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Abstract

This paper presents an adaptive inverse control
approach for the positional control of an
unconstrained multibody system with flexible
appendages. The approach is called Feedback-Error-
Learning and it is based on the output of a feedback
controller with fixed parameters to adapt a neural
network which acts as a feedforward controller. The
results are demonstrated by simulations using a high
fidelit y dynamic model of a experimental setup
available at the ITA-IEMP Dynamics Laboratory.

1. Introduction

The investigation of methodologies using artificial
neural networks for control of lightweight materials
with distributed flexibilit y in advanced space
applications and in the construction of robotic
manipulators has been the subject of intensive research
in the recent years.

Based on their inherent learning abilit y and in the
massively parallel architecture neural networks are
considered promising controller candidates, particularly
for nonlinear and uncertain systems. In most space
applications, the dynamic behavior deviates
considerably from the analytical model and the plant
state cannot be physicall y measured or resolved without
model dependent state estimation.

These characteristics have motivated the present
research towards the development of neural network
control methodologies that make use of  real-time
controller tuning and of output measurements. This
effort resulted in the adaptive inverse control approach
called Feedback-Error-Learning ([1], [2]) that uses the
output of a previously adjusted feedback controller with
fixed parameters to adapt a neural network which acts
as a feedforward controller.

This paper describes the analytical model of a
unconstrained multibody system ([3],[4]) and the
adaptive control approach. The simulations of the
positional control with potentiometer feedback of the
experimental setup at the ITA-IEMP Dynamics
Laboratory are also presented.

2. Analytical Models

2.1. Modelli ng the Unconstrained Multibody
System

A schematic view of the experimental setup is
shown below in figure 1. The unconstrained system
under consideration is composed of two flexible
appendages attached to a rigid hub and is driven by a
brushless DC motor. The sensors used are a tachometer
and a potentiometer which measure the hub angular
velocity and position, respectively.

The unconstrained characteristic results from the
natural motion without external influences, i.e., all the
structure is allowed to vibrate and its solution involves
both the inertia and the stiffness of the flexible parts.
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Figure 1 - Experimental setup

Applying Hamilton's principle and introducing the
transformation of variables ( ) ( ) ( )txt,xyt,xz θ+= , we

determine the differential equations for this hybrid
system:([3], [4])

0=+ρ ivzIEz
��

(1)
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where L  is the length of appendage, x  is the position
coordinate in the beam, y  is the appendage

deformation, θ  is the constrained hub inertial rotation
and the line (’) and dot (⋅) denote partial derivative
with respect to space and time, respectively. The
boundary conditions for a clamped-free system at 0=x
and Lx =  are:

( ) 00 =z , ( ) θ=′ 0z (3)

( ) 0=′′ LzIE , ( ) 0=−′′′ Lacel zmLzIE
��

(4)

with the following momentum balance of the hub [3]:

( ) ( ) 000 =τ+′−′′ mhubzIzEI
��

(5)

If we use: ( ) ( )tcost ωθ=θ  and ( ) ( ) ( )tcosxt,xz ωφ= ,

where θ  is the modal amplitude of the rotational
movement and ( )xφ  the unconstrained shapes function;

in equation (1) then:

2ωφρ=φivIE (6)

where φωρ=φ
EI

iv
2

 and 
IE

2
4 ωρ=λ .

The above problem admits the possible
unconstrained shape function:

( ) ( ) ( ) ( ) ( )xDxCsinhxBxAsinx λλλλφ coshcos +++=
(7)

The constants A , B , C  and D  are chosen for
normalization purposes. Evaluating the boundary
conditions in equation (7), we obtain a set of
homogeneous equations.

For a nontrivial solution, the determinant of the
coeff icients must vanish, given the following
characteristic equation: [3]
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with the following orthogonalit y relationships:

rsrs
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r dxIE δω=φ′′φ′′∫ 2
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(9)
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(10)

The discrete model of the system is obtained by
Ritz's Assumed Modes Method. In this method the
elastic displacement can be described as:

( ) ( ) ( ) Lx,txt,xy
N

≤≤ηφ= ∑
=

0
1j

jj (11)

where ( )xφ  are unconstrained shape functions and ( )tη
are time-varying coeff icients. Applying Lagrange
method in equations (1) and (2) and using the
orthogonalit y relationships, the following matrix
equation is obtained for the modes:

FqKqM =+
��

(12)

where:
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Figure 2 - Adaptive inverse control approach Feedback-Error-Learning

2.2. The Neural Network

The figure 2 shows the adaptive control approach
used in this work. In relation with the approach
proposed by Kawato et al. ([1], [2]) we introduced two
modifications: a) the second order derivatives of the
reference signal were replaced by a tapped delay line of
length L, and b) a delay of M sampling periods were
added to the reference signal.

Assuming that the plant is a linear dynamic system,
stable, SISO (single input single output), time-invariant
with transfer function in the discrete domain G(z)
given by:
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where Na and Nb are non-negative integers, and
Na ≥ Nb.

Let's assume that the feedforward controller is a
linear filter with finite impulse response [5], that is, a
linear neural network. Therefore the transfer function
of neural network will be given by:

( ) ( )
( )

L
L

−− +++== zz
zRef
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10

NN
NN ααα � (22)

And from figure 1:

( ) ( ) ( )zYzRefzzE −= −M (23)

( ) ( )
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FB
FB = (24)

( ) ( ) ( )zUzUzU NNFB += (25)

Combining this equations, we have:
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If ( ) ( )zGzzGNN M−= , then from eqs. (26) e (27):
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However, since it is assumed that the neural

network ( )zGNN  has the structure defined by the
equation (22) with a finite number (L+1) of
coeff icients, the neural network could be seen as a
truncated representation of the pulse response of the
inverse model of the plant delayed by M sample
periods.

Assuming that the closed-loop pulse response of the
plant when using just the feedback controller (without
the neural network) is stable, then the polynomials

( )zγ  e ( )zφ , defined below, converge:
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Combining eqs. (30) e (31) with eq. (27):
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( ) ( ) ( ) ( )[ ] ( )zRefzGzzzzU NNFB φ−γ= −M (32)

The estimation of the coeff icients of the neural

network ( )zGNN  in eq. (22) can be defined as an
optimization problem. In this case it is desired to find
the coeff icients of neural network that minimize the
mean value of the square of the feedback controller
output, defined as the following scalar cost function J:
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where:

[ ]T10
*

Lααα=α � (34)

[ ]Tk1kk
*
k refrefrefref L−−= � (35)

Notice that *α e *
kref  are column vectors with 1+L

components.
It is important to show, that under certain

conditions: 1) the scalar cost function J has a unique
minimum; 2) the parameters of the neural network that
minimize the cost function J could be used as an
approximation of the delayed inverse model of the plant

( )zG .

The stationary points of J are given by

[ ] TT000 0==α∂∂ �

*J , where:
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The cost function J  will have minimum if the

matrix *22 α∂∂ J  is positi ve definite, where:

( )[ ] ( )[ ]{ } lF
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2
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The matrix lF  is the correlation matrix of vector

( ) *
krefzφ  with dimension L+1 by L+1. From eqs. (32)

and (36):

rl FF =*α (38)

where:

( )( ) ( )( )[ ]*
kk refzrefzzE φγ= −MrF (39)

where rF  is a column vector of L+1 rows. Considering
the reference signal as stationary, i.e.,

[ ] iiikk refrefE −± ρ=ρ= , the elements ( )j,i ′′  of lF and

the element ( )i ′  of rF  could be written as:
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where 1i1 +≤′≤ L  e 1j1 +≤′≤ L . Notice that: 1) lF

is a symmetric matrix with the Toeplit z (banded)
structure common to covariance matrices, and 2) eqs.
(40) and (41) assume that the polynomials ( )zγ  and

( )zφ  converge.

The linear system equation (38) will have a unique
solution if the reference signal is exciting enough such

that lF  is positi ve definite. The calculated neural
network parameters iα  (0 ≤ i ≤ L) will be the set that

minimizes the mean value of the square of the feedback
controller output. The specific values of L and M will
determine how small the minimum of the cost function
J is.

However, the matrices rF  e lF  can only be
evaluated if the transfer function of the plant G(z) is
precisely known. If the transfer function G(z) is not
precisely known or is slowly time-variant, we can use a
learning algorithm to searches for the neural network
parameters that minimize the cost function J .

2.3. The Feedback-Err or-Learning Rule

Considering ( )kiα̂  the estimated value of the neural

network coeff icient iα  at time step k, a possible simple

approach is to use an algorithm like gradient descent.
In this approach the neural network coeff icients are
changed in the direction that decreases the cost
function J , that is:
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where η  is the learning rate; i = 0, 1, ..., L; and:

( ) ( ) ( ) ( )[ ]T10 kkkk L
* ˆˆˆˆ αααα �= (43)

From eq. (16):

( ) ( ) ∑
∞

=

φη+α=+α
0j

j-i-kj
FB
kii refuk1k ˆˆ (44)

However the polynomial ( )zφ , the closed loop

transfer function without the neural network, cannot be
assumed to be known a priori, since it would imply the
knowledge of G(z). Therefore we propose to replace the
polynomial ( )zφ  by a guessed known polynomial ( )zλ ,

where ( )zλ  should be a coarse approximation of ( )zφ
[6]. So in this work, instead of using eq. (41) as our
learning algorithm, we proposed to use the following
rule, called Feedback-Err or -Learning Rule:

( ) ( ) jik
0j

j
FB
kii refukˆ1kˆ −−

=
∑+=+
NL

ληαα (45)

where:

( ) NL
NL

−− +++= zzz 1
10 λλλλ � (46)

[ ]T10 NL
* λλλλ �= (47)

Our experiments show that in many cases we can

simply use 10
* == λλ , for example, in plants where

the feedback controller was adjusted in such a manner
that the polynomial ( )zφ  converge quickly without

oscill ations.
Note that, as the qualit y of the feedback controller

increases, the approximation error introduced by using
( )zλ  instead of ( )zφ  decreases, since ( )zφ  will

converge more rapidly to zero.

3 - Numerical Simulations

In this section we show the simulation of the
positional control of the unconstrained multibody
system with potentiometer feedback. The input and
output of the plant are respectively the applied
torque θF  and the angular position θ  measured by the

potentiometer. Therefore the plant transfer function is
given as ( ) ( ) ( )zzzG θ= θ /F .

The mass and the stiffness matrices of the
unconstrained system, eqs. (13) and (14), were
calculated using MATHEMATICA, a symbolic
manipulator program:
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Assuming that the reference signal kref  is such that

0ii == −ρρ  for 2i ≥ , we can rewrite the equations

(40) e (41) as:
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where, by definition, 0=φi  for 0i < . This reference

signal refk was generated by:

1k1k0kref −+= sSsS (52)

where ks  is a white noise sequence uniformly

distributed between –1 e 1. Setting 10 =S  and

7.01 =S , then, by definition:
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Using a PID controller as the feedback controller,
then:

( ) ( ) ( )
zz

z2z
zG

2

2
FB

−

++−++
= ddpdip KKKKKK

(55)

and the following gains were selected: 0.1=pK ,

0.0=iK , 9=dK . The parameters L and M were

chosen respectively as 35 and 1.
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The theoretical solution for the neural network

parameters *α  can be calculated using eqs. (38), (50)
and (51). The plant transfer function G(z) can be
calculated using eq. (12).

The approach Feedback-Error-Learning was
simulated during 2600 seconds, the first 2500 seconds
were the learning phase of the neural network and the
other 100 seconds were the test phase. The neural
network coeff icients were initiali zed as zero such that
in the beginning of the learning phase only the
feedback controller was used. During the learning
phase the Feedback-Error-Learning Rule (eq. (45)) was

applied using [ ]100
* == λλ , 105.0=η , and the

reference signal refk was generated as describe in eq.
(52).

Figure 3 shows the error signal ek (input of the
feedback controller) during the learning and test
phases. Figure 4 shows the theoretical neural network

parameters *α  and their estimated values *á̂
(experimental solution) at the end of the learning
phase.

Figure 3 - The error signal ek (input of the feedback
controller) during the learning and test phases
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Figure 4 - The neural network parameters *α  (o) and

their estimated values *á̂  (+)

4. Conclusions

This paper shows how to perform positional control
of a unconstrained multibody system using neural
networks trained by the Feedback-Error-Learning Rule.
The simulation results show that small tracking errors
and good convergence for the neural network
parameters can be achieved. [6]

Rios Neto et al. [7] and Nascimento Jr. [8] show
respectively how this neural control approach can be
applied to non-minimum-phase linear and non-linear
plants as well .

Future research will i nvestigate the performance of
this neural control approach when used to suppress
vibration in real-time.
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