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Abstract We detail in this paper the implementation of the op-
timal Bayes multiframe detector/tracker for rigid objects mov-
ing randomly in two-dimensional (2D) finite grids. We present
2D models for target signature and target motion that build an
integrated framework for detection and tracking. We model the
background clutter by 2D correlated noncausal Gauss-Markov
fields of arbitrary order. By exploring the structure of the sig-
nature, motion, and clutter models, we indicate how substantial
computational savings can be achieved in the implementation of
the algorithm. The detection performance of the proposed Bayes
scheme is evaluated through Monte Carlo simulations. The re-
sults show significant performance gains of over 6 dB in peak
signal-to-noise ratio when the optimal multiframe detector is
compared to the optimal single frame likelihood ratio test (LRT)
detector.

KeywordsMultiframe detection and tracking, Nonlinear
stochastic filtering, Noncausal Gauss-Markov random fields

1. Introduction

Improved sensors, such as high resolution radars, sonars,
and precision infrared (IR) cameras, make it important to
develop and implement better performing signal process-
ing algorithms. In particular, the problem of automatic de-
tection and tracking of targets has recently received in-
creasing attention, e.g. [3, 5, 6]. In [7] and [8], we in-
troduced an optimal one-dimensional (1D) Bayesian algo-
rithm for integrated multiframe detection and tracking of
rigid objects in finite discrete grids. In the present paper,
we extend the algorithm to two dimensions (2D), describe
in detail its computational implementation, and present 2D
performance results.

The optimal multiframe Bayes detector/tracker pro-
cesses a sequence of noisy 2D images, generated for ex-
ample by a radar or IR imaging sensor. We refer to each
image in the sequence as a sensor frame. The frames have
a finite resolution, so they are better represented by a fi-
nite lattice where each site or pixel represents one sensor
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resolution cell. We restrict our study in this paper to the
single target case, i.e., at each sensor scan, there is at most
one target present in the sensor grid. The target images are
cluttered by returns from spurious reflectors plus measure-
ment noise.

The task is to determine whether a target is present or
not at a given frame (detection) and, if the target is de-
clared present, to estimate its position (tracking). Prior ap-
proaches to this problem separate detection and tracking
[2, 4]: a preliminary single frame detector produces an ini-
tial estimate of the target state which is subsequently asso-
ciated as a noisy measurement to a linearized multiframe
tracking filter [2]. By contrast, we use nonlinear stochas-
tic filtering to develop the optimal multiframe Bayes de-
tector/tracker that processes the sensor images directly and
integrates detection and tracking into a unified framework.
The algorithm incorporates the target motion, target sig-
nature, and clutter models into both detection and track-
ing, and uses all past and present available observations to
make decisions.

The optimal Bayes detector/tracker provides a bound to
the performance that can be achieved by any suboptimal
algorithm. In [7], we presented several Monte Carlo-based
performance results for the Bayes algorithm in one dimen-
sion (1D), and compared against these bounds the perfor-
mance of other common schemes such as spatial correla-
tors (matched filters), and linearized Kalman-Bucy (KBf)
trackers. In this paper, we present 2D detection perfor-
mance results and compare the optimal multiframe Bayes
detector with a conventional single frame likelihood ratio
test (LRT) detector.

Section 2 describes the models for the sensor, target
signature, target motion, and clutter that underly our inte-
grated framework for detection and tracking. These mod-
els extend the 1D models introduced in [8]. We consider
2D extended targets with random translational motion and
known deterministic signatures. Other scenarios with rota-
tional motion and random signatures are subject of current
research. We assume spatially correlated clutter modeled
by noncausal, spatially homogeneous, 2D Gauss-Markov
random fields (GMrfs) [9, 10] of arbitrary order. GM-
rfs describe the clutter intensity at one given pixel as a
weighted average of the intensity of the neighboring pix-
els plus a random error term. Such models are realistic in
many practical scenarios and can be used to represent a
variety of backgrounds, ranging from smooth patterns to
highly structured texture [9]. Non-Gaussian clutter mod-
els with heavy tail statistics are examined in other papers
[8].
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Using the models described in section 2, we derive in
section 3 the 2D multiframe Bayes detector/tracker. Sec-
tion 4 gives a more detailed description of the computa-
tional implementation of the algorithm. We present in sec-
tion 5 the receiver operating characteristic (ROC) curves
for the multiframe Bayes algorithm and compare them
with the ROC curves for a conventional single frame LRT
detector. The results show that, in a scenario of low signa-
ture targets and heavy clutter, optimal multiframe detec-
tion provides a significant improvement with peak signal-
to-noise ratio gains of up to 6 dB over the optimal sin-
gle frame detector. Finally, section 6 summarizes the main
contributions of the paper.

2. The model

We present in this section the models for the sensor, the
target signatures, the target motion, and the clutter. We re-
strict possible targets to rigid bodies with translational mo-
tion. We assume that, at any given sensor scan, the noise-
free image of a target that is present is contained in a 2D
rectangular region of size(ri + rs + 1)× (li + ls + 1). In
this notation,ri andrs denote the maximum vertical pixel
distances in the target image when we move away, respec-
tively up and down, from the target centroid. Analogously,
li and ls denote the maximum horizontal pixel distances
in the target image when we move away, respectively left
and right, from the target centroid. For simplicity, we con-
sider that there is at most one target present at each sensor
frame.

2.1 Sensor and target model

We model the region that is scanned by the sen-
sor as the uniform 2D finite discrete latticeL =
{(i, j): 1 ≤ i ≤ L, 1 ≤ j ≤ M}, whereL andM are the
number of sensor resolution cells in each dimension. We
refer to latticeL as thesensor lattice.

It is useful to extend the sensor lattice so that
we can model situations when a target moves in
and out of the sensor grid or, when a target is ab-
sent from the grid. We define thecentroid latticeL̂ =
{(i, j): − rs + 1 ≤ i ≤ L + ri, − ls + 1 ≤ j ≤ M + li}
that collects all possible values of the target centroid po-
sition for which at least one target pixel is within the 2D
region scanned by the sensor.

We introduce an equivalent 1D representation for the
2D centroid lattice using rowlexicographic ordering. This
operation consists of sequentially stacking all rows of the
2D lattice in one long 1D lattice. The 1Dlexicographed
centroid lattice, L, is

L = {l: 1 ≤ l ≤ (L + ri + rs) (M + li + ls)} . (1)

The position of the target centroid at instantn in the lattice
L is indicated by the 1D random variablezn such that, for
1 ≤ k ≤ L + ri + rs and1 ≤ p ≤ M + li + ls,

zn = (k − 1) (M + li + ls) + p . (2)

The formal equivalence between the 1D latticeL and the
2D latticeL̂ is established by observing that, ifzn is the
target centroid position at instantn in the 1D latticeL and
zn is the target centroid position at instantn in the equiv-
alent 2D latticeL̂, then

zn = (k−1) (M + li + ls)+p ⇔ zn = (k− rs, p− ls)
(3)

for 1 ≤ k ≤ L + ri + rs and1 ≤ p ≤ M + li + ls.
Finally, to build an integrated framework for detection

and tracking, we augment the 1D lexicographed lattice
with an additional dummy state that represents the absence
of the target from the sensor image. For convenience, we
assign to the absent state the index(L+ri +rs) (M + li +
ls) + 1. The final 1Dextended latticeis

L̃ = { l: 1 ≤ l ≤ (L + ri + rs)(M + li + ls) + 1} .
(4)

Target Model LetB = {0,1} and letI be the 2D finite lat-
tice I = {(k, l): − ri ≤ k ≤ rs, − li ≤ l ≤ ls}. In this
paper, we refer to a 2D sequence indexed on a discrete 2D
lattice as afield. We use the notationsxk,l andx(k, l) in-
terchangeably to denote the individual elements of a 2D
field.

Target Signature: The target signature is determined by
the product of the shape parameters, which represent the
target geometry, and the intensity parameters, which de-
scribe the actual intensity of each pixel in the target image.

The target shape at instantn is specified by the field{
cn
k, l

}
, (k, l),∈ I such that, for each(k, l) ∈ I, cn(k, l) ∈

B. The target intensity is in turn described by the real-

valued field
{
φn

k, l

}
, (k, l) ∈ I, such that, for each(k, l) ∈

I, φn(k, l) ∈ <. Finally, we define the target signature at

instantn as the field
{

an
k, l

}
, (k, l) ∈ I such that,an

k, l =
cn(k, l)φn(k, l).

For rigid bodies, the shape parameterscn(k, l) are time-
invariant and, accordingly, we can drop the superscript.
We assume that the target shape is known to the detec-
tor/tracker. The intensity parameters, on the other hand,
may be time-variant, possibly deterministic but unknown
and, in general, may be random as a result of stochastic
fluctuations in the reflectivity and illumination of the tar-
gets or due to random variations in the channel charac-
teristics. For simplicity, we consider as a first approxima-
tion in this paper that the intensity parameters are time-
invariant, deterministic, and known. Since the shape is
also assumed time-invariant and known, the target signa-
ture at each scann is perfectly specified by a known, de-
terministic and finite 2D field{ ak, l }, with (k, l) ∈ I. We
introduce then thetarget signature templatefield G(k l)
such that, for−rs ≤ k ≤ ri, −ls ≤ l ≤ li,

G(k, l) = a(−k, − l) . (5)

This definition will be useful to detail the structure of the
optimal Bayes algorithm in subsequent sections.
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2D Extended Target Model: Let zn be the position of

the target centroid in the 1D extended latticeL̃ defined in
equation (4). We represent the noise-free image of a target
centered atzn during thenth sensor scan as the nonlinear
mapping

Fn: L̃ 7→ <L×M

zn → F(zn) (6)

where, forzn = (in + rs − 1)(M + li + ls) + (jn + ls),
(in, jn) ∈ L̂, the functionF(zn) is given by

F [zn(in,jn)] =
rs∑

k=−ri

ls∑
l=−li

an
k, lEin+k,jn+l . (7)

In (7), for 1 ≤ i ≤ L, 1 ≤ j ≤ M , Ei,j , is anL x M
matrix whose entries are all zero, except for the element
(i, j) which is one. For any(i, j) 6∈ L1 ×L2, whereL1 =
{l: 1 ≤ l ≤ L} andL2 = {l: 1 ≤ l ≤ M}, we defineEi, j

to be identically zero. Finally, ifzn = (L + ri + rs)(M +
li + ls) + 1, we make

F(zn) = 0L×M . (8)

The noise-free target model in (7) is a function that asso-
ciates to each possible centroid position of a target that is
present a spatial distribution of target signature parameters
centered at that respective centroid position. SinceEi, j is
defined as zero whenever(i, j) 6∈ L1 × L2, the model in
(7) automatically takes into consideration the fact that, as a
target moves in and out of the surveillance space, portions
of the target that lie outside the sensor grid are not visible
in the sensor image. Whenever a target is physically ab-
sent from the sensor scan, the corresponding target image
is an identically zero matrix, as indicated by equation (8).

2.2 Observations and clutter model

The measurements at thenth sensor assuming a single tar-
get are theL x M matrix

Yn = F(zn) + Vn (9)

wherezn is the position of the target centroid in the equiv-
alent 1D extended lattice (including the absent state),F(.)
is the 2D extended target model described by equations
(7) and (8), andVn is the background clutter matrix, also
referred to as the background clutter frame. We assume
that the clutter framesVn, n = 0, 1, . . ., are independent,
identically distributed (i.i.d.).
Gaussian clutter Let vn be the equivalent 1D row lexi-
cographed representation of the 2D clutter matrixVn. Un-
der the assumption of Gaussianity, vectorvn has the prob-
ability density function (pdf),p(vn) = N(0,R), where
R is the clutter spatial covariance,0 is the mean, and
N(.) stands for the normal (multivariate Gaussian) pdf.
The zero mean assumption assumes a pre-processing stage
that removes the mean. A non-zero mean can be accounted
for trivially.

Spatially correlated homogeneous GMrf modelWe
model the spatial correlation of the clutter using Gauss-
Markov random fields (GMrfs) [9, 10]. We present next
the formal definition of a 2D GMrf. For simplicity of no-
tation, we restrict the discussion to square lattices, i.e.,
L = M .

For each pixel(i, j) ∈ L = {(i, j): 1 ≤ i, j ≤ L}, we
define its neighborhood systemηij . Under the assumption
of spatial homogeneity,ηij = η, ∀(i, j) ∈ L. The clutter
field,Vn, is a finite order, spatially homogeneous GMrf if
it is the output of the 2D finite difference equation [9]

Vn(i, j) =
∑

(i−k, j−l) ∈η

−αl
kVn(i − k, j − l) + Un(i, j)

(10)
for (i,j) ∈ L. In (10), we used the assumption of spa-
tial homogeneity to make the coefficientsαl

k independent
of (i, j). We also added the assumption of diagonal sym-
metry such that the coefficientsαl

k satisfy the equalities
αl
−k = αl

k, α−l
k = αl

k andα−l
−k = αl

k.
We add boundary conditions (bc’s) to equation (10)

so that it can extend to the boundaries of the lattice. A
common choice of bc’s is to makeVn(i, j) = 0 for any
(i, j) 6∈ L. These are calledDirichlet boundary condi-
tions. Alternatively, other boundary conditions could be
used [9, 10].

Second Order Statistics of GMrfs:Letvn andun be the
1D row lexicographed representations ofVn andUn re-
spectively. Equation (10) is written compactly in matrix
format as

Avn = un . (11)

It follows from the application of the orthogonality prin-
ciple that the covariance matrix of the driving noiseun is
[9]

Σu = σ2
uA (12)

and the covariance matrix of the cluttervn is

Σv = R = σ2
uA

−1 ⇔ A = σ2
uR

−1 (13)

whereσ2
u = E [vn(l)un(l)], for all l in the lexicographed

equivalent of the sensor latticeL. The quantityσ2
u is spa-

tially invariant due to the spatial homogeneity assumption.
In the particular case of Dirichlet bc’s,σ2

u is also equal to
E

[
un(l)2

]
[9, 10]. The symbolE [.] stands for expected

value or ensemble average.
We refer to the matrixA in (11) as thepotential matrix

[10]. It follows from (13) that the inverse of the covari-
ance matrix,Σv, is proportional to the potential matrix.
The potential matrix is in turn a highly structured matrix
described by a limited number of parameters. In section 4,
we explore this matrix structure to design computationally
efficient detection and tracking algorithms. We describe
next the structure ofA in detail.

Structure of the potential matrix:Let Wp be the maxi-
mum Euclidean distance between sites(i, j) and(i−k, j−
l) such that(i− k, j− l) ∈ η. The quantityWp associated
to a particular neighborhood systemη defines theorderof
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the Markov model. Assuming Dirichlet boundary condi-
tions, spatial homogeneity and diagonal symmetry, we see
by inspection that the potential matrixA has a symmetric,
block banded, block Toeplitzstructure of the form [9, 11]

A = I ⊗ D0 +
m∑

j=1

(Kj
1 + Kj

2) ⊗ Dj . (14)

wherem is the largest integer such thatm ≤ Wp. The ma-
trix K1, referred to as the backward shift matrix [1], has
all its entries equal to zero except for the first upper diago-
nal whose entries are all equal to 1. The matrixK2, called
the forward shift matrix, is the transpose ofK1. The sym-
bol⊗ denotes the Kronecker (or tensor) product [13]. The
blocksDi, 1 ≤ i ≤ m, in (14) are themselves structured
with aToeplitz and bandedstructure of the form

D0 = I +
l(0)∑
t=1

αt
0(K

t
1 + Kt

2)

Dj = α0
jI +

l(j)∑
t=1

αt
j(K

t
1 + Kt

2) 1 ≤ j ≤ m (15)

In (15), m is the largest integer such thatm ≤ Wp,
l(0) = m, andl(j), 1 ≤ j ≤ m, is the largest integer such
thatl2(j)+j2 ≤ W 2

p . The parametersαr
0, 1 ≤ r ≤ m and

αt
j , 1 ≤ j ≤ m, 0 ≤ t ≤ l(j), are defined on a parameter

spaceP such that the potential matrixA is positive defi-
nite. A comprehensive analysis of the eigenstructure of the
potential matrix in the 2D case for different choices of bc’s
and its relation to fast sinusoidal orthogonal transforms is
found in [11].

GMrf Model Template:Given the potential matrixA
associated to a particular noncausal GMrf model, we de-
fine the GMrf model templateas the fieldH(i, j) such
that

Hi, j = δi, j +
m∑

r=1

αr
0 [δi, j−r + δi, j+r]

+
m∑

t=1

α0
t δi+t, j +

l(t)∑
r=1

αr
t [δi+t, j+r + δi+t, j−r ]


+

m∑
t=1

α0
t δi−t, j +

l(t)∑
r=1

αr
t [δi−t, j+r + δi−t, j−r]


In the preceding equation,δij is the general element of the
2D delta Kronecker field. This definition of model tem-
plate will be useful to detail the structure of the Bayes de-
tector/tracker in section 4.
Examples of Sensor FramesIn the sequel, we present an
illustrative example of a synthethic sensor frame that was
simulated using the target and clutter models just intro-
duced. Under the assumption of deterministic and known
signatures, without loss of generality, we make the target
pixel intensities constant and equal to 1. Figure 1(a) shows
the noise-free image of a rectangular-shaped target in a 2D

100 x 100 sensor grid, when the target is centered at coor-
dinates (50, 50). Figure 1(b) shows the same target image
plus 2D spatially correlated clutter. The clutter is a first
order, noncausal GMRf withα1

0 = −βh = α0
1 = −βv =

0.24. The signature-to-clutter ratio is measured using the
peak signal-to-noise ratio (PSNR) defined as

PSNR= 10 log10(
1
σ2

u

) . (16)

The PSNR in figure 1 is equal to 0 dB. The background
clutter is simulated from white noise using the equivalent
recursive (one-sided) representation of equation (11) ob-
tained through the upper Cholesky factorization of the po-
tential matrixA. For simulation details, see [10].
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Fig. 1. (a)Noise-free rectangular target image. (b) Simulated sensor
scan with target plus correlated GMrf clutter, PSNR=0 dB

2.3 Motion model

With translational motion, it suffices to model the dynam-
ics of the target centroid to describe the target motion. The
changes between two consecutive frames in the position of
the target centroid in the extended latticeL̃ are specified
by atransition probability matrix, PT , whose general ele-
mentPT (k, r), (k, r) ∈ L̃ × L̃, is

PT (k, r) = Prob(zn = k | zn−1 = r) . (17)

2D drifting targets We focus our discussion on 2D ran-
domly drifting targets, i.e., targets that move with a con-
stant nominal drift disturbed by a 2D random walk fluc-
tuation. Letzn = (in, jn) be the position in the centroid
lattice L̂ of a target at thenth scan. Letηc be a bounded
2D finite discrete lattice limited by a maximum Euclidean
distanceD , i.e.,ηc =

{
(t, s): t2 + s2 ≤ D2, t, s ∈ Z}

.
We refer toηc as the random walkfluctuation regionin
the 2D plane. We model the evolution in time of the cen-
troid position(in,jn) by the equations

in = in−1 + d1 + ε1
n

jn = jn−1 + d2 + ε2
n (18)

where
[
(ε1

n)2 + (ε2
n)2 ≤ D2

]
, εm

n ∈ Z, m = 1, 2. For
a first order noncausal fluctuation region,D = 1 andεm

n ,
m = 1, 2, may take values in the setS = [−1,0,1]. A
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2D first order random walk is shown in figure 2 with the
respective transition probabilities. In the figure, under the
zero mean random walk assumption,s = t andr = q.
In equation (18), we assume thatε1

n andε2
n are mutually

i, j ij+1ij-1

i+1j

i-1j

s

t

q
r

1-r-s-t-q

Fig. 2. Probabilities of fluctuation of the centroid position around
pixel (i, j) for a 2D random walk model

independent and also statistically independent of the cen-
troid position(in, jn).

To complete the motion model, we need to specify the
transition probabilities to and from the absent target state.
Whenever the target centroid crosses the boundaries of the
centroid latticeL̂, the target is declared absent and the ran-
dom variablezn takes the absent target state value, i.e.,
zn = (L+ri +rs) (M + li + ls)+1. Conversely, when no
target is present, there is a non-zero probability of a new
target appearing randomly at the next sensor scan. We as-
sume that there is an equal probability of the new target
appearing centered at any pixel of the centroid latticeL̂.

In [1], we detail the analytic structure of the transition
probability matrixPT for the 2D drifting target model.
This matrix is highly structured and sparse, consisting ba-
sically of a shifted block tridiagonal structure, where the
blocks themselves are structured. We explore this structure
to achieve further computational savings in the implemen-
tation of the optimal Bayes detector/tracker. We omit this
discussion here for lack of space and refer the reader to
[1].

3. Optimal multiframe detector/tracker

We develop in this section the solution to the problem of
integrated detection and tracking of a single target in a 2D
finite grid using the models from section 2.

Let zn be the position of the target centroid at thenth
sensor scan defined on the extended latticeL̃ and denote
by yn the row lexicographed version of the 2D sensor im-
ageYn at thenth scan. We introduce first thefiltering
posterior probabilities vector, pn|n, whoselth component
is

pn|n(l) = P (zn = l | Yn
0 ) l ∈ L̃ . (19)

The vectorYn
0 =

[
yT

0 yT
1 . . . yT

n

]T
collects all the ob-

servations from the initial time0 up to instantn. Like-

wise, we define theprediction posterior probabilities vec-
tor, pn|n−1, whoselth component is

pn|n−1(l) = P (zn = l | Yn−1
0 ) l ∈ L̃. (20)

We derive next an algorithm for the recursive computa-
tion of the filtering posterior probabilities vector. The al-
gorithm is divided into two steps.
Prediction Step Predict the next state of the target from
the previous one using the transition probability matrix,
PT . By the Theorem of Total Probability and using the
fact that, conditioned onzn−1, zn is independent from
Yn−1

0 , we get

P (zn | Yn−1
0 ) =

∑
zn−1

P (zn | zn−1)P (zn−1 | Yn−1
0 )

(21)
In matrix notation, equation (21) is written as

pn|n−1 = PT pn−1|n−1 . (22)

Filtering Step Correct the prediction with the new infor-
mation given by the observations. From Bayes’ Law and
using the fact that, conditioned onzn, yn is independent
from Yn−1

0 , we can write

P (zn | Yn
0 ) = Cnp(yn | zn)P (zn | Yn−1

0 ) . (23)

In matrix notation, equation (23) is rewritten as the point-
wise vector multiplication

pn|n = CnSn � pn|n−1 (24)

where

Sn( l) = p(yn | zn = l) l ∈ L̃. (25)

The constantCn is a normalization factor such that∑
l∈L̃

pn|n(l) = 1 . (26)

We now consider detection and tracking.
DetectionLetL2 = (L+ri+rs) (M+li+ls). The proba-
bility of the target being absent at instantn conditioned on
the observations is given bypn|n(L2+1). Representing by
H0 the hypothesis that the target is absent and byH1, the
hypothesis that the target is present, the minimum proba-
bility of error detector, assuming equal cost for misses and
false alarms and zero cost for correct decisions, is the test
[12]

P (H0 | Yn
0 )

P (H1 | Yn
0 )

H0
>
<
H1

1 ⇔ pn|n(L2 + 1)
1 − pn|n(L2 + 1)

H0
>
<
H1

1 . (27)

Alternative tests are obtained by changing the threshold in
(27). Each value of the threshold will correspond to a fixed
probability of false alarm. By varying the threshold over a
wide range, the performance of the test is assessed through
a receiver operating characteristic (ROC) curve that plots
probability of detection versus probability of false alarm.
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MAP Tracking Introduce now the conditional probability

Qf
l [ n ] = P (zn = l | target is present,Yn

0 ) l ∈ L

=
pn|n(l)

1 − pn|n(L2 + 1)
(28)

whereL is the lexicographed centroid lattice, see sec-
tion 2. The maximum a posteriori (MAP) estimate of the
the target’s centroid position assuming that the target is
present is [12]

ẑmap[ n ] = argmax
l∈L

Qf
l [ n ] . (29)

4. Implementation of the multiframe
Bayes detector/tracker

We detail in this section the implementation of the optimal
Bayes detector/tracker for a single target moving in GMrf
clutter. We focus our discussion on the implementation of
the filtering step of the algorithm, see section 3. The im-
plementation of the prediction step is detailed in [1].

4.1 Filtering step: correlated clutter

The filtering step in equation (24) involves the compu-
tation at each instantn of the observations kernelSn.
Assume, for simplicity of notation, but without loss of
generality, thatL = M , li = ri, and ls = rs. Let
L1 = (L + ri + rs) = (M + li + ls). Let yn be the
lexicographedL2 x 1 representation of theL x L sensor
imageYn such that

yn ((i − 1)L + j) = Yn(i, j) 1 ≤ i, j ≤ L . (30)

The observations kernel is written as the(L2
1 +1) x 1 vec-

tor Sn such that, for1 ≤ i, j ≤ L1,

Sn ((i − 1)L1 + j) = p(yn | zn = (i−1)L1+j) . (31)

The entry corresponding to the absent target state is

Sn(L2
1 + 1) = p(yn | zn = L2

1 + 1) . (32)

Computation of the Observations Kernel When the
background cluttervn is a zero mean Gaussian vector with
spatial covarianceR, the observations kernel is

Sn ((i − 1)L1 + j) = Nyn(fij ,R) 1 ≤ i, j ≤ L1

(33)
wherefij is the lexicographed vector obtained from the
noise-free 2D image of a target centered at(i , j) as mod-
eled in (6). The notationN(.) in (33) stands for the multi-
variate Gaussian pdf

Na(b,R) = k exp(− (a − b)T R−1(a − b)
2

) (34)

with k = (2π)−L2/2 | R |−1/2. On the other hand, for
the absent target state,

Sn(L2
1 + 1) = Nyn(0,R) . (35)

The computation under the Gaussian assumption of
the observations kernel requires the evaluation of the
quadratic form(yn − fij)TR−1(yn − fij) for each pair
(i, j). For a genericL2 x L2 full inverse covariance ma-
trix, R−1, and a genericL2 x 1 mean vectorfij , 1 ≤
i, j ≤ L1, this operation requiresO(L6) floating point
multiplications [1]. These computational requirements can
be reduced between three to four orders of magnitude if
we explore the structures ofR−1, fij , and of the multi-
variate Gaussian pdf.

We restrict the background clutter to be a spatially ho-
mogeneous, noncausal GMrf of arbitrary order character-
ized by a potential matrix with structure as in (14). We re-
call that, from equation (13) in section 2.2,A = σ2

uR
−1,

whereA is the potential matrix andσu is the power of the
driving noise in the 2D finite difference equation model
for the GMRf clutter as in (10).

For notational convenience, we introduce the normal-
ized quadratic form,Qij , such that, for1 ≤ i, j ≤ L1,

Qij = σ2
u(yn − fij)T R−1(yn − fij)

= (yn − fij)T A(yn − fij) . (36)

With this normalization , and absorbing all terms that not
depend on(i, j) into the constantCn in (24), we write the
entries of the observations kernel, for1 ≤ i, j ≤ L1, as

Sn ((i − 1)L1 + j) = exp(−Qij

2σ2
u

) . (37)

For the absent state,

Sn(L2
1 + 1) = exp(−yT

n Ayn

2σ2
u

) . (38)

LetC = yT
n Ayn. We rewrite the entries of the normalized

quadratic form as

Qij = C − 2λij + ρij 1 ≤ i, j ≤ L1 (39)

whereλij = yT
n Afij is referred to as thedata term, and

ρij = fT
ijAfij is the so-calledenergy term. It follows then

that

Sn ((i − 1)L1 + j) = exp(−Qij

2σ2
u

) =

exp(− C

2σ2
u

) exp(
2λij − ρij

2σ2
u

) . (40)

when1 ≤ i, j ≤ L1. For the absent state, on the other
hand,

Sn(L2
1 + 1) = exp(− C

2σ2
u

) . (41)

The term exp(−C/ 2σ2
u) is independent of(i, j) and,

therefore, can be also absorbed into the normalization con-
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stantCn in (24). We are left then with thenormalizedob-
servations kernel,S, given by

Sn((i − 1)L1 + j) = exp(
2λij − ρij

2σ2
u

) 1 ≤ i, j ≤ L1

Sn(L2
1 + 1) = 1 . (42)

Computation of the Data Term We present in the sequel
an efficient algorithm for the computation of the data term
λij . This result expresses the data term for 2D extended
targets as two linear convolution operations in cascade.

Let fij be as before the lexicographed vector obtained
from the noise-free 2D image of a target centered in(i , j)
as in (6). LetG(i, j) be the general term of the target sig-
nature template defined in (5), and letH(i,j) be the gen-
eral term of the GMrf model template defined in section
2.2. With this notation, and assuming thatli + ls > m and
L >> (li + ls), the data term forli + m + 1 ≤ i, j ≤
L − ls − m is written as

λij = yT
n Afij = G(i, j) ∗ [Yn(i ,j) ∗ H(i, j)] . (43)

The symbol‘∗’ denotes the 2D convolution operator. The
proof of equation (43) involves some algebraic doing, we
refer the reader to [1]. We omit the proof here for lack of
space.

Boundary Conditions:Equation (43) shows how to
compute the data term away from the boundaries of the
sensor image. Close to the boundaries, both the target tem-
plate and the GMrf model template must be changed to
account for boundary conditions. Hence, for any(i, j),
−ls + 1 ≤ i, j ≤ L + li, the data termλij is given
by the expressions in table 1 where(.) is the product of
ak, l by the output of the noncausal differential operator,
Yn(i ,j) ∗H(i, j) computed at(i+ k, j + l) with Dirichlet
bc’s, i.e., ifi 6∈ {: 1 ≤ i ≤ L} or j 6∈ {: 1 ≤ i ≤ L}, then
Yij = 0. It can be shown [1] that that the raw compu-
tation of table 1 for a first order GMrf clutter requires a
number of floating point multiplications that varies from
O(mL2), m << L, when(li + ls +1) <<

√
L, toO(L3)

when(li + ls + 1) ≈ √
L. That represents computational

savings of between 3 and 4 orders of magnitude in com-
parison with the raw computation of the quadratic form in
the multivariate Gaussian pdf.
Energy Term We examine now the computation of the
energy termρij for 2D extended targets. As before, we
assume for simplicity thatli = ri andls = rs. Given the
target model, we define first the target energy

Et(0,0) =
ls∑

k=−li

ls∑
l=−li

a(k, l)2 . (44)

Similarly, we define the cross-energy coefficients

E(t,r) =
ls−t∑

k=−li

ls−r∑
l=−li

a(k, l)a(k + t, l + r)

E(t,− r) =
ls−t∑

k=−li

ls∑
l=−li+r

a(k, l)a(k + t, l − r)

E(−t,r) =
ls∑

k=−li+t

ls−r∑
l=−li

a(k, l)a(k − t, l + r)

E(−t,− r) =
ls∑

k=−li+t

ls∑
l=−li+r

a(k, l)a(k − t, l − r) .

We can expressρij as a linear combination of the tar-
get energy and the cross-energy coefficients. The weights
in the linear combination are the parameters in the GMrf
model defined by the potential matrixA. Forli +m+1 ≤
i, j ≤ L − ls − m, andli + ls > m, we write

ρij = fT
ijAfij =

E(0,0) +
m∑

r=1

αr
0 [E(0,r) + E(0,− r)] +

m∑
t=1

{
α0

t E(t,0) +
l(t)∑
r=1

αr
t [E(t,r) + E(t, − r)]

}
+

m∑
t=1

{
α0

t E(−t,0)

+
l(t)∑
r=1

αr
t [E(−t,r) + E(−t, − r)]

}
.

For the proof, we refer the reader to [1].

RemarkThe expression for the energy term in the pre-
ceding result is valid only away from the boundaries of
the lattice. Near the boundaries, the target template must
be conveniently modified to account for the fact that por-
tions of the target disappear from the image and should
not be used in the computation of the energy and cross-
energy terms. Except at the boundaries, the energy term
ρij is constant for all indicesi andj.

5. Detection performance

We study next the 2D detection performance of the opti-
mal Bayesian algorithm developed in section 3. We plot
the ROC curves for the optimal multiframe Bayes detec-
tor using synthetic data. At each sensor scan, there may
be at most one target present. The simulated targets are
rectangular-shaped, unit signature 2D rigid objects as in
figure 1(a). Targets that are present move in the sensor grid
with a translational motion described by the drifting target
model explained in section 2.3. The fluctuation probabil-
ities of one resolution cell about the average 2D drift are
r = s = q = t = 0.2, see figure 2. The constant nominal
velocities in the two dimensions ared1 = d2 = 2 reso-
lution cells/frame. Once a target becomes absent, a new
target can appear randomly in any position of the centroid
grid with total probabilitypa = 0.2. The size of the sen-
sor grid is 100 x 100 and the size of the targets is 9 x 9.
The simulated clutter is a spatially correlated, first order
noncausal GMrf with parametersβv = βh = 0.24, like in
figure 1(b).
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Table 1. Data termλij for (i, j) ∈ L̂.

λ(i, j) −ls + 1 ≤ j ≤ li li + 1 ≤ j ≤ L − ls L − ls + 1 ≤ j ≤ L + li

−ls + 1 ≤ i ≤ li
∑ls

k=−i+1

∑ls
l=−j+1

(.)
∑ls

k=−i+1

∑ls
l=−li

(.)
∑ls

k=−i+1

∑L−j

l=−li
(.)

li + 1 ≤ i ≤ L − ls
∑ls

k=−li

∑ls
l=−j+1

(.)
∑ls

k=−li

∑ls
l=−li

(.)
∑ls

k=−li

∑L−j

l=−li
(.)

L − ls + 1 ≤ i ≤ L + li
∑L−i

k=−li

∑ls
l=−j+1

(.)
∑L−i

k=−li

∑ls
l=−li

(.)
∑L−i

k=−li

∑L−j

l=−li
(.)

Figure 3 shows the ROC curves for the optimal Bayes
detector with PSNR equal to 3 and 0 dB. These levels of
PSNR correspond to low signature/heavily cluttered tar-
gets that are hardly if at all distinguishable by a human
operator, as shown previously in figure 1(b). The pairs
(Pfa, Pd) in the ROC curves were estimated using 6,000
Monte Carlo runs for each value of the detection thresh-
old. We see from the plots in figure 3 that, as the PSNR in-
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Fig. 3. Optimal Bayes ROC curves in correlated first order GMrf
clutter,βh = βv = 0.24

creases, the ROC curves tend to a step-like shape, i.e., for
low levels of probability of false alarm, we obtain compar-
atively much higher probabilities of detection. Even at the
low PSNR=3 dB, we obtain detection probabilities above
0.95 for false alarm rates in the order of10−2.
Multiframe and Single Frame Detection: Performance
Comparison To study the improvement in performance
resulting from the incorporation of motion dynamics in-
formation into the detection algorithm, we compare the
optimal multiframe detector with a single frame LRT de-
tector that ignores the motion models. The single frame
LRT algorithm reduces to the test [12]

p(yn | H0)
p(yn | H1)

H0
>
<
H1

λ (45)

whereλ is a threshold that varies according to the desired
probability of false alarm. We ran Monte Carlo simula-
tions using rectangular targets and the same motion, sig-
nature and clutter model parameters as used before. The
ROC curves, estimated from 3,000 Monte Carlo runs, are
shown in figure 4(a) for both the multiframe (optimal)
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Fig. 4. Performance of the single frame and multiframe (optimal)
detectors in correlated GMrf clutter

and single frame (memoryless) detectors in a situation of
PSNR equal to 3 dB. The curves in figure 4(a) show that,
although the single frame detector may perform well in
weak clutter environments, its performance deteriorates
significantly in scenarios of heavily cluttered targets.

Figure 4(b) repeats the ROC curves for both single
frame and multiframe detectors, except that the PSNR for
the multiframe detector is lowered to−3 dB. We note from
the plot that the−3 dB multiframe ROC curve is closer to
the3 dB single frame ROC, but still lies slightly above the
latter. That indicates a substantial gain in PSNR of over
6 dB when we introduce multiple frames and motion dy-
namics into the detection process.

6. Conclusions

We presented in this paper details of the implementa-
tion of the optimal Bayes multiframe detector/tracker
for rigid objects that move randomly in two-dimensional
(2D) cluttered images with finite resolution. We devel-
oped 2D models for target signature and target motion that
build an integrated framework for detection and tracking.
The background clutter was described by correlated, non-
causal, spatially homogeneous GMrfs of arbitrary order.
We explored the structure of the signature, motion, and
clutter models, to achieve substantial computational sav-
ings in the implementation of the algorithm. The detec-
tion performance of the optimal multiframe Bayes detec-
tor was evaluated by Monte Carlo simulations using syn-
thetic data. The results show significant performance gains
of over 6 dB in peak signal-to-noise ratio in comparison
with the suboptimal single frame LRT detector.
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