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Abstract

An adaptive neural network training Kalman
filtering algorithm is implemented. The XOR problem
and a benchmark problem for diagnosis of breast
cancer are used for testing and analysis of the
algorithm behavior. Results show that the algorithm
performs well on both problems having the desirable
characteristics of beeing simple to implement, with
parallel processing features and good numerical
behavior due to the adaptive distribution of learning.

1. Introdution

Due to the slow nature of network training with the
standard back-propagation algorithm, a great deal of
research effort has been expended in the linear adaptive
filtering literature with the objetive of using Kalman
filter approach to train feedforward neural networks
([1], [2], [3], [4], [5]). It is known that the speed of
convergence of the back-propagation algorithm is that
of a gradient method based algorithm [6]. On the other
hand, Kalman filtering algorithms utilize information
contained in the input data more effectively. In this
case, the use of Kalman filtering algorithms offers the
desirable advantages of fast speed of convergence, a
built-in learning-rate parameter and, insensiti veness to
variations in the condition number of the input data.

Singhal and Wu [3] have proposed the use of the
recursive least-squares RLS (Kalman) algorithm by
defining a quadratic cost function and linearizing it
with respect to synaptic weights, at each working point.
The result of such an approach is a complex
computational problem because it requires storage and
updating of an error covariance matrix whose size is
related with the square of the number of synaptic
weights in the network. To overcome this problem,
Shah and Palmieri [1] have suggested a simplified
version of this algorithm. They considered that at
neuron level, the activation function may be expanded

about the current estimate of the weights by using
Taylor series. Doing so, they arrived at a pair of
equations that describes the linearized dynamic
behavior of a specific neuron. Then it is possible to use
standard RLS algorithm to make an estimate of the
sinaptic weight vector of the neuron considered.

Here, Kalman filtering algorithm is also used but
the approach employed is a more natural one. For one
thing, it will all ow us to immediately determine what
kind of simplifications and approximations are being
done. The simplified version of the considered
algorithm features parallel processing, for training
feedforward neural networks [7]. Such algorithms may
present bad numerical behavior and divergence or slow
speed of convergence usually occurs as a large number
of input-output data sets are processed. In this case, the
algorithm looses its capacity of learning as new data
are processed. To prevent such a situation, a procedure
to estimate the noise level adaptively in order to
compensate for the errors and increase the speed of
convergece, is incorporated [7].

The resulting algorithm is preliminaril y tested on
two well known problems, the XOR problem and a
benchmark problem for diagnosis of breast cancer, for
analysis and evaluation of its numerical performance in
the supervised training of multilayer perceptron neural
networks.

2. Kalman Filtering Supervised Training

Let us assume that an artificial neural network is to
learn and represent a nonlinear continuous mapping

mn yDx:Cf ℜ∈→ℜ⊂∈∈ (1)

Such a neural net can be viewed and treated as a
parameter mapping like

( )  ( )( )w,txfty ˆˆ = (2)
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where w is the matrix of weight parameters to be
identified by fitting a given data set of input-output
patterns

( ) ( )( ) ( ) ( )( ){ }L,1,2,t,txfty:ty,tx �== (3)

Considering that a multilayer perceptron is
characterized by the weight matrix w that represents
the free parameters of all the neurons in the network,
we can now stabli sh a cost function, to be minimized
during training, which is itself dependent on w. Let the
following functional represent such a cost function:
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given an a priori estimate of the weights w , an input-

output data set ( ) ( ){ }L,1,2,t:ty,tx �=  and two

weight matrices, P  and R, that are related with the
quality of the initial estimate w  and the quality of the
input-output data set.

Let us suppose that the mapping given by Eq. 2 may
be expanded in Taylor series. Retaining only the first
order terms of the series expantion we assume that
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(5)

Rios Neto [7] has proposed that in a typical ith
iteration, the following linear perturbation condition
may be adopted as a result of the expansion above:

( ) ( ) ( )[ ]
( ) ( )( ) ( ) ( )[ ]iwiwiw,txf
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(6)

where i=1,2,...,I; ( )iw  is the a priori estimate of w

coming from the previous iteration, starting with

( ) w1w = ; ( )  ( ) ( )( )iw,txfit,y ˆ= ; ( ) ( )( )iw,txf
w

ˆ  is the

matrix of first partial derivatives with respect to w; and,

( ) 1i0 ≤≤ α  is a parameter to be ajusted in order to

guarantee the hypothesis of linear perturbation. The
cost function J(w) then assumes the following form
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where the following compact notation has been
adopted:

( )  ( ) ( ) ( )[ ]
( ) ( )( ) ( )iwiw,txf

it,ytyiit,z

w
ˆ

+−≡ α
(8)

( )  ( ) ( )( )iw,txfit,H w
ˆ≡ (9)

The minimization of the functional given by Eq. 7
is formally equivalent to the following stochastic linear
estimation problem:

( )  ( ) eiwiw += (10)

( ) ( ) ( ) ( )tiwit,Hit,z ν+= (11)

where e  is the a priori estimation error vector and

( )tν  is the observation error vector; ( )[ ] 0tE =ν

( ) ( )[ ] ( )tRttE T =νν , [ ] 0eE = , [ ] PeeE T = ; e  and

( )tν  are assumed to be gaussian distributed and are not

correlated; R(t) is usually diagonal; E[.] is the
expectation value operator.

Now, following closely Rios Neto [7], a simplified
version of the algorithm may be obtained if the
following simplifications and approximations are
made:

1 – Eqs. 10 and 11 will be applied at neuron level.
So, the problem of training the neural network will be
reduced to a local estimation problem;

2 – information relative to a priori errors in the a
priori estimates of other weights is disregarded.

Then, Eqs. 10 and 11, when applied to a specific
neuron at layer k, takes the form:

( )  ( ) klklkl eiwiw += (12)

( ) ( ) ( )[ ] ( ) ( )( )
( ) ( )[ ] ( )tiwiw
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(13)

In a simplified notation, grouping the observations in a
vector, for t=1,2,...,L, Eq. 13 becomes:

( )  ( ) ( ) ν+= iwiHiz klklkl (14)

Thus, in a typical iteration i, a Gauss-Markov
estimator (Kalman form) may be applied resulting that:

( ) ( )  ( ) ( )[
( ) ( )]iwiH

iziKiwiw

klkl

klklklkl −+=ˆ
(15)



249

( ) ( )  ( ) ( )[ ] 1
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( )  ( ) ( )[ ] klklklkl PiHiKIiP −= (17)

( )  ( )  ( )  ( )1ii,iw1iw klkl +←=+ ααˆ (18)

Inversion matrix of Eq. 15 is avoided if Eq. 14 is
recursively processed rowwise.

3. Adaptive Solution

In practice, it is observed that as the Kalman
estimator processes many data pairs, its performance
can be seriously degraded due to un unrealistic decrease
in the covariance matrix. Under normal conditions the
filter should improve the estimates precision level while
additional data is processed, with a correspondent
decrease of the calculated variances. However,
numerical errors and observation model errors can lead
to divergence of the estimator as the observations are
processed.

To avoid this condition and keep a distributed and
uniform capacity of learning, Rios Neto [7] has
proposed an adaptive procedure based on a criterion of
statistical consistency to balance a priori information
priority with that of new learning information. He
considered that in a typical ith iteration and for
t=1,2,...,L-1

( ) ( ) ( )tti,w1ti,w η+=+ (19)

( )[ ]  ( ) ( )[ ] ( ) t
T tQtE0,E τδτηηη ==t (20)

where δtτ is the Kronecker symbol and Q is the
diagonal matrix ( )  ( )[ ]wj n,1,2,j:tqdiagtQ �== .

With this modeling approximation for the neural
weights, learning from the th input-output data pattern
is transformed in the estimation problem:

( ) ( ) ( )ti,eti,wti,w += (21)

( ) ( ) ( ) ( )tti,wit,Hit,z ν+= (22)

starting with ( ) ei,1e = , ( ) ( )iwi,1w =  and for

t=1,2,...,L.
To propagate estimates from t to t+1 Kalman filter

predictor is used considering the dynamics of Eq. 19:

( ) ( )ti,w1ti,w ˆ=+ (23)

( ) ( ) ( )tQti,P1ti,P +=+ (24)

where ( ) ( ) ( )[ ]1ti,e1ti,eE1ti,P T ++=+  and P(i,t) is

given by the filtering algorithm Eq. 17 where ( )ti,P

starts with ( ) [ ] PeeEi,1P T == .

The adaptation is done by adjusting the noise η(t)
dispersion such as to keep statistical consistency to
attain distributed learning:

( )[ ] ( ) ( ) ( )[ ]
( )i1,tH

tQti,Pi1,tH1tE
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2
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++=+νβ
(25)

where 
mxl1 ββ ≤≤ , j=1,2,...,m and β is to be adjusted

in order to have distributed learning.
In order to use the same Kalman filtering

algorithm, the following associated estimation problem
can be established [7] by considering Eq. 25 as a
pseudo observation and imposing an a priori
information on q(t):

( ) qetq0 += (26)

( ) ( ) ( ) ( )1ttqi1,tHi,1,tz qqq +++=+ νβ (27)
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which is a problem with exact observations that can be
processed with a Kalman filtering. It should be
observed that the a priori information on q(t) gives a

( )tq̂  which is close to zero in magnitude and that the

components ( )tqkˆ  are taken to be zero whenever the

solution obtained results in a value less than zero.

4. Test and Analysis of the Algorithm

4.1. Test description

A preliminary test of the algorithm was made with
the Exclusive OR (XOR) problem, which may be
viewed as a special case of a more general problem,
namely, that of classifying points in the unit hypercube.
The four corners of the unit square correspond to the
input patterns and are the points (0,0), (0,1), (1,1), and
(1,0). The first and third input patterns are in class 0,
as shown by

01XOR100XOR0 ==



250

The other two input pars are in class 1, that is

10XOR111XOR0 ==

In this case, the function f that the neural network is to
learn is the mapping given by the truth table of the
XOR problem.

A multilayer perceptron network with configuration
MP2x5x1 (having 5 hidden units), fully forward
connected between adjacent layers, with hidden and
output units with bias, and the standard sigmoid as the
activation function was used. Initial values of weights
were randomly chosen  between –0.5 and 0.5 with
uniform distribution.

Solution of Exclusive OR problem was obtained
with use of Kalman filtering supervised training
algorithm solely. Test of the adaptive solution was done
with a more involved benchmark problem, the cancer
problem.

Cancer of PROBLEN 1 [8] is a pattern recognition
and classification problem of diagnosis of breast cancer.
It presents the classification of a tumor as either benign
or malignant based on cell descriptions. It contains 9
real coeff icient inputs, represented as a decimal number
between 0 and 1, 2 boolean output coefficients always
represented as either 0 (false) or 1 (true) and 699
examples. Suggested benchmark rules says that 350
patterns should be used for training, 175 for validation
and 174 for testing. As before, the function f is given by
the input-output data mapping used for the neural
network training.

Solution of the cancer problem was obtained with a
multilayer perceptron network with configuration
MP10x10x2. As before, the networks were fully forward
connected between adjacent layers, with hidden and
output units with bias and the standard sigmoid as the
activation function. The initial value of the weights also
were initialized with values between –0.5 and 0.5.

The software developed for numerical analysis of
the algorithm was implemented in a PC, Pentium, 200
MHZ, in Windows 95 in FORTRAN 77 language.
Criterion of completion of training was either a pre-
stabli shed value of mean squared error or a limit
number of iterations.

4.2. Simulation and results

Figure 1, a plot of the mean-squared error as
function of the iteration number, shows results obtained
when training with Kalman filtering-based algorithm, a
network to solve the XOR problem. The algorithm was
initialized with conditions: α=0.2, Pkl=I and, R=0.01I.
Six simulations, considering different initial conditions
for the weight matrices, were performed. Results
suggest that, for this problem, the algorithm is
insensiti ve to the initial value of the weight matrix.

On Figure 2, when no adaptation is used, for the

cancer problem with IPkl = , R=0.0001I, α=0.2, the

trace of the covariance matrix P was plot as a function
of the number of processed patterns to evaluate the
behavior of the estimated variances of errors. The
curves shown were taken at different iterations.

Typical curves of mean-squared error as function of
interation number for the cancer problem, when the

Figure 1: Extended OR Problem

adaptive algorithm is used, are shown on Figure 3.

Figure 2: Cancer Problem

Initial conditions were set as: IPkl =  and, R=0.0001I.

The learning parameter α was set from values ranging

Figure 3: Cancer Problem

from 0.2 to 0.6, in order to verify its influence on the
stabilit y and speed of convergence of the algorithm.
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Also, since the adaptive solution was used, the
parameter β, which must be adequately specified in
order to guarantee distributed learning, was set equal to
1.

An analysis of the results shown suggests the
following trends:

• For the first iterations, the trace of the
covariance matrix P decreases fast as the
patterns are processed. This indicates that the
algorithm learns too well the wrong
information. As the number of iterations
increases, the matrix trace decreases in one
iteration, as expected, but now the rate of
decrease is slower. When the adaptive solution
is considered, it increases the value of the
matrix trace at specified number of patterns
processed intervals, allowing the increase of the
speed of convergence.

• A smaller learning-rate parameter α results in a
better behavior of the algorithm. Note that as α
increases the algorithm tends to become
unstable. A small α allows the algorithm locate
a “deeper” l ocal minima while bigger values of
α causes oscillations in the mean-squared error
during iterations and a higher value for the
final mean-squared error at convergence, both
of which are undesirable effects. Also, for
bigger values of α the algorithm does not
behave well because the linear perturbation
condition is not being observed anymore.

• For the cancer problem, the cross-validation
data showed that classification errors less than
4.5 per cent could be obtained, which are
equivalent in quality to those obtained by Souza
Filho and Rios Neto [10] using a more
sophisticated and complicated Kalman filtering
heuristic scheme.

• Instead of using the adaptive solution to
increase the rate of convergence of the
algorithm, an heuristic approach could be used.
Begining with a small α  this parameter could
be increased as the iterations proceeded. This
situation was tested but, besides being a more
elegant solution, various initial conditions
results showed that the adaptive solution
performs better than the heuristic approach.

5. Conclusions

A simplified local processing and adaptive version
of a neural network training Kalman filtering
algorithm was implemented. Preliminary tests and
analysis of the algorithm were done by applying it to
two benchmark problems. The results obtained are
encouraging showing that when the algorithm is used
with the adaptive solution it is capable of processing a
large number of patterns without loosing its capacity to

continually extract information from new data.
On the ohter hand, the algoritm is simple to

implement, with the desirable characteristics of parallel
processing, and has showed a fast rate of convergence
for the two problems analysed.
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