Lecture 12 - State Feedback

K. J. Astrom

Introduction
An Example
The General Case

W NP

Integral Action
5. Summary

Theme: Using the state for control.

Introduction

* The simple design method becomes very cumbersome for
systems of high order

* The PID controller predicts based on linear extrapolation
» Can we do something better
* Where to look for inspiration?

» State a number of variables that summarizes the past that
is useful for prediction

* The future behavior can be predicted from the state
» Can we find a general controller?
» The state is an ideal basis for control

* We will focus on the predictive part, reference values and
integral action will be dealt with later

State Feedback

Assume that the process is described by

%:Ax—l—Bu

y=Cx
The general linear controller is: u = —Lx + [,r
The closed loop system then becomes

% =Ax+ Bu=Ax+ B(—Lx+1,r)=(A— BL)x + Bl,r

The closed loop system has the characteristic equation
det(sI —A+BL) =0

Can we choose L so that this equation has specified poles?

The Mathematical Tool - Matrices

Please refresh your knowledge of matrices.

* What is a matrix

» Matrix algebra: addition, multiplication, notice AB # BA (a
very useful property), transpose

* Matlab
« Linear equations and inverses Ax = B, x = A™'B
» Eigenvalues and eigenvectors

Ae = Ae
(A=ADe=0
detA—AI=0
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Simple Examples

Consider the following matrices and their transpose

A— ail ai . B= b1 bie C= c11 Ci2 €13
a1 Qs ba1  bao C21 C22 €23

e Which matrices can be added?

* Which matrices can be multiplied?

det A = a11a99 — a12a921
1 a2 —ai2
Al =——_
detA (—a21 all )
Characteristic polynomial det (s — A)

s—ailr  —ai2 9
det =8 — (a11 + azz)s + a11a929 — 12021
—a21 S — a2

Example - The Car

Process model
dx (0 1 0
E‘(O 0>x+<1>”
y=Cx=(1 0)x
Control law
u=—l1x1 — loxg + I, r

Closed loop system

dx_<0 1>x+<0>r
di  \—li —Is Iy
Characteristic equation

82+lls+12:0

Choosing
ll = 2((4)0, lz = (4)(2)

gives the characteristic polyno-
mial s2 + 2¢ wops + w3
The closed loop system is

L
Y(s) = s2 + 20 wos + a%R(S)

Choosing I, = g gives the
correct steady state value.

_ wy
82+ 20 wos + WE

Y(s)

R(s)

Example

Try to do same thing for
dx (0 1 1
a (0 0>x+<0>u
y=Cx=(1 0)x
Control law u = —l1x1 — loxe + [,r. Closed loop system
dx (-l 1-1 L
E‘(O 0 >x+<0>r
Characteristic equation
s(s+11) =s2+1s=0

We cannot obtain a desired characteristic polynomial. Why? The
control signal does not influence the second state! Some conditions
are required!

Controllability

dx

— =Ax+ Bu

dt

Find control signal that moves the system from x(0) = a to

x(¢) = b. Hence

t
b =x(t) = ea + / A9 Bu(s)ds
0

This implies

t
/ e Bu(s)ds = —a + be ™
0
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Controllability ...

t
/ e *Bu(s)ds = —a + be !
0

It follows from Cayley-Hamiltons theorem (a matrix satisfies it
own characteristic equation) that

n

t
ZAk_lB / ar(s)u(s)ds = —a + be ™

k=1 0

Left side a combination of vectors B, AB, ..., A* 1B. Equation

can be solved if the matrix
W.= (B AB A"1B)

can be inverted. Controllability!

Examples
dx (0 1 (0
dar \o o)*T\1)¥
we have
W, = (B,AB) = (‘1) (1)) Controllable!
dx (0 1 1
E— 0 0 X + 0 u
we have

W, = (B,AB) — (; g) Not Controllable!

A Special Case

The system
—a1 —az ... QaQp—1 —Qap 1
1 0 0 0
dt :
0 0 1 0 0

is controllable

0 1 —ai
W.=|[0 o 1
0 O 0 1

The Characteristic Equation

The system
—a; —az ... —CAp-1 —Qap 1
d 1 0 0 0
z
dt :
0 0 1 0 0

has the characteristic polynomial

s"+as" P tas" 2+ ... +a,
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A Special Case which is Easy

—a1 —az ... QaQp—1 —Qapn 1

1 0 0 0 0

dt :

0 0 1 0 0
The feedback u = —l1z7 — lsze — ... — L2, + L1 Qives
—a1 — ll —ag — lg —ap — ln lr
d 1 0 0 0

z

dt :
0 0 0 0

A Special Case

—a1 —ag ... 0Qp—1 —Qap 1
1 0 0 0 0
dt
0 0 1 0 0
The feedback
u=-—l1z1—1lszg—...— Lz, + 1,1
lh=p1—a1, lo=ps—az....ln=pp—a,

gives the characteristic polynomial

s"+p18" - pas" P+ ...+ Dy

The General Case

Problem solved for special case. Can we transform a given
system to this case? Start with
dx

E:Ax+Bu

with controllability matrix
W.=(B AB ... A"'B)

Change coordinates z = T'x

% _ T% — TAx + TBu = TAT ‘2 + TBu — Az + Bu

This system has the controllability matrix

W,= (B AB AB)=T (B AB A"'B) =TW,

The General Case

A system

dx
—=A B
a7 X+ bu

which is controllable can be transformed to

—ay; —as ... —ap 1
4 1 0 ... 0
z 0 1 .. 0 0
— = zZ+ u
dt :
0o 0 ... 1 0
It is easy to find a state feedback u = —Lz for this system which

gives a specified characteristic equation.

Z:(Pl—lll b2 —az ... Pn—lln)
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An Algorithm
Transform the system % = Ax + Bu to controllable canonical
d <= : . =
form &£ = Az+ Bu using the transformation z = Tx = W, W, x.

dt
Feedback for transformed system u = —z where

L=(p1—a1 b2 —az pn—an)

We have u = —Lx = —LT'z = —Lz, hence
L=LT=LWW!

How to Compute the Feedback Gain

» For simple problems we just write the characteristic
equation, compute the characteristic polynomial and match
coefficients. (Typical exam problem)

* Ackermann’s formula summarizes the derivation given

above
L=(0 0 1)(B AB A"1B)71 P(A)
e,=(0 ... 0 1
W.=(B AB ... A"'B)
L =e,W'P(A)

where P(s) is the desired characteristic polynomial This
formula does not have good numerical properties

» There are efficient numerical routines acker and place in
Matlab

The Inverted Pendulum
dx 0 1 0
EzAx+Bu= (1 0)x+ (1)u
The system is controllable. The control law
u = —llxl — lzxz

gives the closed loop system
dx 0 1
The characteristic polynomial is

- s -1 9
det(sI—A+BL)—det<ll_1 8+l2)—s +ls+1;—1

Using Matlab

There are several command is Matlab for design of state
feedback. The command help toolbox/control tells you what
command are available

ACKER Pole placement using Ackermann’s formula.
K = ACKER(A,B,P) calculates the feedback gain
matrix K such that the single input system

x = Ax + Bu
with a feedback law of u = -Kx has closed loop

poles at the values specified in vector P,
i.e., P = eig(A-B*K). See also PLACE.
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Integral Action - A Fix

Process model

%:Ax—l—Bu

y=Cx
Introduce the integral of the error as an extra state

dl
I_/(r—y)dt, E—r—y—r—Cx

Form the augmented system

Integral Action - A Fix ...
d [« _ A 0 x B 0
()=o) )+ (0) e (0)r

Control law
u=—(L I) (’;) +lr

Closed loop system

)= (22 ) () ()

If closed loop system stable there is no steady state error

d [« _ A 0 x B 0 O —
ar\r)=\c o))t lo)¥t{1)" xXo=r
Looks as original system with one extra state!
Is the Augmented System Controllable? Summary

d («x . A 0 X B n 0
at\1)=\—c o)1) T o)¥t 1)
Controllability matrix
B AB ... A"B
WC:(O ~CB ... —CAn—lB)

The system is controllable if the original system is controllable
and if CA" 1B # 0. Controllability of cascaded systems.

* A nice way to use process dynamics to predict

* A nice alternative to pole placement

» Actually works for systems with many inputs and outputs
» Nice computational methods matrix calculations

» Works for high order systems

* The idea of augmentation

* Integral action still ad hoc will be dealt with later

» Reference values will be done later

* The control problem is thus easy if all state variables are
measured

» What to do if all states are not measured? (Stay tuned for
next lecture!)
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