
Lecture 2 - Our First Control Design

K. J. Åström

1. Review

2. Cruise Control

3. Standard Models

4. Summary

Themes: A simple control design. Use of standard models.

1. Review

• Block diagrams

• Feedback and feedforward (open or closed loop systems)

• Properties of feedback

+ Reduce effects of process disturbances
+ Make system insensitive to process variations
+ Stabilize an unstable system
+ Create well defined relations between output and

reference
- Risk for instability

• PID control: u = ke+ ki
∫ t

0 e(τ )dτ + kd
de
dt

2. Cruise Control

• Process input or control variable: gas pedal (throttle) u

• Process output: velocity v

• Desired output or reference signal vr

• Disturbances: slope θ

Construction of a Block Diagram

The block diagram gives an overview. To draw a block diagram:

• Understand how the system works.

• Identify the major components and the relevant signals.

• Key questions:

Where is the essential dynamics?
What are appropriate abstractions?

• Describe the dynamics of the blocks.
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Block Diagram of Cruise Control
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Simplifying assumptions

• Essential dynamics relates velocity and force

• The force responds very fast to a change in the throttle

• Assume that all relations are linear (small perturbations)

Process Model

A simplified mathematical model

m
dv
dt
+ vd = F −mnθ

With reasonable parameters

dv
dt
+ 0.02v = u− 10θ

where

v [m/s] (10 m/s=36 km/h=22 miles/hour)

u normalized throttle 0 ≤ u ≤ 1

θ slope in [rad/s]

The Closed Loop System

Process model:
dv
dt
+ 0.02v = u− 10θ

PI controller: u = k(vr − v) + ki
∫ t

0(vr − v(τ ))dτ

The closed loop system is described by (differentiate both
equations and add them) e= vr − v

d2e
dt2 + (0.02+ k)de

dt
+ kie = 10

dθ
dt

In steady state with constant θ and e we have e = 0.

No surprise the controller has integral action!

Stop and Think!!

How is the behavior of the equation

d2e
dt2

+ (0.02 + k)de
dt
+ kie = 10

dθ
dt

influenced by the parameters k and ki?

What is the static gain of the system?

The Audience is Thinking ...
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Behavior of the Equation

d2e
dt2

+ (0.02+ k)de
dt
+ kie = 10

dθ
dt

Compare with spring-mass-damper system

m
d2x
dt2

+ d
dx
dt
+ kx = 0

What are the effects of damping d and spring constant k?
Normalized parameters

d2x
dt2 + 2ζ ω 0

dx
dt
+ω 2

0x = 0

where ω 0 =
√

k
m and ζ = 0.5

d√
mk

.

How to Find Controller Parameters?

d2e
dt2

+ (0.02 + k)de
dt
+ kie = 10

dθ
dt

Comparison with the normalized mass-spring-damper system

d2x
dt2 + 2ζ ω 0

dx
dt
+ω 2

0x = 0

gives

k= 2ζ ω0 − 0.02

ki = ω2
0

Parameter ω 0 gives response speed, and ζ gives shape of the
response. Reasonable to choose ζ = 1 critical damping. How
to choose ω 0?

Comparison of Open Loop and Closed Loop?

Controller parameters ζ = 1, ω 0 = 0.1, open loop (dashed)
closed (solid) when the road has a slope of 4% (10 m/s=36
km/h=22 miles/hour)
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ω = 0.1, ζ = 0.5 (dotted), ζ = 1 (solid), and ζ = 2 (dashed)
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ζ = 1, ω 0 = 0.05 (dotted), ω 0 = 0.1 (solid) and ω 0 = 0.2
(dashed)
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ζ = 1, ω 0 = 0.05 (dotted), ω 0 = 0.1 (solid) and ω 0 = 0.2
(dashed) with extra dynamics T = 5s
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What have we done?

• Block diagram of the system

• Derive process model in the form of ODE

• ODE = Ordinary Differential Equation

• Select controller ODE

• Process and controller described in similar ways ODE

• Eliminate variables to give relation disturbance output

• Understand how closed loop system behaves

• Select controller parameters to give desired behavior

• Fine tune parameters by simulation or experiment

Agenda

We must develop methods to

• Derive equations for the system

• Manipulate the equations

• Understand the equations (standard models)

– Qualitative understanding concepts
– Insight
– Standard forms
– Computations

• Find controller parameters

• Validate the results by simulation
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3. Standard Models

• Standard models are foundations of the “language”

• Learn to deal with the standard models

• Transform problems to standard models

• Software is often based on standard models

One of the standard forms of LTI systems is the ODE

dn y
dtn

+ a1
dn−1 y
dtn−1

+ . . . + an y = b1
dn−1u
dtn−1

+ . . . + bnu

A high order linear time invariant differential equation that
relates the output y of the system to its input u.

A First Order Equation

The homogeneous equation

dy
dt
+ ay = 0

has the solution
y(t) = Ce−at

where C = y(0) is an arbitrary constant. The equation

dy
dt
+ ay = bu

has the solution

y(t) = Ce−at + b
∫ t

0
e−a(t−τ )u(τ )dt

Parameter a tells a lot!

y(t) = y(0)e−at+ b
∫ t

0
e−a(t−τ )u(τ )dt

First term depends on initial conditions, second term depends
on input signal
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Equations of Higher Order

Consider the equation

dn y
dtn

+ a1
dn−1 y
dtn−1

+ a2
dn−2 y
dtn−2

+ . . . + an y = 0

The characteristic polynomial is

A(s) = sn + a1sn−1 + a2sn−2+ . . . + an

If A(α ) = 0 then y(t) = eα t is a solution! If the characteristic
equation has distinct roots α k the solution is

y(t) =
n∑

k=1

Ckeα kt

Roots of the characteristic equation gives insight!
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Roots of Characteristic Equation give Insight!

A real root s = α to the characteristic equation corresponds to
the time function eα t.

Complex roots s = σ ± iω corresponds to the time functions.

eσ t sin ω t, eσ t cos ω t
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Multiple Roots

dn y
dtn

+ a1
dn−1 y
dtn−1

+ a2
dn−2 y
dtn−2

+ . . . + an y = 0

If α is a root to the characteristic polynomial

A(s) = sn + a1sn−1 + a2sn−2+ . . . + an

of multiplicity k and C(t) a polynomial of degree k − 1 then
y = C(t)eα t is a solution to the equation.

The general solution is

y(t) =
n∑

k=1

Ck−1(t)eα kt

Ordinary Differential Equations

dn y
dtn

+ a1
dn−1 y
dtn−1

+ . . . + an y = u

has the solution

y(t) =
n∑

k=1

Ck−1(t)eα kt +
∫ t

0
h(t− τ )u(τ )dτ

Where h is the solution to the homogeneous equation

dnh
dtn

+ a1
dn−1h
dtn−1

+ . . . + anh = 0

with initial conditions

h(0) = 0, h′(0) = 0, . . . , h(n−2)(0) = 0, h(n−1)(0) = 1

General Linear Time Invariant System (LTI)

dn y
dtn

+ a1
dn−1 y
dtn−1

+ . . . + an y = b1
dn−1u
dtn−1

+ . . . + bnu

has the solution

y(t) =
n∑

k=1

Ck−1(t)eα kt +
∫ t

0
n(t −τ )u(τ )dτ

where Ck(t) are polynomials and the impulse response n is

n(t) = b1hn−1(t) + b2hn−2(t) + . . . + bnh(t)
where h is the solution to the homogeneous differential equa-
tion with initial conditions

h(0) = 0, h′(0) = 0, . . . , h(n−2)(0) = 0, h(n−1)(0) = 1
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Standard Forms

• Standard forms are foundations of the “language”

• Learn to deal with the standard forms

• Transform problems to standard form

• Software is often based on standard form

One of the standard forms of LTI systems is

dn y
dtn

+ a1
dn−1 y
dtn−1

+ . . . + an y = b1
dn−1u
dtn−1

+ . . . + bnu

A high order linear time invariant differential equation that
relates the output y of the system to its input u.

Poles and Zeros

The linear time invariant system

dn y
dtn

+ a1
dn−1 y
dtn−1

+ . . . + an y = b1
dn−1u
dtn−1

+ . . . + bnu

is characterized by two polynomials

A(s) = sn + a1sn−1 + a2sn−2 + . . . + an−1s+ an

B(s) = b1sn−1 + b2sn−2 + . . .+ bn−1s+ bn

The roots of A(s) are called poles of the system. The roots of
B(s) are called zeros of the system.

The poles give the components of the time functions that
compose the solution.

Interpretation of Poles

The poles s = α k give the components of the solution

y(t) =
n∑

k=1

Ck−1(t)eα kt +
∫ t

0
n(t− τ )u(τ )dτ

where Ck(t) are polynomials and

n(t) =
n∑

k=1

C̄k−1(t)eα kt

A system is stable if all poles have negative real parts.

Interpretation of Zeros

Consider the linear time invariant system

dn y
dtn

+ a1
dn−1 y
dtn−1

+ . . . + an y = b1
dn−1u
dtn−1

+ . . . + bnu

Introduce

A(s) = sn + a1sn−1 + a2sn−2 + . . . + an−1s+ an

B(s) = b1sn−1 + b2sn−2 + . . .+ bn−1s+ bn

If s = β is a zero of B(s) and u(t) = Ceβ t it follows that

b1
dn−1u
dtn−1

+ b2
dn−2u
dtn−2

. . . + bnu = B(β)Ceβ t = 0

A zero of B(s) at s = β blocks the transmission of the signal
u(t) = Ceβ t.
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The Transfer Function

Consider the linear time invariant system

dn y
dtn

+ a1
dn−1 y
dtn−1

+ . . . + an y = b1
dn−1u
dtn−1

+ . . . + bnu

Introduce the polynomials

A(s) = sn + a1sn−1 + . . .+ an−1s+ an

B(s) = b1sn−1 + b2sn−2 + . . . + bn−1s+ bn

The rational function
B(s)
A(s)

is called the transfer function of the system

Inverse System

Consider the linear time invariant system

dn y
dtn

+ a1
dn−1 y
dtn−1

+ . . . + an y = b1
dn−1u
dtn−1

+ b2
dn−2u
dtn−2

+ . . . + bnu

Introduce

A(s) = sn + a1sn−1 + a2sn−2 + . . . + an−1s+ an

B(s) = b1sn−1 + b2sn−2 + . . .+ bn−1s+ bn

Notice (almost) symmetry between y and u. The inverse
system is obtained by reversing the roles of input and output.

The transfer function of the system is
B(s)
A(s) and the inverse

system has the transfer function
A(s)
B(s).

Steady State Gain

Consider the linear time invariant system

dn y
dtn

+ a1
dn−1 y
dtn−1

+ . . . + an y = b1
dn−1u
dtn−1

+ b2
dn−2u
dtn−2

+ . . . + bnu

Assume that the and the output are constant, i.e. y(t) = y0 and
u(t) = u0. Then

an y0 = bnu0

The number
y0

u0
= bn

an

is called the static gain of the system.

Cruise Control

The relation between velocity error e = vr − v and the slope of
the road θ is described by the differential equation

d2e
dt2

+ (0.02 + k)de
dt
+ kie = 10

dθ
dt

where k and ki are the controller parameters. This differential
equation is characterized by the polynomials

A(s) = s2 + (0.02+ k)s+ ki

B(s) = 10s

The poles can be given arbitrary values by choosing the
controller parameters (pole placement). The choice k =
2ω 0 − 0.02 and ki = ω 2

0 gives a double pole at s = −ω 0. The
zero at s = 0 blocks transmission of constant θ .
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Simulation of Cruise Control

Using the Control Systems Tool box of Matlab it is very easy to
simulate an LTI system. Example cruise control

z=1.0;
w0=0.1;
t=0:0.01:100;
th0=0.04; %Slope of the road
k=2*z*w0-0.02;
ki=w0^2;
syseol=tf(10*th0,[1 0.02]);
sysecl=tf(10*th0*[1 0],[1 0.02+k ki]);
eol=step(syseol,t);
ecl=step(syscl,t);
plot(t,eol,’b--’,t,ecl,’b-’)

Using Matlab

It is very convenient to use Matlab to analyze dynamical
systems and to plot solutions. The procedure is very simple:

• First we define the polynomials A(s) and B(s) that charac-
terize the system using commands like
A=[1 2 2 1];B=[5 6];

• The command roots(A) gives the roots of the polynomial
A (the poles of the system) and roots(A) gives the roots
of the polynomial B.

• To find the response to a given input signal we first create
the signal. The response is then given by the command
lsim(S,u,t).

• There are special commands step and impulse to com-
pute the step and impulse responses.

4. Summary

• Solution to a simple control problem:

– Understand how the system works: use block diagram.
– Approximate and write differential equations for the

blocks.
– Eliminate variables to obtain a differential equation for

closed loop system
– Select controller and its coefficients that give desired

roots of the characteristic equation.

• The standard model and associated concepts: characteris-
tic polynomial, poles, zeros and transfer functions, stability,
inverse systems

dn y
dtn

+ a1
dn−1 y
dtn−1

+ . . . + an y = b1
dn−1u
dtn−1

+ . . . + bnu
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