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Abstract

This paper presents an adapive inverse ntrol
approach for the postiond control of an
unconstrained multibody system with  flexible
appendages. The approach is called Feedback-Error-
Learning and it is based onthe output of a feedback
controller with fixed parameters to adap a neural
network which acts as a feedforward controller. The
results are demonstrated by ssimulations using a high
fidelity dynamic model of a experimental setup
available at the ITA-IEMP Dynamics Labaratory.

1. Introduction

The investigation of methodologies using artificial
neural networks for control of lightweight materials
with digtributed flexibility in advanced space
applications and in the nstruction of robaic
manipulators has been the subjed of intensive research
in the recant years.

Based on their inherent learning ability and in the
massvely paralld architedure neural networks are
considered promising controll er candidates, particularly
for nonlinear and uncetain systems. In most space
applications, the dynamic behavior deviates
considerably from the analytical modd and the plant
state @nnot be physically measured or resolved without
model dependent state estimation.

These daracteristics have motivated the present
research towards the development of neural network
control methodologies that make use of rea-time
contraller tuning and of output measurements. This
effort resulted in the adaptive inverse cntrol approach
called Feadback-Error-Learning ([1], [2]) that uses the
output of a previoudly adjusted feedback contrall er with
fixed parameters to adapt a neural network which acts
as afeadforward controll er.

This paper describes the analytical model of a
unconstrained multibody system ([3],[4]) and the
adaptive @ntrol approach. The simulations of the
positional control with potentiometer feedback of the
experimental setup at the ITA-IEMP Dynamics
Laboratory are also presented.

2. Analytical M odels

2.1. Moddling the Unconstrained Multibody
System

A schematic view of the eperimental setup is
shown below in figure 1. The unconstrained system
under consideration is composed of two flexible
appendages attached to a rigid hub and is driven by a
brushlessDC motor. The sensors used are a tachometer
and a potentiometer which measure the hub angular
velocity and positi on, respedively.

The unconstrained characteristic results from the
natural motion without external influences, i.e., all the
structure is all owed to vibrate and its lution involves
bath theinertia and the stiffnessof the flexible parts.

/le ible appendages
AN

N1/

actelerometer

potentiometer

hub

P =l | [
| E—
air

[

strain-gage

lexible
coupling
DC mo!or;‘:r
+ tachometer

i

Figure 1 - Experimental setup

Applying Hamilton's principle and introducing the
transformation of variables z(x,t): y(x,t)+ xe(t), we
determine the differential equations for this hybrid
system:([3], [4])

pz+EIZV =0 (1)
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where L isthe length of appendage, x is the position
coordinate in the beam, vy is the appendage
deformation, 6 isthe @nstrained hub inertial rotation
and the line () and dot (0] denote partial derivative
with resped to space and time, respedively. The

boundary conditions for a clamped-freesystem at x=0
and x=L are

©)
(4)

z(0)=0, Z(0)=0
ElZ(L)=0, EIZ'(L)-myqz =0

with the foll owing momentum balance of the hub [3]:

E1Z'(0)~ 1hu2 (0)+ 1 =0 5

If we use: e(t):ecos(wt) and z(x,t):cp(x)cos(wt),
where 6 is the modal amplitude of the rotational
movement and cp(x) the unconstrained shapes function;
in equation (1) then:

El ¢ =pow’ (6)
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where ¥ =P ¢ and M —%
The abowe probdem admits the possbhle

unconstrained shape function:

<p(x) = Asir()\x) + Bcos()\x) + Csinl()\x) +D cosr(}\x)
()

The onstants A, B, C and D are cosen for
normalization purposes. Evaluating the boundary
conditions in equation (7), we oktain a sat of
homogeneous equations.

For a nontrivial solution, the determinant of the
coefficients must vanish, given the following
characteristic equation: [3]

ﬁ [' huoh® (—1- cogAL)cosHAL))
+ (vALp ~NLmygy )sin()\ L)

+ (Vl huoh’ —)\Sp)cosr()\L)sin()\L)
+ (L)\Smac, +yL)\p)sinI'()\L)

+ (Asp—vl hub)\s)cos()\L)sinI'()\L)
- 2ypsin(AL)sinhAL)| =0

(8)

with the foll owing orthogonality relationships:
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L
El [0 9fdx= 03y ©)
L
pJ’O (pr (ps dx+ 1 hub(\dr (0)(\ds (0)+ macel(pr (L)(ps (L) = ars
(10)

The discrete model of the system is ohtained by
Ritz's Asamed Modes Method. In this method the
elastic displacement can be described as:

(11

y(x.t)= itp,— (xn; ). osxsL

where cp(x) are unconstrained shape functions and r](t)
are timevarying coefficients. Applying Lagrange
method in equations (1) and (2) and uwing the

orthogonality reationships, the following matrix
equation is obtained for the modes:
M g+Kqg=F (12
where:
Ol Mmys' Mo C
M = a\/l n1e M nini 0 S (13)
5" n2e 0 M nan2 5
m o 0 C
O C
K= %) Knp O E (14)
0 0 Kl

q=[9 N1 nz]T'F:[FG Fra FnzT (15)

2 L

IG:Jm+IZJ’m(x) (x+rPdx +m, (L+rf (16)

0

L
My, :Im(x) (x+r) e (g )dx, +m (L +r)ey () (17)
0

(18

My = [m() G

L

Mun, :Im (x) (x+ 1)@ (x )dx, +m,(L +r)e?(L) (29

0
L

Mu.n, :Im (%) @?(x,)dx,

0

(20
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Figure 2 - Adaptive inverse mntrol approach Feedback-Error-Learning

2.2. The Neural Network

The figure 2 shows the adaptive ntrol approach
used in this work. In relation with the approach
proposed by Kawato et al. ([1], [2]) we introduced two
modifications. a) the second order derivatives of the
reference signal were replaced by a tapped delay line of
length L, and b) a dday of M sampling periods were
added to the referencesignal.

Asauming that the plant is alinear dynamic system,
stable, SISO (single input single output), time-invariant
with transfer function in the discrete domain G(2)
given by:

byz"° +b,z2N T+ ... + by,

Na l Na-2
2,z +a,z" 1 +ayz

+...+ay, 1)

Nz): > Biz' =By +Bz t+PByz 2+...

where N, and N, are non-negative integers, and
Na = Np.

Let's asame that the feadforward controller is a
linear filter with finite impulse response [5], that is, a
linear neural network. Therefore the transfer function
of neural network will be given by:

—aptaz t+.tazt (22

E(z)=z"MRef(z)-Y(2) (23)
G™(2)= UEFEZ()Z) (24)
U(z)=U(z)+ U™ () (25
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Combining this equations, we have;

v(@) _cl)|z"cR)+c™ ()]

Rt~ 1+6(6"0) 29
U GP()| 2 - Gl)e™ ()]
Rl 1:6(6"0) 27

If GNV(z)=2"™/G(z), then from egs. (26) e (27):

=z (28)

U™@) _ E@)
Ref(z) Ref(z)

=0 (29)

However, since it is asumed that the neura
network G"N(z) has the structure defined by the
equation (22) with a finite number (L+1) of
coefficients, the neural network could be seen as a
truncated representation of the pulse response of the
inverse model of the plant delayed by M sample
periods.

Asauming that the dosed-loop puse response of the
plant when using just the feedback controller (without
the neural network) is gable, then the polynomials
y(z) e (p(z) defined below, converge:

G FB 5
= z 30
y(z) 1+G z)G FB z viz (30

FB
s PR G

G (2)

Combining egs. (30) e (31) with eq. (27):



UP2)=[z"y(2)-d)e ™ ()| Retl) (32

The etimation of the wefficients of the neural
network GNN(z) in eg. (22) can be defined as an
optimizaion problem. In this case it is desired to find
the mefficients of neural network that minimize the
mean value of the square of the feedback controller
output, defined as the foll owing scalar cost function J:

L L
= E% M y(2)ref, —cp(z)(a*) refy EZ
2 E
where:
o =[a, a, a | (34)
ref, =[ref, ref ref_, |’ (35)

Notice that a” e ref, are mlumn vedors with L+1

components.

It is important to show, that under certain
conditions. 1) the scalar cost function J has a unique
minimum; 2) the parameters of the neural network that
minimize the @st function J could be used as an
approximation of the delayed inverse model of the plant

G(z).

The sationary points of J are given by

83/oa” =[0 0 ... O] =0", where:
03 _ HegouD .
e E%JEB aL:* 5: E[uEB(—cp(z)refk )]:0T (36)

The o« function J will have minimum if the
matrix 02J/da™ is positive definite, where:

= E{ [(p(z)ref; ] [cp(z)refﬁ] T }é ' @

The matrix F' isthe crrelation matrix of vedor
cp(z) refE with dimension L+1 by L+1. From egs. (32)
and (36):

(39)

where;
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Fr= E[(z_"" y(z)ref, )(cp(z) ref, )] (39
where F'" isacolumn vedor of L+1 rows. Considering
the reference  signa as  dationary, i.e.,

Elref ref,.; | = p; =p_;, the dements (i',j') of F'and
the dement (') of F" could bewritten as:

00

OO DE
@irefi—() Sg ¢jrefyj—-H0

Hao
; Z(P(P,p[l j+i'-i1]

Qe O
Fo= %; yirefi - Dg (pjrefk—j—(i'—l)D%
Q B5= EE(M)

= ; ;vi PiPfi-j+m~('-1)]

where 1<i'<L+1 e 1< <L+1. Noticethat: 1) F'
is a symmetric matrix with the Toeplitz (banded)
structure cmmon to covariance matrices, and 2) egs.
(40) and (41) assume that the polynomials y(z) and

(p(z) converge.
The linear system equation (38) will have a unique
solution if the reference signal is exciting enough such

that F' is postive definite. The clculated neural
network parameters a; (0<i <L) will be the set that

minimizes the mean value of the square of the feadback
controller output. The spedfic values of L and M will
determine how small the minimum of the st function
Jis.

However, the matrices F' e F' can only be
evaluated if the transfer function of the plant G(z) is
predsdy known. If the transfer function G(z) is not
predsealy known or is dowly time-variant, we @n use a
learning algorithm to searches for the neural network
parameters that minimize the st function J .

Fi E%D
E

2.3. The Feedback-Err or-L earning Rule

Considering &; (k) the estimated value of the neural
network coefficient o, at time step k, a possble smple
approach is to use an agorithm like gradient descent.
In this approach the neural network coefficients are

changed in the diredion that deaeases the st
function J, that is:

UoJ O

r]%D

a; (k +1)=a, (k (42)



where np isthelearningrate; i =0, 1, ...,L; and:
& ()=lol) @) - @] @3
From eq. (16):
& (k+1)=a (44)

+r]uk Z(pj refklj

However the polynomial cp(z) the dosed logp
transfer function without the neural network, cannot be
asaumed to be known a priori, sinceit would imply the
knowledge of G(z). Therefore we propose to replace the
polynomial cp(z) by a guessed known polynomial )\(z),
where )\(z) should be a coar se appr oximation of cp(z)
[6]. So in this work, instead of using eg. (41) as our
learning algorithm, we proposed to use the following
rule, called Feedback-Err or-L earning Rule;

G (k +1)=a;(k)+nuf Z}\ refio; (45

where:
Mz)=2Ag + Az +. 4 Az ™ (46)
= [Ao M ANL]T (47)

Our experiments siow that in many cases we @n
simply use A’ = A, =1, for example, in plants where
the feadback controll er was adjusted in such a manner
that the polynomial cp(z) converge quickly without
oscill ations.

Note that, as the quality of the feedback controller
increases, the approximation error introduced by using
)\(z) instead of cp(z) deaeases, since cp(z) will
converge more rapidly to zero.

3 - Numerical Simulations

In this edion we show the simulation of the
positional control of the unconstrained multibody
system with potentiometer feedback. The input and
output of the plant are respedively the applied
torque Fg and the angular position 8 measured by the
potentiometer. Therefore the plant transfer function is
givenasG(z):Fe(z)le(z).

The mass and the diffness matrices of the
unconstrained system, egs. (13) and (14), were
caculated using MATHEMATICA, a symbdic
manipulator program:
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[0.00767 0.0417 0.06255
0 C
M=0 0 1 o C (48)
0 C
H o 0 1 E
1) 0 0 O
K= 5543.12066 o g (49)
) 0 34672.5492(]

Assuming that the referencesignal ref, is such that
p,=p-; =0 for i=22, we @n rewrite the ejuations
(40) e (4)) as:

Fil'j' = fig Z G@(-p)+ Yy Z @; [(Pi—1+(i'—j') +(pi+l+(i'—j')]
(50)

R = FbZ &Q-mnt ﬁlZ Al@-em + Qoami o]
(51

where, by definition, @ =0 for i<0. This reference
signal ref, was generated by:

ref, =SSk + S84 (52

where s, is a white noise seguence uniformly
distributed between -1 e 1. Setting S;=1 and
S, =0.7, then, by definition:

@ozl parai =0
Elsse]=0°" 3

H Oparaiz0

1.49

for gt

E[refk TEfk+|] b = Eﬁlgps
EO sei>1

H

Using a PID contraller as the feedback controller,
then:

(53

,sei =1 (59

o7 ()= (K, +K; +Kq)22 (K, +2Kq)z+ Ky
2

A4

(55
and the following gains were sdeded: K, =10,

K; =00, K4=9. The parameters L and M were
chosen respedively as35and 1



The theoretical solution for the neural network

parameters a” can be @lculated wsing egs. (38), (50)
and (51). The plant transfer function G(z) can be
calculated using eg. (12).

The approach Fealback-Error-Learning was
simulated duing 2600semnds, the first 2500 seconds
were the lear ning phase of the neural network and the
other 100 seands were the test phase. The neura
network coefficients were initialized as zero such that
in the beginning of the learning phase only the
feadback controller was used. During the learning
phase the Feedback-Error-Learning Rule (eg. (45)) was
applied wing A" =A,=[0 1], n=0.105, and the
reference signal ref, was generated as describe in eqg.
(52.

Figure 3 shows the aror signal e (input of the
feadback controller) during the learning and test

phases. Figure 4 shows the theoretical neural network
parameters o and their estimated values &
(experimental solution) at the end of the learning

phase.

2?5 3
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Figure 3 - The eror signal g (input of the feedback
contrall er) during the learning and test phases
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Figure 4 - The neural network parameters a” (o) and
their estimated values 3" (+)

383

4. Conclusions

This paper shows how to perform positional control
of a unconstrained multibody system using neura
networks trained by the Feedback-Error-Learning Rule.
The simulation results $row that small tracking errors
and good convergence for the neura network
parameters can be achieved. [6]

Rios Neto et al. [7] and Nascimento Jr. [8] show
respedively how this neural control approach can be
applied to non-minimum-phase linear and non-linear
plants aswell.

Future research will i nvestigate the performance of
this neural control approach when used to suppress
vibration in real-time.
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