
Lecture 3 - Laplace Transforms

K. J. Åström

Review of control system analysis

1. The Basic Feedback Loop

2. Laplace Transforms

3. Analysis of Feedback Loops

4. Qualitative Understanding of Signals and Systems

5. Summary

Theme: Streamline manipulation of equations and block
diagrams.

A General Method

• Get an overview of the system by drawing the block
diagram.

• Make an assessment of reasonable approximations.

• Use standard model to describe the dynamics of the
individual blocks.

• Pick a controller PI, PD or PID.

• Derive relations between interesting signals.

• Use simple analysis to make a preliminary assessment.

• Use computers to compute representative responses.

Construction of a Block Diagram

The block diagram gives an overview. To draw a block diagram:

• Understand how the system works.

• Identify the major components and the relevant signals.

• Key questions:

Where is the essential dynamics?
What are appropriate abstractions?

• Describe the dynamics of the blocks in terms of standard
models.

Standard Model 1

A standard model for linear time invariant system

dn y
dtn

+ a1
dn−1 y
dtn−1

+ . . . + an y = b1
dn−1u
dtn−1

+ . . . + bnu

is characterized by two polynomials

A(s) = sn + a1sn−1 + a2sn−2 + . . . + an−1s+ an

B(s) = b1sn−1 + b2sn−2 + . . .+ bn−1s+ bn

• The roots of A(s) are called poles of the system.

• The roots of B(s) are called zeros of the system.

• The transfer function of the system is G(s) = B(s)
A(s)
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Linear Time Invariant Systems (LTI)

dn y
dtn

+ a1
dn−1 y
dtn−1

+ . . . + an y = b1
dn−1u
dtn−1

+ . . . + bnu

has the solution

y(t) =
n∑

k=1

Ck−1(t)eα kt +
∫ t

0
n(t− τ )u(τ )dτ

where {α k} are roots of the characteristic equation A, Ck(t)
polynomials and n is the impulse response, which has the form

n(t) =
n∑

k=1

C̄k−1(t)eα kt

Notice appearance of α k again!

Interpretation of the Impulse Response

y(t) =
n∑

k=1

Ck−1(t)eα kt +
∫ t

0
n(t −τ )u(τ )dτ

Let the system be initially at rest, i.e. Ck = 0 and let the input
be an impulse at time 0. The output is then

y(t) = n(t)
If the input is a unit step the output (the step response) is

y(t) =
∫ t

0
n(t −τ )dτ =

∫ t

0
n(τ )dτ

Experimental determination of step and impulse responses.

2. The Basic Feedback Loop

To analyze the feedback system

Controller Process
e u y

Σ

1−

  y sp

where the process and the controller are described as linear
time invariant systems we must manipulate the equations.
We will now introduce methods that drastically simplify the
manipulations.

The methods will also give qualitative insight into the behavior
of systems.

Recall Cruise Control

Process model
dv
dt
+ 0.02v = u− 10θ

PI controller

u = k(vr − v) + ki

∫ t

0
(vr − v(τ ))dτ

The closed loop system is described by (differentiate both
equations and add them), introduce e = vr − v

d2e
dt2

+ (0.02 + k)de
dt
+ kie = 10

dθ
dt

The mathematical tool of Laplace transforms is ideally suited
for these type of calculations. An essential part of the language
of control.
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3. Laplace Transforms

Consider a function f defined on 0 ≤ t < ∞ and a real number
σ > 0. Assume that f grows slower than eσ t for large t. The
Laplace transform F = L f of f is defined as

L f = F(s) =
∫ ∞

0
e−st f (t)dt

Example 1:

f (t) = 1, F(s) =
∫ ∞

0
e−stdt = −1

s
e−st
∣∣∣∞
0
= 1

s

Example 2:

f (t) = e−at, F(s) =
∫ ∞

0
e−(s+a)tdt = − 1

s+ a
e−st
∣∣∣∞
0
= 1

s+ a

L f = F(s) =
∫ ∞

0
e−st f (t)dt

Transform of the derivative

L df
dt
=
∫ ∞

0
e−st f ′(t)dt = e−st f (t)

∣∣∣∞
0
+s
∫ ∞

0
e−st f (t)dt = − f (0)+sL f

Initial value theorem

lim
s→∞

sF(s) = lim
s→∞

∫ ∞

0
se−st f (t)dt = lim

s→∞

∫ ∞

0
e−v f (v

s
)dv = f (0)

Final value theorem

lim
s→0

sF(s) = lim
s→0

∫ ∞

0
se−st f (t)dt = lim

s→0

∫ ∞

0
e−v f (v

s
)dv = f (∞)

Behavior of f (t) for small t is similar to behavior of sF(s) for
large s and vice versa!

Properties

Linearity: L(af + bn) = aL f + bLn
Differentiation: L df

dt = sL f − f (0)
Integration: L

∫ t
0 f (τ )dτ = 1

sL f

Time shift: L f (t− T) = e−sTL f

Time stretch: L f (at) = 1
a F( s

a), a>0.

Convolution: L
∫ t

0 f (t−τ )n(τ )dτ = F(s)G(s)
Final value Theorem †: lims→0 sF(s) = limt→∞ f (t)
Initial value Theorem †: lims→∞ sF(s) = limt→0 f (t)

• †: Valid only if limits exist!

Inverse Transforms

A simple way to find time functions corresponding to a rational
Laplace transform. Write F(s) in a partial fraction expansion

F(s) = B(s)
A(s) =

B(s)
(s−α 1)(s−α 2) . . . (s−α n) =

C1

s−α 1
+ C2

s−α 2
+ . . . + Cn

s−α n

Ck = lim
s→α k

(s−α k)F(s) = B(α k)
(α k −α 1) . . . (α k −α k−1)(s−α k+1) . . . (α k −α n)

The time function corresponding to the transform is

f (t) = C1 eα 1t + C2eα 2 t + . . . + Cneα n t

Parameters α k give shape and numbers Ck give magnitudes.

Notice that α k may be complex numbers. With multiple roots
the constants Ck are instead polynomials.
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Manipulating LTI Systems

The differentiation property L df
dt = sL f − f (0) makes

the Laplace transform very convenient for dealing with LTI
systems, particularly if all initial values are zero. Differentiation
of the time functions then simply corresponds to multiplication
of the transform with s. We then obtain the following recipe for
dealing with linear systems:

• Take Laplace transforms of the equations

• Take Laplace transforms of the signals acting on the
system

• Solve linear algebraic equations to obtain the transforms of
the interesting signals

• Convert the Laplace transform to a time function

Cruise Control

Process model:
dv
dt
+ 0.02v = u− 10θ

PI controller: u = k(vr− v) + ki
∫ t

0 (vr − v(τ ))dτ

Taking Laplace transforms

(s+ 0.02)V (s) = U (s) − 10Θ(s)
E(s) = Vr(s) − V (s)

U (s) = kE(s) + ki

s
E(s)

Pure algebra gives relation between Laplace transforms of
slope Θ reference Vr and E by eliminating V and U(

s(s+ 0.02) + ks+ ki
)
E(s) = 10sΘ(s) + s(s+ 0.02)Vr(s)

More Cruise Control(
s(s+ 0.02) + ks+ ki

)
E(s) = 10sΘ(s)

With the chosen controller k = 2ζ ω 0−0.02 (ζ = 1) and ki = ω 2
0

and a step change of magnitude θ0 in slope we have

Θ(s) = θ0/s
and we find that the Laplace transform of the error is

E(s) = 10s
s2 + 2ω 0s+ω 2

0
Θ(s) = 10θ0

(s+ω 0)2

Converting this to a time function we get

e(t) = 10θ0

ω 0
te−ω 0 t

More Cruise Control ...

e(t) = 10θ0

ω 0
te−ω 0t

The largest error emax = 10θ0e−1 occurs for t = 1/ω 0. Compare
graph below θ0 = 0.04 ζ = 1, ω 0 = 0.05 (dotted), ω 0 = 0.1
(solid) and ω 0 = 0.2 (dashed)
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What can we conclude?
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Discussion

• What do we mean by a solution to a problem?

• A historical perspective

Closed form expressions, tables, curves

• The role of computers

• The necessity of insight and understanding

• The need to check results

• What properties can we find easily using “back of an
envelope” calculation.

• A perspective on use of Laplace transforms in control
engineering

• A more general (biased personal) perspective. Technology
changes fast but engineering education changes slowly.

4. Analysis of Feedback Loops

The transfer function of an LTI system was introduced in
Lecture 2. Using Laplace transforms it can also be defined as
follows. Consider an LTI system with input u and output y. The
transfer function is

G(s) = Y(s)
U (s) =

L y
Lu

where the Laplace transforms are calculated under the
assumption that all initial values are zero.

Transfer functions and Laplace transforms are ideal to deal
with block diagram. A block is simply characterized by

Y(s) = G(s)U (s)
Signals and and systems have the same representations.

Car Model in Cruise Control

Process model
dv
dt
+ 0.02v = u− 10θ

Transfer function from control u to velocity v

Gvu(s) = V (s)
U (s) =

1
s+ 0.02

Transfer function from slope θ to velocity v

Gvθ(s) = Θ(s)
U (s) = −

10
s+ 0.02

Transfer Function of PID Controller

The error e is the input and the control signal u is the output

u = ke+ ki

∫ t

0
e(τ ))dτ + kd

de
dt

Transfer function

G(s) = U (s)
E(s) = k+ ki

s
+ kds

c& K. J. Åström August, 2001 5



Transfer Function of Car

A simple model of a car on a horizontal road tells how its
position y depends on the throttle. Let the mass be m and
assume that the propelling force is proportional to the throttle
we find

m
d2 y
dt2

= F = ku

The transfer function is

G(s) = Y(s)
U (s) =

k
ms2

With suitable units we get G(s) = s−2 a double integrator.

Transfer Function of Time Delay

Consider a system where the output y is the input u delayed T
time units. The input output relation is

y(t) = u(t− T)
and the transfer function is

G(s) = Y(s)
U (s) = e−sT

Transfer Function of Standard Model

Consider the system

dn y
dtn

+ a1
dn−1 y
dtn−1

+ . . . + an y = b1
dn−1u
dtn−1

+ . . . + bnu

Assuming that y and u and all their derivatives are zero
initially. Taking Laplace transforms we get

(sn + a1sn−1 + a2sn−2 + . . .+ an−1s+ an)Y(s)
= (b1sn−1 + b2sn−2 + . . .+ bn−1s+ bn)U (s)

The transfer function is

G(s) = b1sn−1 + b2sn−2+ . . . + bn−1s+ bn

sn + a1sn−1 + a2sn−2+ . . . + an−1s+ an

Working with Block Diagrams

Consider the system

C PΣ ΣΣ
r e u x y

n

−1

d

How is the error e related to the signals r d and n?

The Audience is Thinking ...
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Solution

C PΣ ΣΣr e u x y
n

−1

d

Introduce Laplace transforms and transfer functions. We have

E = R − (N + P(D + CE))
Solving for E gives

E = 1
1+ PC

R − 1
1 + PC

N − P
1+ PC

D

Notice form of the equations and use of superposition.

5. Qualitative Understanding of Signals and
Systems

Time responses can in principle be computed. Tables of
Laplace transforms is a help but the work is quite tedious.
Time responses are easy to compute using different types of
software.

• It is a good rule to always make order of magnitude
calculations to make sure that results are reasonable
whenever you use software.

• Much insight can be obtained form very simple calcula-
tions (series expansions and factorization).

• Some results will be presented.

• It will be discussed more in future lectures

Insight into Signals

Consider a signal specified by a rational Laplace transform
Y(s). Make a partial fraction expansion

Y(s) = B(s)
A(s) =

B(s)
(s−α 1)(s−α 2) . . . (s−α n) =

C1

s−α 1
+ C2

s−α 2
+ . . .+ Cn

s−α n

Ck = lim
s→α k

(s−α k)F(s) = B(α k)
(α k −α 1) . . . (α k −α k−1)(s−α k+1) . . . (α k −α n)

Parameters α k (roots of A(s)) are easy to compute. The signal
y(t) has the form

y(t) = C1eα 1 t + C2 eα 2t + . . . + Cneα nt

Parameters α k give shape and Ck give magnitudes.

Example

Consider the signal

Y(s) = B(s)
A(s) =

s+ 5
s(s+ 1)(s+ 2)

The polynomial A(s) is already in factored form and its zeros
are 0, -1 and -2. This means that the time function correspond-
ing to Y(s) has the components

constant, e−t, and e−2t

the second and third component decay exponentially and
after a short time only the constant components remains. The
amplitude of the constant component is 2.5. (lims→0 sY(s)).
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Example ...

For small s the Laplace transform is Y(s) � 2.5/s, which
implies that for large t the time function is y(t) � 2.5. For large
s we have Y(s) � 1/s2. This means that for small t the time
function is approximately y(t) � t.
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Example

Consider the signal

Y(s) = B(s)
C(s) =

s+ 5
s4 + 5s3 + 7s2 + 5s+ 6

The Matlab command

A=[1 5 7 5 6]
roots(A)

gives the roots of A(s) to be −2, −3, and ±i. This means that
the time function has the components

e−2t, e−3t, sin t, and cos t

the first components decay exponentially and after a short time
only the periodic components remain.

Insight from Transfer Functions

• Derive transfer function G(s) = B(s)
A(s)

• Compute poles α k (roots of A(s) = 0)

Free motion of system has component Ceα kt

• Compute zeros β k (roots of B(s) = 0)

The system blocks transmission of the signal eβ kt

• Compute static gain G(0)
• Look at behavior for small s (large t, low frequencies) and

large s (small t, high frequencies)

Insight from Transfer Functions

• Make a series expansion of G(s) for small s (low fre-
quency behavior, large t)

G(s) = c−1

s
+ c0 + c1s+ . . .+ cksk + . . .

If c−1 �= 0 like an integrator
If c−1 = 0 and c0 �= 0 like a static gain.
If c0 = c2 = . . . = ck−1 = 0 and ck �= 0 like k differentiators.

• Make a series expansion of G(s) for large s (high fre-
quency behavior, small t)

G(s) = c0 + c−1

s
+ c−2

s2 + . . .+ ck

sk + . . .

If c0 �= 0 like a static gain.
If c−1 = 0 and c−1 �= 0 like an integrator.
If c−1 = c−2 = . . . = c−k+1 = 0 and ck �= 0 like k integrators.
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Examples

EXAMPLE 1—PID CONTROLLER

The PID controller has the transfer function

G(s) = k+ ki

s
+ kds = ki

s
+ k+ kds

This is already in series expansion form. For slow signals
(small s) it behaves like an integrator and for fast signals (large
s) it behaves like a differentiator.

EXAMPLE 2—PID CONTROLLER WITH DERIVATIVE FILTER

G(s) = k
(

1+ 1
sTi

+ sTd

1+ sTd/N

)
Behaves like a static gain k(1+ N) for fast signals (large s).

6. Summary

• Finding relations between signals in linear time invariant
systems is very simple by using Laplace transforms

• Fits very well to the block diagram description

• It is natural to think in terms of transfer functions

• The similarity of signals and systems

• Qualitative reasoning (small s corresponds to large t and
large s correspond to small t) is very useful to get a quick
insight into the behavior of signals and systems
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