
Lectures 5 - Frequency Response

K. J. Åström

1. Introduction

2. Frequency response

3. Nyquist curves and stability

4. Bode plots

5. The concept of minimum phase

6. Summary

Theme: The input-output view of dynamical systems. Fourier’s
idea: sinusoidal inputs. Graphical representations of fre-
quency response. Nyquist and Bode plots. The concepts of min-
imum and non-minimum phase.

Introduction

• How to describe dynamics

• The Giant Table - One way to view dynamics

• The heritage of electrical engineering

• Fits block diagrams

• Makes it possible to deal with systems having a large
number of states.

Bode: Electronic feedback amplifiers are much more
complex than steam engines, systems have orders 50-
100 rather than 2-4. (A lot of capacitors!)

• Synonyms: input-output models, external descriptions,
black boxes.

• Experimental determination of dynamics

The Idea of Black Boxes

System
Input Output

Consider a system as a black box. Forget about the internal
details and focus on the input-output behavior of the system.

• Make a Giant Table over all pairs of inputs and outputs

• A stroke of luck: A few entries suffice for linear time-
invariant systems

• Steps (step response), reaction curve

• Impulses (impulse response)

• Sinusoids (Fourier, frequency responses)

Linear Time Invariant Systems

Linearity: Let (u1, y1) och (u2, y2) be input-output pairs.
Then (au1 + bu2, ay1 + ay2) is also an input-output pair,
superposition.

Time-invariance: Let δ t be an operator that shifts a signal
t time units forward and let (u, y) be an input-output pair. A
system is time-invariant if (δ tu, δ t y) is also an input-output
pair.

Consequences: The table can be simplified drastically for
linear time-invariant systems. It is enough to give one pair only.
If all initial conditions are zero the output for all inputs is given
by the transfer function of the system.

y(t) =
∫ t

0
n(t− s)u(s)ds, Y(s) = G(s)U (s)
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Frequency Response

• Fourier’s idea: An LTI system is completely determined by
its response to sinusoidal signals.

• Implications for the Table

• Transmission of sinusoids given by G(iω )
• The jω -method

• Analytic continuation

• The transfer function G(s) uniquely given by its values on
the imaginary axis

• Experimental determination of the frequency response

Interpretation of Frequency Responses

The complex number G(iω ) tells how a sinusoid propagates
through the system in steady state. If the input is u(t) = sinω t,
then the output is

y(t) = hG(iω )h sin
(
ω t+ arg G(iω ))

The number hG(iω )h is called gain ratio or simply gain and the
number arg G(iω ) is called phase of the transfer function.

Notice Steady State Responses
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Proof

Consider a system with transfer function G(s) having distinct
stable poles α k. Let the input be u(t) = eiω 0t = cos ω 0t +
i sin ω 0t. The Laplace transform of the input is U (s) = 1

s− iω 0
.

The Laplace transform of the output is

Y(s) = G(s) 1
s− iω 0

= G(iω 0) 1
s− iω 0

+
∑ Rk

s−α k

1
α k − iω 0

This corresponds to the time function

y(t) = G(iω 0)eiω 0t +
∑ Rk

α k − iω 0
eα kt

Since all α k are negative the first terms go to zero and y(t) →
G(iω 0)eiω 0t for large t.
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Nyquist’s Stability Theorem

• So far focus on the characteristic equation

• Difficult to see how the characteristic equation is influ-
enced by controller.

• How to change the controller to make unstable system
stable?

• Nyquist’s results was a major paradigm shift

• Investigate propagation of sinusoids around the loop

• Based on transfer functions (Always useful to have differ-
ent ways to look at a problem!)

• Strong practical implications

• Possibilities to introduce stability margins.

The Nyquist Curve

H. Nyquist was born in Sweden. Emigrated to the US and
made his career at Bell Laboratories. The Nyquist curve
represents the transfer function by showing a graph of the
complex number G(iω ) as a function of frequency.

Physical interpretation!
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Nyquist’s Stability Theorem

• So far focus on the characteristic equation

• Difficult to see how the characteristic equation is influ-
enced by controller.

• How to change the controller to make unstable system
stable?

• Nyquist’s results was a major paradigm shift

• Investigate propagation of sinusoids around the loop

• Based on transfer functions (Always useful to have differ-
ent ways to look at a problem!)

• Strong practical implications

• Possibilities to introduce stability margins.

Conditions for Oscillations
uy

−1

L(s)

Cut the loop. Let u be a sinusoid. If y is a sinusoid with the
same amplitude and phase, then the loop can be closed and
the oscillation will be maintained. The condition for this is

L(iω ) = −1

where L = PC is the loop transfer function. The condition
implies that the Nyquist curve of L goes through the point −1
(the critical point)!
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The Complete Nyquist Curve

The complete Nyquist curve is image of the contour C under
the map L(s)

s-plane
L(s)-plane
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Nyquist’s Stability Theorem

In the special case when the loop transfer function does not
have poles in the right half plane the closed loop system is
stable if the complete Nyquist curve does not encircle the
critical point.

There are more general result which also covers the case
where the loop transfer function has poles in the RHP.

Use pencil and string to determine encirclements in tricky
situations.

There is some really beautiful mathematics behind this!

Example

L(s) = 1
s(s+ 1)2

L no poles in RHP.
No encirclements
Stable
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Conditional Stability L(s) = 3(s+ 1)2
s(s+ 6)2
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Loop transfer function has no zeros in the RHP. No encir-
clements. Closed loop system stable. Notice counter-intuitive.
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Stability Margins

Stability as it has been defined
is black and white. In practice
there is often a need to have
concepts like degrees of sta-
bility. Some useful concepts
are

• Gain margin nm (2-6)

• Phase margin ϕ m (45○-60○)

• Shortest distance to critical
point d (0.5-0.8)

Notice d is safe but only one of
nm or ϕ m is not!

Stability Margins
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there is often a need to have
concepts like degrees of sta-
bility. Some useful concepts
are

• Gain margin nm (2-6)

• Phase margin ϕ m (45○-60○)

• Shortest distance to critical
point d (0.5-0.8)

Notice d is safe but only one of
nm or ϕ m is not!
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The Bode Plot

Bode was a researcher at Bell Laboratories. The complex
function G(s) can also be represented by two graphs, one
for the gain curve, hG(iω )h, and one for the phase curve,
arg G(iω ). It is tradition to use logarithmic scales for frequency
and gain and linear scales for the phase. A nice consequence
of this is that the curves have asymptotes that are very easy
to obtain! The gain curve is sometimes calibrated in dB (20 dB
equals a factor of 10).

• Making the plot

• Interpreting the plot

Extends the intuitive argument that small s correspond
to large t to all frequencies. Gives a quick view of the
behavior of the system for all frequencies.
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Matlab

There are excellent tools in Matlab for drawing Nyquist curves
and Bode plots in the Control System Toolbox in Matlab.

NYQUIST Nyquist frequency response of LTI models.
BODE Bode frequency response of LTI models.

Use the help function to figure out how the commands work.
Try a few examples.

Notice that Matlab uses decibel (dB) as a standard unit for
amplitude, where 20 dB corresponds to a factor 10. If you think
dB is an unnecessary complication it is easy to make your own
plots with other units.

Sketching Bode Plots

It is easy to sketch Bode plots because with the right scales
they have linear asymptotes. This is useful in order to get a
quick estimate of the behavior of a system. It is also a good
way to check numerical calculations.

Consider first a transfer function which is a polynomial G(s) =
B(s)/A(s). We have

log G(s) = log B(s) − log A(s)
Since a polynomial is a product of terms:

s, s+ a, s2 + 2ζ as+ a2

it suffices to be able to sketch Bode diagrams for these terms.
The Bode plot of a complex system is then obtained by com-
position.

Differentiator

G(s) = s
We have G(iω ) = iω

log hG(iω)h = logω
arg G(iω) = π/2
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Matlab:

sys=tf([1 0],1)
bode(sys,{0.1,1})

Integrator

G(s) = 1
s

We have G(iω ) =
−i 1

ω

log hG(iω)h = − logω
arg G(iω) = −π/2
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Matlab:

sys=tf(1,[1 0])
bode(sys,{0.1,1})
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First Order System G(s) = s+ a

We have G(iω ) = a + iω , hence hG(iω )h = √
ω 2 + a2 and

arg G(iω ) = arctanω/a, hence

log hG(iω )h = 1
2

log (ω 2 + a2), arg G(iω ) = arctanω/a

log hG(iω)h �


log a if ω << a,

log a+ log
√

2 if ω = a,

logω if ω >> a

,

arg G(iω) �



0 if ω << a,

π
4
+ 1

2
log

ω
a

if ω � a,

π
2

if ω >> a

,
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Second Order System G(s) = s2 + 2ζ a+ a2

G(iω) = a2 −ω2 + 2iζ aω

log hG(iω)h = 1
2

log (ω4 + 2a2ω2(2ζ 2 − 1) + a4)
arg G(iω) = arctan2ζ aω/(a2 −ω2)

log hG(iω)h �


2 log a if ω << a,

2 log a + log 2ζ if ω = a,

2 logω if ω >> a

,

arg G(iω) �


0 if ω << a,
π
2
+ ω − a

aζ if ω = a,

π if ω >> a

,
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Sketching Bode Plots

System

G(s) = 200(s+ 1)
s(s+ 10)(s+ 200) =

1+ s
10s(1+ 0.1s)(1+ 0.01s)

• Determine break points (poles and zeros) sort them in
increasing frequency

• Start with low frequencies (G(s) � 1
10s

)

• Draw the low frequency asymptote

• Go over all break points and note the slope changes

• A crude sketch of the phase curve is obtained by using the
relation that, for systems with no RHP poles or zeros, one
unit slope corresponds to a phase of 90○
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Gain and Phase Margins in Bode Plots

Make a Bode plot of the loop transfer function L = PC
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The Concept of Minimum Phase

A system is called a minimum phase system if all its poles
and zeros are in the left half plane. Minimum phase systems
are easy to control.

For minimum phase systems the phase curve is given by the
gain curve and vice versa. An approximate relation is

arg G(iω ) � π
2

d log hG(iω )h
d log ω

,

A slope of one for the gain curve corresponds to 90○ phase.
The exact relations are called Bodes relations. Systems that
are not minimum phase are called non-minimum phase. The
property of non-minimum phase imposes severe limitations to
what can be achieved by control.
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Bode’s Relations between Amplitude and Phase

let G(s) be a transfer function with all poles and zeros in the
left half plane. Introduce

arg G(iω0) = 2ω0

π

∫ ∞

0

log hG(iω)h − log hG(iω0)h
ω2 −ω2

0
dω

= 1
π

∫ ∞

0

d log hG(iω)h
d logω log

∣∣∣ω +ω0

ω −ω0

∣∣∣dω � π
2

d log hG(iω)h
d logω

log hG(iω)h
log hG(iω0)h = −

2ω2
0

π

∫ ∞

0

ω−1 arg G(iω) −ω−1
0 arg G(iω0)

ω2 −ω2
0

dω

= −2ω2
0

π

∫ ∞

0

d
(
ω−1 arg G(iω))

dω
log
∣∣∣ω +ω0

ω −ω0

∣∣∣dω

The Smoothing Kernel

We have ∫ ∞

0
log
∣∣∣ω +ω 0

ω −ω 0

∣∣∣dω = π 2

2

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

0

1

2

3

4

5

6
Weight

y

ω/a

RHP Zero G(s) = a− s
a+ s

We have hG(iω )h = 1 and arg G(iω ) = −2 arctan
ω
a
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Step Response for System with RHP Zero

Laplace transform of the step response h is

G(s)
s

=
∫ ∞

0
e−sth(t)dt

If G has a RHP zero at s = α > 0 we have

0 = G(α )
α

=
∫ ∞

0
e−α th(t)dt

Since the integral is zero the step response must assume both
positive and negative values
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Time Delay G(s) = e−sL

We have hG(iω )h = 1 and arg G(iω ) = ω L

10
−1

10
0

10
1

10
−1

10
0

10
1

10
−1

10
0

10
1

−400

−300

−200

−100

0

Gain

Phase

ω L

ω L

RHP Pole G(s) = s−a
s+a

We have hG(iω )h = 1 and arg G(iω ) = −2 arctan b
ω =

−π + 2 arctan ω
b
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Airplanes

The transfer function from elevon to height of an airplane with
elevons in the rear are always non-minimum phase. The Wright
brothers avoided this by an elevon in front.

Modern fighter planes have canards in the front and even jet
thrusters to avoid the problem.

X-29 is an experimental aircraft. In one operating condition the
system is approximately described by the transfer function

Gnmp(s) = s− 26
s− 6

One pole and one zero in the right half plane. This plane is
difficult to control well.

Power Systems

• Level dynamics in boilers is non-minimum phase because
of the shrink and swell phenomena

• The transfer function from tube opening to power is for a
hydro electric power system

P(s)
A(s) =

P0

A0

1− 2sT
1+ sT
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Bicycles

• Front wheel steering

θ(s)
δ (s) =

amQV0

bJ

s+ V0

a

s2 − mnQ
J

Non-minimum phase because of the right half plane pole

• Rear wheel steering

θ(s)
δ (s) =

amQV0

bJ

−s+ V0

a

s2 − mnQ
J

Both poles and zeros in the right half plane

Summary

• The input-output view of dynamical systems

• Describe a system by making a table of all input-output
pairs

• Fourier’s idea: look at steady state propagation of sinu-
soids

• Frequency response G(iω )
• Graphical representations, very useful for intuition

• Bode and Nyquist plots

• The concept of non-minimum phase

• Systems which are non-minimum phase have severe
performance limitations
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