Department of Electronic Engineering
Divisão de Engenharia Eletrônica
Holds a degree in Aeronautical Sciences from Academia da Força Aérea (2007). Concluded, in 2015, the Specialization Course in Electromagnetic Environment Analysis, at Instituto Tecnológico de Aeronáutica (ITA), and, in May 2018, the Masters in Electrical Engineering, subarea of Integrated Systems and Circuits at Federal University of Santa Catarina. Served as Chief of the Electronic Warfare Section of the Brazilian Air Force Phoenix Squadron in 2016 and 2017. Nowadays, teaches on the Aeronautical Electronic Warfare System and on the Department of Electronic Engineering of ITA, working at the Electronic Warfare Laboratory of the latter.
Graduou-se em Ciências Aeronáuticas pela Academia da Força Aérea (AFA) em 2007. Concluiu, em 2015, o Curso de Especialização em Análise de Ambiente Eletromagnético no Instituto Tecnológico de Aeronáutica (ITA), e, em maio de 2018, o Mestrado em Engenharia Elétrica, subárea de Sistemas e Circuitos Integrados, na Universidade Federal de Santa Catarina (UFSC). Atuou como Chefe da Seção de Guerra Eletrônica do Esquadrão Phoenix, da Força Aérea Brasileira (FAB), em 2016 e 2017. Atualmente, compõe o corpo docente do Sistema de Guerra Eletrônica da Aeronáutica e da Divisão de Engenharia Eletrônica do ITA, atuando no Laboratório de Guerra Eletrônica (LAB-GE) do último.
DOA-capable SDR-based radar detector prototype.
Since the introduction of the Software-Defined Radio (SDR), applications of different complexity, from FM broadcast receiving and recording to LTE spoofing and even space communications, have been developed. Such an approach allows a flexible RF (radio frequency) circuit to be configured by computational algorithms, which enables a single equipment to present automated, fast and versatile responses to the operational scenario in which it is inserted. Coupled with low volume, weight and cost characteristics, these conveniences make it imperative to explore the SDR technology for designing radars, radar detectors and radionavigation systems. These possibilities trigger the glimpse of the use of these radios embedded in drones, which is aligned with the technological trends of the 21st Century.
Desde a introdução do Rádio Definido por Software (RDS), aplicações de variadas complexidades, de recepção de rádios FM a interferências em LTE e até mesmo comunicações espaciais, foram desenvolvidas. Tal abordagem permite que um circuito flexível de RF (radiofrequência) seja configurado através de algoritmos computacionais, o que possibilita que um único equipamento apresente respostas automatizadas, rápidas e versáteis diante do cenário operacional no qual está inserido. Aliadas a características de baixo volume, peso e custos, essas conveniências fazem com que se torne inevitável explorar o RDS para concepção de radares, detectores de radares e rádios de navegação. Essas possibilidades acionam o vislumbre do uso desses rádios embarcados em drones, em alinho com as tendências tecnológicas do Século XXI.
The latest works on the radar pulse deinterleaving in Electronic Support Measures (ESM) systems have not completely solved the missing pulses problem yet. We present a pulse detection algorithm that aims at, if not eliminating it, diminishing the rate of pulses not detected because of the fact of being superimposed in other ones. Experiments set up on an ESM system based on Software-Defined Radio (SDR) showed that the algorithm detection rate was near a hundred percent and the false alarm rate was near zero when pulse amplitudes were higher than 3.9 mV in the SDR input. This work is suggested for the areas of Digital and Radar Signal Processing and Electronic Warfare.
Polarization diversity antenna arrays are applied to electronic support measures (ESM) systems since the 1980s. However, even today modern systems are conceived with the employment of the traditional and inconvenient spiral antennas. This paper aims at showing not only the advantages on polarization matching issues, but also the benefits in gain, in simpler truncation effect problems and in costs and time spent on design and production. After a brief approach strictly applied to ESM of the main features of spiral antennas and bow-tie antennas compounding a polarization diversity array, equations of the power available from the last were developed from the concept of effective length. The results demonstrate that the array could provide a power 8.7 dB higher than a modern spiral would to an ESM system when it receives vertical or horizontal linearly polarized waves, which multiplies by 2.7 the range of the system, besides also presenting a better performance in case of circularly polarized incident waves.
Software-Defined Radio (SDR) technology has already cleared up passive radar applications. Nevertheless, until now, no work has pointed how this flexible radio could fully and directly exploit pulsed radar signals. This paper aims at introducing this field of study presenting not only an SDR-based radar-detector but also how it could be conceived on a low power consumption device as a tablet, which would make convenient a passive network to identify and localize aircraft as a redundancy to the conventional air traffic control in adverse situations. After a brief approach of the main features of the equipment, as well as of the developed processing script, indoor experiments took place. Their results demonstrate that the processing of pulsed radar signal allows emitters to be identified when a local database is confronted. All this commitment has contributed to a greater proposal of an Electronic Intelligence (ELINT) or Electronic Support Measures (ESM) system embedded on a tablet, presenting characteristics of portability and furtiveness.
Um demonstrador de Sistema de Medidas de Apoio à Guerra Eletrônica (MAGE) baseado em Rádio Definido por Software (RDS) com processamento em tablet e aplicação da antena do MAGE da aeronave P-95 é apresentado. Experimentos apontaram que o sistema, quando confrontado com emissões características de sinais de radar, foi capaz de detectar pulsos e seus parâmetros com uma taxa de erro em torno de 0,05 % quando apenas um sinal era recebido ou quando um ambiente eletromagnético complexo era simulado. O sistema também foi capaz de detectar pulsos sobrepostos, além de identificar emissores simulados segundo dados pré-cadastrados. Os resultados deste trabalho sugerem que a capacidade de processamento dos tablets e a abordagem da tecnologia RDS já permitem, atualmente, que Sistemas MAGE operem embarcados nestes dispositivos portáteis e convenientes.