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Abstract

A competitive “wavelet layer” is proposed for pat-
tern clustering. It exploits the representation capabili-
ties of adaptive wavelets to generate template approxi-
mations for each cluster of data. A brief review of adap-
tive wavelet representations, as well as some insight into
local minima problems, is provided. The method is il-
lustrated by a simple clustering problem, in which step
responses of dynamic systems are discriminated with ba-
sis on the presence of parasitic oscillations. The results
suggest that the wavelet layer exhibits superior perfor-
mance than the conventional competitive neural layers
when patterns exhibit a low signal-to-noise ratio.

1. Introduction

Recently, important bridges have been established be-
tween the field of artificial neural networks (ANN’s) and
wavelets [1],[2]. Wavelet Theory comprises a set of tech-
niques aimed at developing efficient representations of
signals through the use of elementary functions that are
localized both in frequency and in time [3]. A remarkable
feature of wavelet-based signal processing is that it mim-
ics several natural phenomena found in biological sen-
sory systems [4], [5]. This has been a strong motivation
for its use with Artificial Intelligence tools.

By spreading 1-D signals across a 2-D time-scale
map, wavelets allow the identification of features that can
be used to (1) represent signals in a more compact way
(data compression), (2) separate signals from noise (sig-
nal restoration, or denoising), and (3) recognize/classify
signals (pattern analysis). In particular, clustering may be
more efficiently performed after data undergo a wavelet
pre-processing [6].

This paper proposes an algorithm for wavelet-based
clustering which employs a competitive training scheme.
Unlike the majority of works in this field, the use of
wavelets is not restricted to a pre-processing stage. In-
stead, the representation capabilities of adaptive wavelets
[1] are exploited to synthesize a typical element, or “tem-
plate” for each cluster of signals.

A brief introduction to adaptive wavelet representa-
tions is provided, in order to help the presentation of the
key concepts. Initialization and training schemes are de-
scribed, and some insight into the sources of local minima
problems is given.

For illustration purposes, the proposed clustering
technique is applied to a simple problem, in which step
responses of first-order dynamic systems are discrimi-
nated with basis on the existence/absence of parasitic
oscillations. The results suggest that the wavelet layer
presents better performance than conventional competi-
tive neural networks when the patterns to be clustered (1)
are of an oscillatory nature and (2) exhibit a low signal-
to-noise ratio.

2. Notation
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3. Mathematical Preliminaries

A fundamental result of wavelet theory states that, if
a function 2 L2(R) satisfies the condition
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Parametersa andb are denominatedscaleandtrans-
lation. Functions a;b are called wavelets, derived from
the mother wavelet :Remark that reducing the scale has
the effect of compressing and spreadinĝ .

Eq.(1) essentially implieŝ (0) = 0, i.e.,  should
have zero mean. Moreover, it can be shown [3], that, if
 decays reasonably fast in the time and frequency do-
mains, than there exists countable sets of scalesA and
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translationsB such that:

f =
X

a2A;b2B

w(a; b) a;b (4)

Coefficientsw(a; b) can be obtained as the inner
products off with “decomposition” functions~ a;b. The
reconstruction off from these coefficients is numerically
stable, so the wavelet series can be truncated at some
point, when the approximation error is found to be ac-
ceptable. One then says thatf is approximated by a finite
combination of wavelets.

If f is given in a discrete-time form, the coefficients
of its wavelet expansion can be obtained in a fast man-
ner by using a special bank of digital filters. Such al-
gorithm computes the coefficients in dyadic scales (pow-
ers of two) and employs successive downsampling opera-
tions to eliminate redundancy and thus increase the speed
of calculus [7].

4. Adaptive Wavelet Representations

The filter bank method for finding the coefficients of
a wavelet expansion has two main drawbacks:

1) Downsampling makes the coefficients variant to
time shifts [7].

2) Signal features in intermediary scales (that is,
scales that are not powers of two) may not be adequately
represented in the coefficients (fig.1) [8].

Figure 1: Some features may not be adequately repre-
sented by wavelets in dyadic scales.

An alternative procedure consists of approximating
the signal by a finite combination ofadaptive wavelets
[1]. In this approach the sets of scalesA and translations
B are not chosena priori (fig.2). Instead, they are ob-
tained by using numerical optimization algorithms which
seek to minimize the approximation error.

Figure 2: Adaptive wavelets are an alternative to repre-
sent features that are not located in dyadic scales.

Suppose that a discrete-time signalf [�] is to be ap-
proximated, over the intervalDf = [0; T ] � Z; by a
linear combination ofK wavelets derived from a mother
wavelet . This representation problem can be stated as
follows:

Find sets of scalesA = fak; k = 1; :::;Kg; trans-
lationsB = fbk; k = 1; :::;Kg and coefficientsW =
fwk; k = 1; :::;Kgwhich minimize the cost function:

E(A;B;W ) ,
1

2

TX
t=0

�
eA;B;Wa [t]

�2
(5)

where

eA;B;Wa [t] , f [t]�
KX
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wk 
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�
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Remark thatt denotes a discrete time index (a unity
sampling time is assumed, without loss of generality).
Also, since the number of wavelets is finite, the normal-
izing factorjakj

�1=2 was included in the coefficientwk:
For simplicity in deriving gradient equations, henceforth
let tk , (t� bk)=ak:

If one chooses the real Morlet mother wavelet (a mod-
ulated gaussian):

 (t) , cos(
t) exp(�0:5t2) (7)

then the partial derivatives of the cost function with re-
spect to the parameters involved are:

@E

@ak
= �

TX
t=0

tkMk[t] (8)

@E

@bk
= �

TX
t=0

Mk[t] (9)

@E

@wk
= �

TX
t=0

ea[t] (tk) (10)

where

Mk[t] , ea[t]
wk
ak

h

 sin(
tk)e

�0:5t2
k + tk (tk)

i
(11)

The optimization technique adopted in the present
work is the conventional Gradient-Descent method, i.e.:

Xi+1 = Xi � �Xr
i
XE (12)

whereri
XE is the gradient of the cost with respect to

parameter vectorX (X = A;B; or W ). Different step
sizes�X may be required forA;B; andW:
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Figure 3: Example signal.

4.1. Parameter Initialization

Good parameter initialization is very important to ac-
celerate the convergence of numerical optimization algo-
rithms and reduce the risk of capture by local minima that
are not global optimum points. The following example
gives an idea of the types of local minima which arise in
adaptive wavelet representations.

Fig.3 depicts a signal consisting of two sinusoids, of
frequencies0:05 and0:10 rad=s: Here,T = 1000.

Suppose one is trying to represent this signal by a sum
of two real Morlet wavelets with
 = 2:5: Suppose also
that the following parameters are adopted for the opti-
mization algorithm:

200 iterations �A = �B = 1 �W = 10�3

W 0 = [1; 1] B0 = [250; 750] A0 = [a0; a0]

Results corresponding to three different initial scales
are seen in fig.4. Note that, depending on the initial con-
dition, a wavelet may not manage to “resonate” with any
part of the signal. In this case, the solution found is to
“annihilate” this wavelet.

Table 1 shows the resulting parameters at the end of
the optimization, as well as the costs attained in each
case. The values marked in boldface are those respon-
sible for the “annihilation” of a wavelet, which can be
due to a decrease of either the weightwk or the scaleak:
Note that when this happens, parameters not related to
the annihilation remain almost unchanged with respect to
their initial values.

Table 1: Results of using different initial scales
a0 75 50 12.5
a1 53 53 0.05
b1 281 281 253
w1 1.39 1.39 0.78
a2 72 27 27
b2 750 766 766
w2 0.0003 1.37 1.38
E 204 182 227

The concept of “wavelet anihilation” is similar to the
turning off of neurons in conventional neural networks:
if a node is not contributing to cost reduction, then the
network may try to de-activate it. In ANN this is done ei-
ther by decreasing the synaptic weights or by moving the
decision surface of the neuron outside the region where
patterns are found [9].

(a) a0 = 75

(b) a0 = 50

(c) a0 = 12.5

Figure 4: Effect of different initial scales

In order to cover a wide range of possible values for
the scale parameter, the following multiresolutional ini-
tialization scheme is adopted in the present work:

1) SpecifyL, the number of multiresolution levels
to be initially employed andK1; the number of biased
wavelets to be used at the lowest scale of the multiresolu-
tion.K1 must be a multiple of2L�1:

2) Initial positions are set in a dyadic lattice, accord-
ing to the following equations:

b0k1 =
2k1 � 1

2K1

T ; k1 = 1; :::;K1

b0K1+k2 =
2k2 � 1

2K2

T ; k2 = 1; :::;K2

b0K1+K2+���+kL
=

2kL � 1

2KL
T ; kL = 1; :::;KL

whereK2 = K1=2; :::;KL = KL�1=2:

3) Initial scales are set such that the union of the ef-
fective supports at each level coversDf : This can be
achieved, with1 : 2 overlapping, by makinga0 =
2T (KlR)�1 at the lth resolution level (R is the effec-
tive support width of the mother wavelet employed). An
example of an initial grid is depicted in fig.5.

4) Coefficientswk are initialized with small random
values, taken from a normal distribution with zero mean:
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Figure 5: Initial Wavelet Grid.

5. The Competitive Wavelet Layer

Fig.6 depicts the architecture of the proposed compet-
itive wavelet layer (CWL). It consists ofG groups ofK
wavelets, each group with its own set of scalesAg, trans-
lationsBg , and weightsWg. Henceforth, to help clarify
the relation between such architecture and conventional
neural layers, the linear combination of the wavelets in a
group will be called a wavelet neuron, or “wavelon” [2].
Thegth wavelon in the layer will be denoted byyg :

Figure 6: Architecture of an unsupervised wavelet layer
with G “wavelons”.

When a training pattern is presented to the CWL, its
distance (norm of the difference) to each wavelon is com-
puted. The wavelon with the smallest distance is de-
clared the “winner” (best match to the pattern) and has
its parameters (Ag; Bg;Wg) updated in order to further
decrease the distance to the pattern.

This winner-take-all strategy, however, often does not
yield an adequate separation of clusters, since the same
wavelon may keep winning for patterns that should be
assigned to different classes. An alternative is to adjust
both the winner’s and losers’ parameters in an inverse
proportion to their approximation errors (leaky compet-
itive learning[10]). Another possibility is to employ the
concept of neighbourhood, that is, to arrange the layer
topologically and update not only the parameters of the
winner wavelon, but also of its neighbours [10].

Thus, lettingJg be the distance between wavelonyg
and theith training pattern, the update law for the param-
eter vectorXg (Xg = Ag ; Bg; orWg) is:

Xi+1
g = Xi

g � ��XrXJg (13)

where � = 1 for the winner wavelon. For a loser
wavelon,� may be zero (“winner-take-all”), a function
of its position with respect to the winner (neighbourhood
approach), or a function of the distanceJg (leaky com-
petitive learning).

If one uses real Morlet wavelets and adopts as dis-
tance measure the cost in eq.(5), then the gradient equa-
tions and the initialization scheme foreach wavelon are
the same as those previously derived.

A final remark should be done with respect to
wavelet-based clustering. Wavelets are a good choice for
basis functions when signals to be clustered exhibit an
oscillatory behaviour. However, if oscillations are small
when compared, for instance, to trends present in the
signal, it may be advisable to begin the clustering with
another technique, such as conventional competitive net-
works. After re-centering data on the templates thus ob-
tained, wavelets may then be used to perform a new clus-
tering on the residual oscillations [5].

6. An Illustrative Example

Consider a problem in which one is to group the step
inputs of first-order dynamic systems with basis on their
time constant and on the presence or absence of parasitic
oscillations. Such a situation could arise, for instance,
during the quality control of a set of electric devices. As
an example, suppose that half of the systems have a time
constant of1:0s and the other half, a time constant of
0:5s: Within each group, half of the systems has a para-
sitic dynamic with the following transfer function:

Gparasitic(s) =
100

s2 + 4s + 100
(14)

For some reason, this parasitic subsystem is excited
when the output of the system reaches0:5.

With this setting, there are 4 classes of time responses
to be considered:

a) Slow, no parasitic oscillation
b) Fast, no parasitic oscillation
c) Slow, parasitic oscillation present
d) Fast, parasitic oscillation present
Fig.7 depicts these four classes, which were sampled

with a period of0:01s (to fit the signals in the framework
employed in the present section, the discrete time index
is used in the horizontal axis). In this case,T = 500.

White gaussian noise with zero mean and a standard
deviation of0:1 was added to the step responses, in order
to generate a set of patterns to be clustered. 50 patterns
were taken from each of the 4 classes, thus generating a
set of 200 patterns. Examples of the noisy patterns are
shown in fig.8.

Remark that the patterns to be clustered in this exam-
ple have oscillations only as a minor component. Thus,
a preliminary clustering using a conventional competitive
layer with 2 neurons is first performed. LettingW be the
(501 � 1) vector of synaptic weights of the neuron, the
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Figure 7: Step Responses: (a),(b) without parasitic oscil-
lations; (c),(d) with parasitic oscillations.
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Figure 8: Noisy Step Responses: (a),(b) without parasitic
oscillations; (c),(d) with parasitic oscillations.

update rule after the presentation of theith pattern is:

W i+1 =W i + ��
�
f i �W i

�
(15)

where� = 1 (winner neuron) or� = (0:97)i (loser neu-
ron). Initial weights are taken from a normal distribution
with a standard deviation of0:01.

Using � = 0:15; a perfect separation between slow
and fast step responses was obtained. The templates can
be seen in fig.9.

The next step consists of re-centering each cluster on
the respective template. Fig.10 depicts typical signals
that remain after template subtraction.

As it can be seen, these “residual signals” display a
more pronounced oscillatory characteristic. Now,each
of the two clusters obtained (“slow” and “fast” step re-
sponses) will be refined with basis on the presence or
absence of parasitic oscillations. Table 2 brings the er-
rors committed when cluster refinement was done with

Figure 9: Initial Templates: (a) Slow, (b) Fast.
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Figure 10: Examples of signals remaining after the sub-
traction of the respective class template.

the conventional competitive layer. The best results ob-
tained, by varying the learning step�; are marked in bold-
face (� = 0:02).

Table 2: Neural Layer: Percentual Errors
� (�10�3) 1.0 2.0 5.0 10 15 20 50

Slow 43 42 49 46 41 31 48
Fast 48 50 50 46 48 45 46

Table 3 brings the errors committed when cluster re-
finement was done with a wavelet layer with 2 wavelons.
Each wavelon had seven Morlet wavelets distributed
among 3 resolution levels. Initial weights were taken
from a normal distribution with a standard deviation
of 0:01 and training parameters1 were set to�W =
10�2; �A = �B = 1000: Parameter� was chosen as
above, that is� = 1 (winner wavelon) or� = (0:97)i

(loser wavelon): The effect of using different frequencies

 for the mother wavelet was also studied. Again, the
best results (on the average) are in boldface (
 = 5).

1Large values for�A e�B are neededbecause, in the gradient equa-
tions forA andB; the scale appears on the denominator. Due to the
initialization scheme employed, initial scales are larger than one.
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Table 3: Wavelet Layer: Percentual Errors

 2.5 5 7

Slow 42 6 18
Fast 9 30 45

As can be seen, if
 is conveniently chosen, the
residual signals are better processed by the wavelet layer
than by a conventional competitive layer. The reason is
made clear in fig.11, which depicts the 4 wavelons ob-
tained (two to refine each cluster) plotted over the para-
sitic oscillations. Remark how the wavelons are in phase
or contra-phase with the oscillation: this “resonance” is
the cornerstone for the good performance of the wavelet
layer. Note that the objective of using a multiresolutional
structure inside the wavelons is precisely to increase the
probability of a wavelet entering in resonance with a fea-
ture that carries discriminatory information.
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Figure 11: Wavelons for the presence (�) or abscence
(O) of parasitic oscillations. (a) Slow Step Response, (b)
Fast Step Response.

Fig.12 depicts a template obtained with the conven-
tional competitive layer. It is interesting to point out
that, while a neuron in the competitive layer has 501
weights (one for each sample in the analyzed signals),
the wavelons employed had solely3�7 = 21 parameters
each. Thus, although the neural layer had the capability
of arriving at the wavelet-synthesized templates, the large
number of degrees of freedom made it very sensitive to
the noise.
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Figure 12: A template obtained when refining the clusters
with the conventional competitive layer.

7. Concluding Remarks

Any template synthesized by wavelets can also be ob-
tained with a conventional neural layer. However, due to
the very nature of the basis functions employed, the CWL
is expected to yield better results when the signals to be
clustered display oscillatory characteristics. The perfor-
mance of the CWL depends on a good choice for the cen-
tral frequency of the mother wavelet (
), but this restric-
tion could be alleviated by using an adaptive
 [11].

Possible applications for the CWL might include, for
instance, clustering of biomedical signals, such as elec-
trocardiographic patterns. Some research in this direc-
tion was carried out in [5], which also exemplifies how to
interpret the knowledge embedded in a wavelet layer.

Future works could exploit the use of wavelets in
other ANN paradigms [10], such as learning vector quan-
tization and adaptive resonance theory (ART). ART ap-
pears as an interesting possibility, since wavelet cluster-
ing is intrinsically based on resonance.
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