temperature history
mapping (WHM) for training purposes. Comparisons
of simulations with both models have shown a better
performance of the RBF network with Gaussian
functions, because of faster training and better
solutions to the problem.

2. The Inverse Problem

The direct problem consists of a transient heat
conduction problem in a slab with adiabatic boundary
condition with an initial temperature distribution
denoted by f(x). The mathematical formulation of this
problem is given by equation (1) below
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T(x,0) = f(x) , (x,t) ∈ Ω × {0}

where T(x,t) (temperature), f(x) (initial condition), x
(spatial variable) and t (time variable) are
dimensionless quantities and Ω = [0,1].

       The solution to the direct problem for a given
initial condition f(x) is explicitly obtained using
separation of variables [4], for (x,t) ∈
Ω×R+:
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where X(βm,x) = cos(βmx) are the eigenfunctions
associated to the problem, βm = mπ  are the

eigenvalues and N(βm) = ∫Ω
′′′ xdxfxX m )(),(β

represents the integral normalization (or the norm).
     This paper presents a method to obtain the inverse
solution using a neural network approach, whose
architecture makes use of two neural networks as it is
shown by the block diagram in figure 1:

Figure 1 – Block Diagram of the NN approach.

3. Backpropagation and RBF Neural
Networks

Neural networks have emerged from an obscure
field, discredited by perceived inadequacies into one of
the fastest growing technologies in information
processing [10] and [1]. Much research has being done
in pursuing new neural network models and adapting
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the existing ones to solve real life problems, such as
those in engineering [10] and [1].

The basic component of a NN is a neuron, which
was modeled by McCulloch and Pitts in 1943 [1] as a
computational model of a biological neuron. The
arrangements of such processing units make the NNs,
which are characterized by:
• A large number of very simple neuronlike

processing elements.
• A large number of weighted connections between

the elements that encode the knowledge of a
network.

• Highly parallel, distributed control.
• An emphasis on learning internal representations

automatically.

The basic idea is that a massively parallel network
of simple elements can arrive at a result very fast and,
at the same time, display insensitivity to the loss and
the failure of some number of component elements in
the network [12]. These important properties make
neural networks appropriate for applications such as
pattern recognition, signal processing, image
processing, financing, computer vision, engineering,
etc. [1], [10], [12], and [9].

The processing element in a NN is a linear
combiner with multiple weighted inputs, followed by
an activation function. The simplest NN is the
Perceptron that has a hard limiter activation function,
being appropriate for solving linear problems.

There are several different architectures of NNs,
most of which directly depend on the learning strategy
adopted. It is not the aim of this paper to go on a
detailed background on NNs. Instead, we will
concentrate on a brief description of the two NNs used
in our simulations: the multilayer perceptron with
backpropagation learning and radial basis functions
(RBF). Good introductions on NNs can be found in
[12] and [10].

The multilayer perceptron with the
backpropagation learning algorithm, also referred to as
the backpropagation neural network is a feedforward
network composed of an input layer, an output layer,
and a number of hidden layers, whose aim is to extract
high order statistics from the input data [12].

Figure 2 – The backpropagation neural network with a
hidden layer.

Figure 2 shows a backpropagation neural network
with only one hidden layer. g and f are activation

functions for the neurons in the hidden layer and in the
output layer respectively. In order to introduce more
flexibili ty to the network to solve non-linear problems,
the activation functions for the hidden layer are
sigmoid functions
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      In a backpropagation network, a supervised
learning algorithm controls the training phase. Then,
the input and output (desired) data need to be provided,
thus permitting the calculation of the error of the
network as the difference between the calculated
output and the desired vector. The network's weights
adjustment is conducted by backpropagating such error
to the network. The weight change rule is a
development of the perceptron learning rule. Weights
are changed by an amount proportional to the error at
that unit times the output of the unit feeding into the
weight. Equation (3) shows the general weight
correction for the delta rule.

ijji yw ηδ=∆              (3)

δj is the local gradient, yi is the input signal of neuron j,
and η is the learning rate parameter that controls the
strength of change.

        Radial basis function networks are feedforward
networks with one hidden layer, developed for data
interpolation in multidimensional space [7]. Like
backpropagation networks, RBFs can learn arbitrary
mappings. The difference between the two networks is
that RBF hidden layer units have a receptive field with
a center, through which a particular input value has a
maximal output. Their output tails off as the input
moves away from this point. Generally, the RBF
hidden unit function is a Gaussian function with null
mean and standard deviation σ2 as it is shown in
(figure 3). Figure 4 shows an RBF network.

Figure 3 – Gaussians with three different standard
deviations.

       The training of RBFs, consists in deciding the
number of hidden units there should be, the centers and
the sharpness (standard deviation) of their Gaussians,
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and then training up the output layer. Generally, the
centers and standard deviations are decided on first by
examining the vectors in the training data. The output
layer weights are then trained using the Delta rule.
        RBF networks can be used for classification
problems and function approximation. They have the
advantage that one can add extra units with centers
near parts of the input, which are difficult to classify.
        Both Backpropagation and RBFs networks can be
used for processing time-varying data and many other
applications.

Figure 4 – Radial Basis Functions network.

4. Implementation

       The problem approach adopted for the inverse
problem in this paper is based on the Whole History
Mapping (WHM) presented in [3]. The basic idea is to
design a NN for mapping the whole vector of observed
values of the temperature history to the corresponding
vector of outputs (the heat transfer coefficients in [3]).
After training, there is an exact correspondence
between the observed temperature values and the
output, over some time interval.
       The WHM has the advantage of being quite stable
and insensitive to noise in the data [1]. However, two
critical disadvantages are: 1) the number of input
vectors can be quite big, which leads to a large number
of connections and very slow training; and 2) for every
case a new network has to be constructed, thus
requiring new training sets, and the whole training
process.
        In our simulations, three temperature distributions
were obtained using the direct model of [4] over a slab
with adiabatic conditions (figure 4), for 50 time slices.
       Two experiments were conducted using two neural
network arrangements: two backpropagation networks
and two RBF networks. The aim was to find out the
differences between the two models in estimating the
initial temperature distribution. The general
architecture of both arrangements is presented in figure
7. Network 1 is used for estimating the time of the
corresponding measured temperature distribution (only
1 output neuron is required) and network 2 is used for
the iterative estimation of the initial temperature
distribution over the slab (n output neurons
representing different positions over the slab).
      The network architectures used in both experiments
had the following features:
• 2 Backpropagation networks:

• 1 input layer; 1 hidden layer; output layer
• Hyperbolic Tangent hidden neurons
• Linear output neurons

• 2 RBF networks:
• 1 input layer; 1 hidden layer; 1 output layer
• Gaussians Radial basis neurons
• Linear output neurons Linear

      The training data consisted of the appended
distribution of three temperature distributions obtained
through the direct model (2) shown in figure 5. The
three distributions had different initial profiles:
triangular, logarithmic, and sinusoidal, with maximum
value 1.

Figure 5 – Combination of three temperature
distributions over 25 positions over the slab, for 50
time slices.

Figure 6 – Data sets used for training the neural
networks. a) Input and Output data sets for network 1;
b) Input and Output data sets for network 2.

       Two distinct training sets were derived from the
resulting data in figure 5: one for training network 1
(figure 7) that estimates the time slice corresponding to
a certain temperature distribution; and another for
training network 2 (figure 7) that calculates the initial
temperature distribution over the slab (figure 6). The
input data for network 1 was the temperature
distribution history (figure 6-a left) and target data
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were the time slices corresponding to each temperature
distribution over the slab (figure 6-a right). For
network 2 the input was the time appended temperature
distribution (figure 6-b left) and target data was the
shifted temperature distribution (figure 6-b right).

Table 1 – Training results for the backpropagation
neural networks.

network # of
neurons

Target
error

# of
epochs

1 50 0.001 20000
2 50 0.0001 20000

Hyperbolic tangent hidden neurons
Linear output neurons

Figure 7 – Flowchart of the general approach for
applying neural networks to solve the inverse problem
described in [4].

       For network 2, in both simulations, the training
consisted in presenting a measured temperature profile
with its corresponding time slice (t) at the input, and
the following distribution in the time scale (t+1) as the
output. Then, network 2 learned how to estimate the
distribution at a time slice ahead, whereas network 1
estimated the time of occurrence of the measured
temperature distribution supplied.
        The training was performed separately for each
network and each arrangement. Table 1 shows the
training results for the backpropagation networks,
together with the parameters used for training. Both
networks were trained up to the stopping criteria:
network 1 achieved the target error, whereas network 2
was trained for the maximum number of epochs.

Simulations were conducted under the Matlab neural
network toolbox.
       The training of the RBF networks used similar
parameters as it is shown in table 2. The algorithm for
training the RBF networks gradually builds up the final
network, thus not requiring the specification of the
number of neurons in the hidden layer.
        In both simulations, the training parameters were
chosen testing different possibilities and checking out
the networks' performances.

Table 2 – Training results for the RBF networks.
network RBF

function
# of

neurons
Spread
constant

Target error

1 Gaussian 34 0.1 5 x 10-3

2 Gaussian 59 0.3 10-5

       The performances were tested through the
activation of both arrangements by presenting a certain
temperature distribution over the slab to network 1,
chosen from one of the individual distributions that
make up the one in figure 5. Network 1 estimated the
time of the given distribution, which was fed to
network 2, together with the given distribution, for
iterative estimation of the initial distribution. Figure 7
shows the flowchart for activation of both networks for
each simulation. It is important to notice that both
networks were trained with the combined data sets.

5. Results

       Figure 8 presents results of the activation of the
networks trained with the combined distribution in
figure 6. The activation consisted in presenting the
networks with a certain profile chosen from one of
three individual distributions that make up the
combined distribution. The profiles supplied to the
networks were chosen at four different positions on the
individual distributions, corresponding to 1/2, 

1/5, 
1/10,

and 1/25 slices of the total time for steady state.
In figure 8, the plots show some of the results

obtained with the activation of the backpropagation
networks and the RBF networks with the same
measured temperature distribution. The curves with (*)
represent the measured temperature distribution
supplied to the networks. The curves with (+) represent
the target profile, that is, the desired initial temperature
distribution. The curves with (o) represent the NN
approximation. In figures 8-a e 8-b show the
backpropagation and RBF results for a triangular
distribution chosen at ½ of the time of steady state. It is
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Figure 8 – Results of activation of both network
arrangements. (***)  - Me asured Temp. Distribution;
(+++)  - Target Profile;  (ooo)  - NN Approximation.

to be notice that the backpropagation network
approximated better to the desired profile. Figures 8-c
and 8-d show the results of the backprogation and the
RBF networks for a temperature distribution measured
at 1/5 of steady state time. In figures 8-e and 8-f, a
logarithmic distribution was provided chosen at 1/25 of
steady state time with noise added at a 5% rate. The
perturbation was constructed with a vector of uniform
random numbers weighted by a certain percentage
(5%). Figures 8-g and 8-h show the results for the
backpopagation and RBF networks for a distribution,
which was not used for training them. Comparison
shows the backpropagation networks generalize better
than RBF networks. Table 3 summarizes the activation
results for different initial profiles and different time
instances, some of them perturbed with some noise.

Table 3 – Summary of activation results
Distribution Time Error Back Error RBF Noise
Triangular ½ 0.001932 0.000912 0%
Triangular 1/5 0.000573 0.000425 0%
Triangular 1/25 0.000706 0.000408 0%
Sinusoidal 1/5 0.002148 0.004418 0%
Logarithmic 1/25 0.003241 0.001665 0%
Triangular 1/5 0.001311 0.000465 5%
Logarithmic ½ 0.002974 0.102762 5%
Triangular 3/10 0.009997 0.039955 0%

6. Conclusions

This paper has presented a method for solving an
inverse initial condition problem in heat conduction,
using a neural network approach. The problem was
approached using two NN models: backpropagation
and RBF networks. The training sets were constructed
with the direct model in equation 2. Two NN systems
were used composed of two backpropagation networks
or two RBF networks.

The results (figure 8 and table 3) show
backpropagation networks interpolate better for
unknown data (figure 8-g) and are more robust to
perturbations in the data (figure 8-e), whereas RBF
networks train faster and do not require architecture
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specification beforehand but are very sensitive to noise
(figure 8-h).

The experiments conducted show the effectiveness
of neural networks in solving inverse problems. The
results in figure 8 and table 3, were obtained in the
experiment of an on going research on using neural
networks for solving inverse problems. Although they
prove the effectiveness of NN in inverse problem,
future work still has to be done. In these regards, the
research will continue in trying to establish numerical
comparisons with those of [4]. Also, different NN
architectures and more diverse training sets will  be
tried in searching new neural network architectures and
checking generalization of the models. In addition, the
proposed methodology will be tried to solve inverse
problems in other application areas such as geophysics,
image processing and computer vision.
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