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Abstract

Reinforcement learning techniques are based on ex-
perience acquisition. In most realistic applications, ex-
perience is time-consuming: it implies sensor reading,
actuator control and algorithmic update, constrained by
the learning system dynamics. In fact, the information
crudeness upon which classical learning algorithms op-
erate can make such problems too difficult and unrealis-
tic: embedding of prior structural knowledge, learning of
control laws (instead of low level control actions) and full
use of experience are required if control of real systems
is at stake. In this paper, we show how a robust formu-
lation (with respect to convergence properties) of the Q-
learning method that considers prior information about
the structure of the state space can be combined with an

rithm [2], in which the learning agent successively up-
dates estimate§),(x:,a;) of action valuesQ(x;,a;),
stored in a look-up table. Each action value represents
the expected cost incurred by the agent when taking ac-
tion a, at statex; and following an optimal policy there-
after. Formally, at time the agent:

1. Visits statex; and selects an actian.

2. Receives the reinforcementand observes the next
statex; ;.

3. Updates);(x;, a;) according to:
AQy = aufre +VVi(xe1) — Quxe,a0)] (1)

WhereAQt = Qry1(xt, ar) —Qe(xy, a), oz is alearning

instance-based technique as a mechanism to accelerate rate andV; (x;;1) = max,[Q:(x¢;1,a)] is the current

learning. We then demonstrate it both in simulation (with
a statistical consistency test) and in a real robot for a
guidance task defined by a combination of a predefined
control law and learned action policies.

1. Introduction

Reinforcement learning (RL) methods have been used
for the problem of learning to control stochastic dynamic
processes from direct experimentation. Such problems
are usually considered in the background of Markov De-

estimate of the optimal expected cdst(x;4+1). This
method generates estimai@s that converge ta@), pro-
vided o, satisfiesy ", a; = co and)_, a} < oo, and all
the pairs(x, a) are visited infinitely often.

2. RL in Realistic Tasks

RL algorithms (Q-learning included) suffer from
excessive conservatism as a single update for each
state-action pair is performed for each experience under-
gone. For practical purposes this is a serious handicap,
because real-life situations involve a very large number

cision Processes: the learning agent successively applies of states. Moreover, real-time delays and time constraints

actionsa, for each sequential state observation and
receives an associated instant rewayd=r(x;,a).

The goal of this experimentation process is finding out
(through a learning method) an optimal policy of ac-
tions that maximises an expected cumulative reward. The
problem is related to Dynamic Programming (DP) [1],
with the basic difference being that, for RL, there is no
prior model from which transition probabilities can be

can further slow down the learning process.

In order to make better use of experience, a rather
successful approach is to store former occurrences in a
chain of instances, and then perform additional updates
on them. However, performance improvement can still
be not enough for learning tasks such as robot navigation,
where there are system dynamics constraints which make
learning extremely slow. Besides, wrong estimation of

directly obtained. Nonetheless, former experience can be costs for a single state over a trajectory can completely

used to create an internal model from which additional
learning updates can be carried out.
The best studied RL method is the Q-learning algo-
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jeopardize the obtained control policy for such problems.
Some principles might be followed when applying RL
methods to such hard tasks.



The first principle is that RL should not be applied
at a too low level, because of the ‘curse of dimensional-
ity’ [3]. By learning to coordinate control laws instead of
control actions, the state space is greatly reduced. Fur-
thermore, basic behaviours (minimal set of control laws
that encapsulate sets of constraints so as to achieve par-
ticular goals [4]) are often easy to define and design. For
example, consider the task of target approximation in an
environment with obstacles. By defining a behaviour ‘ob-
stacle avoidance’, whose activation triggers a simple ob-
stacle avoidance controller, one can skip the problem of
learning a control policy over the (many) states in the ob-
stacle region, concentrating on more difficult tasks. For
learning purposes, all what must be done with respect to
obstacle avoidance is to provide a negative reinforcement
every time the corresponding controller is activated. This
procedure was employed in the experiments described in
section 4.

Secondly, prior knowledge must be embedded. How-
ever, inclusion of additional information should not alter
the robust properties of the algorithm, specially with re-
spect to convergence guarantees. We consider two kinds
of information embedding. The first is the adaptation of
learning parameters, depending on the situation. For Q-
learning, this would correspond to setting different learn-
ing rates or temporal discount factors, as appropriate.
Clearly, this can violate convergence requirements. For
instance, the learning rate for Q-learning must follow a
1/t intensity time variation, if optimality is required [5].
However, for practical purposes the possible advantages
gained by proper selection of parameters may compen-
sate for a loss of mathematical robustness, specially be-
cause such changes correspond to small structural modi-
fications, whose qualitative implications are usually easy
to assess. A second possible modification in order to
embed prior information corresponds to more effective
changes in the standard algorithm. This may correspond
to the inclusion of additional parameters to encode the ad-
ditional information. In this case, requirements for con-
vergence are more important, because the effect of these
extra parameters on the standard method can be over-
whelming.

In what follows, we present a modified formulation
of Q-learning that involves more than a single update per
iteration, allowing for generalisation based on the spread-
ing of the information derived from individual experi-
ences. We show how this formulation is suited for em-
bedding knowledge about the action value surface (action
values or their respective rates of variation). Finally, we
combine this technique with a model-based RL algorithm
and describe experiments that show how a combination
of prior information use (additional parameters from the
modified algorithm and appropriate temporal discount
factors) and iterative model construction can lead to good
results in a real robotic task.
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3. Generalising Q-Learning

Let us consider a more general version of the Q-
learning algorithm, as follows. At timg the agent:

1. Visits statex; and selects an actian.

2. Receives the reinforcementand observes the next

statex;4 ;.

. Update the action values ferverystate-action pair
(x, a) according to:

AQY = aqor(x,a)[re+

Wilxes) — Qf(x,0) + K(x,0)] (2
whereAQ! = Q7. (x,a) — Q{(x,a), K(x,a) is an ar-
bitrary bounded function, an@l < ¢¢(x,a) < 1is the
spreading functionwhich forces updates for paifg, a)
possibly not involved in the experience at time The
standard Q-learning update ( 1) corresponds to equation 2
with o4(x,a) = §(x,x¢)d(a,a:), whered(z,y) is de-
fined asd(z,y) = 1 if z = y, otherwis&)(z,y) = 0, and

K (x,a) = 0 (the identically null function).

The algorithm above is a generalisation of the stan-
dard Q-learning method in which a single experience can
update more than a single action value. It converges to
optimality, provided a) the standard conditions for con-
vergence of Q-learning are met, b) the functiiix, a)
is such thatK'(x;,a;) = 0, and c) the spreading func-
tion converges té(x, x;)d(a, a;) at least as quickly as;
converges to zero. A proof of convergence can be found
in [6]. Roughly, this proof consists in identifying the al-
gorithm above as an instance of a class of techniques that
try to approximate a DP operator using a time-varying
operator. This is justified by a theorem (whose proof is
in [7]) that eliminates the burden of having to prove con-
vergence of a cost functiori§ to V*, by saying that it
suffices to show that — given some conditions — the
time-varying operator approximates a DP operator at a
fixed point. By analysing our algorithm under the light
of this theorem, it is not difficult to see that it does satis-
fies its conditions, and that it can be seen as a perturbed
version of Q-learning, with a perturbation term that is of
second-order with respect to the update term.

The general formulation can be adapted to versions
of Q-learning that considers prior information about rel-
ative values or rates of variation of action values. For the
sake of simplifying notation and without loss of general-
ity, let us consider the one-dimensional problem= )
with spreading limited to the state space. If we make
K (x,a) = 0 (the identically null function), then we have
the following algorithm:

AQL,, = awor(w,ar)[re + YVi(wes1) — QS (z,a)] (3)

We call this variant the QS algorithm (from Q-learning
combined with Spreading).

Another variation corresponds to makifigz,a) =
(z — z;)D,,, whereD,, is a partial derivative estimate



—

9Q* (w,a)

5.~ for x = x;. Notice thatd; K (x,a) = d;(z —

x¢)D,, is zero for allz, and therefore convergence (under
the conditions stated in the last section) is guaranteed.
The corresponding algorithm would be

AQi 1 = aror(z, ar)[re+

Wilye) — Qi (w,ar) + (z — m¢) Dy, ] (4)

4. Experimental Results

We used a Khepera robot [8] as the platform for our
experiments. The learning goal is to control the robot for
a combined obstacle avoidance and target approximation
task.

4.1. Methodology
Figure 1 shows the setup for the experiments.
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Figure 1: Setup for the experiments on robot learning.

The Khepera robot is controlled by low level com-
mands sent via the computer’s serial port (Pentium 586,
12Mb RAM). These commands are translations of high
level instructions for wheel speed selection or position
control, whose syntax is defined in the Khepera simula-
tor [8]. Sensor readings for obstacle detection are car-
ried out similarly. The robot can execute three actions:
move forward a fixed distance (corresponding to the set-
ting of a position controller based on dead-reckoning),
turn left ninety degrees or turn right ninety degrees. The
turning actions are set by direct speed control applied to
the wheels, with an orientation error feedback computed
with the help of the camera. This camera is interfaced to
the computer via a Data Translation DT2851 B/W video
capture board. The robot has on its top a white disk with
a black direction mark that allows for orientation estima-
tion with respect to a fixed Cartesian system defined by
orthogonal axes fixed to the camera. Apart from provid-
ing feedback for control of the robot turns, the camera
also indicates its position with respect to a rectangular
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grid. Notice that the use of global positioning information
does not guarantees that the process is Markovian, be-
cause there are errors caused both by mechanical imper-
fections on the robot (generating uncertainties on mea-
surements made by the wheel encoders for position con-
trol) and by sampling requirements between consecutive
camera readings (producing errors of up to ten degrees
on orientation estimation). Effects produced by the intro-
duction of these imperfections are further discussed at the
end of section 4.2.

The operation cycle for the learning algorithms is as
follows:

1. Acquire and process image, read sensors.
2. Update learning parameters.
3. Perform control.

Because of the high cost of experience in real robot
navigation learning tasks, we based our studies on the
Dyna-Q algorithm [9]. Dyna-Q basically implements Q-
learning, but apart from the action value tables (whose
positions correspond to the rectangular grid positions of
the camera image), it also stores a collection of past in-
stances (tupleéx;, r:, a;)) visited by the learning robot.
For each learning step, Dyna-Q not only performs the
standard Q-learning update for the current experience,
but also for a collectioV of past experiences, randomly
chosen. We incorporated the spreading mechanism into
Dyna-Q, creating a variant we call Dyna-QS, which was
then tested in the navigation task. In order to assess the
possible benefits of the inclusion of prior information, we
also tested standard Dyna-Q under the same conditions.

The environmentis 84cm x 37¢m rectangular area,
with a 10em x 2¢m obstacle positioned as illustrated in
figure 2. The camera captures the image of the environ-
ment in a512 x 480 pixels frame, roughly aligned with
the horizontal and vertical axes of the rectangular envi-
ronment.

The robot must learn an action policy that avoids the
use of a previously designed controller for obstacle avoid-
ance (which when activated produces-a reinforce-
ment), whilst at the same time trying to approach the
target (a simulated light source which produces positive
reward proportional to its proximity from the learning
agent).

The learning parameters were set as follows:

e Discretisation levels (x,y):10, 16).

¢ Reinforcements: For activation of obstacle avoid-
ance controllerr = —1.0, with priority over re-
inforcement rewards obtained by target approxima-
tion. For target approximatiom,= 1.0 (maximum)
at target, then a decreasing linear function of the dis-
tance from target up to the distance 430 pixels.
Otherwisey = 0.0

Light source position (x,y) in pixels from bottom left
corner: (470, 280).



Table 1: Average number of steps and confidence level of
hypothesis for simulated experiment.

phasel phase2 total
vQs 757.0 251.2 1008.2
vQ 1201.0 687.5 1888.5
conf. level >095 >094 >0.95

courses for each algorithm were carried out, and a test of
the hypothesis that the average number of stepsfor
Dyna-QS was smaller than the average number of steps
vg for Dyna-Q was performed assuming normal distri-
butions and using sample variances. The results are sum-
marized in Table 1. Notice that Dyna-QS learned tra-
jectories much faster than Dyna-Q, due to its generalisa-
Figure 2: The learning environment. The white disk with  tion capabilities. The improvement is particularly signif-
mark (black rectangle) on the top of the robot facilitates jcant in the second phase of training (no spreading taking
calculation of pOSitioning and orientation. The cable for p|ace), Showing that the genera”sa’[ion performed in the
communication between the robot and the host Computer first phase produced an action value space from which

is also visible. The robot is located on the reference posi- fine tuning (performed by Q-learning) could be carried

tion at the start of a training course. out efficiently.
Motivated by the results above, we ran five training
e Learning parametersi = 0.9, v = 0.1 if obstacle courses in the real system, using the setup and parameters
avoidance controlleris active,: 0.9 otherwise.We defined in the last section. LikeWise, it turned out that

used a low value for obstacle avoidance because it Dyna-QS usually learned a trajectory much faster than

should not imply keeping a long distance from ob- Dyna-Q. It took an averagé(3.0 steps £26.2 steps in
stacles, but only avoiding hitting them. the first phase236.8 steps in the second phase) to reach

_ o _ r¢ > 0.6, whilst Dyna-Q took an averagé26.0 steps
o NumberN of past experiences revisited per itera-  (respectively372.6 and253.4 steps in the first and sec-
tion: 40. ond phases). Considering that each iteration step takes

The robot was always started from a reference posi- 2PProximately4.5sec real time to complete, this repre-
tion (Figure 2), with a learning protocol divided in two ~ S€Nts B4mind2sec average learning time for Dyna-QS
phases: in the first phase, it trains under its so far learned 29@inst at7min average learning time for Dyna-Q. No-
action policy, but with a20% chance of choosing an tlf)e that aIthough improvement was observed both_ln t.he
explorative random action. During this phase, Dyna- s!mulated apd in the real robot, there are quantitative
QS produces spreading on the neighbourhood (clasest  differences in the results (number of steps) because of
states) of the instantly visited state. Past experiences un- &) intrinsic modeling differences between simulation and
dergo standard Dyna-Q updates. In the second phase, thepractlca_tl realisation and b) dlfferent.mechamsms usgd for
robot is again released from the same reference position controlling forward movement, which made the simu-
and under the same action policy, but this time no spread- lated robot move a re!atlvely smaller distance than the
ing takes place. The learning phases are terminated once €@l one for each iteration step.
the robot explores the region close to the target. Thisis  Figure 3 shows trajectories followed by the real Dyna-
defined by &0 steps additional training, once it reaches QS robot after the first, second and operational phases,
a position from which-; > 0.6. Computing the overall respectively. Notice that the robot clearly managed to
learning time for the first two phases is a practical mea- combine the obstacle avoidance and target approximation
sure of the learning speed of the algorithm. Assessing the Pehaviours, though not in an optimal way. In particu-
temporal variation of the expected reward and analysing !ar. the robot does not get too close to the target position,
the resulting trajectory during operation are measures of Partly because of the possibility of hitting the correspond-

quality for the learned action policy. ing wall, and partly because it has been undertrained in
that region (remember that training is interrups@dsteps
4.2. Results after the robot reaches > 0.6 for the first time).

Figure 4 shows a typical average reward curve for the
In order to give statistical consistency and motivation Dyna-QS learning agent, once it finishes training. It was
to our experiments, we initially compared Dyna-Q and obtained by averaging realisations of trajectories ob-
Dyna-QS in a simulated experiment. The task was sim- tained under the learned greedy policy.
ilar to the one used in the real setup. Twenty training Typically, a learned trajectory is composed by piece-
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Figure 3: Trajectories followed by the real Dyna-QS

robot after the (a) first, (b) second and (c) operational
phases. The small white circle on the right indicates the
position of the light source, and the white rectangle indi-
cates the position of the obstacle.
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Figure 4: Average expected reward overoperation
courses of the learned greedy action policy for the real
Dyna-QS robot.
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Figure 5: Trajectory variations amodgealisations of a
trained action policy for the real Dyna-QS robot.

wise suboptimal paths (defined by metastable policies, as
pointed out in [2]), not necessarily linked to each other
because of insufficient training. Use of prior informa-
tion embedded in the spreading function helped Dyna-QS
to connect these learned trajectories (and thus to make
it learn the overall task faster), butl®% action noise
added to the learned policy proved to be helpful. The ef-
fect of the spreading function in accelerating learning is
clear, as the robot managed to approach the target region
already at the end of the first phase of training. In fact,
spreading acts by improving learnability on the smoother
parts of the action value space [10], whilst training under
standard RL (in our case, Dyna-Q in the second phase)
corrects generalisation mistakes and performs learning in
‘rough’ regions (near obstacle and walls).

Although the robot manages to reach a position close
to the target once it is trained, there may be some varia-
tion among followed trajectories, as shown in figure 5.
This is caused both by noise and bias introduced by
wheel rotation encoding, failed orientation control (ob-
serve that the robot does not move along perfectly orthog-
onal paths), and loss of Markovian characteristics caused
by discretisation of the state space.



5. Related Literature

Experience generalisation is related to state aggrega-
tion methods analysed by some authors [11, 12]. In par-
ticular, it can be shown [13] that Q-learning acting on a
set of aggregate states converges, provided a persistently
exciting action policy is used. However, the set of action
values asymptotically reached will depend on the limit
distribution P>°(x) defined by this policy. The use of
a decreasing spreading function eliminates this problem
because it guarantees action value estimates that asymp-
totically approach the correct values, independently of
the followed action policy.

The use of RL in autonomous robot control has been
gaining space in the last few years. Some of the main
issues involved in real tasks are reported in [14]. The
concept of learning based on behaviours instead of low
level actuator control was proposed by Matanits PhD
thesis [15], and later on this approach was adopted by
other authors [16, 17]. Dorigo and Colombetti combined
RL and Classifier Systems to produce highly autonomous
robots [18], based on a formalisation of the behavioural
approach into a methodology similar to software engi-
neering [19]. The idea of using behaviours not only for
state space reduction but also as practical requirements
for the safeness of the learning processes was proposed
by Millan [20], who devised a connectionist architecture
capable of combining fast learning from basic reflexes
and high tolerance to sensor noise.

6. Summary

This paper demonstrated the applicability of a more
general, convergent formulation for the tabular imple-
mentation of the Q-learning algorithm, that considers
available information about the structure of the cost
space. Experiments in a robotic navigation and guidance
task showed that combining this method with an iterative
model construction technique can accelerate learning in
real time tasks, demonstrating the importance of extract-
ing as much information as possible from every new ex-
perience undertaken by the agent in autonomous learning
problems.
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