
Lecture 15 - Review of Dynamical Systems

K. J. Åström

1. Introduction

2. Different ways to view dynamics

3. State models

4. Input output models

5. Summary

Theme: Collecting bits and pieces.

Introduction

• Dynamics is a key foundation of control

• Linear time invariant systems has been our work horse

• A rich field with many concepts and results

• Mathematical foundations

– Differential equations
– Laplace transforms and complex numbers
– Linear algebra and matrices

• The standard models

• Relations between different representations

• Computational aspects

• Intuition amplifiers: SysQuake and ICTools

Two Views on Dynamics

State Models - White Boxes

• A detailed description of the inner workings of the system

• The heritage from mechanics

• The notion of state and stability

• States describe storage of mass, energy and momentum

Input-Output Models - Black Boxes

• A description of the input output behavior

• The heritage of electrical engineering

• The notions of transfer function, poles, zeros, minimum
phase

• The idea of frequency response

State Models

Standard representations:

dx
dt
= f (x, u) d(x − x0)

dt
= A(x − x0) + B(u− u0)

y = n(x, u) y− y0 = C(x − x0) + D(u − u0)

where equilibrium is given by f (x0, u0) = 0 and y0 = n(x0, u0)
dx
dt
= Ax + Bu

y = Cx + Du

where x and u now denotes deviations from the steady state

Associated concepts

• Observability and controllability
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The Concepts

dx
dt
= Ax + Bu

y = Cx

Controllability: Assume that the system is at the origin initially.
Can we find a control signal so that the state reaches a given
position at a fixed time? Notice we do not require that it stays
there!

Observability: Can the state x be determined from observa-
tions of the output y over some time interval.

Algebraic Criteria

The system
dx
dt
= Ax + Bu, y = Cx

is controllable if the matrix

Wc = ( B AB A2 B . . . An−1 B )
has full rank. The system observable if the matrix

Wo =


C

CA

CA2

...

CAn−1


has full rank.

Input-Output Models

Standard forms for linear systems

G(s) = b1sn−1 + b2sn−2+ . . . + bns
sn + b1sn−1 + . . . + ans

Associated concepts

• Impulse response n(t)
• Frequency response G(iω )
• Bode plots and Nyquist curves

• Poles, zeros and gain

Linear Time Invariant Systems

dx
dt
= Ax + Bu

y = Cx + Du

Variables now denote deviations from steady state. Solution

x(t) = eAtx(0) +
∫ t

0
eA(t−s)Bu(s)ds

y(t) = CeAtx(0) + C
∫ t

0
eA(t−s)Bu(s)ds+ Du(t)

First terms depend on initial condition the second on the input.

Transfer function: G(s) = C(sI − A)−1 + D

Impulse response: h(t) = CeAtB + Dδ (t)
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Coordinate Changes

Coordinate changes are often useful

dx
dt
= Ax + Bu z = T x

dz
dt
= Ãz+ B̃u

y = Cx + Du x = T−1z y = C̃z+ D̃u

Transformed system has the same form but the matrices are
different

Ã = T AT−1, B̃ = T B, C̃ = CT−1, D̃ = D

Transfer function and impulse response remain invariant with
coordinate transformations.

ñ(t) = C̃eÃt B̃ = CT−1eT AT−1tT B = CeAtB = n(t)
and

G̃(s) = C̃(sI−Ã)−1 B̃ = CT−1(sI−T AT−1)−1T B = C(sI−A)−1B = G(s)

Diagonal Form

dz
dt
=


λ1 0

λ2

. . .

0 λ n

 z+


β 1

β 2

...

β n

u

y =
γ 1 γ 2 . . . γ n

 z+ Du

Transfer function

G(s) =
n∑

i=1

β iγ i

s− λ i
+ D

Notice appearance of eigenvalues of matrix A

Controllable Canonical Form

dz
dt
=



−a1 −a2 . . . an−1 −an

1 0 0 0

0 1 0 0
...

0 0 1 0


z+



1

0

0
...

0


u

y =
 b1 b2 . . . bn−1 bn

 z+ Du

Transfer function

G(s) = b1sn−1 + b2sn−2 + . . . + bn

sn + a1sn−1+ a2sn−2 + . . . + an
+ D

The numerator of the transfer function G(s) is the characteristic
polynomial of the matrix A.

Observable Canonical Form

dz
dt
=



−a1 1 0 . . . 0

−a2 0 1 0
...

−an−1 0 0 1

−an 0 0 0


z+



b1

b2

...

bn−1

bn


u

y =
 1 0 0 . . . 0

 z+ Du

Transfer function

G(s) = b1sn−1 + b2sn−2+ . . . + bn

sn + a1sn−1 + a2sn−2 + . . . + an
+ D

The numerator of the transfer function G(s) is the characteristic
polynomial of the matrix A.
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Kalmans Decomposition

Partitioning of state space
• Sco controllable and

observable

• Scō controllable not
observable

• Sc̄o not controllable
observable

• Sc̄ō not controllable not
observable

ΣSoc
u y

Soc-

Soc- Soc-

-

The transfer function is given by the subsystem Sco

Matlab, SciLab, Octave and SysQuake

One advantage of the matrix formulation is that there is a
very good computer support. This makes it easy to solve real
problems. Matlab can be viewed as a matrix calculator or a
matrix oriented programming environment. It was invented by
Cleve Moler. SciLab and Octave are matrix oriented public
domain software. SysQuake is a newer product which has
been designed for a higher degree of interaction. Matlab has
many tool-boxes for special domains. The Control System
Toolbox and Simulink are particularly useful for control. You
can find out what it contains by typing the command

help toolbox control

also look at the demos.

Examples of Matlab Functions

Creation of LTI models.

ss - State-space model
zpk - Zero/pole/gain model
tf - Transfer function model
set - Set/modify properties
ltiprops - Help for LTI properties
ltimodels - Help on LTI models

Investigating an LTI

ltiview - Response analysis GUI (LTI Viewer).

Transforming systems

ss - Conversion to state space
zpk - Conversion to zero/pole/gain
tf - Conversion to transfer function

Examples of Matlab Functions ...

Transient response

step - Step response
impulse - Impulse response
lsim - Simulates an LTI system with given input
gensig - Generate input signal for LSIM.
stepfun - Generate unit-step input.

Frequency response

bode - Bode plot
nyquist - Nyquist plot
margin - Gain and phase margins.
freqresp - Frequency response over a frequency grid
evalfr - Evaluate frequency response at a frequency
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Examples

SYS = SS2SS(SYS,T) performs the similarity
transformation z = Tx on the state vector x
of the state-space model SYS. The resulting
state-space model is described by:

. -1
z = [TAT ] z + [TB] u

-1
y = [CT ] z + D u

See also CANON, SSBAL, BALREAL.

Examples

CSYS = CANON(SYS,TYPE) computes canonical state-space
realization CSYS of the LTI model SYS. The string
TYPE selects the type of canonical form:

’modal’ : Modal canonical form where the system
eigenvalues appear on the diagonal.
The state matrix A must be
diagonalizable.

’companion’: Companion canonical form where the
characteristic polynomial appears in
the right column.

[CSYS,T] = CANON(SYS,TYPE) also returns the state
transformation matrix T relating the new state vector
z to the old state vector x by z = Tx.

ICTools

This is an interactive tool built in Matlab that allows you to
develop an intuition for different representations of linear time
invariant systems

Introduction

ICTools is a set of interactive tools for learning fundamental concepts of Automatic Control. 

Currently, the tools are being used in the
introductory course in Automatic Control. 

See the following ICTools related links:

ICTools in Automatic Control, Basic Course
(in swedish). 
Article in the leading swedish engineering
magazine Ny Teknik, 1997:48 (in swedish). 

ICTools is developed by Mikael Johansson and Magnus Gäfvert, who are Ph.D. students at the
Department of Automatic Control, Lund Institute of Technology, Sweden.

Commentary on Computations

• Herman Goldstine: "When things change by two orders of
magnitude it is revolution not evolution."

• Important to complement computation by understanding
and insight

• Hamming: “The purpose of computing is insight not
numbers”

• Expect software errors! Important to check results to make
sure that they are reasonable. Always look at results and
Think

– Can you find a special case where you know the
solution

– Can you compute an auxiliary quantity to check the
results
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Input-Output Models

Conceptually a huge table of input-output pairs

Strong simplification for linear time invariant systems with zero initial
conditions!

y(t) = CeAtx(0) + C
∫ t

0
eA(t−s)Bu(s)ds+ Du(t)

All input output pairs are characterized by the impulse response

n(t) = CeAtB + Dδ (t)
or alternatively the transfer function, which is the ratio of the Laplace
transform of the input and the output when the system is initially at
rest

G(s) = L y
Lu

= Y(s)
U(s) = Ln = D + C(sI − A)−1B

Transfer Functions and Diff erential Equations

Consider a system with the transfer function

Y(s)
U (s) = G(s) = b1sn−1 + b2sn−2 + . . . + bn

sn + a1sn−1 + a2sn−2+ . . . + an

It follows that

(sn+a1sn−1+a2sn−2+. . .+an)Y(s) = (b1sn−1+b2sn−2+. . .+bn)U (s)
Conversion to time domain gives

dn y
dtn

+ a1
dn−1 y
dtn−1

+ . . . + an y = b1
dn−1u
dtn−1

+ . . . + bnu

In steady state an y = bnu, static gain G(0) = bn

an

Poles and Zeros

dx
dt
= Ax + Bu

y = Cx

G(s) = b1sn−1 + b2sn−2 + . . .+ bn

sn + a1sn−1 + a2sn−2 + . . . + an
= B(s)

A(s) =
B(s)

det(sI − A)

Poles are zeros of the polynomial A(s) or eigenvalues to the
A-matrix, i.e. uniquely given by the A-matrix. They describe
the free motion of the system. A pole s = a corresponds to a
motion component eat.

Zeros are the zeros of the polynomial B(s). Zeros depend
on the matrices A, B and C, i.e. how the states are coupled
to inputs and outputs. A zero s = b implies that the steady
state output corresponding to the input ebt is zero. Zeros are
blocking signal transmission.

Frequency Response

The complex number G(iω ) tells how a sinusoid propagates
through the system in steady state. If the input is u(t) = sinω t,
then the output is

y(t) = hG(iω )h sin
(
ω t+ arg G(iω ))

The number hG(iω )h is called the gain and the number
arg G(iω ) is called the phase of the transfer function.
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Notice Steady State Responses
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Graphical Representations

The complex function G(iω ) (G : R → C) can be represented
in many ways.

Nyquist plot
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The Bode Plot

• Easy to sketch using asymptotes

• Gives a quick overview of a transfer function

• Very useful to learn how to interpret it

• The concepts of minimum phase and non-minimum phase

• Relations between gain and phase curves forminimum
phase systems

arg G(iω ) � π
2

d log hG(iω )h
d log ω

,

• Minimum phase i.e. time delays and poles and zeros in the
right half plane imply serious limitations! Try to redesign
the system!

The Concept of Minimum Phase

A system is called a minimum phase system if all its poles
and zeros are in the left half plane. Minimum phase systems
are easy to control.

For minimum phase systems the phase curve is given by the
gain curve and vice versa. An approximate relation is

arg G(iω ) � π
2

d log hG(iω )h
d log ω

,

A slope of one for the gain curve corresponds to 90○ phase.
The exact relations are called Bodes relations. Systems that
are not minimum phase are called non-minimum phase. The
property of non-minimum phase imposes severe limitations to
what can be achieved by control.
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Summary of Limitations - Part 1

• A RHP zero z

ω nc

z
≤
{

0.5 for Ms, Mt < 2

0.2 for Ms, Mt < 1.4.

• A time delay T

ω ncT ≤
{

0.7 for Ms, Mt < 2

0.37 for Ms, Mt < 1.4.

• A RHP pole p

ω nc

p
≥
{

2 for Ms, Mt < 2

5 for Ms, Mt < 1.4.

Summary of Limitations - Part 2

• A RHP pole-zero pair with z > p

z
p
≥
{

6.5 for Ms, Mt < 2

14.4 for Ms, Mt < 1.4.

• A RHP pole-zero pair with z < p

p
z
≥
{

6.5 for Ms, Mt < 2

14.4 for Ms, Mt < 1.4

• A RHP pole p and a time delay T

pT ≤
{

0.16 for Ms, Mt < 2

0.05 for Ms, Mt < 1.4.

Bicycle with Rear Wheel Steering

The tilt equation (kinematics + balance of angular momentum)

J
d2θ
dt2

= mnQ sin θ +mQ
(V 2

r
cos α − dVy

dt

)
cos θ

Compare Front and Rear Wheel Steering

Rear wheel steering:

J
d2θ
dt2 = mnQ sin θ +mQ

(V 2

r
cosα − dVy

dt

)
cos θ

Front wheel steering:

J
d2θ
dt2

= mnQ sin θ +mQ
(V 2

r
cosα+dVy

dt

)
cos θ
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The Linearized Tilt Equation for Rear Wheel
Steering

The linearized equation becomes

d2θ
dt2

= mnQ
J

θ−amQV0

bJ
dβ
dt
+mQV 2

0

bJ
β = mnQ

J
θ+mQV 2

0

bJ

(
− a

V0

dβ
dt
+β
)

The transfer function of the system is

P(s) = amQV0

bJ

−s+ V0

a

s2 − mnQ
J

One pole and one zero in the right half plane.

Transfer Function for Rear Wheel St eering

The ratio of RHP zero and RHP pole is

z
p
= V0

√
J

a
√

mnQ =
V0
√

Jcm +mQ2

a
√

mnQ
The system has an uncontrollable unstable pole if the ratio is
one. The system is difficult to control robustly if the ratio is in
the range of 0.25 to 4.

To make the ratio achieve large values quickly can

• Make a small by leaning forward

• Make V0 large by biking fast (takes guts)

• Make J large by standing upright

• When the velocity is sufficiently large you can move to the
seat.

Summary

• Dynamics is a very rich field that is fundamental for
automatic control

• An essential part of the language of control with many
useful concepts and tools

• Useful to have different views

– State models and matrices very useful for designing
control systems (state feedback and observers) and for
effective computation

– Transfer functions very useful for simple control designs
and for evaluation of control performance. Also very
useful to describe time delays and distributed parame-
ter systems (PDE’s) and to express model uncertainty.

• Essential to master dynamical systems and understand
relations between different representations
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