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Abstract—We propose in this paper a mixed-state sequential
Monte Carlo (SMC) filter for joint multiframe detection and
tracking of multiaspect targets in cluttered image sequences.
The proposed detector/tracker is a sampling/importance re-
sampling (SIR) particle filter that uses resampling according
to the weights to combat particle degeneracy and also in-
cludes an additional Metropolis-Hastings (MH) move step to
avoid particle impoverishment. The dynamic models for tar-
get motion and target aspect and the statistical model for the
spatially correlated background clutter are assumed as prior
knowledge in the design of the filter. The performance of the
algorithm is investigated using simulated image sequences
generated from real infrared airbone radar (IRAR) data.

Keywords—Mixed-state particle filters, Markov Chain Monte
Carlo, Gauss-Markov random fields, multiframe detection,
multiaspect target tracking.
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1. INTRODUCTION

We present in this paper an algorithm for joint multiframe de-
tection and tracking of multiaspect targets in two-dimensional
(2D) image sequences. We consider the situation when the
target of interest is obscured by structured clutter and the
clutter-free target aspect changes randomly from frame to
frame as a result of rotational motion and/or variations in the
conditions of observation of the target.

The conventional contact/association approach to target
tracking, see e.g. [1], is based on a suboptimal decoupling of
the detection and tracking tasks. Typically, a preliminary sin-
gle frame detection stage uses segmentation, clustering and
correlation filtering to generate initial estimates of the true po-
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sition of a potential target of interest. These preliminary esti-
mates are subsequently associated to a multiframe tracker or,
alternatively, are discarded as false measurements originat-
ing from clutter. The sequential estimator used for tracking
from validated measurements is usually a linearized Kalman-
Bucy filter (KBf). Although efficient for highly visible tar-
gets, this suboptimal association of correlation detectors and
KBf trackers has been shown to perform poorly in scenarios
of low target-to-clutter ratios [2]. In this paper, we propose
an alternative Bayesian approach that eliminates the prelimi-
nary single frame correlation detector and enables integrated,
multiframe detection and tracking taking full advantage of the
knowledge of the dynamic models for target motion and tar-
get aspect and also incorporating the statistical model for the
spatially-correlated clutter background.

In previous work [3], we proposed a grid-based joint detec-
tor/tracker assuming discrete-valued hidden Markov models
(HMMs) for both the target’s kinematic state (e.g. position
and velocity) and the target’s aspect state. The HMM-filter
solution in [3] had the disadvantages, however, of great com-
putational cost and lack of flexibility to capture more complex
target motion. To circumvent these limitations, we allow the
hidden aspect state of the target in this paper to take values
only on a finite set I, but assume that the target’s position
and velocity at each frame are continuous random variables.

Each symbol in the finite set of values assumed by the tar-
get’s aspect state may be interpreted as a pointer to one possi-
ble target template obtained by an affine transformation of the
target’s base image. In order to integrate detection and track-
ing, we extend further the finite alphabet I to include an addi-
tional dummy absent target state. The evolution over time of
the kinematic and aspect states is described then by a coupled
dynamical model where the probability of transition from one
aspect state to another between frame n − 1 and frame n is
dependent on the kinematic state of the target at frame n− 1.
Conversely, the probability density function of the kinematic
state at frame n conditioned on the kinematic state at the pre-
vious frame is also dependent on the target’s aspect changes
between frames n− 1 and n. The observation model consists
of a nonlinear function that maps a given target centroid po-
sition at frame n onto a spatial distribution of pixels centered
in the centroid and with intensity that is dependent on the
current target aspect state. Finally, the time-varying, aspect-
changing target image is superimposed to a structured clut-
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ter background whose spatial correlation is captured using a
noncausal Gauss-Markov random field (GMrf) model [4], [5].
The parameters of the GMrf clutter model are estimated on-
line from the available data using an approximate maximum
likelihood algorithm [6].

With the framework described in the previous paragraph, the
detection/tracking problem reduces, from a Bayesian per-
spective, to computing in a recursive fashion the joint pos-
terior distribution of the target’s discrete-valued aspect state
and the target’s continuous-valued kinematic state at frame n
conditioned on the observed frames from instant 0 up to in-
stant n. Due to the nonlinear nature of the observation and
possibly motion models, it is however impossible to compute
such posterior distribution analytically. We resort then to a
sequential Monte Carlo approach known as particle filtering
[7], [8] also referred to in the computer vision literature as the
condensation algorithm [9].

In summary, the basic idea in particle filtering is to repre-
sent the posterior distribution of interest by a set of properly
weighted samples , also known as particles, such that, at each
instant n, the weighted average of the particles converges (in
some statistical sense) to the minimum square error (MMSE)
estimate of the hidden state vector given the observed frames.
Using a standard mixed-state importance sampling (IS) strat-
egy [10], we sample the particle population sequentially from
the (coupled) prior model for target motion and target aspect
change and then update the weights of the sampled particles
using the likelihood function that incorporates the target sig-
nature and background clutter models. A particle resampling
step with replacement according to the sample weights [11],
[12] is added to control the increase in the variance of the
weights. Finally, we also add a Markov Chain Monte Carlo
(MCMC) [13] move step [14] after resampling to rejuvenate
the particle population and prevent particle impoverishment.

This paper is divided into 5 sections. Section 1 is this In-
troduction. Section 2 reviews the models for target motion
and target aspect that underly our derivations. We also intro-
duce in Section 2 the observation model and the associated
likelihood function. In Section 3, we describe the joint de-
tector/tracker 1. In Section 4, we evaluate the performance
of the proposed filter using simulated infrared airbone radar
(IRAR) [15] data. Finally, we summarize in Section 5 the
contributions of our work.

2. THE MODEL

We introduce in this section the dynamic models for target
motion and target aspect that underly the derivation of the
joint detector/tracker in this paper. For simplicity, we re-
strict our discussion to the situation when there is at most one
target of interest present in the imaged scene. Throughout
the paper, we use lowercase letters to to denote both random

1A simpler version of the algorithm in Section 3, assuming the target is
always present and suitable for tracking-only, was introduced in reference
[3]

variables/vectors and realizations (samples) of random vari-
ables/vectors; the proper interpretation is implied in context.
We use lowercase p to denote probability density functions
(pdfs) and uppercase P to denote the probability mass func-
tion of a discrete random variable. The symbol Pr(A) is used
to denote the probability of an event A in the σ-algebra of the
sample space.

State Variables Let n be a non-negative integer number and
let superscript T denote the transpose of a vector or ma-
trix. We define the target’s kinematic state at frame n as
the four-dimensional vector sn = [xn ẋn yn ẏn]T , that col-
lects the positions, xn and yn, and the velocities, ẋn and ẏn,
of the target’s centroid in a system of 2D Cartesian coordi-
nates (x, y). We model sn as a continuous random vector
taking values in �4. Conversely, the target’s aspect state at
frame n, denoted zn, is modeled as a discrete random vari-
able taking values in the finite set I = {0, 1, 2, 3, . . . , K}
where the event {zn = 0} indicates that no target is present
in the imaged scene at frame n. Each “present target”state i,
i = 1, 2, . . . ,K, is, on the other hand, a pointer to one pos-
sible template model in a target aspect library accounting for
rotation, scaling and/or shearing of the target’s mother tem-
plate.

Observation Model

The raw sensor measurements at instant n are sampled and
processed to form a 2D digital sensor image, referred to as a
frame. We represent the nth frame then by the L × M matrix

Yn = H(s∗n, zn) + Vn (1)

where the matrix Vn represents the background clutter, and
the matrix H(s∗n, zn) is the clutter-free target image model,
which is a function of the 2D pixel location of the target cen-
troid, s∗n and the target aspect state, zn. The two-dimensional
random vector s∗n takes values on the finite sensor grid L =
{(r, j) | 1 ≤ r ≤ L, 1 ≤ j ≤ M} and is obtained from the
four-dimensional continuous-valued state vector sn by mak-
ing

s∗n(1) = round(
sn,1(1)

ξ1
) (2)

s∗n(2) = round(
sn,2(1)

ξ2
) (3)

where ξ1 and ξ2 are the image resolutions respectively in the
coordinates x and y.

Clutter-Free Target Model We assume that, any given frame,
for any aspect state zn, the clutter-free image of a target that is
present is contained in a bounded rectangular region of size
(ri + rs + 1) × (li + ls + 1). In this notation, ri and rs

denote the maximum vertical pixel distances in the target im-
age when we move away, respectively up and down, from
the target centroid. Analogously, li and ls are the maximum
horizontal pixel distances in the target image when we move
away, respectively left and right, from the target centroid.
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For each pixel centroid position s∗n = (rn, jn) ∈ L, the non-
linear function H(:, :) in (1) returns a spatial distribution of
(real-valued) pixel intensities {ak, l(zn)}, −ri ≤ k ≤ rs,
−li ≤ l ≤ ls, centered at (rn, jn) and dependent on the as-
pect state zn. Formally, we write

H(rn, jn, zn) =
rs∑

k=−ri

ls∑
l=−li

ak, l(zn)Ern+k,jn+l (4)

where Eg, t is an L×M matrix whose entries are all equal to
zero, except for the element (g, t) which is equal to 1.

For a given fixed template model zn = i ∈ I, the coeffi-
cients {ak,l(i)} in (4) are referred to as the target signature
parameters corresponding to that particular template. The
signature coefficients are the product of a binary parameter
bk, l(zn) ∈ B = {0, 1}, that defines the target shape for each
aspect state, and a real coefficient φk, l(zn) ∈ �, that specifies
the pixel intensities of the target, again for the various states
in the alphabet I. For simplicity, we assume that the pixel
intensities and shapes are deterministic and known at each
frame for a given value of zn. In particular if zn takes the
value 0 denoting absence of target, then the function H(:, :)
in (1) reduces to the identically zero matrix 0L×M , meaning
the observations consist only of clutter.

Remark To write (4), we assumed that the target is sufficiently
far from the borders of the image grid so that we do not have
to worry about boundary conditions. Boundary effects can be
easily taken into account by changing the summation limits
accordingly in (4) for centroid locations near the borders.

Clutter Model We describe the 2D spatial correlation of the
background clutter using a noncausal, spatially homogeneous
Gauss-Markov random field (GMrf) model [4]. The random
clutter returns at frame n, Vn(r, j), 1 ≤ r ≤ L, 1 ≤ j ≤ M ,
are described then by the 2D finite difference equation

Vn(r, j) = βc
v,n [Vn(r − 1, j) + Vn(r + 1, j)]

+ βc
h,n [Vn(r, j − 1) + Vn(r, j + 1)] + εn(r, j) (5)

where E [Vn(r, j) εn(k, l)] = σ2
c,n δr−k, j−l. We use sub-

script n in the notation for the parameters βc
v , βc

h and σc to
emphasize that the clutter parameters may be time-variant and
change from frame to frame. The assumption of zero-mean
clutter implies a pre-processing of the data that subtracts the
mean of the background.

Target Motion and Aspect Models

The random sequence {(sn, zn)}, n ≥ 0, is modeled as
a first-order hidden Markov model (HMM) specified by a
mixed initial probability density function (pdf)

p(s0, z0) = p(s0)P (z0) (6)

and by the mixed transition pdf

p(sn, zn | sn−1, zn−1) = p(sn | zn, sn−1, zn−1)
× P (zn | zn−1, sn−1) (7)

for n ≥ 1. Note that the mixed densities on the left-hand
side of equations (6) and (7) are defined as actual probabil-
ity density functions in the continuous-valued variables and
probability mass functions in the discrete random variables,
i.e., if s is a continuous random variable taking values in �
and z is a discrete random variable taking values in the finite
set I, then

p(s′, z′) =
∂

∂ s′
Pr({s ≤ s′} ∩ {z = z′}).

Aspect Model Based on the observation model, we introduce

the augmented centroid lattice L̂ = {(r, j) : −rs + 1 ≤ r ≤
L+ri, −ls + 1 ≤ j ≤ M + li} that collects all possible val-
ues of the target centroid position for which at least one tar-
get pixel may still lie inside the sensor’s image. In the se-
quel, let T be a K×K transition probability matrix such that
T (i, j) ≥ 0 for any i, j = 1, 2, . . . ,K and

K∑
i=1

T (i, j) = 1 ∀j = 1, . . . , K.

The probability of a change in the target’s aspect between
frames n − 1 and n from state j to state i, Pr({zn = i} |
{zn−1 = j} , sn−1), is modeled in this paper as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

T (i, j)Pr(
{
s∗n ∈ L̂

}
| sn−1, {zn−1 = j}) i, j = 1, . . . ,K

1 − Pr(
{
s∗n ∈ L̂

}
| sn−1, {zn−1 = j}) i = 0; j �= 0

pa

K i �= 0; j = 0
1 − pa i = 0; j = 0 .

(8)
In (8), the parameter pa denotes the probability of a new tar-
get appearing in the scene once the previous target becomes
absent. By setting Pr({zn = i} | {zn−1 = 0} , sn−1) =
pa/K, i = 1, . . . ,K, we assume that, given that a new target
became present at frame n, there is a uniform probability of
that new target assuming any of the K possible aspect states.
On the other hand, by making

Pr({zn = 0} | {zn−1 = j} , sn−1) =

1 − Pr(
{
s∗n ∈ L̂

}
| sn−1, {zn−1 = j}), (9)

we are implicitly assuming that a target may become absent
only if it leaves the image grid.

Motion Model For simplicity, we make an additional assump-
tion that, unless the aspect state changes from zero (absent
target state) to a nonzero (present target) state, the distri-
bution of the current kinematic state sn conditioned on the
previous kinematic state sn−1 is independent of the current
and previous aspect states, zn−1 and zn. Specifically, let
fs(sn | sn−1) be a valid conditional pdf (not necessarily
Gaussian) and let f0(sn) be a valid marginal pdf. We make
p(sn | zn, sn−1, zn−1) equal to{

f0(sn) if zn �= 0 and zn−1 = 0
fs(sn | sn−1) otherwise.

(10)
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Usually, we make f0(sn) a non-informative prior (e.g., a con-
tinuous uniform pdf). With the assumption of independence
between the kinematic and aspect states for present targets,
we also write, for any j = 1, . . . ,K,

Pr(
{
s∗n ∈ L̂

}
| sn−1, {zn−1 = j}) = (11)∫

{sn|s∗n∈L̂}
fs(sn | sn−1) dsn .

Let N (s − a,P) denote the multivariable normal function
of argument s, mean a and covariance matrix P. Without
loss of generality, we assume in this paper that fs(sn | sn−1)
represents a linear, white-Gaussian-noise acceleration motion
[1] on the 2D plane. i.e.,

fs(sn | sn−1) = N (sn − F̃ sn−1, Q̃) (12)

where

F̃ =
[

F 0
0 F

]
, Q̃ =

[
Q 0
0 Q

]
. (13)

Let q be a positive real number and denote by ∆ the sampling
period. Matrices F and Q in (13) are given then by [1]

F =
[

1 ∆
0 1

]
, Q = q

[
∆3

3
∆2

2
∆2

2 ∆

]
. (14)

Likelihood Function

Let yn and h(s∗n, zn) be the 1D representations respectively
of the image frame Yn and the clutter free target image
H(s∗n, zn) in (1), obtained by scanning the matrices row by
row and sequentially stacking the scanned rows in a long vec-
tor. Similarly, let vn be the long vector representation of the
matrix Vn in (5) and let Σv = E

[
vnvT

n

]
denote its associ-

ated covariance matrix. For a GMrf background as in (5),
the likelihood function for a fixed template state zn = z̃,
z̃ ∈ {1, 2, 3, . . . ,K} is given by

p(yn | sn, z̃) = p(yn | sn, 0) exp
[
2λ(sn, z̃) − ρ(z̃)

2σ2
c,n

]
.

(15)
where ρ(z̃) is a target energy term given by

ρ(z̃) = hT (s∗n, z̃)(σ2
c,nΣ−1

v )h(s∗n, z̃) (16)

and λ(sn, z̃) is a data-dependent term such that

λ(sn, z̃) = yT
n (σ2

c,nΣ−1
v )h(s∗n, z̃) . (17)

Finally, p(yn | sn, 0) in (15) is the likelihood of the absent
target state which reduces to

p(yn | sn, 0) =
1

(2π)
L M

2 [det(Σv)]1/2
exp(−1

2
yT

nΣ−1
v yn)

for all sn ∈ �4.

Writing the difference equation (5) in compact matrix nota-
tion, it can be shown [4], [5], [6] by the application of the
principle of orthogonality that Σ−1

v has a block-tridiagonal
structure of the form

σ2
c,nΣ−1

v = IL⊗(IM −βc
h,nKM )+KL⊗(−βc

v,nIM ) (18)

where ⊗ denotes the Kronecker product, IJ is J × J identity
matrix, and KJ is a J × J matrix whose entries KJ(k, l) = 1
if | k − l |= 1 and are equal to zero otherwise.

Using the block-banded structure of Σ−1
v in (18), it can be

shown that λ(sn, z̃) in (17) may be computed by the expres-
sion

λ(sn, z̃) =
rs∑

k=−ri

ls∑
l=−li

ak,l(z̃)d(s∗n(1)+k, s∗n(2)+ l) (19)

where s∗n(i), i = 1, 2, are obtained respectively from equa-
tions (2) and (3), and d(r, j) is the output of the differential
operator

d(r, j) = Yn(r, j) − βc
h,n [Yn(r, j − 1) + Yn(r, j + 1)]

− βc
v,n [Yn(r − 1, j) + Yn(r + 1, j)] (20)

with Dirichlet (identically zero) boundary conditions. Equa-
tion (19) is valid for ri + 1 ≤ s∗n(1) ≤ L − rs and li + 1 ≤
s∗n(2) ≤ M − ls. For centroid positions close to the image
borders, the summation limits in (19) must be varied accord-
ingly, as shown in [2].

Remark: Estimation of Clutter Parameters We assume that
the time-varying clutter parameters βh,n, βv,n and σc,n are
unknown to the tracking filter and must be adaptively esti-
mated from the image sequence. Ideally, the clutter parame-
ters should be jointly estimated with the hidden state variables
sn and zn in a Bayesian framework. For computational sim-
plicity though, we use in this paper a suboptimal approach to
clutter adaptation where the unknown GMrf parameters cor-
responding to each available sensor frame Yn are assumed
deterministic and are independently estimated from frame to
frame using a single frame variation of the approximate max-
imum likelihood (AML) parameter estimation algorithm in-
troduced in [6]. For a description of the clutter parameter
estimation algorithm, we refer the readers to section V in the
reference [3].

3. JOINT DETECTOR/TRACKER

We describe in this section the proposed SMC detec-
tor/tracker. We begin the section with a description of the
importance sampling step. Next, we detail the resampling
and MCMC move steps. Finally, we present the multiframe
detection test and the kinematic state estimation algorithm.

Sequential Importance Sampling Step

Given a sequence of observed lexicographed frames
{y1, . . . ,yn}, our goal is to represent the mixed posterior
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p(sn, zn | y1:n) at step n by a properly weighted set of par-

ticles
{
s(j)
n , z

(j)
n

}
, 1 ≤ j ≤ Np, with associated weights{

w
(j)
n

}
such that, as Np goes to infinity, the weighted aver-

ages of the particles converge to the minimum mean-square
error (MMSE) estimates of the hidden states under the true
posterior distributions. Using p(sn, zn | sn−1, zn−1) in (7)
as importance function, a mixed-state sequential importance
sampling (SIS) algorithm for the recursive generation of the
desired properly weighted set is [8], [10]

1) Initialization For j = 1, . . . , Np

• Draw s(j)
0 ∼ p(s0), and z

(j)
0 ∼ P (z0).

• Make w
(j)
0 = 1/Np and set n = 1.

2) Importance Sampling For j = 1, . . . , Np

• Draw z̃
(j)
n ∼ P (zn | z

(j)
n−1, s

(j)
n−1) according to (8).

• Draw s̃(j)
n ∼ p(sn | z̃

(j)
n , s(j)

n−1, z
(j)
n−1) according to (10).

• Compute the importance weights

w̃(j)
n ∝ w

(j)
n−1 p(yn | s̃(j)

n , z̃(j)
n )

Np∑
j=1

w̃(j)
n = 1

using the likelihood function model in Section 2.

End-for

Remark From a computational point of view, the main ad-
vantage of the importance sampling solution above over the
grid-based filter described in [3] is that the grid-based tracker
evaluates the likelihood function in the entire discretized state
space, whereas the importance sampling algorithm requires
the evaluation of the likelihood function only for each sample
in the current set of particles. Since the number of particles
is usually smaller than the total number of pixels per frame
times the total number of possible target templates, the com-
putational savings may be significant.

Resampling and Move Steps

The major drawback of raw sequential importance sampling
as described in the previous subsection is the increase over
time in the variance of the weights w̃

(j)
n leading in the limit

to the phenomenon known as “particle degeneracy” [8], i.e.,
after a few steps, only a small number of particles will have
normalized weights close to one whereas the majority of the
particles will have negligible weight. In order to mitigate par-
ticle degeneracy, we follow the approcah in [11], [12] and
resample from the existing particle population with replace-
ment according to the particle weights so that high-weight
particles are multiplied while low-weight particles are dis-
carded. Concretely, in the particular application studied in

this paper, we draw at instant n a set of indices

i(j) ∼ {1, 2, . . . , Np} with Pr(
{

i(j) = l
}

) = w̃(l)
n (21)

and build a new particle set
{
s(j)
n , z

(j)
n

}
, j = 1, . . . , Np such

that
(s(j)

n , z(j)
n ) = (s̃(i(j))

n , z̃(i(j))
n ).

Move Step The resampling step described before helps to
avoid particle degeneracy, but also leads to an undesirable
loss of particle diversity as resampling may result in multi-
ple copies of only a few or, in the limit, only one particle.
In order to rejuvenate the particle population without altering
its statistics, we add a Markov Chain Monte Carlo (MCMC)
move step, see [14], after the resampling routine. Specifically,
for j = 1, . . . , Np, let

(s(j)
0:n, z

(j)
0:n) = (s(i(j))

0:n−1, s̃(i(j))
n , z

(i(j))
0:n−1, z̃

(i(j))
n ) (22)

be the resampled particle trajectories for the kinematic and
aspect states from instant 0 up to instant n. The resulting tra-
jectories (s(j)

0:n, z
(j)
0:n) are approximately distributed, see [16],

according to the mixed posterior p(s0:n, z0:n|y1:n). A possi-
ble strategy for sequential regeneration of the particle popula-
tion is to apply, for j = 1, . . . , Np, a Markov chain transition
kernel

k(ŝ(j)
n , ẑ(j)

n |s̄(j)
n , z̄(j)

n ) (23)

which is invariant to the conditional mixture pdf

p
(
sn, zn|s̄(j)

0:n−1, z̄
(j)
0:n−1,y1:n

)
. Provided that such invari-

ance condition is satisfied, the moved sample trajectories

(s(j)
0:n, z

(j)
0:n) =

(
s̄(j)
0:n−1, ŝ

(j)
n , z̄

(j)
0:n−1, ẑ(j)

n

)
remain (approximately) distributed according to p(s0:n, z0:n |
y1:n). A possible Metropolis-Hastings (MH) [13] strategy to
build a Markov Chain with the desired stationary distribution
is as follows:

For j = 1, . . . , Np

• Draw ẑ
(j)
n ∼ P (zn | z̄

(j)
n−1, s̄

(j)
n−1) according to (8).

• Draw ŝ(j)
n ∼ p(sn | ẑ

(j)
n , s̄(j)

n−1, z̄
(j)
n−1) according to (10).

• Draw u ∼ U([0, 1]).

If u ≤ min
{

1,
p(yn| ŝ(j)

n , ẑ(j)
n )

p(yn| s̄(j)
n , z̄

(j)
n )

}
, then (s(j)

n , z
(j)
n ) =

(ŝ(j)
n , ẑ

(j)
n ).

Else (s(j)
n , z

(j)
n ) = (s̄(j)

n , z̄
(j)
n ).

• Reset w
(j)
n = 1

Np
.

End-for
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Multiframe Detection and Tracking

Let H1 denote the hypothesis that the target is present at
frame n and, conversely, let H0 denote the hypothesis that
the target is absent. Given the set particles (s(j)

n , z
(j)
n ) approx-

imately distributed according to p(sn, zn | y1:n) at instant n,
we compute the Monte Carlo estimate P̂ r({zn = 0} | y1:n)
of Pr({zn = 0} | y1:n) and apply the minimum probability
of error [17] multiframe detection test

P̂ r({zn = 0} | y1:n)
H0
>
<
H1

1 − P̂ r({zn = 0} | y1:n) (24)

to decide whether the target is present or not at frame n. If
the hypothesis H1 is declared true, the estimate ŝn|n of the
target’s kinematic state at frame n is computed then using the
Monte Carlo approximation of E [sn | y1:n, {zn �= 0}].

Particle Update

Finally, we make n = n + 1 and go back to the importance

sampling step to draw a new set of particles
{

(s̃(j)
n , z̃

(j)
n )

}
with updated weights w̃

(j)
n . The recursion continues as long

as there are image data available to be processed.

4. SIMULATION RESULTS

We study next the performance of the proposed SMC detec-
tor/tracker using simulated image sequences generated from
real infrared airborne radar (IRAR) data. The IRAR intensity
imagery is from the MIT Lincoln Laboratory’s database and
was obtained from the Center for Imaging Sciences at Johns
Hopkins University. To simulate the target, we took an artifi-
cial template representing a military vehicle and generated a
library of affine transformations of that template using com-
posite operations of rotation, scaling and shearing. We then
added the artificial target to the background sequence with
the target centroid position changing from frame to frame ac-
cording to the linear white noise acceleration model in (12),
see Section 2. For the target simulations in this paper, we set
∆ = 0.04 and q = 8. The background clutter for the mov-
ing target sequence was simulated by adding a sequence of
synthetic GMrf samples to a matrix of previously stored local
means extracted from the database imagery. The GMrf sam-
ples were synthetized using correlation and prediction error
variance parameters estimated from real data.

In order to simulate the target’s aspect dynamics, we initial-
ized the target template state z0 with a randomly-selected
choice from the template library and then changed the aspect
over time according to a first-order Markov chain. At any
given frame, the true aspect of the target is unknown to the
tracker. The target pixel intensity is on the other hand time-
invariant and known and was set according to a desired low
level of contrast between the template and the background.
The initial position of the target is assumed uniformly dis-
tributed in a certain region of the image.
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Figure 1. (a) First frame of the cluttered target sequence,

PTCR = 10.6 dB, (b) tracking results: actual target position
(’+’), estimated target position (’o’).
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Figure 2. (a) Tenth frame of the cluttered target sequence,
PTCR = 10.6 dB, with target translation, rotation, scaling,

and shearing; (b) tracking results: actual target position
(’+’), estimated target position (’o’).

Using Np = 10, 000 particles, we tracked the simulated target
over 50 consecutive frames to verify the capability of the al-
gorithm : (1) to acquire the target and track it both at the cen-
ter of the grid and near the image’s boundaries where parts
of the target are no longer present in the scene; (2) to de-
tect when the target has completely left the image indicating
no false detections at the frames where no target is present;
and, (3) to detect when a new target enters the image, ac-
quire it and track it sucessfully. A complete video demo of
the operation of the algorithm over 50 frames can be seen at
http://www.ele.ita.br/∼bruno. In the sequel, we show the de-
tection/tracking results for a few selected frames.

Figure 1(a) shows the initial frame of the sequence with the
target centered in the (quantized) coordinates (65, 23) and su-
perimposed to clutter. The simulated peak target-to-clutter
ratio (PTCR) is 10.6 dB. The actual target position (indicated
by a cross sign, ’+’) and the estimated position (indicated by a
circle,’o’) are shown in Figure 1(b). Next, Figure 2(a) shows
the tenth frame in the image sequence. Note that the target
from frame 1 has now undergone a random change in aspect
in addition to translational motion. The tracking results cor-
responding to frame 10 are shown in Figure 2(b).
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Figure 3. (a) 36th frame of the cluttered target sequence

with no target present, (b) Detection result indicating
absence of target.
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Figure 4. (a) Fifty-first frame of the cluttered target

sequence, PTCR = 10.6 dB, with a new target present in the
scene; (b) tracking results: actual target position (’+’),

estimated target position (’o’).

In this particular simulation, the target leaves the scene at
frame 31 and no target reappears until frame 37. The SMC
tracker accurately detects the instant when the target disap-
pears and shows no false alarms over the 6 absent target
frames as illustrated in Figures 3(a) and (b) where we show
respectively the clutter+background-only thirty-sixth frame
and the corresponding tracking results indicating in this case
that no target has been detected. Finally, when a new target
re-appears, it is accurately acquired by the SMC algorithm.
The final simulated frame with the new target at position
(104, 43) is shown for illustration purposes in Figure 4(a).
Figure 4(b) shows the corresponding tracking results for the
same frame.

In order to have a quantitative assessment of the tracking per-
formance, we ran a Monte Carlo simulation with 120 inde-
pendent trials. We used again 10,000 particles, but lowered
the the peak target-to-clutter ratio to 4.6 dB to assess the per-
formance of the algorithm in situations of heavily obscured
(stealthy) targets. The proposed SMC tracker, operating over
20 frames, diverged in 6 out of 120 trials giving an approxi-
mate divergence rate of 5 %. The mean square error (MSE)
for the position estimation errors in number of pixels squared
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Figure 5. Mean-square position estimation error in number

of pixels squared, excluding divergent realizations: (a) x
coordinate, (b) y coordinate; divergence rate = 5 % (out of

120 Monte Carlo trials), PTCR = 4.6 dB.

excluding the divergent tracks are shown in Figures 5(a) and
(b). The MSE values in number of pixels squared are su-
perimposed to their respective one-sigma uncertainty inter-
vals assuming 114 Monte Carlo trials (i.e., 120 minus the 6
divergent realizations). Note that, in the non-divergent real-
izations, the tracker shows an initial position estimation error
that falls over time as more frames are processed. Note also
that the uncertainty in the error is greater in the y coordinate.

Remark In this particular paper, we quantified only the track-
ing performance of the proposed algorithm. In our simula-
tions, the target was correctly declared present by the multi-
frame detection test over all 20 × 120 frames. For a complete
assessment of detection performance, one could run a contin-
uous simulation with targets leaving and entering the scene
and estimate a receiver operating characteristic (ROC) curve
by introducing a detection threshold in the hypotheses test
(24) and varying that threshold over a wide range of values.
Due to the very low false alarm rates that were in practice ob-
tained in our trials, an accurate estimation of the ROC curve
would require very large-scale Monte Carlo simulations. We
leave that for future work.

5. SUMMARY

The conventional correlation filter/Kalman filter association
approach to target detection/tracking in cluttered images has
severe limitations in situations of low target-to-clutter ratio.
In this paper, we proposed to overcome those limitations us-
ing an alternative sequential Monte Carlo (SMC) algorithm
that enables joint multiframe detection and tracking and fully
incorporates the statistical models for target motion, target
aspect, and clutter. The target’s aspect state at each frame
was modeled as a discrete random variable that takes values
in a finite set of target template models. Conversely, the tar-
get’s position and velocity were modeled as continuous ran-
dom variables. In order to integrate detection and tracking,
we introduced an additional dummy aspect state that repre-
sented the absence of a target at a given frame. The spatial

7



correlation of the background clutter was described using a
noncausal Gauss-Markov random field (GMRf) model.

The proposed detector/tracker in this paper is a mixed-state
sampling/importance resampling (SIR) filter enhanced with
a Metropolis-Hastings move step to avoide sample impover-
ishment. Simulation results with synthetic images generated
from real infrared airborne radar (IRAR) data show that, bar-
ring an approximately 5 % divergence rate, the mixed-state
SIR filter operating with 10,000 particles shows good track-
ing performance in situations of heavily obscured targets and
dense clutter.
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