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Abstract

In this paper a model proposed by Sepulveda et
al. [1] will be revised regarding the use of
artificial neural networks to map EMG signals and
joint dynamics in the lower-limb. The original
model will be used to analyse other aspects of
human gait, like muscle recruitment, movement
patterns and to study a problem from a patient
with a lesion in the femur's region. Some theory on
neural networks is applied to validate the model
and train the network. New tests are used to verify
other aspects of the human gait study. Analysis of
the results showed some discrepancies in
EMG/moments mapping but good results in
EMG/angles mapping.

1. Introdution

The human motor control can be analysed at
multiple levels depending on which aspect is been
studied. The three common levels of analysis generally
considered are cellular, network and movement [2]. The
cellular level specifies the function of each neuron of the
system, regarding biophysics aspects. The network level
analyses strictly the central nervous system, namely, the
neuron connection and the information through the
network. Finally, the movement level takes into account
the muscular system and the structural support system,
studying the human movements after cortical and spinal
commands.

Human Gait is included in the movement level study.
It is a cyclic movement pattern repeated several times.
The walk is a typical human gait that can be measure
and give some information about our muscles and
nerves involved with motor control. The human gait
cycle is defined as the interval between two events
repeated related to the same foot [3].

An artificial neural network (ANN) regarding
the correlation between EMG signals and joint variables
was first described by Sepulveda et al. [1] achieving
good results. The authors used a multi-layer perceptron
(MLP) making a mapping of 16 EMG signals and 3
joints angles and moments of the lower limb. The data
used in the training and testing procedure were obtained
from the literature [6]. After that, some other works
were developed using neural networks to study motor

control. In this paper will be given an overview of the
original work, considering some aspects involved in the
ANN design.

Actually, there are other strategies to represent
the correlation between EMG signals and human gait,
like mathematical optimization theory and algebraic
methods (Hof et al., 1987). But in most of cases,
artificial neural networks have been demonstrated
superior than other methods, because of the simplicity of
the arrangement, and the slow discrepancies between
measurement and prediction.

2. Electrical Measures in Human Gait

A good way to analyse the muscle function is
recording the electrical activity of the muscle. It was
done using electromyogram (EMG) records. The EMG
is the single best representation of neurologic control
(activation) of skeletal muscle [6]. It represents the
activity of the motor units, the basic unit of motor
function, composed by one motor neuron and the group
of muscle fibers it innervates. Each motor unit, when
activated, produces a motor unit action potential that is
an electrical signal measured by electrodes placed over
muscles.

The EMG data presented in this paper were
obtained by superficial electrodes because of the facility
to measure, although needle electrodes produce better
results [6].

During the human gait a group of muscles is
recruited to produce the dynamics required. The EMG is
used to verify which muscles are being recruited and in
what manner they interact to produce the body
movements.

3. Artificial Neural Network Model

In the field of artificial neural network there are
some models based on biological systems, at least in
their essence. For this reason, it is thought that artificial
neural networks are appropriated to analyse natural
systems, like spinal networks and pools of motor units.
In our problem, we want to study the relationship
between EMG signals and joint movements. The
responsible structure for that is composed of several
neural networks, spread over spinal cord and lower-
limb.



149

We propose in this paper an extension of the
original model, considering four artificial neural
networks divided in two classes: moment networks and
angle networks. Each class has two types, slow and
normal cadence. With our model it is possible to analyse
the human gait in several aspects regarding muscle
recruitment, movement patterns and joint dynamics.

The four ANNs chosen (EMG/moments,
EMG/angles - natural and slow cadence) are the
traditional MLP [4], with backpropagation training
algorithm (Figure 1). The choice was made based on
cluster analysis. Taking the input vector, we proceed to
a k-means study and it was shown that among 16 inputs
(one for each muscle) there were some clusters with
strong representation while others had only one
representative (outliers). In this situation it is not
possible to use a Radial Base Function network (RBF)
to perform the mapping. RBFs are faster than MLPs and
sometimes lead to the same or better performance, but
they require the input vector to be well distributed over
some clusters. The MLP, on the other hand, has
generally the ability to separate the inputs in the same
cluster improving the network response. The k-means
analysis is shown in Table 1.

Al l networks constructed have the same
structure, differing only in the training set. The networks
have an input layer with 16 units that is associated with
16 leg muscles. The input units are described in Table 2.
The hidden layer has 32 units, which are sufficient to
separate all clusters present in the input layer.
Completing the architecture, there are 3 output units
associated with hip, knee and ankle dynamics, relating
with moment or angle depending on the network type.
Figure 2 illustrates the system structure.

Figure 1: A classical structure of multi-layer
perceptron. The neuron activation function is any kind
of non-linearity. The most used are sigmoids. The input
layer is feed up with EMG signals and the output layer
represents angles, in one class of network, or represents
moments in other class. Each network has two variants,
slow and natural cadence.

Representatives – Cluster Spread
4 clusters 8 clusters 12 clusters
14 - 1.5616
24 - 1.4431
7 - 0.7284
6 - 0.8402

10 - 0.7565
10 - 0.6925
4 - 0.2311
2 - 0.0586
3 -0.2158
4 -0.3733
7- 0.2780

11 -1.1016

10 - 0.7565
10 - 0.6925
4 - 0.2311
2 - 0.0586
1 - 0.0000
1 - 0.0000
1 - 0.0000
1 - 0.0000
1 - 0.0000
3 - 0.1286
7 - 0.3044

10 - 1.0272

Table 1:  K-means analysis. The 51 input patterns
were divided in 4, 8 and 12 clusters. The analysis shows
that there are some clusters with many representatives
while others have only one representative. Because of
that response, the MLP is used instead of the RBF.

In other papers [8, 9] it was also used different
kinds of ANNs to study movement generation. In that
case, it was necessary to use a recurrent network, to
achieve the pattern generation. Elman Network [5], that
is a three-layer network with feedback from the hidden
layer to the input layer input is generally used in this
cases. Because of this feedback process, the network is
capable of detecting and generating time-varying
patterns, for instance, movement patterns. Another
alternative is described by Srinivasan et al. [8].

Figure 2: The system structure. Each output block
defines a different network. For slow cadence the input
is the upper block and for natural cadence the input is
the lower block.
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Input  Muscle
1 Gluteus medius
2 Gluteus maximus
3 Semitendinosus
4 Biceps femoris
5 Erector spinae
6 Sartorius
7 Rectus femoris
8 Vastus lateralis
9 Adductor longus
10 Adductor magnus
11 Tibialis anterior
12 Extensor digitorum longus
13 Medial gastrocnemius
14 Lateral gastrocnemius
15 Soleus
16 Peroneus longus

Table 2: Muscles associated with input units. These
muscles are recruited in the human gait in a complex
manner. The networks will be trained to execute the
same tasks of the muscle ensemble, e.g., create the
angles and muscles dynamics.

4. Methodology

In order to obtain an adjusted system it was
necessary to train all the networks with an appropriated
training algorithm. The backpropagation algorithm [4]
was used achieving good results. Two approaches have
been tested: linear and sigmoid neuron transfer function
in the output layer. If possible, the use a linear function
is a better approach because it is faster. Both input and
output vectors were normalized before being applied to
the network. The use of sigmoid functions was done
considering the well-known formulation of standard
MLP (using sigmoids as the neurons transfer function
which requires outputs between 0 / 1, for example) and
to having a normalized network suited to analyse data
from different sources (see application session). After
5000 epochs the output error was less than 2% which is
considered a good result because is lesser than the
standard deviation.

The validation procedure was done testing the
network with input vectors different from the training
vectors. Applying a linear regression in the networks
resulted in the following averaged coefficients:

m = 0.9867 b = 0.0034 r = 0.9989
which confirmed that the system became corrected

adapted, because m and r coefficients are almost 1 and b
coefficient is almost 0.

5. Application

After the previous steps, the system was
applied to a real case - a register of a patient who had
fractured his femur. After the recuperation, he was
submitted to an EMG exam to verify the muscle activity.
In static EMG tests no problems were found, but when
the patient was evaluated in a gait analysis it was clear
that there was a distortion in the walk. The drawback in
this case is to identify which muscle was to be blamed to
the bad performance. The system here described was
applied to help achieving the diagnostic.

As EMG signals, angle positions and moment
measures were normalized, the system could be used
without any change. The strategy was to search for
system outputs that were similar to that registered from
the patient, e.g., outputs showing a distorted walk. A
first assumption was that moment was not a better
variable to be evaluated because the system was trained
with averaged measures of people in perfect conditions,
which was so many different of the patient measures.
Then, the approach was to set up the angle outputs (hip,
knee and ankle angles during the gait) to be similar to
that shown in the patient records. Three patient trials
were averaged during his gait and then were plotted
graphics of angle positions x percentage of the stride.

The network in which the EMG signals and
angle positions represents slow cadence was used
because the patient executed a cadence like that. The
main task to obtain similar angle positions was to feed
the network with the EMG signals used in the training
procedure but changing each muscle at a time, verifying
whether this change had effect or not. After testing all
muscle inputs, it was verified that 4 muscle inputs were
responsible to fi t the network output to the patient data,
namely, biceps femoris, erector spinae, rectus femoris
and lateral gastrocnemius. After several trials, the best
input was configured as normal input in all muscles
except a 10 times reduction in the four muscles related.
This probably means that either in the ANN as in the
patient these muscles are responsible to the walk
distortion and need to be better evaluated. Figure 3 and
Figure 4 show hip and knee curves of patient data and
curves obtained from the network. Although these
curves are not perfectly fitted they are the best
approximation found. Ankle curve was not used because
a linear regression demonstrated that this curve was not
agreeing with patient data, probably because ankle has a
great level of variability, being not suited for that
analysis (see Table 3).
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Figure 3: Hip angle x percentage of stride. Observe
that in the beginning of stride the two curves were more
similar.

Figure 4: Knee angle x percentage of stride. Observe
that in the beginning of stride the two curves were more
similar.

m b r
hip angle 0.6070 -0.1009 0.7673

knee angle 0.6307 -0.0334 0.5515
ankle angle -0.9461 0.4322 -0.6853

Table 3: Linear regression coefficients between
patient and network curves after adjusts in EMG input
signals to fit the curves. Hip and knee angle curves was
relevant but ankle curve was not so considered because
of the great differences in the values observed.

6. Conclusions

The variables presented in human gait analysis
interact with each other in a complex manner. In the
study presented here there is a 16-dimension vector as
the input set mapped in 6 dimension joint dynamics.

Considering this complexity an artificial neural network
approach is suited to this case because of its relative
simplicity, easy manipulation and robustness.

In a real study, like that analysed in this paper,
the data have to be carefully treated because the results,
in many times, are not well established.

The analysis of that patient, who had problems
in the walk even after the recuperation of a femur
broken, showed us that the system reviewed here can be
used to study the case, but not in a whole. The network
that correlates EMG and moment showed discrepancies
in the results. This is attributed to differences among
each subject record, because their moments normally
vary in a great range. So, this part of the system is not
appropriated to our study. The other network type, EMG
– angles, is more suited because angles is less affect to
differences between the subjects. The first two system
outputs, hip and knee angles could be approached to the
patient record, showing that four muscles would be
involved in the patient’s problem. The biceps femoris
and rectus femoris are more probably to be affected,
because are femur muscles. Erector spinae and lateral
gastrocnemius have to be more studied to confirm
whether they take part into the problem or not.
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