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Sequential Importance Sampling Filtering for Target
Tracking in Image Sequences

Marcelo G. S. Bruno, Member, IEEE

Abstract—We propose in this letter a new approach to direct
target tracking in cluttered image sequences using sequential
importance sampling (SIS). We use Gauss–Markov random field
modeling to describe the clutter correlation and incorporate the
clutter and target signature models into the design of the SIS
tracking algorithm. We quantify the performance of the SIS
tracker using a simulated image sequence generated from real
infrared airborne radar data and compare it to the performance
of a grid-based hidden Markov model tracker. Simulation results
show good performance for the proposed algorithms in a scenario
of very low target-to-clutter ratio.

Index Terms—Bayesian estimation, Gauss–Markov random
fields (GMRF), particle filters, sequential importance sampling,
target tracking.

I. INTRODUCTION

WE PRESENT in this letter new Bayesian algorithms for
automatic tracking of cluttered targets in sequences of

two-dimensional (2-D) digital images. Most conventional ap-
proaches to target tracking from images [1], [2] are based on
the suboptimal association of a single frame image correlation
filter and a linear Kalman–Bucy tracking filter (KBf). Such as-
sociation has been shown [3] to perform poorly in scenarios
of heavily cluttered targets. To overcome this limitation, we
propose instead a Bayesian methodology that allows for direct
target tracking from the image sequence and fully incorporates
the models for target motion, target signature, and background
clutter correlation.

We introduced in [3] a recursive point-mass hidden Markov
model (HMM) filter for Bayesian tracking in image sequences.
The point-mass filter in [3] was shown to outperform the corre-
lation filter/KBf association, but it had the disadvantage of being
computationally intensive. Here, we adopt a different strategy
using a continuous-valued target state vector and sequential im-
portance sampling (SIS) [6], [7], also known as particle filtering.
We propose two different SIS trackers, based respectively on the
sampling/importance resampling (SIR) or bootstrap filter [6],
[7] and on the auxiliary particle filter (APF) [8].

We adapt the SIS filters to the problem of direct tracking
from images by introducing a likelihood function that incor-
porates the target signature and clutter models. To describe
the spatial correlation of the clutter, we use a 2-D noncausal
Gauss–Markov random field (GMRf) model [9]. The param-
eters of the GMrf clutter model are estimated from the image
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sequence using an approximate maximum-likelihood (AML)
estimator [9], [10]. In Sections II–V, we detail the proposed
SIS trackers and discuss their performance.

II. TARGET MOTION MODEL

We denote the two dimensions of the plane, respectively, by
the indexes and . Let , , be a vector
that contains the position and velocity of the target centroid in
dimension at instant , where is an integer number,
and is the sampling period in time. The unknown target state
vector is defined as

(1)

We assume that the random sequences and are
statistically independent and that the centroid position and ve-
locity in each dimension evolve in time according to the white-
noise acceleration model [1]

(2)

where is a zero-mean Gaussian vector such that

(3)

In (3), denotes expected value or ensemble average;is a
positive real number that is assumed known; andis the 2-D
unit sample sequence such that if and
zero otherwise.

III. OBSERVATION AND CLUTTER MODEL

A remote sensing device generates raw measurements of a
surveillance region that contains both targets of interest and un-
desired reflectors (clutter). For simplicity, we assume that there
is only one single target of interest present at the scene at each
sensor scan. The raw sensor measurements are sampled and pro-
cessed to form a sequence of 2-D digital images, referred to as
frames. Frame is modeled by the matrix

(4)

where matrix represents the background clutter, and matrix
is the clutter-free target image, which is a function of the

2-D pixel location of the target centroid . The 2 1 hidden
vector is defined on the finite grid
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and is obtained from the continuous-valued
state vector in (1) by making

round (5)

round (6)

where and are the image resolutions, respectively, in
dimensions and .

Target Model: We assume that, in any given frame, the
clutter-free target image is contained in a bounded rectangular
region of size . In this notation,
and denote the maximum vertical pixel distances in the target
image when we move away, respectively up and down, from
the target centroid. Analogously, and are the maximum
horizontal pixel distances in the target image when we move
away, respectively left and right, from the target centroid. For
each pixel centroid position , the nonlinear function

in (4) returns a spatial distribution of (real-valued) pixel
intensities , , , centered at
( ) (see [3] for details). For simplicity, the coefficients ,
referred to as the targetsignature parameters, are assumed in
this letter to be deterministic, known and frame-invariant.

Clutter Model: The clutter returns at frame, ,
, , are described by the first-order, noncausal

GMrf model [9]

(7)

where theunknownparameters and are, respectively, the
vertical and horizontal predictor coefficients, andis the pre-
diction error such that , with

also unknown. The assumption of zero-mean clutter implies
a preprocessing of the data that subtracts the mean of the back-
ground. We also assume that, after preprocessing, the clutter
frames are statistically independent.

A. Likelihood Function

Let be a one-dimensional long-vector representation of
the frame obtained by row lexicographic ordering and use
lowercase to denote probability density functions (pdfs). As-
suming a 2-D GMrf background as in (7) and deterministic
signature parameters , the likelihood function of the ob-
served th frame is [3]

(8)

where is a target energy term that is constant away from the
image borders (see [3] for details). The functionin (8) is in
turn given by

(9)

where are obtained, respectively, from (5) and
(6), and is the output of the differential filter

(10)

TABLE I
ALGORITHM I: BOOTSTRAPFILTER FOR TARGET TRACKING IN 2-D

CLUTTERED IMAGE SEQUENCES

with Dirichlet (identically zero) boundary conditions. Equation
(9) isvalid for and

. For centroid positions near the image borders, the summation
limits in (9) must be varied accordingly as explained in [3].

IV. SEQUENTIAL IMPORTANCESAMPLING TRACKER

Sequential importance sampling [4], [5] is a simulation ap-
proach to online Bayesian estimation where the posterior pdf
of the hidden target state is represented at each instantby a
set of particles with associated importance weights. From the
weighted particle set, we can then compute an estimate of the
target state using, for example, a minimum mean-square error
(MMSE) or a maximuma posteriori(MAP) criterion.

A. Bootstrap Tracker

The bootstrap filter [6] is a particular SIS algorithm that,
at each instant , draws a new set of particles from the Mar-
kovian transition kernel , and updates the associ-
ated importance weights using the likelihood function

. A selection step [4], [6], consisting of resampling from
the particle set with replacement according to the importance
weights, is added to prevent the distribution of particle weights
from getting skewed as the number of iterations increase. Using
the matrices and introduced in (2) and (3) and recalling the
likelihood function from Section III-A, we present in Table I
a bootstrap filter algorithm for 2-D target tracking in image
sequences.

B. Auxiliary Particle Filter Tracker

An SIS alternative to the bootstrap filter is the auxiliary par-
ticle filter [8]. The intuitive idea is to select a set of particles at
instant which, when propagated to instant , will have a
high likelihood. This is formally accomplished by introducing
an auxiliary index , , and sampling at each instant

from the joint mixture importance function

(11)
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TABLE II
ALGORITHM II: M ODIFIED IMPORTANCESAMPLING STEP FORAPF TARGET

TRACKING IN 2-D CLUTTERED IMAGE SEQUENCES

where is, for example, the mean of or a draw from

. Table II summarizes the modifications to the importance
sampling step of the bootstrap tracker using auxiliary particles.
The initialization and selection steps are identical to the same
steps in Table I and are omitted accordingly.

C. Clutter Adaptation

We estimate the GMrf clutter parameters directly from each
frame using the suboptimalapproximate maximum-likeli-
hood (AML) estimator introduced in [9]. The AML estimates

, , and at each frame are then plugged into (8) and (10)
to compute . Table III summarizes the AML
parameter estimation algorithm given the frame (see
[9] and [10] for further details).

V. PERFORMANCERESULTS

We compare next the tracking performances of the bootstrap
tracker, the APF tracker, and the HMM tracker using a simu-
lated image sequence that is generated from real infrared air-
borne radar (IRAR) intensity imagery. The base image is a scene
from the Portage IRAR database at Johns Hopkins University’s
Center for Imaging Sciences. We segmented the base image and
estimated the spatially variant local means and the background
clutter parameters. Each frame in the simulated image sequence
is then generated by adding the local means to a different GMrf
background sample synthetized with the estimated clutter pa-
rameters. Finally, we add to the background sequence a sim-
ulated target template that moves according to a white-noise
acceleration model (see Section II), with parameters
and 4 ms. The spatial resolution (pixel size) is

20 cm. The image frame extends from 0–30 m (150
pixels) in both the horizontal and vertical dimensions. The ini-
tial vertical and horizontal positions of the target are uniformly
distributed, respectively, between 4–12 m and between 4–8 m.
The initial vertical and horizontal target velocities are identi-
cally distributed Gaussian variables with mean 10 m/s and stan-
dard deviation 0.3162 m/s. Fig. 1(a) and (b) shows, respec-
tively, the cluttered and clutter-free image of a target centered

TABLE III
AML PARAMETER ESTIMATION ALGORITHM FOR ANL�M GMRF

(a)

(b)

Fig. 1. (a) Simulated cluttered target image (PTCR= 7.3 dB). (b) Clutter-free
target template shown as a binary image.

(a) (b)

Fig. 2. APF and bootstrap rmse in meters PTRC= �5.7 dB. (a) Vertical
dimension. (b) Horizontal dimension.

at pixel location (40,40). In the simulated cluttered image, the
peak target-to-clutter ratio (PTCR) is 7.3 dB.

Fig. 2(a) and (b) shows the rmse in meters of the MAP target
centroid position estimates, respectively in the vertical and hor-
izontal directions, obtained by a 3400-particle bootstrap (solid
line) filter and by a 2800-particle APF (dashed line) with PTCR
lowered to 5.7 dB. The SIS filters failed to converge to the true
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(a) (b)

Fig. 3. RMSE in number of pixels for the bootstrap tracker (solid) and the
HMM tracker (dashed), PTCR= �5.7 dB, vertical dimension. (a) Original
scale. (b) Zoomed-in plot.

track in three out of 48 Monte Carlo runs. The error curves in
Fig. 2(a) and (b) were obtained excluding the divergent tracks
from the average. The plots show, that despite the low con-
trast between the target and the background, the particle filters
quickly acquired the target after an initial error and tracked it
with a low (less than 1 pixel) rmse. The reduction in the number
of particles in the APF tracker seems not to have significantly
affected steady-state performance.

For comparison purposes, we implemented a grid-based
HMM tracker using a rough approximation of the contin-
uous-valued motion model in Section II by a discrete-valued
model consisting of a constant deterministic drift equal to
two pixels/frame plus a first-order 2-D discrete random walk
with probability of fluctuation of one pixel in both dimensions
equal to 10%. Fig. 3(a) shows the rmse in number of pixels
of the MAP vertical target position estimates generated by the
bootstrap tracker (solid line) and the HMM filter (dashed line).
Fig. 3(b) is a zoomed-in version of the same plot where the
two curves can be seen more clearly. The bootstrap filter in this
experiment failed to converge to the true track in three out of
50 Monte Carlo runs, while the HMM filter acquired the target
in all Monte Carlo simulations. The error curves in Fig. 3(a)
and (b) were obtained considering only the simulations in
which both trackers converged. The plots show that, excluding
the rare occasions when the bootstrap filter diverges, both the
HMM and the SIS tracker have good tracking performance
with a small target acquisition time. The slight deterioration in
rmse for the HMM filter toward the final sequence frames may
reflect the mismatch between the actual motion model and the
approximate discrete-state model assumed by the grid-based
tracker. The error curves for the horizontal position estimate
are qualitatively similar and are omitted here for lack of space.

We close with a brief comment on computational complexity.
The grid-based HMM filter from [3] requires the evaluation of
the likelihood function in all points of the image grid. Assuming
an grid, such computation has cost , , in
terms of required floating point multiplications. By contrast, the
bootstrap particle filter requires the evaluation of the likelihood
function for each particle only, or a computational cost of
order . The multinomial resampling routine in the se-
lection step of the SIS filter is also implemented efficiently (see
[4]) with computational cost . Overall, if , the

computational savings are considerable when we compare the
HMM filter in [3] to the SIS trackers proposed in this letter.

VI. CONCLUSION

Conventional solutions to the problem of target tracking in
image sequences based on the association of correlation filters
and linear Kalman–Bucy filters are unreliable [3] in scenarios
of very low target-to-clutter ratio. In this letter, we introduced
alternative nonlinear Bayesian algorithms based on sequential
importance sampling that enable direct tracking from the image
sequence and fully incorporate the models for target motion,
target signature, and background clutter.

We tested the performance of the proposed algorithms
using simulated image sequences generated from real infrared
airborne radar data. Monte Carlo simulation results show
good tracking performance for the basic bootstrap tracker
using 3400 particles in a scenario with a very dim target
(PTCR 5.7 dB). The steady-state rmse for a 2800-particle
APF tracker was roughly identical to the steady-state rmse for
the 3400-particle bootstrap filter suggesting that the additional
algorithmic complexity of the APF is partly compensated by
a possible reduction in the number of particles that are needed
to achieve similar performance. Overall, the proposed SIS
filters compared favorably to an alternative grid-based HMM
tracker by yielding similar rmse performance at a much lower
computational cost.

ACKNOWLEDGMENT

The author would like to thank the anonymous reviewers for
their comments, which helped to improve this letter.

REFERENCES

[1] Y. Bar-Shalom and X. Li, “Tracking with imaging sensors,” inMulti-
target-Multisensor Tracking: Principles and Techniques. Storrs, CT:
YBS, 1995.

[2] E. Oron, A. K. Kumar, and Y. Bar-Shalom, “Precision tracking with
segmentation for imaging sensors,”IEEE Trans. Aerosp. Electron. Syst.,
vol. 29, pp. 977–987, July 1993.

[3] M. G. S. Bruno and J. M. F. Moura, “Multiframe detection/tracking in
clutter: Optimal performance,”IEEE Trans. Aerosp. Electron. Syst., vol.
37, pp. 925–946, July 2001.

[4] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial
on particle filters for online nonlinear/non-Gaussian Bayesian tracking,”
IEEE Trans. Signal Processing, vol. 50, pp. 174–188, Feb. 2002.

[5] A. Doucet, J. F. G. Freitas, and N. J. Gordon, “An introduction to se-
quential Monte Carlo methods,” inSequential Monte Carlo Methods in
Practice, A. Doucet, J. F. G. Freitas, and N. J. Gordon, Eds. New York:
Springer-Verlag, 2001.

[6] N. J. Gordon, D. J. Salmond, and A. F. M. Smith, “Novel approach
to nonlinear/non-Gaussian Bayesian state estimation,”Proc. Inst. Elec.
Eng. F, vol. 140, no. 2, pp. 107–113, 1993.

[7] N. J. Gordon, D. J. Salmond, and C. Ewing, “Bayesian state estimation
for tracking and guidance using the bootstrap filter,”J. Guidance, Contr.,
Dynam., vol. 18, no. 6, pp. 1434–1443, 1995.

[8] M. K. Pitt and N. Shephard, “Filtering via simulation: Auxiliary particle
filters,” J. Amer. Stat. Assoc., vol. 94, no. 446, pp. 590–599, 1999.

[9] J. M. F. Moura and N. Balram, “Noncausal Gauss–Markov random
fields: Parameter structure and estimation,”IEEE Trans. Inform.
Theory, vol. 39, pp. 1333–1355, July 1993.

[10] S. M. Schweizer and J. M. F. Moura, “Hyperspectral imagery: Clutter
adaptation in anomaly detection,”IEEE Trans. Inform. Theory, vol. 46,
pp. 1855–1871, Aug. 2000.


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


