ET-236: Lista de Revisão # 1

Problema 1 Seja $\{F_i\}$, $i=1,2,\ldots,N$, uma partição de um espaço amostral S. Mostre que $\{G\cap F_i\}$, $i=1,2,\ldots,N$, é uma partição para qualquer evento não-vazio $G\subset S$.

Problema 2 Seja (S, \mathcal{F}, P) um espaço de probabilidade e sejam $A \in \mathcal{F}$ e $B \in \mathcal{F}$ dois eventos não-vazios tais que $P(A) = P(B) = P(A \cap B)$. Mostre que, nesse caso,

$$P((A \cap \overline{B}) \cup (B \cap \overline{A})) = 0,$$

ou seja, os eventos A e B são iguais com probabilidade 1.

Problema 3 Seja (S, \mathcal{F}, P) um espaço de probabilidade e sejam $E_1 \in \mathcal{F}, E_2 \in \mathcal{F}$ e $E_3 \in \mathcal{F}$, três eventos não-vazios arbitrários desse espaço de probabilidade.

a) Mostre que

$$P(E_1 \cup E_2 \cup E_3) = P(E_1) + P(E_2) + P(E_3) - P(E_1 \cap E_2) - P(E_1 \cap E_3) - P(E_2 \cap E_3) + P(E_1 \cap E_2 \cap E_3) .$$

- b) Mostre que, se E_1 , E_2 e E_3 são eventos mutuamente independentes, então os eventos \overline{E}_1 , \overline{E}_2 e \overline{E}_3 também são mutuamente independentes, ou seja,
- (i) $P(\overline{E}_1 \cap \overline{E}_2 \cap \overline{E}_3) = P(\overline{E}_1) P(\overline{E}_2) P(\overline{E}_1)$,
- (ii) $P(\overline{E}_i \cap \overline{E}_j) = P(\overline{E}_i) P(\overline{E}_j)$ $\forall 1 \le i < j \le 3$.

Problema 4 Seja S um espaço amostral, \mathcal{F} uma sigma-álgebra de S e P uma medida de probabilidade $P:\mathcal{F}\to\Re$ satisfazendo

- (i) $P(A \cup B) = P(A) + P(B), \forall A \in F, B \in F, A \cap B = \emptyset$. (Aditividade finita)
- (ii) Para qualquer seqüência decrescente $\{B_n\}_{n\geq 1}$ tal que $B_n\downarrow\emptyset$, tem-se $\lim_{n\to\infty}P(B_n)=0$. (Continuidade no vazio)

Mostre que as duas condições acima implicam aditividade enumerável, ou seja,

$$P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i), \quad \forall \{A_i\}_{i \ge 1}, A_i \cap A_j = \emptyset, i \ne j.$$

Problema 5 Seja (S, \mathcal{F}, P) um espaço de probabilidade e seja $\{A_n\}_{n\geq 1}$, $A_n \in \mathcal{F}$, uma seqüência de eventos arbitrários (não necessariamente disjuntos) do espaço amostral S. Mostre que

$$P(\bigcup_{i=1}^{\infty} A_i) \le \sum_{i=1}^{\infty} P(A_i).$$

Problema 6 Seja (S, \mathcal{F}, P) um espaço de probabilidade e seja $\{A_n\}_{n\geq 1}, A_n \in \mathcal{F}$, uma seqüência de eventos arbitrários do espaço amostral S. Defina a seguir o evento

$$E = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k.$$

- a) Mostre que, dado $\xi \in E$, é possível construir uma seqüência enumerável infinita e crescente de números inteiros positivos $k_1 < k_2 < \cdots < k_i < k_{i+1} < \ldots$ tal que $\xi \in A_{k_i}, \, \forall i \geq 1$.
- b) Assumindo-se que $\sum_{k=1}^{\infty} p_k < \infty$, mostre que P(E) = 0 (primeiro lema de Borel-Cantelli).

Dica: Lembre-se de que

$$\sum_{k=1}^{\infty} p_k < \infty \Rightarrow \lim_{n \to \infty} \sum_{k=n}^{\infty} p_k = 0.$$

Problema 7) Seja (S, \mathcal{F}, P) um espaço de probabilidade e sejam $A \in \mathcal{F}$ e $B \in \mathcal{F}$ dois subconjuntos de S. Definindo-se a diferença $A - B = A \cap \overline{B}$, mostre que

$$B \subseteq A \Rightarrow P(A - B) = P(A) - P(B)$$
.

Problema 8 Seja $f:\Re \to \Re$ uma função tal que

$$f(x) = \begin{cases} 1, & x \in [0, 1] \\ 0, & \text{caso contrário.} \end{cases}$$
 (1)

Seja agora (\Re, \mathcal{B}, P) um espaço de probabilidade onde \Re é o conjunto dos números reais, \mathcal{B} é o corpo Borel de \Re e P é uma medida de probabilidade tal que, se $E \in \mathcal{B}$ é um conjunto no qual a função f é integrável segundo Riemann, tem-se

$$P(E) = \int_{E} f(x)dx .$$

- a) Calcule a probabilidade dos eventos
- a.1) $E_1 = [a, b]$, com a < b reais arbitrários.
- a.2) $E_2 = (-\infty, r]$, para qualquer $r \in \Re$.
- b) Calcule a probabilidade do evento

$$E = \bigcup_{n=1}^{\infty} \left[\frac{1}{2^{2n}}, \frac{1}{2^{2n}} + \frac{1}{2^{2n+1}} \right].$$

Problema 9 Seja \Re o conjunto dos números reais e \mathcal{B} o corpo Borel de \Re . Constrói-se o espaço de probabilidade (\Re , \mathcal{B} , P) onde P é uma medida válida de probabilidade satisfazendo os axiomas vistos em aula. Defina a função real F tal que

$$F(t') = P(\lbrace t \le t' \rbrace) \qquad \forall t' \in \Re$$
 (2)

- a) Expresse $P(\{t_1 < t \le t_2\})$ e $P(\{t > t_2\})$ em termos da função F para quaisquer reais t_1 e t_2 com $t_1 < t_2$.
- b) Verifique que, se F for também contínua à esquerda, i.e.

$$\lim_{\varepsilon \to 0_{-}} F(t + \varepsilon) = F(t),$$

então $P(\{a\}) = 0$ para qualquer $a \in \Re$.

- c) Nas condições do item (b), calcule P(Q) e $P(\overline{Q})$ onde Q é o conjunto dos números racionais.
- d) Seja agora $(\Re_+, \mathcal{B}(\Re_+), P)$ um espaço de probabilidade onde \Re_+ é o conjunto dos números reais não negativos, $\mathcal{B}(\Re_+)$ é o corpo Borel de \Re_+ e P é uma medida de probabilidade tal que a função F definida em (2) é dada por

$$F(t') = 1 - \exp(-ct')$$
 $c > 0, t' \ge 0$.

Defina nesse espaço de probabilidades os eventos $A = \{t_0 < t \le t_0 + t_1\}$ e $B = \{t > t_0\}$. Mostre então que a probabilidade condicional

$$P(A \mid B) = P(\{t \le t_1\})$$
.

Problema 10 Um símbolo X definido no alfabeto $\mathcal{T} = \{0, 1, 2\}$ é gerado com probabilidades a priori $P(\{X=i\}) = p_i, \ 1 \le i \le 3$, e transmitido através de um canal de comunicação ternário. Devido à presença de ruído no canal, o símbolo Y recebido no receptor pode não coincidir com o símbolo X transmitido. O canal é especificado então por uma matriz de probabilidades de transição \mathbf{T} tal que

$$T(i,j) = P({Y = i} | {X = j})$$
 $1 \le i, j \le 3.$

Assuma que, para um canal em particular,

$$\mathbf{T} = \left[\begin{array}{ccc} 1 - \alpha & \frac{\beta}{2} & \frac{\gamma}{2} \\ \frac{\alpha}{2} & 1 - \beta & \frac{\gamma}{2} \\ \frac{\alpha}{2} & \frac{\beta}{2} & 1 - \gamma \end{array} \right] \ .$$

onde α , β e γ são números reais no intervalo (0,1).

- a) Calcule $P({X = i} | {Y = i})$ para i = 0, 1, 2.
- b) Particularize as expressões em (a) no caso em que $p_0 = p_1 = p_2$ e $\alpha = \beta = \gamma$. Interprete o seu resultado.

Problema 11 Em uma fábrica de chips, existem três máquinas A, B e C que fabricam respectivamente 25, 35 e 40 por cento do total de chips produzidos nessa planta industrial. Assuma que, nos lotes produzidos pelas máquinas A, B e C, respectivamente 5, 4 e 2 por cento dos chips são defeituosos. Um chip é escolhido aleatoriamente da produção combinada das três máquinas e verifica-se que ele apresenta defeito. Calcule a probabilidade de o chip amostrado ter sido fabricado pela máquina A.

Problema 12 Modela-se o tráfego de veículos através da cabine de um pedágio como um experimento aleatório onde a probabilidade do evento

 $A = \{n \text{ veículos passam pelo pedágio no intervalo } (t_1, t_2)\}$

é dada por

$$P(A) = \exp[-\lambda(t_2 - t_1)] \frac{[\lambda(t_2 - t_1)]^n}{n!}$$

onde $T \ge t_2 > t_1 > 0$ e $\lambda > 0$. Assume-se ainda que, se (t_1, t_2) e (t_3, t_4) são intervalos disjuntos, então os eventos

 $A = \{n_1 \text{ veículos passam pelo pedágio no intervalo } (t_1, t_2)\}$

 $B = \{n_2 \text{ veículos passam pelo pedágio no intervalo } (t_3, t_4)\}$

são estatisticamente independentes. Defina em seguida os eventos

 $E_1 = \{n_1 \text{ veículos passam pelo pedágio no intervalo } (0, t_1)\}$

 $E_2 = \{n_1 + n_2 \text{ veículos passam pelo pedágio no intervalo } (0, T)\}$.

- a) Calcule $P(E_1 \mid E_2)$.
- b) A probabilidade calculada no item (a) depende do parâmetro λ ?

Problema 13 No mundo real, a probabilidade de um evento A associado a um experimento E com espaço amostral finito é freqüentemente calculada repetindo-se o experimento um número (usualmente grande) de vezes N e definindo-se

$$P(A) = \frac{N_A}{N} \tag{3}$$

onde N_A é o número de ocorrências do evento A nas N repetições de E. Verifique que a definição (3) é compatível com os axiomas de positividade, normalização e aditividade finita para medidas de probabilidade.

Problema 14 (Gambler's Ruin) Dois jogadores A e B participam de um jogo com múltiplas rodadas consecutivas até que um deles vá à falência, ou seja, perca todo o seu capital . Suponha que o jogadores A e B comecem o jogo com capitais iniciais respectivamente a e b reais e que o perdedor pague 1 real para o vencedor em cada rodada. Assumindo-se que não existe um limite superior para o número de rodadas, seja $P_n = P(\{\text{o jogador A termina o jogo falido}\} \mid \{\text{ o capital do jogador } A \text{ é } n\}), 0 < n < a+b$. Assuma ainda que os eventos $\{\text{jogador A ganha uma rodada}\}$ e $\{\text{jogador A perde uma rodada}\}$ são independentes do evento $\{\text{ o capital do jogador } A \text{ é } n\})$ e têm probabilidades respectivamente p e q = 1 - p.

a) Mostre que P_n , 0 < n < a + b, satisfaz a equação de diferenças

$$P_n = p \, P_{n+1} + q \, P_{n-1} \tag{4}$$

com condições de contorno $P_0=1$ e $P_{a+b}=0$.

b) Verifique que, para $p \neq q$,

$$P_n = \frac{(\frac{q}{p})^n - (\frac{q}{p})^{a+b}}{1 - (\frac{q}{p})^{a+b}} \tag{5}$$

é uma solução da equação (4).

c) Usando a expressão (5) no caso particular em que n=a, calcule a probabilidade de falência no final do jogo do jogador A quando q>p e $b\to\infty$ (situação que ocorre por exemplo em cassinos e outros jogos de azar ilegais).