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Theme: A closer look at the controllability and observability
and the structure of linear systems.

Introduction

• The concepts of controllability and observability introduced
as conditions to solve problems of state feedback and
observers

• More insight

• Kalmans decomposition

• System structures

• Cancellation of poles and zeros

The Concepts

dx
dt
= Ax

y = Cx

Controllability: Assume that the system is at the origin initially.
Can we find a control signal so that the state reaches a given
position at a fixed time? Notice we do not require that it stays
there!

Observability: Can the state x be determined from observa-
tions of the output y over some time interval.

Algebraic Criteria

The system
dx
dt
= Ax + Bu, y = Cx

is controllable if the matrix

Wc = ( B AB A2 B . . . An−1 B )
has full rank. The system observable if the matrix

Wo =


C

CA

CA2

...

CAn−1


has full rank.
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Prototype of Non-controllable System

Two identical systems driven by the same input. Intuitively: no
way to make the systems move in opposite ways.

A simple example

dx1

dt
= −x1 + u

dx2

dt
= −x2 + u

The linear combination x1 + x2 is
controllable

u

S

S

Prototype of Non-observable System

Two identical systems whose outputs are added. Intuitively: no
way to find out which system generated the output.

A simple example

dx1

dt
= −x1 + u

dx2

dt
= −x2 + u

y = x1 + x2

The linear combination x1 − x2

is not observable

Σ
y 

S

S

Duality

Controllability of
dx
dt
= Ax + Bu

is the same as observability for

dx
dt
= AT x

y = BT x

Controllability to observability through the transformation

A → AT

B → CT

Wc → Wo

Canonical Forms

Controllable canonical form

dz
dt
=



−a1 −a2 . . . −an

1 0 0

0 1 0
...

0 0 0


z+


1

0
...

0

u

y =
 b1 b2 . . . bn

 z+ Du

Observable canonical form

dz
dt
=



−a1 1 0 . . . 0

−a2 0 1 0
...

−an−1 0 0 1

−an 0 0 0


z+



b1

b2

...

bn


u

y =
 1 0 0 . . . 0

 z+ Du
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System Structure

The coordinates can be chosen so that a linear system has the
following structure

d
dt

(
xc

xc̄

)
=
(

A11 A12

0 A22

)(
xc

xc̄

)
+
(

B1

0

)
u

where the states xc are controllable and xc̄ are non-controllable.

d
dt

(
xo

xō

)
=
(

A11 0

A21 A22

)(
xo

x0̄

)
y = ( C1 0 )

(
xo

xō

)
where the states xo are observable and xō not observable
(quiet)

Kalmans Decomposition

A linear system can be transformed to the form

dx
dt
=


A11 0 A13 0

A21 A22 A23 A24

0 0 A33 0

0 0 A43 A44

 x +


B1

B2

0

0

u

y = (C1 0 C2 0 ) x

where the state vector has been partitioned as

x =


xco

xcō

xc̄o

xc̄ō


T

Kalmans Decomposition

Partitioning of state space
• Sco controllable and

observable

• Scō controllable not
observable

• Sc̄o not controllable
observable

• Sc̄ō not controllable not
observable

ΣSoc
u y

Soc-

Soc- Soc-

-

The transfer function is given by the subsystem Sco

System with State Feedback and Observers

dx
dt
= Ax + Bu

y = Cx

u = L(xm − x̂) + lrr
dx̂
dt
= Ax̂ + Bu+ K (y− Cx̂)

Replace x̂ by x̃ = x − x̂

dx
dt
= (A− B L)x + B x̃+ B(Lxm + lrr)

dx̃
dt
= (A− K C)x̃

Observer error not controllable from r. Makes a lot of sense
because we do not want reference signals to generate ob-
server errors!
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Disturbance Observer

The following system has been used to model constant load
disturbances

dx
dt
= Ax + B(u+ v)

dv
dt
= 0

y = Cx

The system can be written as

d
dt

(
x

v

)
=
(

A B

0 0

)(
x

v

)
+
(

B

0

)
u

y = (C 0 )
(

x

v

)
Notice that the state v which models the load disturbance is not
controllable from u.

Cancellation of Poles and Zeros

Formal calculations with Laplace transforms sometimes leads
to cancellation of poles and zeros.

Consider the system

dy
dt
= du

dt
→ y(t) = u(t) + constant

Take Laplace transforms (assuming all initial values zero)

sY(s) = sU (s), → Y(s) = U (s) → y(t) = u(t)
There are also design methods where it is deliberately at-
tempted to cancel poles and zeros. It is important to under-
stand what happens when this is done. The decomposition of a
linear system gives good insight into what happens when work-
ing with transfer functions.

Example of Cancellation

Consider the system

y u υs + a
s + b

s + b
s + a

The system has the transfer function G(s) = 1. Natural
questions:

• Is the system equivalent to the system y = u?

• What happens with the modes that are cancelled?

Example of Cancellation ...

Introduce the state representation

dx1

dt
= −ax1 + (b− a)(x2 + u)

dx2

dt
= −bx2 + (a− b)u

y = x1 + v = x1 + x2 + u

v = x2 + u

Change coordinates to

z1 = 1
2
(x1 + x2) x1 = z1+ z2

z2 = 1
2
(x1 − x2) x2 = z1− z2
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Example of Cancellation ...

Equations in new coordinates

dz1

dt
= −az1

dz2

dt
= −bz2 + (b− a)z1+ (b− a)u

y = 2z1+ u

v = z1− z2+ u
Σ

Σ
y 

z1

z2 −

u

Σ

Σ
υ

2

1
s +a

b − a
s + b

The state z1 is observable but not controllable

The state z2 is controllable but not observable

Example of Cancellation ...

The system has two states, one state corresponding to the
mode s = −a, is controllable and the state corresponding to
the mode s = −b is also controllable unless a = b. The state
z1 is observable but not the state z2. There are four interesting
cases:

• a > 0 and b > 0:
both modes stable

• a < 0 and b > 0:
mode s = −a unstable mode s = −b stable

• a > 0 and b < 0:
mode s = −a stable mode s = −b unstable

• a < 0 och b < 0:
both modes unstable

Lambda Tuning of PI Controllers

Process: P(s) = b
s+ a

Controller: C(s) = k+ ki

s
= sk+ ki

s
Choose controller parameters to cancel process pole at s =
−a, hence ki/k = a. The loop transfer function becomes

L(s) = kb
s

and the characteristic polynomial is s + kb. Choose controller
gain k to get closed loop pole at s = −α , hence k = α/b.

Are there any drawbacks with the cancellation?

The Audience is Thinking ...

Properties of Closed Loop System

Response to reference signal R and load disturbance D

Y(s) = b(ks+ ki)
s2 + (a+ bk)s+ bki

R(s) + bs
s2 + (a+ bk)s+ bki

D(s)

= α
s+α R(s) + bs

(s+α )(s+ a)D(s)

U (s) = (ks+ ki)(s+ a)
s2 + (a+ bk)s+ bki

R(s) − b(ks + ki)
s2 + (a+ bk)s+ bki

D(s)

= α
b

s+ a
s+α

R(s) − α
s+α

D(s)

Consider the situation when plant dynamics is slow (a small
0.1) and desired response fast (α large 1.0).
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Properties of Closed Loop System ...
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Notice that after the initial reaction the control signal does not
react even if there is a large deviation. This is an effect of the
cancellation. The controller zero at s = -0.1 blocks transmission
of the signal e−0.1t!

Easy to Fix the Problem

Characteristic polynomial

s2 + (a+ bk)s+ bki = s2 + 1.1s+ ki

Change ki from 0.1 to 1!

0 5 10 15 20 25 30 35 40
−0.5

0

0.5

1

0 5 10 15 20 25 30 35 40

−1

−0.5

0

Be careful with cancellation of unstable or slow modes!

Summary

• The notions of controllability and observability were
introduced by Kalman in 1960.

• The arise from questions that are natural to ask when
state models are used:

– Can the states be moved from one position to another?
– Can the state be computed from the measured signal.

• The conditions are required to solve the pole placement
and the observer problems.

• The concepts give a natural decomposition of a system
which gives insight into the cancellation problem.
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