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Theme: Nonlinear systems have much richer behavior. Sta-
bility of nonlinear systems is determined by their local linear
approximation. The main reason why linera control theory
works.

Introduction

• Risk for instability is the main drawback of feedback

• Instabilities were frequently encountered in early use of
feedback

• Created a pressing need for theory

– Understand mechanisms that create instability
– Criteria for stability - beginning of control theory
– Ways to avoid instabilities

• Linear systems are very special

• Stability problems appear in many different contexts,
buckling, critical speed, oscillations in combustion, etc.

Maxwell’s Observations 1868

“It will be seen that the motion of a machine with its governor
consist in general of a uniform motion, combined with a disturbance
which may be expressed as the sum of several component motions.
These components may be of four different kind:

1. The disturbance may continually increase.

2. It may continually diminish.

3. It may be an oscillation of continually increasing amplitude.

4. It may be an oscillation of continually decreasing amplitude.

The first and third cases are evidently inconsistent with the stability
of the motion: and the second and fourth alone are admissible in
a good governor. Stability is mathematically equivalent to the
condition that all roots of an algebraic equation (the characteristic
equation) are in the left half plane.

Maxwell’s Qualitative Observation
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How to formalize the ideas?
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Stability Concept

Consider a solution x(t, a) to the differential equation

dx
dt
= f (x)

with initial conditions x(0, a) = a. Investigate what happens to a
solution x(t, b) with initial condition x(0, b) = b where b is close
to a.

Lyapunov Stability

The solution x(t, a) is called stable if hx(t, a)− x(t, b)h < ε for all
b such that ha− bh < δ .

The solution is called asymptotically stable if it is stable
and if in addition hx(t, a) − x(t, b)h goes to zero as t increases
towards ∞.

Notice that we can only talk about stability of a particular
solution. One solution may be stable and another unstable.
Example: the pendulum.

In control we will require asymptotic stability.

It is convenient to normalize so that the interesting solution is
x(t, a) = 0.

Stability of Nonlinear Systems

Consider the nonlinear system

dx
dt
= f (x)

Assume that it has an equilibrium x = a, i.e. f (a) = 0. The
equilibrium is stable if the linearized equation

dx
dt
= Ax

where A = f ′(a) is stable

Linear Systems

Consider the solutions x(t, a) and x(t, b) to the equations

dx
dt
= Ax

with initial conditions x(0, a) = a and x(0, b) = b. We have

x(t, a) = eAta, x(t, b) = eAtb

Hence x(t, a) − x(t, b) = eAt(a− b)
The solution x(t, a) is stable if the matrix A has all eigenvalues
in the left half plane or on the imaginary axis, and if the
eigenvalues on the imaginary axis are simple. The solution is
asymptotically stable if all eigenvalues of A are in the proper
left half plane.
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Linear Time Invariant Systems are Very Special

• In general we can only talk about the stability of a specific
solution

• This means that some solutions may be stable and other
unstable

• Linear time invariant system are very special because if
one solution is stable all other solutions are also stable

• It is thus possible to talk about the stability of a solution

• This is a very unusual property for linear systems

The Characteristic Equation

The system
dx
dt
= Ax has the characteristic equation

det(sI − A) = 0

The system dn y
dtn + a1

dn−1 y
dtn−1 + . . . + an−1

dy
dt + an y = 0

has the characteristic equation

sn + a1sn−1 + . . . + an−1s+ an = 0

so does the system

Y(s)
U (s) =

b1sn−1 + . . . + b1s+ bn

sn + a1sn−1+ . . . + an−1s+ an

Eigenvectors and Eigenvalues

An eigenvector v of a matrix A has the property

Av = λv

where λ is the eigenvalue. This means that the equation

(A− λ I)v= 0

has a non-trivial solution, hence det(λ I − A) = 0

Now consider the differential equation

dx
dt
= Ax

The function x(t) = eλ tv is a solution with the initial condition
x(t) = v

Example Inverted Pendulum

Linearize around x1 = 0.

d
dt

(
x1

x2

)
=
(

0 1

1 0

)(
x1

x2

) (
x1(t)
x2(t)

)
= c1et

(
1

1

)
+ c2e−t

(
1

−1

)
det (sI − A) = s2 − 1

Characteristic equation has roots s = ±1, solution is unstable!

Linearize around x1 = π .

d
dt

(
x1

x2

)
=
(

0 1

−1 0

)
d
dt

(
x1

x2

)
d
dt

(
x1

x2

)
= c1

(
sin t

cos t

)
+ c2

(
cos t

− sin t

)
det (sI − A) = s2 + 1

Characteristic equation has roots s = ±i, the solution is stable
but not asymptotically stable
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Using Matlab

Does the equation

s3 + s2 + s+ k = 0

have roots in the right half plane for k = 1 or k = 10?

>> roots([1 3 2 1])
ans =
-2.3247
-0.3376 + 0.5623i
-0.3376 - 0.5623i

>> roots([1 3 2 10])
ans =
-3.3089
0.1545 + 1.7316i
0.1545 - 1.7316i

Algebraic stability conditions (Routh-Hurwitz) were been
important historically, but are now less important because of
computational tools like Matlab. The commands roots and
eigen give numerical solutions. What do we mean by solution
to a problem?

Algebraic Criteria Routh-Hurwitz

All zeros of polynomial a0s + a1 are in left half plane if all
coefficients are positive

All zeros of polynomial a0s2+a1s+a2 are in left half plane if all
coefficients are positive

All zeros of polynomial a0s3 + a1s2 + a2s + a3 are in left half
plane if all coefficients are positive and if

a1a2 − a0a3 > 0

Example: The polynomial s3 + 3s2+ 2s+ k has all zeros in LHP
if k < 6 because

a1a2 − a0a2 = 3 � 2− 1� k = 6− k

The Furuta Pendulum

Model

Jp(θ̈ −ω 2 sin θ cosθ) −mnQ sin θ = 0

θ tilt angle of pendulum
ω rate of rotation of arm

Stationary solutions for ω = constant.

−Jpω 2
(

cos θ + mnQ
Jpω 2

)
CD sin θ = 0

The Furuta Pendulum

Stationary solutions ω = const.

−Jpω 2
(

cosθ + mnQ
Jpω 2

)
CD sinθ = 0

Two solutions if ω <√mnQ/Jp

θ = 0, θ = π

Four solutions if ω >√mnQ/Jp �
√
n/Q � 7rad/s

θ = 0, θ = π , θ = θ0, θ = −θ0

where θ0 = arccos (−mnQ/Jpω 2). Physical interpretation!
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Linearization

Model
Jp(θ̈ −ω 2 sinθ cos θ) −mnQ sin θ = 0

Introduce x1 = θ och x2 = θ̇
dx1

dt
= x2

dx2

dt
= mnQ

Jp
sin x1 + 1

2
ω2 sin 2x1

Linearize around x = x0

A = V f
Vx

∣∣∣
x=x0

=
(

0 1
mnQ
Jp

cos x1 +ω2 cos 2x1 0

) ∣∣∣∣∣
x=x0

Stability of Stationary Solutions

Solution x1 = θ = 0 has

A =
(

0 1
mnQ
Jp

+ω2 0

)
The matrix A has one eigenvalue in the RHP, unstable

Solution x1 = θ = π

A =
(

0 1

−mnQ
Jp

+ω2 0

)
The matrix A has eigenvalues on the imaginary axis if mnQ >
Jpω 2 the solution is then stable. If mnQ < Jpω 2 the matrix A
has one eigenvalue in the RHP and the solution is unstable.

Stability of Stationary Solutions ...

Solutions θ = ±θ0 = arccos (−mnQ/Jpω 2),

A =
(

0 1(mnQ
Jpω

)2
−ω2 0

)
The matrix A has eigenvalues on the imaginary axis if

Jpω 2 > mnQ
the solution is then stable. Physical interpretation!

Summary

• Stability important in control and in many other fields

– Buckling, critical speeds, combustion instability, acous-
tics

• Stability concepts

• Stability of solutions and stability of systems

• Linear systems: Characteristic equation det (sI − A) tells
all

• Nonlinear systems

– Only stability of particular solutions
– A solution is stable if linearized equation stable
– The main reason why linear control theory is so useful
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