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Abstract We detail in this paper the implementation of the op-
timal Bayes multiframe detector/tracker for rigid objects mov-
ing randomly in two-dimensional (2D) finite grids. We present
2D models for target signature and target motion that build an
integrated framework for detection and tracking. We model the
background clutter by 2D correlated noncausal Gauss-Markov
fields of arbitrary order. By exploring the structure of the sig-
nature, motion, and clutter models, we indicate how substantial
computational savings can be achieved in the implementation of
the algorithm. The detection performance of the proposed Bayes
scheme is evaluated through Monte Carlo simulations. The re-
sults show significant performance gains of over 6 dB in peak
signal-to-noise ratio when the optimal multiframe detector is
compared to the optimal single frame likelihood ratio test (LRT)
detector.

KeywordsMultiframe detection and tracking, Nonlinear
stochastic filtering, Noncausal Gauss-Markov random fields

1. Introduction

resolution cell. We restrict our study in this paper to the
single target case, i.e., at each sensor scan, there is at most
one target present in the sensor grid. The targetimages are
cluttered by returns from spurious reflectors plus measure-
ment noise.

The task is to determine whether a target is present or
not at a given frame (detection) and, if the target is de-
clared present, to estimate its position (tracking). Prior ap-
proaches to this problem separate detection and tracking
[2, 4]: a preliminary single frame detector produces an ini-
tial estimate of the target state which is subsequently asso-
ciated as a noisy measurement to a linearized multiframe
tracking filter [2]. By contrast, we use nonlinear stochas-
tic filtering to develop the optimal multiframe Bayes de-
tector/tracker that processes the sensor images directly and
integrates detection and tracking into a unified framework.
The algorithm incorporates the target motion, target sig-
nature, and clutter models into both detection and track-
ing, and uses all past and present available observations to
make decisions.

Improved sensors, such as high resolution radars, sonars, The optimal Bayes detector/tracker provides a bound to

and precision infrared (IR) cameras, make it important tot'€ performance that can be achieved by any suboptimal
develop and implement better performing signal process&lgorithm. In [7], we presented several Monte Carlo-based
ing algorithms. In particular, the problem of automatic de- Performance results for the Bayes algorithm in one dimen-

tection and tracking of targets has recently received in-Sion (1D), and compared against these bounds the perfor-
creasing attention, e.g. [3, 5, 6]. In [7] and [8], we in- Mance of other common schemes such as spatial correla-
troduced an optimal one-dimensional (1D) Bayesian algo10rs (matched filters), and linearized Kalman-Bucy (KBf)
rithm for integrated multiframe detection and tracking of frackers. In this paper, we present 2D detection perfor-
rigid objects in finite discrete grids. In the present paper,Mance results and compare the optimal multiframe Bayes
we extend the algorithm to two dimensions (2D), descripedétector with a conventional single frame likelihood ratio
in detail its computational implementation, and present 2Dtest (LRT) detector.
performance results. Section 2 describes the models for the sensor, target
The optimal multiframe Bayes detector/tracker pro- Signature, target motion, and clutter that underly our inte-
cesses a sequence of noisy 2D images, generated for eqrated framework for detection and tracking. These mod-
ample by a radar or IR imaging sensor. We refer to eacte!s extend the 1D models introduced in [8]. We consider
image in the sequence as a sensor frame. The frames ha¢® extended targets with random translational motion and
a finite resolution, so they are better represented by a fiknown deterministic signatures. Other scenarios with rota-

nite lattice where each site or pixel represents one sensdfonal motion and random signatures are subject of current
research. We assume spatially correlated clutter modeled

by noncausal, spatially homogeneous, 2D Gauss-Markov
random fields (GMrfs) [9, 10] of arbitrary order. GM-
rfs describe the clutter intensity at one given pixel as a
weighted average of the intensity of the neighboring pix-
e - 'els plus a random error term. Such models are realistic in
g:‘;;ﬁrs'ty of $o Paulo, P.O. Box 6154838 Paulo SP 05424-670, many practical scenarios and can be used to represent a
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Using the models described in section 2, we derive inThe formal equivalence between the 1D latt€and the
section 3 the 2D multiframe Bayes detector/tracker. Sec2p |attice £ is established by observing that,zf is the

tion 4 gives a more detailed description of the computa-5 et centroid position at instantin the 1D latticeZ and

tional implementation of the algorithm. We presentin sec-, s the target centroid position at instanin the equiv-
tion 5 the receiver operating characteristic (ROC) curves

for the multiframe Bayes algorithm and compare themalentZD latticeC, then

with the ROC curves for a conventional single frame LRT _ _

detector. The resuilts show that, in a scenario of low signa®» = (K~ 1 (M +li+l)+p & 20 = (k-7 p*é:s;))
ture targets and heavy clutter, optimal multiframe detec- i
tion provides a significant improvement with peak signal- 10F L < & < L+ ri+rsandl < p < M +1; + L. _
to-noise ratio gains of up to 6 dB over the optimal sin- Finally, to build an integrated framework for detection

gle frame detector. Finally, section 6 summarizes the mairfnd tracking, we augment the 1D lexicographed lattice
contributions of the paper. with an additional dummy state that represents the absence

of the target from the sensor image. For convenience, we
assign to the absent state the indéx-r; +r;) (M +1; +
2. The model ls) + 1. The final 1Dextended latticés

We present in this section the models for the sensor, the £ ={0:1 <1< (L+ri+r)(M +1i+1)+1} .

target signatures, the target motion, and the clutter. We re- (4)

strict possible targets to rigid bodies with translational mo-Target Model Let B = {0, 1} and let/ be the 2D finite lat-
tion. We assume that, at any given sensor scan, the noiséice I = {(k,1): —r; <k <7y, —1; <1 <I}. In this

free image of a target that is present is contained in a 20paper, we refer to a 2D sequence indexed on a discrete 2D
rectangular region of Siz(e«i +rs+ 1) X (li +1,+ 1)_ In lattice as dield. We use the notationsk,l anda:(k, l) in-

this notationy; andr, denote the maximum vertical pixel terchangeably to denote the individual elements of a 2D
distances in the target image when we move away, respedield.

tively up and down, from the target centroid. Analogously, Target SignatureThe target signature is determined by

l; andls denote the maximum horizontal pixel distances the product of the shape parameters, which represent the
in the target image when we move away, respectively lefttarget geometry, and the intensity parameters, which de-
and right, from the target centroid. For simplicity, we con- scribe the actual intensity of each pixel in the targetimage.
sider that there is at most one target present at each sensortpe target shape at instantis specified by the field

frame.
{cg,l}, (k,1), € I suchthat, foreactk,!) € I,c"(k,l) €
B. The target intensity is in turn described by the real-

. . valued field{qb;; l}, (k,1) € 1, such that, for eactk, ) €
We model the region that is scanned by the sen-, . e I define th .

sor as the uniform 2D finite discrete lattic& 9" (k,1) € R. Finally, we define the target signature at
{(4,7):1<i<L,1<j< M}, whereL andM are the instantn as the field{a",;,l}, (k,1) € I suchthatay , =
number of sensor resolution cells in each dimension. Wecn(k’ 1) ¢" (k. 1).

refer to latticel as thesensor lattice g . .
It is useful to extend the sensor lattice so that, FOrrigid bodies, the shape parameters:, /) are time-

we can model situations when a target moves ininvariant and, accordingly, we can drop the superscript.
and out of the sensor grid or, when a target is ap-We assume that the target shape is known to the detec-

: ) . LU tor/tracker. The intensity parameters, on the other hand,
sent from the grid. We define theentroid latticeL = 5y pe time-variant, possibly deterministic but unknown
(@5 —re+1<i<Ltr, —l,+1<j<M+L} gpq i general, may be random as a result of stochastic
that collects all possible values of the target centroid po+,cyations in the reflectivity and illumination of the tar-
sition for which at least one target pixel is within the 2D gets or due to random variations in the channel charac-
region scanned by the sensor. _ teristics. For simplicity, we consider as a first approxima-

We introduce an equivalent 1D representation for theyjon i this paper that the intensity parameters are time-
2D centroid lattice using rovexicographic orderingThis  jnyariant, deterministic, and known. Since the shape is
operation consists of sequentially stacking all rows of they|so assumed time-invariant and known, the target signa-
2D lattice in one long 1D lattice. The 1[@xicographed  y,re at each scan is perfectly specified by a known, de-
centroid lattice £, is terministic and finite 2D field ax,; }, with (k,1) € I. We

CL={1<I<(L+r+r)M+1L+1)} . (1) introduce then thearget signature templatéeld G'(k 1)

such that, for-r, < k <r;, =1, <1 <1;,
The position of the target centroid at instarit the lattice
L is indicated by the 1D random variablg such that, for G(k,1) = a(—k, = 1) . (5)
1<k<L+ri+rsandl <p< M +1; +1,

2.1 Sensor and target model

This definition will be useful to detail the structure of the
Zn=Fk—-1)(M+1L+1)+p. (2)  optimal Bayes algorithm in subsequent sections.
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2D Extended Target ModelLet z,, be the position of Spatially correlated homogeneous GMrf modelWe

the target centroid in the 1D extended lattiéelefined in model the spatial correlation of the clutter using Gauss-
equation (4). We represent the noise-free image of a targdylarkov random fields (GMrfs) [9, 10]. We present next

centered at,, during thenth sensor scan as the nonlinear the formal definition of a 2D GMrf. For simplicity of no-
mapping tation, we restrict the discussion to square lattices, i.e.,

L =M.
F,: [ RI*M For each pixeli,j) € £ = {(3,5):1 <1i,5 < L}, we
2 — F(zn) 6) define its neighborhood systefy. Under the assumption
" ! of spatial homogeneityy;; = n, V(i,j) € L. The clutter
where, forz, = (in + 15 — 1)(M +1; + 15) + (ju +15),  11€ld, Vi, is afinite order, spatially homogeneous GMrf if
(i, jn) € L, the functionF(z,,) is given by it is the output of the 2D finite difference equation [9]

L Valig) = Y=oy Vu(i—k,j— 1)+ Un(i,j)
F [Zn(znujn” = Z Z a’z,lEinJrk,jn+l . (D (i—k,j—1) €n (10)
k:*Ti l:*li
. for (i,j) € L. In (10), we used the assumption of spa-
In(7),forl << L,1<j<ME;isanLxM  tal homogeneity to make the coefficients independent
matrix whose entries are all zero, except for the elementf (i,). We also added the assumption of diagonal sym-

(4, 7) which is one. For anyi, j) & L1 x Lo, whereL1 = metry such that the coefficients, satisfy the equalities
{l:1<I<L}yandf, = {l:1 <1< M}, we defineE;_,

to be identically zero. Finally, if,, = (L +7; +75)(M +
l; +1s) + 1, we make

o/_k = 0‘2' a;l = afg andajﬁ = afc.
We add boundary conditions (bc’s) to equation (10)
so that it can extend to the boundaries of the lattice. A
F(zn) = 0Ly - (8)  common choice of bc's is to make, (4, j) = 0 for any
(1,4) ¢ L. These are calle®irichlet boundary condi-
The noise-free target model in (7) is a function that asso-ions. Alternatively, other boundary conditions could be
ciates to each possible centroid position of a target that isised [9, 10].
present a spatial distribution of target signature parameters Second Order Statistics of GMrisetv,, andu,, be the
centered at that respective centroid position. Skge is 1D row lexicographed representations\of andU,, re-
defined as zero whenevér j) ¢ £1 x Lo, the model in  spectively. Equation (10) is written compactly in matrix
(7) automatically takes into consideration the fact that, as gormat as
target moves in and out of the surveillance space, portions Av, =u, . (11)
of the target that lie outside the sensor grid are not visible
in the sensor image. Whenever a target is physically abk follows from the application of the orthogonality prin-
sent from the sensor scan, the corresponding target imageple that the covariance matrix of the driving noisg is
is an identically zero matrix, as indicated by equation (8). [9]

2, =02A (12)
2.2 Observations and clutter model and the covariance matrix of the cluttey is
The measurements at théh sensor assuming a single tar- S —R=0?A"!a A = 52R-! (13)
get are the. x M matrix v v u
wherec? = E [v,(I)u,(1)], for all L in the lexicographed
Y, =F(2) +Va ©) equivalent of the sensor latticd The quantityo? is spa-

wherez, is the position of the target centroid in the equiv- tially invariant due to the spatial homogeneity assumption.

alent 1D extended lattice (including the absent stat¢), In the pa2rt|cular case of Dirichlet bc’s? is also equal to

is the 2D extended target model described by equationd’ P‘n(l) | [9, 10]. The symbolf? [.] stands for expected
(7) and (8), andV,, is the background clutter matrix, also value or ensemble average. _ _
referred to as the background clutter frame. We assume We refer to the matri in (11) as thepotential matrix
that the clutter frame¥,,,n = 0, 1,.. ., are independent, [10]. It follows from (13) that the inverse of the covari-
identically distributed (i.i.d.). ance matrix,%,, is proportional to the potential matrix.
Gaussian clutterLet v,, be the equivalent 1D row lexi- The potential matrix is in turn a highly structured matrix
cographed representation of the 2D clutter matfix Un-  described by a limited number of parameters. In section 4,
der the assumption of Gaussianity, veotgrhas the prob- ~ We explore this matrix structure to design computationally
ability density function (pdf)p(v,) = N(0,R), where  €fficient detection and tracking algorithms. We describe
R is the clutter spatial covariance, is the mean, and Nextthe structure oA in detail. _
N(.) stands for the normal (multivariate Gaussian) pdf. ~Structure of the potential matrix:et I, be the maxi-
The zero mean assumption assumes a pre-processing stagem Euclidean distance between siteg) and(i—k, j—

that removes the mean. A non-zero mean can be accountégisuch thai(i — k, j — 1) € n. The quantityi¥,, associated
for trivially. to a particular neighborhood systendefines therder of
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the Markov model. Assuming Dirichlet boundary condi- 100 x 100 sensor grid, when the target is centered at coor-
tions, spatial homogeneity and diagonal symmetry, we seélinates (50, 50). Figure 1(b) shows the same target image
by inspection that the potential matix has a symmetric, plus 2D spatially correlated clutter. The clutter is a first
block banded, block Toepligtructure of the form [9, 11]  order, noncausal GMRf with} = -3, = o} = -3, =

0.24. The signature-to-clutter ratio is measured using the

A-TI®Dg+ Z(Ki " Kg) @D, . (14) peak signal-to-noise ratio (PSNR) defined as

= PSNR= 10log;o(—) . (16)
wherem is the largest integer such that< W,. The ma- Tu

trix K, referred to as the backward shift matrix [1], has e pgNR in figure 1 is equal to 0 dB. The background
all its entries equal to zero except for the first upper diago-¢yer is simulated from white noise using the equivalent
nal whose entries are all equal to 1. The makix called o0y rsive (one-sided) representation of equation (11) ob-

the forward shift matrix, is the transposel§f. The sym-  -inad throu it _
gh the upper Cholesky factorization of the po
bol @ denotes the Kronecker (or tensor) product [13]. Theiantial matrixA.. For simulation details, see [10].

blocksD;, 1 < i < m, in (14) are themselves structured
with a Toeplitz and bandestructure of the form

1(0)
Dy =1+ ) of(Ki +Kb)
t=1
1)
AT+> ol (Ki+Kb) 1< <m(15)

t=1

D,

In (15), m is the largest integer such that < W,
1(0) = m, andl(j),1 < j < m, is the largest integer such b
thati?(j)+j* < W2 . The parameters;, 1 < r < mand (@) (b)
af, 1 <j <m,0<t<I(j), are defined on a parameter Fig, 1. (a)Noise-free rectangular target image. (b) Simulated sensor
spaceP such that the potential matriX is positive defi-  scan with target plus correlated GMrf clutter, PSNR=0 dB
nite. A comprehensive analysis of the eigenstructure of the
potential matrix in the 2D case for different choices of bc's
and its relation to fast sinusoidal orthogonal transforms i52 . del
found in [11]. .3 Motion mode

GMrf Model Template:Given the potential matrdA  \jth translational motion, it suffices to model the dynam-
associated to a particular noncausal GMrf model, we deics of the target centroid to describe the target motion. The
fine the GMrfmodel templates the fieldH (i, j) such  changes between two consecutive frames in the position of

that the target centroid in the extended latti€eare specified
by atransition probability matrix P, whose general ele-

Hij = b5+ Y0 [0i,5-r + 0i, 4] mentPr(k,r), (k,r) € L x L, is
r=1
Pr(k,r) =Prodz, =k | zn_1=71) . a7)

0w o® oW ow ® W

I(t)
Obivt,+ D OF (v, jr + Sive, j—r] 2D drifting targets We focus our discussion on 2D ran-
1 r=1 domly drifting targets, i.e., targets that move with a con-
m 1) stant nominal drift disturbed by a 2D random walk fluc-
tuation. Letz,, = (i, j,) be the position in the centroid
4 OZO(SZ', . a’ 51_7 et 52_7 . ’ . n niJn
; thy ; it ti=] lattice £ of a target at thexth scan. Let;. be a bounded
2D finite discrete lattice limited by a maximum Euclidean
In the preceding equatiod,; is the general element of the distanceD , i.e.,n. = {(t,5):t> +s° <D?, t,s € Z}.
2D delta Kronecker field. This definition of model tem- We refer ton. as the random walluctuation regionin
plate will be useful to detail the structure of the Bayes de-the 2D plane. We model the evolution in time of the cen-

+

NE

t

tector/tracker in section 4. troid position(i,,j») by the equations

Examples of Sensor Frame#n the sequel, we present an ) ‘ 1

illustrative example of a synthethic sensor frame that was in =in-1+d1+e,

simulated using the target and clutter models just intro- Gn = jn_1 +do + €2 (18)

duced. Under the assumption of deterministic and known
signatures, without loss of generality, we make the targetvhere[(c})? + (¢2)? < D?| el € Z, m = 1, 2. For

pixel intensities constant and equal to 1. Figure 1(a) shows first order noncausal fluctuation regidn,= 1 ande™

n

the noise-free image of a rectangular-shaped targetin a 2l» = 1, 2, may take values in the sé&t = [-1,0,1]. A
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2D first order random walk is shown in figure 2 with the wise, we define thprediction posterior probabilities vec-
respective transition probabilities. In the figure, under thetor, p,,,,_1, whoselth component is

zero mean random walk assumptien= ¢ andr = gq. _

In equation (18), we assume thgt ande? are mutually Pafn—1(1) = Pz =1 | Y§1) le L. (20)

We derive next an algorithm for the recursive computa-
@ tion of the filtering posterior probabilities vector. The al-
gorithm is divided into two steps.
1-r-st-q «

Prediction Step Predict the next state of the target from
s the previous one using the transition probability matrix,
q Pr. By the Theorem of Total Probability and using the
0 @ fact that, conditioned on,,_1, z, is independent from
Y, !, we get

t
Pz, | Ygil) = Z Pz | 2n-1)P(zn-1 | Ygil)

@ Zn—1

Fig. 2. Probabilities of fluctuation of the centroid position around /N Matrix notation, equation (21) is written as
pixel (i, j) for a 2D random walk model

(21)

Pnjn—1 = Pr Pn—1jn—-1 - (22)

independent and also statistically independent of the cenfiltering Step Correct the prediction with the new infor-

troid position(iy, jy,). mation given by the observations. From Bayes’ Law and
To complete the motion model, we need to specify theusing the fact that, conditioned aj, yy is independent

transition probabilities to and from the absent target statefrom Y5~ ~, we can write

Whenever the target centroid crosses the boundaries of the . 1

centroid latticer, the target s declared absentand the ran- £ (3n | Y0) = Cup(yn [ 20)P(zn [ Yo 77) . (23)

dom variablez,, takes the absent target state value, i.€.,|n matrix notation, equation (23) is rewritten as the point-

zn = (L+7i+1s) (M +1;+15)+1. Conversely, whenno yyise vector multiplication

target is present, there is a non-zero probability of a new

target appearing randomly at the next sensor scan. We as- Pnjn = CnSn © Pjn—1 (24)

sume that there is an equal probability of the new target

appearing centered at any pixel of the centroid latiice where

In [1], we detail the analytic structure of the transition , _ o 3
probability matrixP7 for the 2D drifting target model. (D) =plyn | 20 =1) ek (25)
This matrix is highly structured and sparse, consisting ba-The constan€, is a normalization factor such that
sically of a shifted block tridiagonal structure, where the
blocks themselves are structured. We explore this structure an|n(l) =1. (26)
to achieve further computational savings in the implemen- el
tation of the optimal Bayes detector/tracker. We omit this
discussion here for lack of space and refer the reader t&Ve now consider detection and tracking.
[1]. DetectionLet Ly = (L+r;+7rs) (M+1;+15). The proba-
bility of the target being absent at instantonditioned on
the observationsis given by, ,,(L2+1). Representing by
Hy the hypothesis that the target is absent andibpythe
L . . hypothesis that the target is present, the minimum proba-
We develop in this section the solution to the problem OfbiIiFt)y of error detector, assumliong equal cost for misseps and

integrated detection and tracking of a single targetin & 2D, 56 alarms and zero cost for correct decisions, is the test
finite grid using the models from section 2. [12]

Let z, be the position of the target centroid at thith

3. Optimal multiframe detector/tracker

sensor scan defined on the extended latfiand denote P(H. | YD H, (Lo +1) H,
by y.. the row lexicographed version of the 2D sensor im- P(Ho | Yg)'> 1y Pnintit2T8) > (27)
ageY, at thenth scan. We introduce first thidtering P(Hy | YH)E 1 —ppjn(L2 +1) I1<f
posterior probabilities vectomp,,,,, whoselth component ! !
is Alternative tests are obtained by changing the threshold in
~ (27). Each value of the threshold will correspond to a fixed
Pujn(l) = P(zn =1 | Yg) leL. (19) probability of false alarm. By varying the threshold over a

- wide range, the performance of the test is assessed through
The vectorYy = [yg yi ... y,TL] collects all the ob-  a receiver operating characteristic (ROC) curve that plots
servations from the initial tim® up to instantn. Like- probability of detection versus probability of false alarm.
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MAP Tracking Introduce now the conditional probability with & = (27)~%°/2 | R |~/2. On the other hand, for
the absent target state,

S,(L3+1) =Ny, (0,R) . (35)
The computation under the Gaussian assumption of

the observations kernel requires the evaluation of the

— H TR -1 i
whereZ is the lexicographed centroid lattice, see sec-duadratic form(y, — inj) E{ (yn — £;;) for each pair
tion 2. The maximum a posteriori (MAP) estimate of the (i J)- For a generid.® x L~ full inverse covariance ma-
the target's centroid position assuming that the target idfix, R™", and a generid. x 1 mean vectoff;;, 1 <

Ql [n] = P(z, = 1| targetis presen¥y) lcL

. pn\n(l)
T T puaLet D) )

presentis [12] i, 7 < Ly, this operation require® (L") floating point
multiplications [1]. These computational requirements can
“map[n] = argmax Qlf (n] . (29)  be reduced between three toiflour orders of magnitude if

leL we explore the structures &, f;;, and of the multi-

variate Gaussian pdf.
We restrict the background clutter to be a spatially ho-
. . mogeneous, noncausal GMrf of arbitrary order character-
4. Implementatlon of the multiframe ized by a potential matrix with structure as in (14). We re-
Bayes detector/tracker call that, from equation (13) in section 2&,= 2R,
whereA is the potential matrix and,, is the power of the
We detail in this section the implementation of the optimal driving noise in the 2D finite difference equation model
Bayes detector/tracker for a single target moving in GMrf for the GMR clutter as in (10).
clutter. We focus our discussion on the implementation of For notational convenience, we introduce the normal-
the filtering step of the algorithm, see section 3. The im-ized quadratic formQ);;, such that, foll <4, ;j < L,
plementation of the prediction step is detailed in [1]. ) S
Qij = ou(yn — i) R (yn — fij)

= (yn — fi) " Alyn — i) - (36)

With this normalization , and absorbing all terms that not
The filtering step in equation (24) involves the compu- depend ori, j) into the constant’, in (24), we write the
tation at each instant of the observations kernd,,. entries of the observations kernel, fiox 4,5 < L;, as
Assume, for simplicity of notation, but without loss of
generality, thatL = M, l; = r;, andl, = r,. Let Sn ((i — 1)Ly + j) :exp(_@) ) (37)

4.1 Filtering step: correlated clutter

Li=(L+mr+rs) = (M+1;+1). Lety, be the 202
lexicographed.? x 1 representation of th& x L sensor
imageY,, such that For the absent state,
. . . . 9 vI Ay,
Yn ((—1)L+j)=Yu(i,j) 1<dij<L. (30) Sn(Li+1) = exp(—=2—+) . (38)
Ju
The observations kernel is written as 1) x 1vec-
tor S,, such that, fol <i,j < L, i +1) LetC = yI Ay,. We rewrite the entries of the normalized
" o e =T quadratic form as
Sn ((271>L1 +]>:p(yn | Zn:(171>L1+.7> . (31) Qij:C*QAij*Fpij 1<i,j <Ly (39)
The entry corresponding to the absent target state is where);; = yT Af,; is referred to as theata term and
Sp(L2+1) = p(yn | 20 = L2 +1) (32) Pij = fl Af;; is the so-calleenergy termit follows then
" e ' that
Computation of the Observations Kernel When the . _ Qi
background cluttev,, is a zero mean Gaussian vector with Sp((t—1)L1+j) = eXp(—2—2) =
spatial covarianc®, the observations kernel is o o\ Tu
ij — Pij
Su((i— DIy +j) =Ny, (£;,R)  1<ij<L erp(=gz)epl—yF—) - (40)
(33)

wheref;; is the lexicographed vector obtained from the Whenl < i,j < L,. For the absent state, on the other
noise-free 2D image of a target centerediatj) as mod- hand,

eled in (6). The notatioV(.) in (33) stands for the multi- I241) = _C a1
variate Gaussian pdf Sn(L1+1) = expl 203) ' ()
(a—b)TR"'(a—b) The termexp(—C/202) is independent of(4,j) and,

Na(b,R) = kexp(— ) (34)  therefore, can be also absorbed into the normalization con-

2
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ls—r

stantC), in (24). We are left then with theormalizedob- s
servations kerneR, given by E(-tyr) = Z Z alk,Da(k —t, 1+ r)
k=—l;i+tl=—1;
= 2Xij — pij o
Sn((i — 1)Ly + j) = exp(—2=—2) 1<4,5< L ls Ls
3 20, BE(-t-r) = > Y akDa(k—t,1-r).
Sp(L3+1)=1. (42) k=—li+t l=—L+r

Computation of the Data Term We present in the sequel We can expresg;; as a linear combination of the tar-
an efficient algorithm for the computation of the data termget energy and the cross-energy coefficients. The weights
Aij. This result expresses the data term for 2D extendedh the linear combination are the parameters in the GMrf
targets as two linear convolution operations in cascade. model defined by the potential matik. Forl; +m+1 <

Let f;; be as before the lexicographed vector obtained;, j < L — I — m, andl; + I, > m, we write
from the noise-free 2D image of a target centered iry)
as in (6). LetG(i, j) be the general term of the target sig- pi; = £, Af;; =
nature template defined in (5), and E{i,j) be the gen- m
eral term of the GMrf model template defined in section  F(0,0) + Zag [E(0,) + E(0, —7)] +
2.2. With this notation, and assuming that [, > m and

r=1
L >> (l; + ls), _the dataterm fot;, + m+1 < 4,5 < - 1)
L =1, —m s written as 3 {a?E(ﬁ, 0)+ > af [B(tr) + E(t, —1)] } +
Nij =YEAL; = G(i,5) * [Yo(ij) « H(i,5)] . (43) =1 —1

m

The symbol%’ denotes the 2D convolution operator. The Z {aOE(t 0)
proof of equation (43) involves some algebraic doing, we ¢ '
refer the reader to [1]. We omit the proof here for lack of =t
I(t)

space. )

Boundary Conditions:Equation (43) shows how to +> oy [BE(—tr) + B(—t, —1)] } -
compute the data term away from the boundaries of the r=1
sensor image. Close to the boundaries, both the target temg
plate and the GMrf model template must be changed to
account for boundary conditions. Hence, for afyj), RemarkThe expression for the energy term in the pre-
—ls+1 < 4,5 < L+ [;, the data term\;; is given  ceding result is valid only away from the boundaries of
by the expressions in table 1 wheg is the product of  the lattice. Near the boundaries, the target template must
ay,; by the output of the noncausal differential operator, be conveniently modified to account for the fact that por-
Y, (i,5)* H (i, j) computed afi + k, j 4 1) with Dirichlet  tions of the target disappear from the image and should
bes,ie., ifi ¢ {:1<i<L}orj¢{:1<i<L} then notbe used in the computation of the energy and cross-
Y;j = 0. It can be shown [1] that that the raw compu- energy terms. Except at the boundaries, the energy term
tation of table 1 for a first order GMrf clutter requires a pi; is constant for all indicesand;.

number of floating point multiplications that varies from
O(mL?), m << L,when(l; +1s+1) << VL, t0 O(L?)
when(l; + s+ 1) = VL. That represents computational

savings of between 3 and 4 orders of magnitude in comyye study next the 2D detection performance of the opti-
parison with the raw computation of the quadratic formin 5 Bayesian algorithm developed in section 3. We plot
the multivariate Gaussian pdf. , the ROC curves for the optimal multiframe Bayes detec-
Energy Term We examine now the computation of the o ysing synthetic data. At each sensor scan, there may
energy termp;; for 2D extended targets. As before, we pe at most one target present. The simulated targets are
assume for simplicity that = r; andl, = r,. Giventhe  rectangular-shaped, unit signature 2D rigid objects as in

or the proof, we refer the reader to [1].

5. Detection performance

target model, we define first the target energy figure 1(a). Targets that are present move in the sensor grid
L L with a translational motion described by the drifting target
E,(0,0) = Z Z a(k,1)? . (44) model explained in section 2.3. The fluctuation probabil-

ities of one resolution cell about the average 2D drift are
r=s=gq=t=0.2, see figure 2. The constant nominal
Similarly, we define the cross-energy coefficients velocities in the two dimensions atk = d, = 2 reso-
lution cells/frame. Once a target becomes absent, a hew
target can appear randomly in any position of the centroid

k=—1l; I=—1;

ls—t ls—7r

E(tr) = > > a(kDa(k+t,1+7) grid with total probabilityp, = 0.2. The size of the sen-
k=—l; I=—1; sor grid is 100 x 100 and the size of the targets is 9 x 9.
lo—t L The simulated clutter is a spatially correlated, first order
E(t,—71) = Z Z a(k,Da(k +1t,1—r) noncausal GMrf with parametefs = 3, = 0.24, like in

k=—1l; l=—l;+r figure 1(b).
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Table 1. Data term\;; for (i, 5) € L.

(i, 5) =ls+1<j <l L+1<j<L-1I L—-Il,+1<j<L+lI
—ls+1<i<l i::—i-»-l ;i—j-kl(') 25:—i+1 ;6:—11() 25:—i+1 lei—jli(')
Li+1<i<L—ls tzfz% ii—jﬂ(') ij:fli 55:41() ij:fli lL:_qu,(')
L—l.+1<i< L+l a0 PEETD DA O RS D 6

PSNR= 3 dB 1

Figure 3 shows the ROC curves for the optimal Baye: : ——
detector with PSNR equal to 3 and 0 dB. These levels ¢ Mf
PSNR correspond to low signature/heavily cluttered tar *

gets that are hardly if at all distinguishable by a humai*™ 0:2

operator, as shown previously in figure 1(b). The pairs’] Sl -

(Pa, Pu) in the ROC curves were estimated using 6,00¢"| / S e £01 /[~ yutime o348
Monte Carlo runs for each value of the detection threshs, | / Soeel S —
old. We see from the plots in figure 3 that, as the PSNR in .; 0

055} 055

0% 02 0 06 08 1 05 02 0.4 06 08 1

4 X
probability of false alarm probability of false alarm

() (b)

Fig. 4. Performance of the single frame and multiframe (optimal)
detectors in correlated GMrf clutter

0.95 PSNR=3dB

PSNR=0 dB

e
©

probability of detection
o
o
2

and single frame (memoryless) detectors in a situation of
PSNR equal to 3 dB. The curves in figure 4(a) show that,
although the single frame detector may perform well in
‘ ‘ ‘ ‘ weak clutter environments, its performance deteriorates
R o significantly in scenarios of heavily cluttered targets.
Figure 4(b) repeats the ROC curves for both single
Fig. 3. Optimal Bayes ROC curves in correlated first order GMrf frame and multiframe detectors, except that the PSNR for
clutter,8, = 8, = 0.24 the multiframe detector is lowered 68 dB. We note from
the plot that the-3 dB multiframe ROC curve is closer to
the3 dB single frame ROC, but still lies slightly above the
P4tter. That indicates a substantial gain in PSNR of over
6 dB when we introduce multiple frames and motion dy-
namics into the detection process.

14
=

creases, the ROC curves tend to a step-like shape, i.e., f
low levels of probability of false alarm, we obtain compar-
atively much higher probabilities of detection. Even at the
low PSNR=3 dB, we obtain detection probabilities above
0.95 for false alarm rates in the orderl®f 2. )
Multiframe and Single Frame Detection: Performance 6. Conclusions
Comparison To study the improvement in performance
resulting from the incorporation of motion dynamics in- We presented in this paper details of the implementa-
formation into the detection algorithm, we compare thetion of the optimal Bayes multiframe detector/tracker
optimal multiframe detector with a single frame LRT de- for rigid objects that move randomly in two-dimensional
tector that ignores the motion models. The single frame(2D) cluttered images with finite resolution. We devel-
LRT algorithm reduces to the test [12] oped 2D models for target signature and target motion that
build an integrated framework for detection and tracking.
H Hy The background clutter was described by correlated, non-
M >\ (45) causal, spatially homogeneous GMrfs of arbitrary order.
p(yn | H1)§1 We explored the structure of the signature, motion, and
clutter models, to achieve substantial computational sav-
where) is a threshold that varies according to the desiredings in the implementation of the algorithm. The detec-
probability of false alarm. We ran Monte Carlo simula- tion performance of the optimal multiframe Bayes detec-
tions using rectangular targets and the same motion, sigtor was evaluated by Monte Carlo simulations using syn-
nature and clutter model parameters as used before. Théetic data. The results show significant performance gains
ROC curves, estimated from 3,000 Monte Carlo runs, areof over 6 dB in peak signal-to-noise ratio in comparison
shown in figure 4(a) for both the multiframe (optimal) with the suboptimal single frame LRT detector.
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