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1. Introduction

Dynamics is a major issue in control, since both the pro-
cesses to be controlled and the controllers are dynamical
systems.

Dynamics has been described by differential equations
relating inputs to outputs.

How much of the past do we need to consider?

Is there some way to minimize the information about the
past that we need?

Newton’s ideal

Static and Dynamic Models

Static models

y=1r(u)
The output signal y(¢) at time ¢ depends only on the value of
the input at time t.

The output of a dynamic system at time ¢ depends on past
values of the input, for example

y(t) = /Oth(t —Tu(r)dr

The Concept of State

The Great Modelers: Tycho Brahe, Kepler and Newton

To predict the future motion of the planets it is enough to
know their current positions and the velocities.

The state is the least information about a system that is
required for the prediction of its future development.

Philosophical consequences, causality, predestination,
(chaos).

A detailed description of the physics of a system, balances
of mass, momentum and energy.

The state is the least number of variables required to
describe storage of mass, momentum and energy.

Synonyms: state models, internal descriptions, white
boxes.
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Cruise Control

A simple model of a car on a sloping road tells how its position
y depends on the throttle. Let the mass be m and assume that
the propelling force is proportional to the throttle. We find

d’y  dydy

m—s —c—-

de2 dtldt
Two states y and dy/dt.

‘:F—mgsiné?

A Simple Water Tank

How do level 2 and outflow g,,; depend on the inflow g;,?

Assume: Constant density

\%
Cii_t = Qin — Qout Massbalance
h
V= / A(h)dh Geometry
0
Qout = a\/2gh Energybalance

Many ways to choose the state.

Analysis and Simplification
Choosing & as a state variable we find
dh 1
dar = m(%n —ay/2gh)
Qout = ar/2gh
One function A(h) and one parameter a.

Steady state relation h A

Qout = Gin
_
2ga? >

Not influenced by A! qin
Run ICtools or SysQuake

An Inverted Pendulum

Momentum balance
(Newton’s Equation)

0 [ sin 8 [ 0= 6 /1L
Jﬁ—mg sin 8+mul cos 6 = 0

Two states @ and d@/dt.

X

Normalize with w, = \/mg¥¢/J, introduce T = wot and . = u/g

then
2

W—sin@—i—ucosé?:o
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Pendulum on a Cart

Equations of motion Momen- | X
tum balances \

Jp0+ml xcos@ —mglsin@ =0 o
ml@cos 8 — ml&?sinf + M = F

Momentum balance character-
ized by four variables:

0, 6, x and x

Four states are enough!

Standard Model

A system with finite number of states can be described by

& )

y=g(xu)
* x state
* u input, control variable
* y output, measured variable

The model (a nonlinear ordinary differential equation (ODE)),
tells that the rate of change of the state at time ¢ is uniquely
given by the state at time ¢, and the input at time ¢. If the
state is known at time ¢, old values of x do not give any extra
information.

Standard Model - Equilibrium Solutions

Given the system

& )
y=g(xu)

find constant values x, and u, that satisfy the equation. Putting
dx/dt = 0 gives
f(xO! uO) =0

Difficulties with Nonlinear Equations

» Solutions may not exist for all £. Example

dx 9 1
ik x(t) =

* There may be many solutions. Example

2 if £>0,
dx i
—:2\/3_(:, x(t): 0 1ft§a
dt 9 .

(t—a) ift>a

Compare with the water tank!
Bad modeling!
Not easy do discover!

* Numerical solutions require care
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Inverted Pendulum

The model: .
J,8 —mglsin 8 = mulcos 6

Introduce state variables x; = 8 and x, = 8, then

dx1

ar

dxe mgl . ml

% = Jp sinx; + J—pu COS X1

Find the stationary solutions!

The Audience is Thinking ...

Inverted Pendulum

The model: .
J,0 —mglsin 8 = mulcos 8

Introduce state variables x; = 8 and x; = 6, then

dx1

dr

dxe mgl . mil

W = Jp sinx; + J—pucosx1

Stationary solutions for u = 0 gives sinx; = 0 and xs = 0.
Two cases:

0 =2x, =0and 8= x, =0 (pendulum up)

0 =x, =mand 8 = x, = 0 (pendulum down)

Expansion of Standard Model

We have used a very compact notation: dx/dt = f(x,u),
y = g(x,u). It is important to know what this means. Writing
all components of the vectors we get

dx1

% = fl(xllx2l"'lxnlullu2l"'lup)

dxg

% = f2(x1|x2|---|xn|u1|u2|---|up)

dx

dtn = fn(x1|x2|---|xn|u1|u2|---|up)
Y1 :gl(x1|x2|---|xn|u1|u2|---|up)
Y2 :g2(x1|x2|---|xn|u1|u2|---|up)
Yr :gl(x1|x2|---|xn|u1|u2|---|up)

Linearization

* Nonlinear systems are difficult.

» Purpose of control is to keep variables close to desired
values.

» Approximate by considering small deviations from equilib-
rium

» This is called linearization

* Major simplification

» Approximation improves with quality of control system

* Procedure:

First determine the equilibria
Approximate the equations around the equilibria
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Linearization of Static System

A curve is approximated by
Consider the system its tangent

y=g(u)

A Taylor series expansion
around u = ug gives

y = g(uo)+9g' (wo)(u—uo)+. ..

The linearized model

u
y—yo=9'(uo)(u —uo) When is the approximation
good?

Linearization of Dynamic Systems

Start with
dx
dr = f(x,u)
y=g(x,u)

Find the equilibria u = ug, x = x0 y = yo by solving
f(xo,uo) =0
Notice that there may be several solutions!

Decide what operating condition you want!

Linearization of Dynamic Systems ...

& )
y=g(xu)

Approximate around the equilibrium!

xX=x90+0x, u=uo+ou, y=yo+0oy

Hence
d 0 0
d_atc = f(x0 + dx,uo + Ou) ~ f(x0,uo) + 8—£(xo,uo)5x + %(xo,uo)b'u
0 0
y =g(xo + Ox,uo + ou) ~ yo + —g(xo,uo)5x + —g(xo,uo)5u

ox u

Linearization of Dynamic Systems ...

dox dx
TR = f(x0 + Ox,up + du)

0 0
~ f(x0,u0) + 8—£(xo,uo)5x + %(xo,uo)b'u
¥yo + 0y = g(x0 + Ox,uo + ou)

0 0
A Yo+ 8—i(xo,uo)5x + 8—Z(xo,uo)5u

dox _ Of of _
W = a(xo,uo)éx + u (xo,u0)5u = Adx + Bdu
0 0
Sy = _ai (x0, 0) 0% + _8Z (x0,u0)0u = Cdx + Ddu
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Linearization of Dynamic Systems

A Remark on Notations

_— I o
For small deviations around an equilibrium the system A= 8_£(x0,u0)
% = f(x,u) Component-wise
y:g(x,u) _afl(xl,xg,...,xn,ul,ug,...,up)
al = Oy
can be approximated by . OF1(X1, X2r- oo Xy Ut Uy - -1 Up)
12 =
Ox
dox 2
0y = Cox + Dou _ Ofn(x1,%2,... Xy, U1, U, .., Up)
Qp1 =
8361
0 0
A= 8—£(xo,uo) B = %(xo,uo)
_Og _Jg _ Ofn(x1,%2,... Xy, U1, U, .., Up)
C = %(xo,uo) D = %(xo,uo) App = ox.
The Water Tank The Inverted Pendulum

Qout = Qin = Qo = a\/2ghg

dh 1
E = m(%n —ay/ 2Qh)
2

Qout = A/ 2gh hO %

- 2ga?

Assume constant cross section A, introduce & = hg + oh

doh __a 2—95h + l5qin -4 2gh°5h + 15%
V 1o A A

dt  2A 2Ah
Sqou = ay | 2doh = W2ho gy D 5,
ho ho ho
Time constant
2Ah, Total water volume [m?]
T = =2x
Qo Flow rate [m3/s]

Physical interpretation!

Statesx; =8 =yand xo =6

dx _
ar  °
@ = mgt sinxq + m—éucosx
dt ~ J YT !
write in standard form
dx x2
— = f(x,u) = | mgt . ml
dt 7 sinx; + Tu CoS X1

Two stationary solutions
0=2x, =0and 8= x, =0 (pendulum up)
0 =x, = mand 8 = x, = 0 (pendulum down)
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The Inverted Pendulum ...

f o) = (

)
7 sinxy + Jucosxl

of 0 1\ of [ o
Ox j’zcosxl—mjzusmxl 0/’ du m%cosaq

Evaluate for u = 0, x; = 0 och xs = 0 (pendulum up)

of [0 1 _Of (o
A= ox = (%50 B‘@‘(%)

Evaluate for u = 0, x; = 71 och xs = 0 (pendulum down)

of 0 1 _af [ o
a=ge=(ao) 2-5- (%)

Linear Dynamical Systems - The State Model

%:Ax—l—Bu
y=Cx+ Du

» Variables denote deviations from equilibrium
» Think scalar and interpret as vectors

Solution
t
x(2) = e*'x(0) + / A=) Bu(s)ds
0
t
y(t) = Cet'x(0) + C / eA*)Bu(s)ds + Dul(t)
0

All information in the matrices A, B, C and D.

The Matrix Exponential

What is the meaning of e4??

1
A= T+ At + - (At) .+5A”t”+...
If A can be diagonalized A = TAT™1, then

1 1
A =TI+ Nt + §A2t2 o AT )Tt

e 0 ... 0
0 e ... 0
=TNT =T | T
0 0 ... &M

where A; are the eigenvalues of the matrix A, i.e. the solutions

to the equation det(Al —A) =0

Calculating with the Matrix Exponential

The matrix exponential is defined as

1 n
=1+ At+ = (At) 3'(At) E(At) +
Differentiate!
d At 1 -1 At
=A+A A At)" .= A
77 + At 4 = ( t)?. (n—l)!( )"+ e
Differentiation of x(¢) = 0) + [, e*t-DBu(r)dr
gives
dx
& Ax+B
7 x + Bu
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Vector and Matrix Notations

Very compact and practical notation

Numerical calculations supported by nice software
Learn to formulate and interpret

Essentially the same as for scalar equations

BUT remember that AB # BA! for matrices

Relation between Input and Output

%:Ax—l—Bu

y=Cx+ Du

Input-output relation
t
y(t) = Cet'x(0) + C/ A=) Bu(s)ds + Du(t)
0

Compare with first order systems! Take Laplace transforms

sX(s)—x(0) =AX(s)+BU(s) X(s)=(sI —A)'x(0)+ (sI —A)'BU(s)

Y(s) = CX(s)+DU(s) Y(s)=CX(s)+DU(s) |
The transfer function is G(s) = D + C(sI — A)™'B
Summary
Obtaining dynamics from physics
The concept of state
The standard model for nonlinear finite dimensional
systems
dx
—_ = x,u), = xX,u
gp = [wu)., y=glxu)
Linearization and linear time invariant (LTI) systems
The standard model for linear time invariant systems
d
—x:Ax—i—Bu, y=Cx+ Du
dt
Vector and matrix notations, the matrix exponential e??
Compact notation with computational tools
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