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Abstract

This paper describes the experiments conducted in

determiningthe initial temperature distribution on a
slab with adiabatt boundary conditions from a
transienttemperatue distribution, obtaind at a given
time. This is an ill-poseihverse problem where the
initial condition has to le estimated. Two different

artificial neural networks have been applied to address

the problem: backprgpagation and radial basis

functions (RBF). Both approaches use the whole

temperature history mappingp our simulations RBF
presentd better solutions, faster training, buigher
noise sensitiveness, as compared to baggqmation.

1. Introduction

This pape describes a neural metrk based
approab to the problen of detgmining the initial
temperature distribution on a #&awith adiabatic
bounday conditions from a transient temperature
distribution, obtainel at a given tine. The problen is
considered to benaill-posed inverse problem, where
theinitial condition has to be estated [4].Two neural
newwork (NN) models were used a feedforward
network with badkpropajation and a radial basis
function (RBF) nework, both of which differ in
topolagy and use diferent training strateies Our
simulatiors have proved tir effectiveress for solving
the inverse proem at hand, under th problem
approach b using the whole temperatue histay
mappirg (WHM) for training purposes Comparisons
of simulations with both models have shown a better
pefformance of the RBF network with Gaussian
functions, because of a$te training ard better
solutions to the protam.

2. The Inverse Problem

The direct problm consistsof a transiemn heat
conduction problan in a slabwith adiabaticboundary
condition wih an initial temperdure distribution
denoted ly f(x). The mathematicd formulation of this
problem is given by equation (1) bebw
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where T(x,t) (temperature),f(x) (initial condition), x
(spatial variable) andt (time variable) are
dimensialess gantities and Q = [0,1].

The solution to the dired problen for a given
initial condition f(x) is explcitly obtdned usng

separation D variables [4] for (xt) O
QxR™:
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wher X(BnX) = cos@3x) are the eigenfunctns
associated to the probte B, = mIiT are the

eigenvalues and N(B,) = J’Q X (B, X) f(x)adx'

represents thimtegral normalization(or thenorm).

This pape presentsa methal to obtainthe inverse
solution using a neural network approah, whose
architecturemakes ug of two neural neworks as it is
shown by the block diagrean in figure 1:
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Figure 1 — Block Diagnma of the NN approach.

3. Backpropagation and RBF Neural
Networks

Neural networks have emergedfrom an obscure
field, discredited ¥ perceved nadeaaciesinto one of
the fastest growing technologies in information
processing [10] and [1]. Muatesearcthasbeingdone
in pursuing rew neuralnework models and dapting



the existing ones to solve real life proleims, sueh as

those in engineering [10] and][1
The basic coporent of a NN B a neuon, which

was modeledby McCulloch and Pitts in 1943 [1] as a

computational model d a biological neuron. The

arranggmerts of such processng units makethe NNs,
which are characterized/b

e A large number d very simple neuronlike
processing ements.

e A large number d weighted canections betveen
the elements that encode ehknowledge of a
network.

e Highly parallel, distfouted control.

¢ An emphasis on learningnternd representations
aubmatically.

The bast ideais thata massivey parallé network
of simple eements can arrive at a resultryefast and,
at the sme ime, dispdy insensitivity to the loss and
the failure of some number of omporent elements in
the network [12]. These mportant properties make
neural networks appropriatgfor applications sich as
pattern recognitin, dgnal processing, image
processing, iihanéng, computer visbn, engineerng,
etc. [1] [10], [12], and[9].

The processing ement in a NN is a linear
combiner with mutiple weighted inputs, followed by
an actiation function. The simplest NN isthe
Perceptrontha has a hard imiter activaion function,
being appropriatéor solving linear probles.

There are several different architectures dfsiN
most d which directly depad on the leaning strategy
adopted It is not the am of this paper togo on a
detailed bakground on NNs. Instead we will
concentrate on a brief descriptiohthe o NNs used
in our smulations the multilayer perceptronwith
backpropagation leaimg and radial basis fustions
(RBF). Good mtroductions an NNs can be found in
[12] and [10].

The  multilayer perceptron  with the
backpropagatiofearningalgorithm, also rierred to as
the backpropagation neural metrk is a feedfoward
network composed ofan input layer, anoutput byer,
ard a number of hiddenayers whose aim is to extract
high order statistickom the input data [12].
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Figure 2— The ba&propayation neural network with a
hidden &yer.

Figure 2 $1ows a bakpropaation neural network
with only one hidden layer. g and f are activation
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functions for the reurons inthe hdden byer andin the
output byer respectivig. In order tointrodue more
flexibility to the mtwork to sole non-inea problems,
the acivation functons for the hidden layer are
sigmoid functions () :1% varying between Oand
1-e™
1+e*’

1, or typerbolic tangent functionsf (x)=

which varies bewveen -1 to 1.

In a backpropagation nework, a supervised
learning algorithm controls the traininghase Then,
the irput and ouput (desired) data need to be provided,
thus pemitting the calcudtion of the erro of the
nework as the diffeence betveen the calcudted
output and the desiredvector. The network's weights
adugtment is corductedby backpropagatinguch error
to the néwork. The weight change rule § a
develgpment of the perceptrorearring rule. Weights
are change by an anount proportional to the errat
that unit times the outputof the unit feedng into the
weight. Equation (3) shows the genera weight
correction for the delta rule.

Aw; =nd,y, 3)
g is the lochgradienty; is the irput gnd of neuronj,

and np is the learning rate parameter that controls the
strengthof change.

Radit bask function networks are feedfaward
networks with one hidden layer, developed for data
interpolation in multidimensional space [7]. Like
backpropagatiometworks, RBFs an learn arbitrey
mappirgs. The difference betveen the two networks is
tha RBF hiddenlayer unis have a receptifield with
a center, throdgwhich a particular iput value has a
maximal output. Their output &ils off as the input
moves away from this point. Gneraly, the RBF
hidden uni function is a Gussian function with null
mean and standard deviatiast as it is shown in
(figure 3). Figure 4 siws an BBF ndwork.
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Figure 3 — Gassians with three diferent stadard
deviations.

The training of RBFS consiss in deciding the
number of hiddemnits there sbuld be the centes and
the sharpness @tdard deviation) of theiGaussians,



and then training up the output dyer. Generdy, the
centers and standard deviations are decidefirsirby
examining the vectors in the training datéhe output
layer weights are tlen trained usig the Delta rule.

RBE- networks can be usal for classificaton
problems and function apprximation. They have the
advanége that one can add extra ugitvith centes
near parts of thnput, which are difficult to cassfy.

Both Badkpropagation and RBFsnetworks can be
usel for processing the-varying data ad many other
applications.
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Figure 4 — Radial Basis Fations network.

4. Implementation

The problem approachadoptel for the inverse
problem in this paper is baskon the Whole History
Mapping (WHM) presented in [3['he basic idais to
designa NN for mapping thewhole vector d observed
values of the emperature histy to the corresponding
vecta of outputs (theheat transfer coeffients in [3]).
After training, there is anexad correspondence
betveen the observed emperature valuesand the
output, over esme time intaval.

The WHM has the adventage of beingquite stable
andinsensitive to noisein the data [1]. ldwever,two
critical disadvantags are: 1) the number of input
vectors can be quite bigihich leadgo a large number
of connectionsnd very slow training; and 2for evey
case a new network has to be wmnstructe, thus
requiring new training sets, andthe whole traning
process.

In our simulatons, three temperatue distributions
were obtainal usingthe directmodel of [4] over a slab
with adiabatic conditions (figure 4), for 50re slices.

Two experiments wereconductedusing two neural
network arrargements: wo badkpropagation networks
and two RBF networks. The am was tofind out the
differences bawveen thetwo models inesimating the
initial  temperature  distbution. The  gneral
architecture of both arraagents is presented ifigure
7. Nework 1 is usedfor estmating the time o the
correspondingneasuredtemperature distributin (ony
1 output neuron is required) and network 2 is used for
the iteratve esimation of the initial temperdure
distribution over the slab ( outpd neurons
representing different positioser the slab).

The network architecture used in both experiments
had tre foll owing features:

* 2 Backpropagation meorks:
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e 1input layer; 1 hidde layer; autput layer

e HyperbolicTangent hidde neuons

e Linearoutput neuons
* 2 RBF networks:

e 1input layer; 1 hidde layer; 1 aitput layer

*  Gaussians Radial bas reurons

e Linearoutput neuons Linear

The training data consiste of the appended
distribution of three temperatre distributions obtaned
through the direct model (2) shown in figure 5. The
three distributions had different initial profiles:
triangular, logathmic, and sinusoidalvith maximum
valuel.
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Figure 5 — Combination of three tenperatre
distributions over 25 positions avéhe slakh for 50
time slices.

Input Output

0 50 100 150

Output

Figure 6 — Data sets used for traig the reural
networks. a) Input and Output data set$or network 1;
b) Input and Qutput data set$or network 2.

Two distinct training setswere derived from the
reallting data n figure 5: ae for training network 1
(figure 7) that esinatkes thetime slice corresponding to
a certain emperature distribution; and another for
training network 2 (figure 7) that callates theinitial
temperature distribution over the slab (figure Bhe
input data fo nework 1 was the émperdure
distribution history (figure 6a le€t) and taget data



were the time slies correspondingp eachtemperature
distribution over the slabfigure 6a right). For
network 2 the inptiwas the time appendedniperature
distribution (figure 6b left) and taiget datawas he
shifted temperatrre distritution (figure 6-b right).

Table 1 — Training resilts for the ba&propaation
neural néworks.

network # of Target # of
neurons error epochs
1 50 0.001 20000
2 50 0.0001 20000

Hyperbolic tangnt hidden neurons
Linearoutput neuions

Measured temperature distribution
over thedab
(can be corruptedwith noise)

v

Network 1
Estimated
Time

Append

| > time
Decremet

time
T No Network 2

Subseguent temperature
digtribution

Figure 7 — Fdwchart of the general approachfor
appling neural networks to sole the inverse problem
described in [4].

Fo network 2, in both simulations the training
consisté in presentinga measured émperature profile
with its correspondingirme slice (t) at the input, and
the following distribuion in the time sale (t+1) as the
output Then, néwork 2 learned bw to esimate the
distribution at a time slice aheadherea network 1
estimated the time of occence of tle measured
temperature distribution supplied.

The training was performed separatsl for each
network and each arrargnent. Table 1 sbws the
training results for the backpropagatin networks,
togetherwith the paametess used for traimg. Both
networks were traned up to the stoppilg criteria:
network 1 acheved the taget error wherea network 2
was trainedfor the maximum number d epochs.
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Simulations were condued underthe Matlab eural
network toolbax.

The training of the RBF neworks used similar
paranetes as it is stown in table 2.The algorithm for
training the RBF neworks gradualy builds upthe inal
network, thus not requing the speffication of the
number of neurons inthe hdden byer.

In both simulations, the training pammeterswere
chosen dsting dfferent possillities and checking out
the neéworks' peformances.

Table 2 — Training results for the RBFnetworks.

network RBF # of Spread | Targeterror
function neurons congant
1 Gaussan 34 0.1 5x 10°
2 Gaussin 59 0.3 10°

The pefformances were testel through the
activation of both arrangmentsby presentinga certain
temperatue distribution over the slab to medrk 1,
chosen from one of the individual distrbutions that
make up the one in figure 5. Netvork 1 estmated he
time of the given distrbution, which was fed to
nework 2, together with the gven distribution, for
iterative egimation of the initial distribution. Figure 7
shows the flowchat for activaton of both retworks for
each simulation. It is importanb tnotice tha both
networkswere trainedvith the @mbined data sets.

5. Results

Figue 8 presers resuls of the activation of the
networks traned with the cmbined distributio in
figure 6. The activation consisteth presening the
networks with a certan profile chosen from one of
three individual distributions that make up the
combined distribution. The profiles supplied to the
networks were chosen at four different positions @ the
individual distributions correspading to ,, s, 10,
and'/,s slices of the total tine for stedy state.

In figure 8, the plots bow same d the resits
obtaned with the actvation of the ba&propagation
networks ad the RBF networks with the same
measuredemperature distbution. The cunes with (*)
represeh the measured emperature distribution
supplied to the networks. The cunes with (+) represent
the targd profile, that is,the desired irnial temperaure
distribution. The cunes with (0) represent the NN
apprximation. In figures 8-a e 8b show the
backpropagation and RBF resulfor a triangular
distributionchosen at %2 of the time of stdg state. It is
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Figure 8 — Redlts o activation of both network
arrangmerts. (***) - Me asured Temp. Distribution;
(+++) - Target Prdile; (0ooo) - NN Approximation.

to be notice that th backpropagatio nework
apprximated better tohe desird profile. Figures 8-c
and 8d show the results 6the badprogation and the
RBF networks for a émperature distributin measured
at /s of stealy state time. Infigures 8-eand 8-f, a
logarithmic distribution wes provided chosen df,s of
stealy state tine with noise added at a 5% rafEhe
perurbation was constructed with a vector d uniform
rancbm numbers weighted by a certain perceage
(5%). Figures 8-g and 8+ show the resuk for the
backpopagation and RBRetworks for a distribution,
which was mt used or training them. Comparison
shows the bad&propayation networks generalize better
than RB- neworks. Table 3 summarizes the aaiwn
resuts for differentinitial profiles anddifferent time
instances some d them perurbed with some noise.

Table 3 — SImmary of activation results

Distribution | Time| Error Back | Error RBF | Noise
Triangular |% 0.001932 |0.000912 | 0%
Triangular | s 0.000573 |0.000425 | 0%
Triangular /,5 | 0.000706 0.000408 | 0%
Sinusoidal | s 0.02148 0.04418 | 0%
Logarithmic | /o5 |0.008241 0.001665 | 0%
Triangular | s 0.001311 | 0.000465 | 5%
Logarithmic | %2 0.02974 |0.1®@762 |5%
Triangular %0 [0.000997 0.03955 (0%

6. Conclusions

This pape has preseted a method for soling an
inverse irtial conditon problen in hea conducton,
usng a reural néwork approach. The problem was
approached usingwo NN models: backpropagation
and RBF néworks. The trainingsetswere constructed
with the directmodel n equation 2. Two NN g/stems
were used @amposed 6 two badkpropayation networks
or two RBF networks.

The results (figure 8 and table 3) osh
badkpropagation networks interpola¢ bette for
unknown data {igure 8g) and are more robust to
perturbations in the data (figure 8-eyheread RBF
neworks train faste and do not require architecture



specificaton beforeland but are vy sensitve to noise
(figure 8-h).

The experiments conducted stw the effectiveress
of neural networks in soling inverse problms. The
realts in figure 8 and table 3,were obtaied n the
experiment of an on going reseath on usng neural
networks for solving inverse problms. Although they
prove the effectiveress of NN in inverse proble,
future work still tas to be done. In these regartise
researh will continuein trying to estabish numerical
comparioons with those of [4]. Also, different NN
architectures ah more diverse trainingsets will be
tried in searchingiew neural nework architectures and
checkng generalizaton of the models. In additionthe
proposal methodology will be tried to sobe inverse
problemsin other applicatio areas sch asgeoplysics,
image processing andmputer vision.
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