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Abstract

In this paper a model proposed by Sepulveda et
al. [1] will be revised regarding the use of
artificial neural networks to map EMG sigisaind
joint dynamics in the lower-limb. The original
model will be used to analyse other aspeat
human gait, like muscle recruitmennovement
patterns and to study a problem from a patient
with a lesion in the femur's region. Some tlyemr
neural networks is appliedtvalidate the model
and train the network. New tests are dise verify
other aspects of the human gait study. Analgsi
the results showed some discrepancies
EMG/moments mapping but good results
EMG/angles mapping.

in
in

1. Introdution

The human motor control can be analed at
multiple levels depending omwhich aspet is been
studied.The three conmon levels of angkis generally
considered are cellular, megrk ard movement[2]. The
cellular level specifies the function echneuronof the
systam, regardirg biophysics aspectsThe netvork level
analses stricy the central nervous/stam, namely, the
neuron connection and thimformation throuch the
network. Finally, the movement level takes into account
the muscula systam and the structural supporystam,
studying the human movements after cortidaard spinal
commands.

Human Gatt is included in thenovement level stugl.
It is a gclic movement pattern repeated severahds.
The walk is a ypical human gai tha can be measure
and give same information about ourmuscles and
nervesinvolved with motor control. The human gait
cycle is defined as thintervd between two events
repeated related to thensafoot [3].

An artificial neural nework (ANN) regarding
the correlation betveen EMG signals anj@int variables
was first described ybSepulveda et al[1] achieving
god results The authors used raulti-layer perceptron
(MLP) making amapping of 16 EMG signad and 3
joints angles andnoments of tle lower limb. The data
used in the training and testipgocedue were obtained
from the literature [6].After that, sane othe works
were developed using neural wetks to stugt motor
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control. In this papewill be given an overvien of the
origind work, considerilg same aspects involved in the
ANN design.

Actually, there are other strategit represent
the correlation beveen EMG signals and man gait,
like mathematical optmization theoy and algebraic
methods (Hof et al., 1987). But inmost d cases,
artificial neural neworks have been dwnstrated
superior than othanethods, becaef the simplicity of
the arrangenent and the sl discrepancies beten
measurenent and prediction.

2. Electrical Measures in Hunan Gait

A godad way to anayse themusclefunction is
recording the electrical activitof the muscle It was
done using electrmyogram (EMG) records.The EMG
is the single best representation of neurologic control
(activation) of skeletalmuscle [6]. It represestthe
activity of the motor units, tle bast unit of motor
function, composed ly one motor neuron and the group
of musck fibers it innervates. Eachotor unit, when
activated, produces @motor unit action potential that is
an electricd signd measured ¥ electrodes placed over
muscles.

The EMG data presented in this papeere
obtainedby superficial electrodes because of the facility
to measure although needle electrodes produce better
results [6].

During the hman gait a group ofmuscles is
recruited to produce the yhamics requiredThe EMG is
used to verlf which muscles are begrecruitedandin
what manner thg interact to produe the body
movements.

3. Artificial Neural Network Model

In the field of artificial neural nework there are
same models based on biologicaystans, at leastin
their essence. For this reason, it is thought that artificial
neural naworks are appropriatedotanalyse natural
systams, like spinal netvorks and pools fomotor units.

In our problan, we want to stugt the relationship
betveen EMG signals andoint movements The

responsike structue for that is canmposed of several
neurd neworks sprea over spinal cord and Veer-

limb.



We propose in this paper axtensionof the
original model, considering four artificia neural
neworks divided in two classesmoment netvorks and
angk networks Each class haswb types, slav and
nomal cadence. With oumodel it is possible to anae
the hunan gait in several aspsctegardig muscle
recruitment, movement patterns anjbint dynamics.

The four ANNs chosen (EMGhoments,
EMG/angles - natural and sk cadence) are the
traditional MLP [4], with backpropagatio training
algorithm (Figure 1). The choice was made based on
cluste analssis. Taking the input vectonve proceed to
a k-mears study and it was shavn that anong 16 inputs
(one for eachmuscle) therewere sane clusterswith
strorg representatio while others had oml one
representatie (outliers) In this situation it is not
possible to use a RadiBlase Function netrk (RBF)
to perfom themapping. RBFs are faster tharLMs and
sametimes lead to the sa or bette performance but
they require the input vector to hweell distributedover
some clusters.The MLP, on the other ham, has
generaly the abiliy to separate the inputs in thenga
cluster mproving the netiork responseThe kimeans
analsis is shavn in Table 1.

All  netwvorks constructed have the n
structure, differing oglin the training sefl he networks
hawe an input layer with 16 units that is associatedth
16 leg muscles.The input units are describedTable 2.
The hidden Ilger has 32 unitswhich are sufficiento
separate all clusters present ine thnput layer.
Completing the architecture, thereea8 output units
associatedwvith hip, knee and ankleydamics, relating
with moment or angle depending on the wetk type.
Figure 2 illustrates theystam structure.

Hidden

Input Output

Figure 1. A classical structure ofmulti-layer
perceptron.The neuron activation function is yakind
of non-lineariy. The most used ar sigmoids. The input
layer is feedup with EMG signals and the outputyker
represents angles, in one class ofwoek, o represents
moments in other class. Eactetvork has two variants,
slow and natural cadence.
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Representatives — Cluster Spread

4 clusters 8 clusters 12 clusters
14-1.5616 10-0.7565 10-0.7565
24-1.4431 10-0.6925 10-0.6925
7-0.7284 4-0.2311 4-0.2311
6-0.8402 2-0.0586 2-0.0586
3-0.2158 1-0.0000
4-0.3733 1-0.0000
7-0.2780 1-0.0000
11-1.1016 1-0.0000
1-0.0000
3-0.1286
7-0.3044
10- 1.0272

Table 1. K-means angkis. The 51input patterns
were divided in 4, 8 and 12 clustef$e analsis shovs
that there are swoe clusterswith mary representatives
while othess have ony one representative. Because of
that response, the IMP is used instead of the RBF.

In other papers [8, 9] ivas alsaused different
kinds of ANNs to study movement generation. In that
case, itwas necessgrto u® arecurrentnetvork, to
achiee the pattern generation. Ean Nework [5], that
is athree-lgyer nework with feedback fra the hidden
layer to the input layer input is generall used in this
cases. Because of this feedback process, theriets
capable of detecting and generating me-varing
patterns, for instancemovement patterns. Another
alternative is described/tsrinivasan et al. [8].

3 angles
slow cadence

16 EMG signals
slow cadence

3 angles
natural cadence

MLP
nets

3 moments
slow cadence

16 EMG signals
natural cadence

3 moments
natural cadence

Figure 2: The gstam structure. Eactoutput block
defines a different nebrk. Fa slow cadene the input
is the upper block and for natural cadence the input is
the lowver block.



Input M uscle
1 Gluteusmedius
2 Gluteusmaximus
3 Semitendinosus
4 Biceps fenoris
5 Erector spinae
6 Sartorius
7 Rectus fenoris
8 Vastus lateralis
9 Adductor longus
10 Adductor magnus
11 Tibialis anterior
12 Extensor digitorm longus
13 Medial gastrocnmius
14 Lateral gastrocnaius
15 Solaus
16 Peroneus bngus

Table 2: Muscles associatedvith input units.These
muscles are recruitedin the human gait in a coplex
manner The neworks will be trained to execute the
sane tasks of themuscle ensmble, e.g, creat the
angles ananuscles gnamics.

4. Methodology

In order to obtain an adjustedystan it was
necessarto train all the netvorks with an appropriated
training algoritim. The backpropagatioalgoritim [4]
was used achieving good resultsvo approaches have
been tested: linear and sigid neuron transfefunction
in the outpu layer. If possible, the use a linear function
is a better approach because it is faster. Botht iapd
output vectorsvere nomalized béore being applié to
the network. The use of sigoid functionswas done
considering thewell-known formulation of standard
MLP (using signoids as theneurors transferfunction
which requires outputs baween 0 / 1, for exaple) and
to having a nanalized newvork suited to angke data
from different sources (see applicatigession) After
5000 epochghe outputerrorwas less than 2%hich is
considerd a good result because is lesser than the
standard deviation.

The validation procedurewas done testing the
nework with input vectors differenfrom the training
vectors Applying a linear regression in the medrks
resulted in the follwing averaged coefficients:

m=0.9867 b =0.0034 r =0.9989

which confimed that the ysten becane corrected
adapted, because and r coefficients arermbgt 1 and b
coefficient is amost 0.
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5. Application

After the previous steps, the ystan was
appligd to ared case - a register of a patiemho had
fractured his fenur. After the recuperation,he was
submitted to an EMG exan to verify themuscle activiy.
In static EMG tests no probte were found, but when
the patientwas evaluated in a gait agsis it was clear
that there was adistortion in thewalk. The dravback in
this cag isto identify which musclewas to be blaed to
the bad pdoprmance.The gstem here descrile was
applied to help achieving the diagnostic.

As EMG signals, angle positions amdoment
measure were nomalized, the gsten could be used
without ary change.The strateg was to search for
systan outpus tha were siilar to that registered from
the patient, e.g., outputs siing a distortedwalk. A
first assmption was thatmoment was nota better
variable to be evaluated because dfstan was trained
with averagedneasures of peopl@ perfe¢ conditions,
which was somary different of the patiert measures.
Then, the approaaivas to seup the angk outpus (hip,
knee and ankle angles during the gait) to benglar to
that shevn in the patient recordsThree patient trials
were averaged during his gamrd then were plotted
graphics of angle positiaix percentagefahe stride.

The nework in which the EMG signals and
angle positions represents wlocadencewas used
becaus the patientexecuted a cadence like thathe
main takk to obtain giilar angle positionsvas to feed
the nework with the EMG signals used in the training
procedue but changing eacmuscle at a the, verifying
whether this change had effect or not. Aftestirg all
musck inputs, itwas verified that 4nuscle inputsvere
responsila to fit the network output to the patient data,
namely, biceps fenoris, erector spinae, rectusmferis
and lateral gastrocngus. After several trialsthe best
input was configuredas nomal input in all muscles
except a 10 mes reduction in the founuscles related.
This probaby means that eithemithe ANN as in the
patient thesemuscles are responsglto the walk

distortion and need to be better evaluated. Figure 3 and

Figure 4 show hip and knee curvesf gatient data and
curves obtained foom the netwvork. Although these
curves are not perfecyl fitted they are the best
approximationfound Ankle curvewas not used because
a linear regression d®nstrated that this curwgas not
agreeingwith patientdata, probalyl because ankle has a
great level of variabilit, being not suited for that
analsis (see€lable 3).
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Figure 3: Hip anglex percentage fostride Observe
that in the beginning of stride themo curvesweremore

similar.
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Figure 4: Knee angl percentagefostride. Observe
that in the beginning of stride themo curvesweremore

similar.
m b r
hip angle 0.6070 | -0.1009| 0.7673
knee angle | 0.6307 | -0.0334| 0.5515
ankle angle | -0.9461 | 0.4322 | -0.6853

Table 3: Linear regression coefficientbetveen
patient and netork curves after gdsts in EMG input
signals to fit the curves. Hip and knee anglrves was
relevantbut ankle curvevas not so considered because
of the great differences in the values observed.

6. Conclusions

The variables presentd in human gait analsis
intera¢ with each other in a coplex manner. In the
study presentd here there is a 16-dinension vector as
the input s& mapped in 6 dhensionjoint dynamics.

151

Considering this aoplexity an artificial neurd network
approach is suited to this case beeaokits relative
simplicity, eay manipulation and robustness.

In a real stug, like that anajsed in this paper,
the data have to be carefutteatal becaus the results,
in mary times, are notvell established.

The anasis d that patientwho had problans
in the walk even after the recuperation of amfe
broken shoved ustha the gstam reviewed here can be
usal to study the case, but not inwehole. The netvork
that correlates EMG anshoment shaved discrepancies
in the results This is attributed to differencesmang
each subject record, because rthmbments nomally
vaty in agred range. So, this part of thgséem is not
appropriated to our stydThe othe network type, EMG
—anglesis more suited because angles is less affect to
differences betveen the subjectsThe first ivo g/stem
outputs, hip and knee angles could be approachtut
patient record, shlwing that four muscles would be
involved in the patient’s probi®. The biceps feoris
and rectusfemoris aremore probabl to be & ected,
becaus are femur muscles. Erector spinae and lateral
gastrocnmius have to bemore studied to confirm
whether thg take part into the probieor not.
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