
IMPROVED PARTICLE FILTERS FOR BALLISTIC TARGET TRACKING

Marcelo G. S. Bruno and Anton Pavlov

Instituto Tecnológico de Aeronáutica
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ABSTRACT

We present in this paper two improved particle filter algorithms for
ballistic target tracking. The first algorithm is a sampling/import-
ance resampling (SIR) filter that uses an optimized importance
function plus residual resampling to combat particle degeneracy,
and also incorporates a Metropolis-Hastings (MH) move step to
reduce particle impoverishment. The second proposed algorithm
is an auxiliary particle filter (APF). Both algorithms show good
performance results when compared to the ideal posterior Cramér-
Rao lower bound for the mean square estimation error.

1. INTRODUCTION

We propose in this paper improved particle filter algorithms
for automatic tracking of supersonic ballistic targets in the
phase of reentry into the atmosphere. The goal is to esti-
mate in a recursive fashion the unknown kinematic state,
e.g. position and velocity, of the target given a sequence of
noisy position measurements generated by a conventional
radar. In general, a closed-form analytical expression for
the minimum mean square error (MMSE) estimate of the
hidden state cannot be obtained in the ballistic target track-
ing problem due to nonlinearities both in the state dynamic
model and in the observation (measurement) model. We
resort then to a sequential importance sampling method, re-
ferred to in the literature as particle filtering [1], to approxi-
mate the optimal MMSE estimate.

Farina et al. proposed in [2] the application of a boot-
strap particle filter [3] to the problem of ballistic target track-
ing assuming a nonlinear target motion model and a linear
observation model, with both models specified in cartesian
coordinates. In this paper, we use the same motion model
as in [2], but assume an alternative nonlinear observation
model in polar coordinates. Furthermore, instead of us-
ing the standard bootstrap filter, we design a different sam-
pling/importance resampling (SIR) tracker where we ap-
ply the local linearization technique in [4] to optimize the
choice of the importance sampling function. We also use

The work of the second author was supported by CAPES, Brazil.

this locally optimized importance sampling function to de-
sign an additional Markov Chain Monte Carlo (MCMC)
move step, see e.g. [5], which is introduced after the re-
sampling step to minimize particle impoverishment. As an
alternative to the optimized SIR filter described before, we
also present in the paper an auxiliary particle filter (APF)
tracker based on the technique introduced in [6]. The root
mean-square error (RMSE) curves for the optimized SIR
filter and the APF are obtained through Monte Carlo sim-
ulations and compared to the square root of the posterior
Cramér-Rao lower bound (CRLB), which is estimated from
the same set of simulated data using the algorithm proposed
in [7].

This paper is divided into 5 sections. Section 1 is this
Introduction. In Section 2, we review briefly the target mo-
tion and the radar measurement models. In Section 3, we
present the proposed particle filter trackers. In Section 4, we
discuss the performance of our algorithms . Finally, Section
5 summarizes the main results in the paper.

2. THE MODEL

Let k be a non-negative integer number and denote by ∆ the
time interval between two consecutive radar measurements.
Assuming for simplicity a flat Earth, define the unknown
target state vector at instant t = k∆ as the four-dimensional
vector sk = [xk ẋk yk ẏk]

T
, that collects the positions, xk

and yk, and the velocities, ẋk and ẏk, of the target in a sys-
tem of 2D cartesian coordinates (x, y). We describe the mo-
tion of a ballistic target in the phase of reentry into the atmo-
sphere by the discrete-time nonlinear dynamic system [2]

sk+1 = Φsk + Gf(sk) + G

[
0
−g

]
+ wk (1)

where g is the gravity acceleration (assumed constant), ma-
trices Φ and G are given by

Φ =




1 ∆ 0 0
0 1 0 0
0 0 1 ∆
0 0 0 1


 , G =




∆2

2 0
∆ 0

0 ∆2

2
0 ∆


 (2)



and {wk}, k ≥ 0 is a sequence of independent, identically
distributed (i.i.d.) Gaussian random vectors, with zero mean
and non-singular covariance matrix

Q = q

[
Θ 0
0 Θ

]
, Θ =

[
∆3

3
∆2

2
∆2

2 ∆

]
(3)

where q is a positive real number. Finally, the nonlinear
function f in (1) corresponds to the drag force that is com-
puted by the expression [2]

f(sk) = −0.5
g

β
ρ(sk[3])

√
s2

k[2] + s2
k[4]

[
sk[2]
sk[4]

]
. (4)

In (4), the parameter β denotes the target ballistic coeffi-
cient, also assumed constant. The parameter ρ represents
the air density which decays according to the exponential
law ρ(y) = c1 exp(−c2y) where c1 = 1.227, c2 = 1.093 ×
10−4 for y < 9144 m, and c1 = 1.754, c2 = 1.49 × 10−4

for y ≥ 9144 m.

2.1. Observation Model

A conventional tracking radar generates at each instant k
noisy measurements zk = [z1,k z2,k]

T respectively of the
range and elevation of the target. The radar measurements
are related to the hidden state sk by the nonlinear observa-
tion model

zk =

[ √
s2

k [1] + s2
k [3]

arctan( sk[3]
sk[1] )

]

︸ ︷︷ ︸
h(sk)

+

[
vr,k

vε,k

]

︸ ︷︷ ︸
vk

(5)

where {vr,k} and {vε,k} are two mutually independent, Gaus-
sian i.i.d. random sequences with zero mean and variances
respectively σ2

r and σ2
ε such that the covariance matrix

R = E
[
vk vT

k

]
is diagonal with R(1, 1) = σ2

r and R(2, 2) =
σ2

ε , for any k ≥ 0. In (5), we assumed that the true target el-
evation angle lies between 0 and π/2. Otherwise, it suffices
to add π to the arctan term in (5).

3. PARTICLE FILTER TRACKING ALGORITHMS

Let Zk
1 = {z1, z2, . . . , zk} be a sequence of observations.

Particle filtering, see [1], is a sequential importance sam-
pling method that recursively generates a properly weighted

set of samples (or particles)
{
s
(j)
k

}
, with associated weights

w
(j)
k , j = 1, 2, . . . , Np, such that, as Np → ∞, the weighted

average of the particles at each instant k converges (in some
statistical sense) to the optimal MMSE estimate E

[
sk | Zk

1

]

of the hidden state. The initial particle set is sampled s
(j)
0 ∼

p(s0) with weights w
(j)
0 = 1/Np, j = 1, . . . , Np. The sub-

sequent particle populations
{
s
(j)
k

}
, k > 0, are generated

by sequentially sampling from a given importance proba-
bility density function, and the corresponding weights are
recursively updated, see [1], using the state dynamic model,
the observation model, and the chosen importance function.

3.1. Improved SIR Particle Filter

The main drawback associated with sequential importance
sampling is that the variance of the importance weights in-
creases with time, leading to particle degeneracy [1]. One
way to mitigate particle degeneracy is to draw the jth parti-
cle at instant k from the optimal importance function p(sk |
s
(j)
k−1, zk), see [4], that minimizes the variance of the impor-

tance weights conditioned on the simulated particle trajec-
tories and on the observations.
Optimal Importance Function Approximation Assuming
that {vk}, {wk} and s0 are mutually independent, it follows
from Bayes’ law and the Markovian model assumption that

p(sk | s
(j)
k−1, zk) =

p(zk | sk) p(sk | s(j)
k−1)

p(zk | s(j)
k−1)

(6)

To approximate the optimal importance function in (6), we
resort to the local linearization technique described in [4].
Define first Ψ(sk) as the function

Ψ(sk) = Φsk + Gf(sk) + G

[
0
−g

]
(7)

where Φ, G, and f(.) are defined as in (2) and (4). Expand-
ing now the observation equation (5) around Ψ(s

(j)
k−1), we

make the first-order approximation

zk ≈ h
[
Ψ(s

(j)
k−1)

]
+ H

(j)
k

[
sk − Ψ(s

(j)
k−1)

]
+ vk (8)

where H
(j)
k = ∇h(s) evaluated at s = Ψ(s

(j)
k−1), and the

nonlinear function h(.) is defined in (5). For equation (5),

∇h(s) =




s[1]√
s2[1]+s2[3]

0 s[3]√
s2[1]+s2[3]

0

−s[3]
s2[1]+s2[3] 0 s[1]

s2[1]+s2[3] 0


 . (9)

Let now N(s−a,P) denote the multivariable normal func-
tion of argument s, mean a and covariance matrix P. It
can be shown after a simple algebraic exercise that, for the
nonlinear state model in (1) and the linearized observation
model in (8), equation (6) reduces to

p(sk | s
(j)
k−1, zk) = N(sk − m

(j)
k , Σ

(j)
k ) (10)

where

Σ
(j)
k =

[
Q−1 + (H

(j)
k )T R−1(H

(j)
k )

]
−1

(11)

m
(j)
k = (Σ

(j)
k )

{
Q−1Ψ(s

(j)
k−1) + (H

(j)
k )T R−1

×
[
zk − h(Ψ(s

(j)
k−1) + H

(j)
k Ψ(s

(j)
k−1)

]}
.(12)



Importance Weights Update After sampling the jth parti-
cle s̃

(j)
k ∼ p(sk | s

(j)
k−1, zk), the corresponding importance

weight w̃
(j)
k is updated using the recursion

w̃
(j)
k ∞w

(j)
k−1

N(zk − h(s
(j)
k ),R)N(s

(j)
k − Ψ(s

(j)
k−1),Q)

N(s
(j)
k − m

(j)
k , Σ

(j)
k )

(13)
where the symbol ∞ denotes “proportional to”. The pro-
portionality constant is computed such that

∑
j w̃

(j)
k = 1.

Selection Step We can further reduce particle degeneracy
by adding a selection step [3] that consists of resampling a

new particle set
{
s
(j)
k

}
from the original set

{
s̃
(j)
k

}
with re-

placement according to the weights w̃
(j)
k . After the resam-

pling, all particle weights are then reset to w
(j)
k = 1/Np,

j = 1, . . . , Np. To speed up computations, we use the resid-
ual resampling method [8] only when the approximate ef-

fective number of particles Neff =
[∑

j(w̃
(j)
k )2

]
−1

, see

[1], falls below 60 % of the total number of particles.

MCMC Move Step In order to restore particle diversity
after the resampling step, we follow the lead in [5] and
add a Metropolis-Hastings (MH) move step that moves the

weighted particle set
{
s
(j)
k , 1/Np

}
to a new weighted sam-

ple set
{
s
(j)
k , 1/Np

}
using the importance function N(sk −

m
(j)
k ,Σ

(j)
k ) as proposal density. Specifically, let

w∗(s
(j)
k ) =

N(zk − h(s
(j)
k ),R)N(s

(j)
k − Ψ(s

(j)
k−1),Q)

N(s
(j)
k − m

(j)
k , Σ

(j)
k )

.

(14)
The proposed MH move step for j = 1, . . . , Np is

• Sample ŝ
(j)
k ∼ N(sk − m

(j)
k ,Σ

(j)
k ).

• Sample u ∼ U([0, 1]) and make the decision

If u ≤ min

{
1,

w∗(ŝ
(j)
k

)

w∗(s
(j)
k

)

}
s
(j)
k = ŝ

(j)
k (accept move)

else s
(j)
k = s

(j)
k (reject move).

3.2. Auxiliary Particle Filter

A possible alternative to the improved SIR filter presented
in subsection 3.1 is to use auxiliary particle filtering [6].
We choose p(sk | s

(j)
k−1) as importance function, but use

an auxiliary index variable to pre-select particles at instant
k − 1 that, when propagated to the next time step, are more
likely to have a high likelihood. The modified importance
sampling algorithm for j = 1, . . . , Np becomes

• Sample µ
(j)
k ∼ N(sk − Ψ(s

(j)
k−1),Q).

• Compute λ
(j)
k ∞w

(j)
k−1N(zk − h(µ

(j)
k ),R).

• Sample i(j) ∼ {1, . . . , Np} with P (
{
i(j) = l

}
) = λ

(l)
k .

• Sample s
(j)
k ∼ N(sk − Ψ(s

(i(j))
k−1 ),Q).

• Compute w
(j)
k ∞ N(zk−h(s

(j)
k

),R)

N(zk−h(µ
(i(j))
k

),R)
.

3.3. Posterior Cramér-Rao Lower Bound

Under certain regularity conditions, see [7], the mean square
filtering estimation error for each component of the state
vector sk is bounded from below by the posterior Cramér-
Rao lower bound (CRLB) given by the diagonal entries of
the inverse of the information matrix, Jk, obtained from
the joint density p(sk,Zk

1). For a general nonlinear state-
space model, Jk may be computed recursively for k > 0
using the algorithm described in [7]. The recursion in [7]
involves however expectations that lack a closed-form an-
alytical expression for the state-space model described by
equations (1) and (5). We proceed then as in [2, 9] and re-
place those expectations with their Monte Carlo estimates
obtained from simulated state trajectories. Further details
are omitted here for lack of space.

4. SIMULATION RESULTS

We simulated the state model in (1) with parameters g =
9.8m/s2, β = 40000kg.m−1.s−2, q = 5, and ∆ = 2 s.
The initial state s0 was specified as a Gaussian random vec-
tor with mean m0 = [232000m 2290 cos(190o)m/s
88000m 2290 sin(190o)m/s ] and diagonal covariance ma-

trix Σ0 with Σ0(1, 1) = Σ0(3, 3) = 10002 m2, and Σ0(2, 2) =
Σ0(4, 4) = 202m2.s−2. The measurements were simu-
lated from the observation model (5) with parameters σr =
100m and σε = 0.017 rad. The simulated target is tracked
over 50 time steps using the improved SIR particle filter
described in Section 3.1 with Np = 7000 particles. That
compares to a much higher number of particles (25000) pre-
viously reported in the literature [2] for a similar tracking
problem with the same state model and a simpler, linear ob-
servation model. Figures 1(a) and (b) show the root-mean
square error (RMSE) curves for the proposed filter’s tar-
get position estimates, respectively in the x and y coordi-
nates. The RMSE curves were estimated from 100 indepen-
dent Monte Carlo runs. The SIR filter converged in all 100
simulations. For comparison purposes, we also plot in Fig-
ures 1(a) and (b) the square root of the corresponding poste-
rior CRLB estimated from the same simulated state trajecto-
ries using the procedure briefly outlined in Section 3.3. The
plots show that the RMSE curves match closely the bound
for this particular set of simulations. In the sequel, we in-
creased σr from 100m to 150m and increased σẋ0

= σẏ0

from 20m/s to 50m/s. Figures 2(a) and (b) show the
corresponding RMS position estimate errors, respectively
in the x and y coordinates, this time for both the improved
SIR particle filter described in Section 3.1, and the auxiliary
particle filter described in Section 3.2. We conducted again
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Fig. 1. RMS position estimation error for the improved SIR
filter with σr = 100m and σẋ0

= σẏ0
= 20m/s; (a) x

coordinate, (b) y coordinate.

100 independent Monte Carlo trials and used 7000 particles
for both filters. As before, the RMSE curves are superim-
posed to the square root of the posterior CRLB for com-
parison purposes. Both trackers again converged in all 100
Monte Carlo runs. The improved SIR filter appears from
the curves to outperform slightly the APF tracker. Further
improvements in performance could probably be obtained
by increasing the number of particles.

5. SUMMARY

We presented in this paper two improved particle filters for
ballistic target tracking. The first filter uses an optimized
importance function combined with residual resampling to
minimize particle degeneracy, and also incorporates a Metro-
polis-Hastings move step to prevent particle impoverishment.
The second proposed tracker is an auxiliary particle filter.
Despite the use of significantly fewer particles than previ-
ously reported in the literature [2], simulation results show
good performance for both filters when compared to the
posterior CRLB for the mean square estimation error.
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