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Abstract

An adaptive nemwal network training Kaiman
filtering algaithm is implemented.The XOR problem

and a benchmarkproblem for diagnosis of breast

cancer are used for testing and analysis thie
algorithm behavior. Results shothat the algorithm
performs well on both poblems having the desirable
chaacteistics of beeing smple to implement, with
parallel processng featues and good nmerical
behavio due to the adaptive dribution of leaning.

1. Introdution

Due to the dlow nature of network training with the
standard back-propagaton algorithm, a geat deal of
research effort has been expended in the linear adaptie
filtering literature with the objetive of using Kalman
filter appoach to train fealforward neural networks
(111, 121, 31, [4], [B]). It is known that the speed of
convergence of the back-propagaton algorithm is that
of a gadient method based algorithm [6]. On he other
hand, Kalmanfiltering algorithms utilize information
contained in the input data rore effedively. In this
case, the use of Kalmanfiltering algorithms offers the
desrable advantages of Bst geed of cavergence, a
built-in learning-rate parameter and, insensitivenessto
variations in the condition number of the input data.

Singhal and Wu [3] have proposed the use of the
rearsive least-squaes RLS (Kalman) algorithm by
defining a quadatic cost function and linearizing it
with resped to synaptic weights, ateach working point.
The result of such an appoach is a complex
computatonal problem because it requires storage and
updatig of an error covariance matix whose size is
related with the squae of the number of synaptic
weights in the network. To overcome this problem,
Shah and Palmieri [1] have suggested a smplified
verson of this algorithm. They considered that at
neuron level, the activation function may be expanded
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about the current estimate of the weights by using
Taylor series. Doing so, they arived at a pair of
equatons that describes the linearized dynamic
behavior of a spedfic neuron. Thenit is possble to use
standard RLS algorithm to make an estimate of the
sinaptic weight vedor of the neuron cansidered.

Here, Kalman filtering algorithm is also used but
the approach employed is a nore natural one. For one
thing, it will allow us to immediately determine what
kind of simplifications and appoximations are being
done. The simplified verson of the considered
algorithm featwes paralld processng, for training
feadforward neural networks [7]. Stch algorithms may
present bad numerical behavior and divergence orsow
spedl of convergence usually ocaurs as a lage number
of input-output datasets are processd. In this case, the
algorithm looses its capaity of learning & new data
are procesed. To prevent such a situation, a procedure
to egimate the noise level adaptively in order to
compensate for the erors and increase the speed of
convergece,isincorporated[7].

The resulting algorithm is preliminarily tested on
two well known problems, the XOR problem and a
benchmark problem for diagnosis of lreast cancer, for
analysis and evaluation of its numerical performancein
the supervised training of multilayer perceptron neural
networks.

2. Kalman Filtering Supevised Training

Let us asaume that an atificial neural network is to
learn and represent a nonli near continuous mappig

foc:xopoo" - yoo™ (1)

Such a neural net can be viewed and treated as a
parameter mappig like

y(t)=F (x(t)w)

(2)



where w is the matix of weight parameters to be
identified by fitting a given dataset of input-output
paterns

(W) y() =1 (x(t)) t=1.2- L}

Consdering that a multilgyer perceptron is
characterized by the weight matix w that represents
the free paameters of all the neurons in the network,
we can now stablish a cost function, to be minimized
during training, which is itself dependent on w. Let the
foll owing functional represent such acost function:

J(w ! [ -W ) "

((y(t)-f(x(t),w))TR-lrt)(y(t)-f(x(t),w)))g

3)

+

M

t=1

given ana piori estimate of the weights W, an nput-
output data set {x(t),y(t): t :1,2---,L} and two

weight matices, P and R, that ae related with the
quality of the initial estimate W and the quality of the
input-output dateset.

Let us suppse that the mappig given by Eq. 2 may
be expanded in Taylor series. Retaining only the first
order terms of the series expantion we asume that

y(t)=v(ti) +
T, (x(e) w())w - (7)) + 9 (w)
Rios Neto [7] has poposed that in a typical ith

iteration, the following linear perturbation condition
may beadoptedas aresult of the expansion above:

o[ ()-(ti) o
F (<) W (i) - ()

where i=1,2,...,1; v_v(i) is the a piori estimate of w
coming from the previous iteration, starting with

wR)=w; y(ti)=F () w()): | (x(t)w()) isthe

matix of first partial derivatives with resped to w; and,

(5)

(6)

Osa(i)sl is a parameter to be ajusted in order to

guaantee the hypothesis of linear perturbation. The
cost function J(w) then assumes the foll owing form

s = 2 w0 54w -w() +
5 (elu)-HEMOT R0
(i)~ H(ti ()]

+

(7)

Ly
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where the following compact notation has been
adbpted:

z(t, i)

a(ly()-y(ei)] +
f ((t) w()w(i)

(8)

H(t,i)

The minimization of the functional given by Eq. 7
is formally equivalent to the following stochastic linear
estimation problem:

(9)

v_v(i):w(i)+é
z(t,i):H(t I)\N()+V(t)

Where € is the a piori egtimation error vedor and
v is the observation error vectorE[v() 0

E[ ] t, E[e]:O E[ee]:P e and

(10)

(11)

) are assumed to be gaussian distributed and are not

correlated R(t) is usually diagnal;
expedation value operator.

Now, following closdly Rios Neto [7], a simplfied
verson of the algorithm may be obtained if the
following simplifications and appoximations are
mack:

E[.] is the

1 - Ecs. 10 and 11 will be applied at neuron level.
So, the problem of training the neural network will be
reduced to a local estimation problem;

— information relative to a priori errors in the a
priori estimates of other weights is disregarded.

Then, Egs. 10 and 11, when appled to a spedfic
neuron at lgver k, takes the form:

Wkl(i):Wkl(i)+ékl (12)
alify)-yi)] = f,, &) w)
g (-wa)] + vi)

In a smplified notation, grouping the observations in a
vedor, for t=1,2,... L, Eq. 13 becomes:

Zle):Hkl(i)‘Nkl(i) tv

Thus, in a ¥pical iteration i, a GaussMarkov
estimator (Kalmanform) may be applied resulting that:

Wy (') Wkl()+Kkl()[Zkl()
kI()WkI()]

(14)

(15)



Ky (i):ﬁlell (i)[HkI (i)lsleIl(i)"'Rkl B (16)
Pa (') = [I ~Ky (i )H K (i )]Iskl (17)
Wy (i +1) =Wy (') a(i) - a(i +1) (18)

Inversion matix of Eq. 15 & avoided if Eq. 14 is
rearsively processedowwise.

3. Adaptive Sdution

In practice it is observed that as the Kalman
estimator processes many data pais, its performance
canbe serioudly degraded due to un unrealistic deaease
in the covariance matix. Under normal conditions the
filter should improve the estimates predsion level while
additional data $ processd, with a correspondent
deqease of the -calculated variances. However,
numerical errors and observation mode errors can lead
to divergence of the estimator as the observations are
processd.

To avoid this condition and keg a dstributed and
uniform capaity of learning, Rios Neto [7] has
proposed an adaptie procedure based on acriterion of
statistical consistency to balance a piori information
priority with that of new learning information. He
considered that in a ypical ith iteration and for
t=1,2,...L-1

(19)

w(i,t+1)=w(i,t)+n(t)
eh]=0, Eph ()= ko,

where oy is the Krone symbd and Q._is the
diagonal matix Q(t)= diaga; (t): j=1,2--,n,,|.
With this modeling appoximation for the neural

weights, learning from the th input-output data pagtn
is transformed in the estimation probem:

(20)

w(i,t) = w(i,t) + &,t) (21)

2(t,i) = H(t,iw(i,t) + v(t) (22)
starting with  &(,1)=e, W(,1)=w() and for
t=1,2,...L.

To propagae estimates from t to t+1 Kalmanfilter
predictor is used considering the dynamics of Eq. 19:
w(i, t+1) = w(i,t) (23)

P(i,t+1) = P(i,t) + Q(t) (24)
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where P(j,t+1)= E[é(i,t+1)éT (i,t+1)] and P(i,) is
given by the filtering algorithm Eq. 17 where I3(i,t)
sartswith P(j,1) = E[ééT] =P.

The adaptatdn is done by adusting the noise n(t)

dispersion such as to keg statistical consistency to
attain dstributed learning:

BEb 2(t+1)] = H, (t+1,1)P6 )+ Q)

25
nr(ees) &

where 1< B< B, j=1,2,...,.m and is to be adjusted
in order to have distributed learning.

In order to use the same Kalman filtering
algorithm, the following assciated estimation problem
can be established [7] by considering Eg. 25 as a
pseudo observation and imposing an a priori
information on q(t):

0=q(t)+e (26)

2%(t+1,i, 8) =H(t+1,i)a(t) + vi(t+1) (27)

E[éq] =0, E%qéqT Ez | (28a)

Nw

E[vq(t+1)]:o
E%q(t £ (t +1)E: R(t+1)=0

(280)

which is a poblem with exact observations that can be
proceseed with a Kalman filtering. It should be
observed that the a riori information on q(t) gives a
g(t) which is close to zero in magitude and that te

components ﬁk(t) are taken to be zero whenever the
solution obtained results in avalue lessthan zro.

4. Test and Andysis d the Algorithm

4.1. Testdesciiption

A preiminary test of the algorithm was made with
the Exclusve OR (XOR) probem, which may be
viewed as a spedal case of a nore general problem,
namely, that of classfying pointsin the unit hypercube.
The four corners of the unit square correspond to the
input paterns and are the points (0,0), (0,1), (1,1),rd
(1,0). The first and third input paterns are in classO,
as shown by

O0XOR0=0 1XOR1=0



The other two input pasarein class1, tat is

0XOR1=1 1XOR0=1

In this case, the function f that the neural network is to
learn is the mapping given by the truth teble of the
XOR prodem.

A multilayer perceptron network with configuration
MPosa (having 5 hidden units), fully forward
conneded beween adjacent layers, with hidden and
output wnits with bias, and the standard sigmoid as the
activation function was used. Initial values of weights
were randomly chosen between —Q5 and 0.5 with
uniform distribution.

Solution of Exclusive OR problem was ohtained
with use of Kalman filtering supervised training
algorithm soldly. Test of the adaptive solution was done
with a nore involved benchmark problem, the cancer
problem.

Cance of PROBLEN 1 [8] is a patérn reqognition
and classfication problem of diagnosis of breast cancer.
It presents the classdfication of a tunor as either benign
or malignant based on cdl descriptions. It contains 9
real coefficient inputs, represented as a dedmal number
beween Oand 1, 2 bodean autput coeficients always
represented as either 0 (false) or 1 (frue) and 699
exampkes. Suggested benchmark rules sas that 350
paterns should be used for training, 175for validation
and 174for testing. Asbefore, the function f is given by
the input-output data mappg used for the neural
network training.

Solution of the cancer problem was oltained with a
multilayer perceptron network with configuration
MP1oaoxe- AS before, the networks were fully forward
conneded beween adjacent layers, with hidden and
output units with bias and the standard sigmoid as the
activation function. The initial value of the weights also
were initialized with values between —0.5 ad 0.5.

The software developed for numerical analysis of
the algorithm was implemented in aPC, Pentium, 200
MHZ, in Windows 95 in FARTRAN 77 language.
Criterion of completion of training was either a pre-
stablished value of mean sgquaed error or a limit
number of iterations.

4.2. Smulation and results

Figure 1, a pbt of the mean-squaed error as
function of the iteration number, shows results obtained
when training with Kalmanfiltering-based algorithm, a
network to solve the XOR problem. The algorithm was
initialized with conditions: a=0.2, By=I and, R=0.01I.
Six simulations, considering different initial conditions
for the weight matices, were performed. Results
suggest that, for this problem, the algorithm is
insengiti ve to the initial value of the weight matix.

On Figure 2, when no adaptatn is used, for the
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cancer prodem with B, =1, R=0.0001l, a=0.2, te
trace of the covariance matix P was plot as a function
of the number of proceseed paterns to evaluae the
behavior of the estimated variances of errors. The
curves shown were taken at dfferent iterations.

Typical curves of mean-squared error as function of
interation number for the cancer problem, when the

LR}

Mean-Squared Error

] [} 20 30 0

Iteration Number

=0 &0 ] a0 a0 (L]

Figure 1:Extended QR Problem

adaptie algorithm is used, ae shown on Figure 3.

Trace of Covariance Maitrix - tr (P)

Number of Patterns Processed

Figure 2: Cancer Problem

Initial conditionswere set as: By =1 and, R=0.0001l.
The learning paameter a was set from values ranging

|
|
|
Q
[T}

Mean-Squared Error

T o0 o0
Iteration Number

Figure 3: Carcer Problem

from 0.2to 0.6, in order to verify its influence on the
stability and speed of convergence of the algorithm.



Also, since the adaptve solution was used, the
paameter (3, which muwst be adequatly spedfied in
order to guaranteedistributed learning, was set equal to
1.

An analysis of the results fiown suggsts he

following trends:

 For the first iterations, the trace of the
covariance matix P deaeases fast as the
paterns are procesed. This indicates that te
algorithm learns too wdl the wrong
information. As the number of iterations
increases, the marix trace deaeases in one
iteration, as expeded, but now the rate of
deaease is dower. When the adaptve solution
is considered, it increases the value of the
matix trace at spedfied number of paterns
processed intervals, allowing the increase of the
speed of cavergence.

e A gmaller learning-rate paameter a resultsin a
better behavior of the algorithm. Note that & a
increases the algorithm tends to bemme
unstable. A small a allows the algorithm locate
a “deeer” | ocal minima while bigger values of
a cauwses osctillations in the mean-squared error
during iterations and a higher value for the
final mean-squared error at convergence bath
of which are undesrable effe¢s. Also, for
bigger wvalues of a the algorithm does not
behave well because the linear perturbation
condition is not being observed anymore.

e For the cance problem, the crossvalidation
datashowed that clasdfication errors lessthan
4.5 per cent could be ohtained, which are
equivalent in quality to those ohtained by Souza
Filho and Rios Neto [10] ushg a nore
sophisticated and complicated Kalmanfiltering
heuristic scheme.

« Instead of using the adaptve solution to
increase the rate of cawergence of the
algorithm, anheuristic approach could be used.
Begining with a small a this paranmeter could
be increased as the iterations procealed. This
Situation was tested but, besides being a more
degant solution, various initial conditions
results showed that the adaptve solution
performs better than e heuristic approach.

5. Condusions

A simplified local processng and adaptve version
of a neural network training Kalman filtering
algorithm was implemented. Preliminary tests and
analysis of the algorithm were done by appling it to
two benchmark problems. The results obtained are
encouraging showing that when the algorithm is used
with the adaptie solution it is capale of processng a
large number of paterns without loosing its capaity to
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continually extract information from new data.

On the ohter hand, the algoritm is simple to
implement, with the desirable characteristics of paralle
proces$ng, and has showed a fast rate of convergence
for the two prolbems analysed.
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