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Abstract

Autism is a mental disorder characterized by deficits
in socialization, communication, and imagination.
Along with the deficits, autistic children may have
savant skills (“islets of ability”) of unknown origin. The
present article proposes a neurobiological model for the
autism. A neural network capable of defining neural
maps simulates the process of neurodevelopment. The
computer simulations hint that brain regions
responsible for the formation of higher level
representations are impaired in autistic patients. The
lack of  this integrated representation of the world
would result in the peculiar cognitive deficits of
socialization, communication, and imagination and
could also explain some “islets of abilities”. The
neuronal model is based on plausible biological
findings and on recently developed cognitive theories of
autism. Close relations are established between the
computational properties of the neural network model
and the cognitive theory of autism denominated “weak
central coherence”, bringing some insight to the
understanding of the disorder.

1. Introduction

 Autism is a psychiatric disorder that was first
described by Leo Kanner in 1943. This researcher
observed four fundamental characteristics in the disease:
extreme autistic aloneness, failure to use language in a
communicative fashion, obsessive desire for the
maintenance of sameness, and a tendency to repeat the
same action in a ritualized manner [14]. Concurrently,
though independently, Hans Asperger also used the term
autism to refer to the core features of the disorder [1].

The increased perception of infantile autism as a
distinct nosological entity led to a great deal of research
and clinical speculation and to the development of the
first operationally precise diagnostic criteria in 1978
[20, 22]. Almost at the same time, other authors [24]
defined what they thought to be the core features of the
disease, namely impairments in socialization,
communication, and imagination. These features form a
triad, since they co-occur and persist during the
development of  the child even though their outward
manifestation is subject to change.

Along with the lack of gesture or verbal language,
poor eye contact, echolalia, perseveration, and low
generalization capability, some autistic patients
(approximately one case in ten) display islets of
exceptional abilities against a background of widespread
cognitive impairment (so-called “savant skills”), such as
calendar and prime number calculation, counting,
memory, drawing, and music. The higher capability in
performing these tasks is not learned but it just emerges
spontaneously without explanation until now and it does
appear to be specific. Other types of mental handicap or
developmental disorder do not share this profile [9].

Mental retardation is one of the most strongly
associated, but not the defining, features of autism.
About three-quarters of the autistic population have IQs
in the retarded range. Regardless of the low overall IQ,
the intellectual abilities of the autistic children show
marked variations, ups and downs commonly called
“spiky profile”, that have been intriguing the researchers
until now.

Indeed, a neuronal model was proposed some years
ago exploring the findings of increased or reduced
neurons and synapses in autistic brains [2]. Computer
simulations of the neural network there proposed have
shown that good discrimination of stimuli is
accomplished when there are too many neurons in one
specific layer of the neural network, while
generalization properties are obtained only when few
neurons are present in the referred layer. The author
associated these well-known results of the theory of
artificial neural networks [21] with the deficits of
concept acquisition and generalization and also with the
“islet of ability” in stimuli discrimination observed in
autism.

The question of how a neural circuit with too many
or few neurons arises from the process of
neurodevelopment was not addressed by the Cohen’s
model. In the present work, a more realistic model is
proposed where, based on the fundamental  biological
process of neuronal competition, a neural network
capable of organizing its structure as a function of  the
stimuli received will, as in a process of
neurodevelopment, recruit more or less neurons and
make more or less synapses, bringing insight to the
cause of the aberrant neurogenesis of autism. Roughly
speaking, this work shows how excessive neuronal
inhibition in some neurodevelopmental phase can result
in aberrant neural circuits with computational abilities
similar to those observed in autism. The computer
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simulations suggest that brain regions responsible for
the formation of higher level representations are
impaired in autistic patients. The lack of this integrated
representation of the world would lead to the peculiar
cognitive deficits of socialization, communication, and
imagination but could also explain some “islets of
abilities” like excellent memory and stimuli
discrimination. The neuronal model is based on
plausible biological findings and on recently developed
cognitive theories of autism.

2. The Cognitive Theories of Autism

The generality of the neuropathological findings,
allied to the failure of the psychodynamic theories, gave
impetus to cognitive scientists in their search for
theoretical bridges between autistic brain and behavior.

All the theories of autism are capable of explaining
cognitive deficits but none of them touch the question of
the “islets of ability” or the spiky profile in the
neuropsychological assessment. The recently
established weak central coherence theory states that
autistic children have a peak of performance in activities
that don’t require integration but, in contrary,
segmentation of information [4, 5]. In accordance to this
theory, autistic brains would have a cognitive style that
favors segmentation due to the limitation or
impossibility of a more holistic information processing.
Experiments on language, memory, and perception [6]
have shown that autistic children are not strongly
disadvantaged, in relation to normal children, when
processing meaningless verbal material. Non-autistic
children have a tendency to search for associations and
other types of integration of the processed information,
having a low performance when unconnected or
meaningless material is presented in verbal assessment.
Autistic patients also achieve good performance in
visuo-spatial tasks where image segmentation is
necessary [23]. Findings of less coherence in narratives
and superior visuo-spatial skills in non-autistic relatives
of autistic children suggest that the lack of central
coherence in these patients are genetically transmitted
[17]. It is worth noting that adults with autism which
can pass the theory of mind tests show cognitive
patterns of weak central coherence [8]. This result hints
the possibility that weak central coherence is an
independent and additional feature of autism, with no
obvious relation to the theory of mind deficits, in
principle.

3. Neural Cooperation and Competition

In the middle of the 19th century the scientists
Helmholtz and Mach studied many phenomena of the
visual perception in humans. Particularly, they were
interested in optical illusions like the fact that edges or
contours between light and dark parts of an image
tended to be enhanced in relation to the light and dark
interior of the image. They explained the illusion
hypothesizing that in the human retina the cells are

excited by light that converges to a central region and
inhibited by the light that projects to the surrounding
areas. Almost a century later, experimental results
showed that the eye of the crab called Limulus [10] and
some vertebrates [16] have an structure,  then called on-
center/off-surround, in which a neuron is in cooperation,
through excitatory synapses, with the neurons in the
immediate neighborhood while it is in competition with
the neurons which lay outside these surroundings.

Competition and cooperation are found not only
statically hardwired but also as part of many neuronal
dynamical processes. As a matter of fact, competition is
essential to the neurodevelopment where neurons
compete for certain chemicals. In synaptogenesis, for
example, the substances generically called neural
growth factors are released by stimulated neurons and,
spreading through diffusion, reach the neighboring cells,
promoting synaptic growth. Cells that receive neural
growth factors make synapses and live, while the cells
that have no contact with these substances die [12]. A
neuron that releases neural growth factor guides the
process of synaptic formation in its tridimensional
neighborhood, becoming a center of synaptic
convergence. When some neighboring neurons release
different neural growth factors in different amounts,
many synaptic convergence centers are generated and a
competition is established between them by the
synapses of their surroundings. It is worth noting that,
as a single neuron is capable of receiving and releasing
neural growth factors at the same time, the two
competition processes described above effectively occur
in every neuron and, consequently, a signaling network
is established to control the development of neural
circuits. Remembering that all this competition is started
and controlled by environmental stimulation, it is
possible to have a glimpse to the way the environment
records or represents itself in the brain.

The competition processes described above are
essential to the formation of some neuronal
organizations called maps. Maps have puzzled
neuroscientists in the last decades, mainly the question
of how do they arise from the simple on-center/off-
surround wiring pattern. Computational theories gave
some important insights to the problem, since some
cortical maps are artificially developed from simple
governing rules of sinaptic plasticity in computer
simulation models [18]. The most general of these
models is called the Self-Organizing Map [15] in which
two sheets of neuronal tissue with n neurons each,
corresponding to the domain and the image, are initially
randomly connected in a way that every neuron i at the
image receives synaptic projections wi ∈ ℜn  from
every neuron at the domain. Neurons at the domain
don’t form synapses among themselves and receive
“sensory” inputs (stimuli), while neurons at the image
make synapses following the on-center/off-surrounding
paradigm, i.e., short-range excitation or cooperation and
long-range inhibition or competition.

Every time the neural network is in contact with a
stimulus xk ∈ ℜn, k=1,2,... in its domain, there will be
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only one excited neuron i*  at the image. The position r*
of this winner neuron at the image determines how
much the synapses will be modified. Synapses from
neurons closer to the winner  will be strongly changed
in such a way that these neurons will be more
intensively excited by the stimulus xk in a next time.
Synapses from neurons distant from the winner will be
weakly changed or not changed at all, depending on the
dispersion σ of the neighborhood function φ(ri, r*) ,
where r i ∈ ℜn gives the position of a neuron i at the
image sheet. By this process, every neuron in the image
will be more easily excited by the stimulus xk (synaptic
facilitation) in the future. The development of the map
is due to the fact that the amount of synaptic facilitation
is proportional to the distance from the winner neuron.
The process of synaptic modification ∆twi for each
neuron i is repeated for every learning step t where the
stimulus xk ∈ ℜn, k=1,2,... is presented to the neural
network, and is given by

∆twi = ρ(t) .φ(ri, r*). (xk - wi)                    (1)

where  ρ(t) is the learning rate defined by

            ρ(t) = ρ0 .β (t-1); 0 < β < 1,  t=1,2,…              (2)

The learning rate begins with the value ρ0 and
decreases with the learning step t with a rate β.

The neighborhood symmetric function φ(ri, r*)  takes
the form of a gaussian function like

              φ(ri, r*)  = exp (- || ri - r*||
2 / 2 σ(t)2 )           (3)

 The initial dispersion of the gaussian, σ0, is high,
representing that all the neurons in the image are
considered neighbors. This allows the modification of
the randomness of the initial synapses to a more
organized pattern where neighborhood is of capital
importance. Every time step t that another stimulus is
presented to the neural network domain, the
neighborhood shrinks a bit, gradually giving to the map
a local organization. The dispersion σ(t) at each learning
step is given by

           σ(t) = σ0.α(t-1);   0< α <1, t = 1,2,…               (4)

where α is a decrement rate.
The way the learning rate decreases and the

neighborhood shrinks is fundamental to the map
development. A faster decrement in the learning rate
does not give enough time to the synapses to change,
and so the randomness of the initial synaptic pattern is
consolidated at the end of the process. When
neighborhoods shrink rapidly, the level of neuronal
cooperation necessary to produce maps are not present
and neighborhood relationships are ill-defined at the end
of the simulation. Indeed, the neighborhood function
may be likened to the steady-state concentration profile
of a neural growth factor in the neural tissue. When the

dynamical equilibrium between neural growth factor
release and metabolization is accomplished in every
region of the tissue, due to the diffusion process a
concentration profile that asymptotically decreases with
radial distance is attained. The parameter σ0 represents
the amount of neural growth factor released by the
neurons at the beginning of the neurodevelopment
process.

An efficient way of assessing the effectiveness of a
neurodevelopment process is to measure the total
synaptic change occurred. It is observed that large-scale
changes in the synaptic pattern get along with successful
neural circuits conformation [13]. When synapses are
not changed (weakened or strengthened) the
neurodevelopment process has not succeeded and the
final map is similar to the initial one. At each learning
step t of the self-organizing algorithm, a winner neuron
determines the intensity of the synaptic changes for
every neuron i by equation (1). Summing the amount of
synaptic change ∆twi for all neurons at every learning
step t gives us the total synaptic change S of the self-
organizing process:

                          S ≡ ∑ t ∑ n ||∆twi ||.                             (5)

In the next section, some simulation experiments
show how abnormal neural maps may develop from
self-organizing processes, resulting in neural networks
with computational abilities capable of explaining some
cognitive characteristics of autistic children.

4. Simulation Results

A self-organizing map to represent the synaptic
development between two cortical bidimensional sheets
was implemented in the C computer language. A lower
level cortical sheet (here called domain) with 400
neurons receives input stimuli  from sensory areas and
projects its output to the higher level cortical sheet (here
called image) also with 400 neurons. A thousand of
input stimuli were randomly generated. The range of the
random number generator was changed four times in a
way of producing four different sets of 250 stimuli each.
Indeed, these sets define clusters of relatively similar
input patterns, as can be seen in Figure I, where the
stimuli of each cluster are represented over a
bidimensional sheet of cortical neurons by the same
geometric marker. Simulations performed on a RISC
workstation show how ill-developed self-organizing
maps  have computational characteristics that resemble
the phenomenology of the autistic syndromes, mainly
the islets of ability.

Initially, the synapses between the domain and the
image cortical sheets are defined at random. As a
consequence, the stimuli presented to the domain
cortical sheet (shown in Figure I) are projected to
random positions at the image cortical sheet, as
represented in the Figure II. The similarities between
the stimuli obviously are not preserved at the higher
level cortical sheet, or in other words, no map-like
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representation exists. In all experiments that follow, the
domain cortical sheet was excited 25 times with the 4
clusters of 250 stimuli in a random manner. The
parameters ρ0, α and β are kept constant in 0.8, 0.99,
and 0.99, respectively, for all simulations.

Remembering that σ0 represents the amount of
neural growth factor released by the neurons of the
image cortical sheet at the beginning of the
neurodevelopment process, in a first simulation this
parameter was set to a high value (σ0 = 4.0), sufficient
to the correct development of the map. After the
execution of the self-organizing algorithm, the four
clusters of stimuli presented to the domain cortical sheet
(Figure I) were mapped into four different and well-
defined regions, as can be seen in Figure III. During the
simulation of the neurodevelopment process, the
synapses between the two cortical sheets evolved in
time with a total synaptic change S equal to 11.382,
transforming the initially disorganized map (Figure II)
into a clearly organized one (Figure III). In fact, any
other stimulus never before presented to the neural
network, but similar to one of the 250 stimuli of a
cluster, will be mapped directly into the region of the
image cortical sheet responsible for the representation
of that cluster. Imagining that during one’s lifetime a
multitude of similar stimuli are presented to one’s brain,
it is easy to conclude that cortical maps are intelligent
structures capable of representing infinitely many
instances or variations of a stimulus in a constant, well-
defined and small region of the cortex. In other words,
neural maps are capable of, based on a few examples or
instances, create and hardwire (or represent) a whole
category in the cortex. One obvious advantage of this
capability is the economy incurred: every stimulus
would be represented by one specific neuron, billions of
these cells should not be enough for a lifetime.

The construction of these maps is possible just due
to the fact that the cortical neurons and their synaptic
plasticity governing rules build a neurocomputational
circuit capable of extracting from the stimuli their
commonalties. The cortical map considers the common
features as the principal components (or the central
coherence) of the stimulus, while the uncommon
characteristics that would hind the process of
categorization are disregarded.

A normal brain, charged with well-developed maps,
is always, and naturally, searching for the central
coherence of every new stimulus that reach the cortex.
Finding the central coherence is an extremely important
cognitive style of normal minds, since in a complex and
ever changing environment it is a great deal to
recognize a new situation as similar to an old one for
which a good response is already known.

Once analyzed the computational properties and the
cognitive implications of well-developed cortical maps,
the next two similar simulations will show how ill-
developed maps have characteristics that resemble
autistic minds. To achieve this purpose, the parameter
σ0 will be decreased at each simulation, showing how
the reduction of neural growth factor degrades the map

and changes its computational abilities. Starting with
σ0=3.5 (a reduction of 12.5% in relation to σ0=4.0 of the
successful map), the self-organizing process departed
from the same random-generated map (Figure II) and
reached the final state shown in Figure IV. Comparing
the two maps (Figure III and Figure IV) we note that the
last one was completely reshaped. The regions
responsible for the clusters of stimuli assumed different
forms and relative dispositions at the image cortical
sheet. Nevertheless, the computational, and,
consequently, the cognitive, properties of the map are
the same: categorization, generalization, central
coherence or any other word that express common
feature recognition. Having a closer look to this map
(Figure IV), however, allows us to observe that some
misclassified stimuli are present.

A final and extreme reduction of neural growth
factor  (σ0=1.0) produces a completely segmented map,
as seen in Figure V. This last simulation shows us the
“dual map” of the first simulation. Maps with high
discriminative capability and weak central coherence
extraction (Figure V) represent the other side of the
medal in relation to the maps with high generalization
property and strong central coherence detection (Figure
III). Between these two extremes there are a plethora of
self-organizing maps, possibly resulting in different
levels of the same neurological syndrome or, worse,
nosologically different neurological syndromes with the
same basic etiology. The curve depicted in Figure VI
shows how the total synaptic change S varies with the
neural growth factor released at the start of the
simulated neurodevelopment process. It is possible to
conclude that weak central coherence extraction maps
are consequence of  low levels of  neural growth factors.
These maps are immature because their synapses could
not change (low S value) and were not submitted to the
process of strengthening and consolidation or
weakening and elimination [13]. Note that an excessive
number of synapses is found in autistic brains [19], and
this is in accordance to the low value of the total
synaptic change S found in the weak central coherence
maps developed here.

The simulations performed until now allow us to
plausibly extrapolate some results to the cognition and
symptomatology of autism. To begin with, some authors
have noticed that “autistic children do not tend to
integrate current experiences with previous
impressions” [11] and also that “autistic children miss
what is salient and pay attention to what is irrelevant”
[7]. These two phrases pop out from our simulations
every time a reduction of neural growth factor produces
a neural map with less generalization (integration)
capability and higher discrimination (attention to
details). Highly discriminative cortical maps will lead to
a cognitive style where the stimuli are segmented and
stored as a function of the details. As a consequence,
cognition will be guided by the recognition of parts,
possibly promoting a behavior characterized by
excessive precision and inflexibility.
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Another cognitive consequence of highly
discriminative maps is that information (stimulus) is not
categorized but represented by segments or instances.
The principle of economy is, then, broken and a huge
amount of neurons will be necessary to represent
concepts that normally would be mapped in just a small
cortical region, as ours simulations have shown. When
large cortical regions are responsible for the
representation of  few detailed concepts, emerges a
computational phenomenon called “combinatorial
explosion” characterized by inefficient information
processing due to insufficient hardware. The low IQ and
the restricted interests in just a few subjects —
remarkably well memorized, indeed — observed in
autistic patients may be some results of the
combinatorial explosion.

On the other hand, highly discriminative neuronal
maps allow the automatic and fast segmentation of
information and the representation of details. Possibly,
this is the reason why autistic children have islets of
ability in memory for raw data (names, phone numbers,
calendar, realistic drawing, etc...), efficiently solve
puzzles where parts of a context need to be quickly
analyzed, and also have good sensory discrimination
skills, for example to sounds and music [3].

Remembering that cortical processing is obtained
from a series of hierarchical maps, where the input to a
higher level map is the output of the immediately lower
level map, it is possible to preview that cognitive
problems will arise when the first map in the hierarchy
classifies similar stimuli in different cortical regions.
Perhaps, autistic minds cannot develop language skills
because they don’t have the proper higher level
semantic maps [19] that depend on lower level well-
formed maps. Also the social difficulties of the autism
would be the result of the impossibility of recognizing
emotional and facial expressions, tasks that need the
interpretation of contexts and the integration of
information that occur in higher level maps.

5. Conclusions

Autism is marked by deficits in socialization,
communication, and imagination but also by some islets
of ability in operative skills involving memory and
sensory discrimination. There are many cognitive
theories for the disease but only one of them, the weak
central coherence theory, is capable of explaining the
referred islets of ability. After a detailed analysis of the
concept of cortical map, a self-organizing algorithm to
simulate the process of neurodevelopment of maps is
presented. Some simulations performed showed how
maps develop and what are their principal control
parameters. One of these parameters was plausibly
related to the  important chemicals called  neural growth
factors and simulations proceeded to show that the
amount of this substance released during the
neurodevelopment process is capable of generating
maps with a continuously varying generalization
capability. The computational properties of these maps

were closely analyzed and related to the cognitive weak
central coherence theory of autism. The lack of neural
growth factor was shown to produce maps with low
generalization property or weak central coherence
extraction. Cognitive deficits and, the most important,
cognitive skills (islets of ability) observed in autistic
children were explained by analogies between the
computational properties of  the simulated maps and the
weak central coherence theory. The analogies allow the
authors to propose a neurocomputational model for the
autism capable of linking biology to cognition in this
disease. Albeit these analogies fit very well as a mean to
understand autism from a neurobiological point of view,
the existence of ill-developed and highly discriminative
cortical maps in autistic brains must be verified
experimentally.
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Figures

 Figure I – A thousand stimuli divided into four clusters
of 250 stimuli each.

Figure II – Due to the random character of the initial
synaptic pattern, the stimuli clusters are  projected to the

image sheet in a disorganized way.

Figure III – A well-developed cortical map generated
with sufficient neural growth  factor.

Figure IV – A cortical map developed with a reduced
amount of neural growth factor (σ0 = 3.5). Some stimuli

are misclassified.

Figure V – An extreme reduction of neural growth
factor release (σ0 = 1.0) generates a completely

segmented map.

Figure VI – The total synaptic change as a function of
the neural growth factor  release.
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