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Theme: Estimating the state and using the estimate for
feedback.

Introduction

• The white box view of dynamical systems

• State a number of variables that summarizes the past that
is useful for prediction

• The pole placement can be solved if all states are mea-
sured

• What to do if only outputs are known?

• How to determine the state from the output?

• Combine it with state feedback

• A new view on integral action

Computing the State from the Output

System

dx
dt
= Ax

y = Cx

Differentiate the output

y = Cx
dy
dt
= CAx

...

dn−1 y
dtn−1 = CAn−1x


C

CA
...

CAn−1

 x = Wox =



y
dy
dt
...

dn−1 y
dtn−1


Wo observability matrix

x = W−1
o



y
dy
dt
...

dn−1 y
dtn−1



An Other Attempt

The problem can be solved if the observability matrix has full
rank. Can we avoid differentiations?

dx
dt
= Ax + Bu

y = Cx

Simulate a model of the system

dx̂
dt
= Ax̂ + Bu

Introduce error x̃ = x − x̂

dx̃
dt
= A(x − x̂) = Ax̃

Works if A stable, but it makes no use of u.
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Two Ways to Calculate the State

By differentiating the output

x = W−1
o

(
y

dy
dt

. . .
dn−1 y
dtn−1

)T

This method has the drawback that it only uses the output and
that it is differentiated many times which is highly sensitive to
noise.

By integrating the input

dx̂
dt
= Ax̂ + Bu

This method has the drawback that it only uses the input and
that it only works if the matrix A is stable.

Can we combine the methods?

An Alternative Solution

dx
dt
= Ax+ Bu

y = Cx

Drive the model by both u and y

dx̂
dt
= Ax̂ + Bu+ K(y − Cx̂)

Introduce error x̃ = x − x̂

dx̃
dt
= A(x − x̂) − K(y − Cx̂) = (A− KC)x̃

Notice that use of output y gives extra freedom.

Determine matrix K so that the matrix A − KC has all its eigenval-
ues in the left half plane, then x̃ will go to zero!

Example - The Car

dx
dt
= Ax + Bu =

(
0 1

0 0

)
x +

(
0

1

)
u

y = Cx = (1 0 ) x

Observability matrix

Wo =
(

1 0

0 1

)
has full rank. The system is observable and the observer is

dx̂
dt
= Ax̂ + Bu =

(
0 1

0 0

)
x̂ +

(
0

1

)
u+

(
k1

k2

)
(y− x̂1)

We have A− K C =
(−k1 1

−k2 0

)

Example - The Car ...

The matrix

A− K C =
(
−k1 1

−k2 0

)
has the characteristic polynomial

det (sI − A+ K C) = det
(

s+ k1 −1

k2 s

)
= s2 + k1s+ k2

Choosing

k1 = 2ζ ω o

k2 = ω2
o

gives the characteristic polynomial s2 + 2ζ ω os+ω 2
o.
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Interpretation of the Observer

The observer is a dynamical system with two inputs u and y
and two outputs x1 and x2.

dx̂
dt
=
(

0 1

0 0

)
x̂ +

(
0

1

)
u+

(
k1

k2

)
(y− x̂1)

Input-output relations

X̂1(s) = 1
s2 + 2ζ ω os+ω2

o
U (s) + 2ζ ω os+ω2

o

s2 + 2ζ ω os+ω2
o

Y(s)

X̂2(s) = s+ 2ζ ω o

s2 + 2ζ ω os+ω2
o

U (s) + ω2
o s

s2 + 2ζ ω os+ω2
o

Y(s)

Physical interpretation. Compare with x̂2 = dy
dt

Comparison with State Feedback

State feedback design: Find matrix L so that the matrix A−B L
has prescribed eigenvalues.

Observer design: Find Matrix K so that the matrix A− K C has
prescribed eigenvalues.

A matrix and its transpose have the same eigenvalues. We
have

(A− K C)T = AT − CT K T

State feedback and observer design are the same problem.
The same software can be used. Use state feedback program
to obtain the observer gain by feeding it by AT and CT instead
of A and B. Transposing L give the observer gain.

Observable Canonical Form

dz
dt
=



−a1 1 0 . . . 0

−a2 0 1 0
...

−an−1 0 0 1

−an 0 0 0


z+



b1

b2

...

bn


u

y =
 1 0 0 . . . 0

 z

W̃o =



1 0 0 . . . 0

−a1 1 0 . . . 0

a2
1 − a2 −a1 1 . . . 0

...

. . . . . . 1

 , W̃−1
o =


1 0 . . . 0

−a1 1 . . . 0

−a2 −a1 . . . 0
...

−an −an−1 . . . 1



Observable Canonical Form

dz
dt
=



−a1 1 0 . . . 0

−a2 0 1 0
...

−an−1 0 0 1

−an 0 0 0


z+



b1

b2

...

bn


u

y =
 1 0 0 . . . 0

 z

dẑ
dt
=


−a1 1 0 . . . 0

−a2 0 1 0
...

−an−1 0 0 1

−an 0 0 0

 ẑ+


b1

b2

...

bn−1

bn

u+


k1

k2

...

kn−1

kn


(y− ẑ1)
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Summary

If the system

dx
dt
= Ax

y = Cx

is observable its state can be determined by the observer

dx̂
dt
= Ax̂ + Bu+ K (y− Cx)

• Combine measurements with mathematical model -
indirect measurements -redundancy

• Sensor fusion in AI terminology

• Determination of filter gain K similar to state feedback
design. Relation to the Kalman filter

Output Feedback

Consider a system which is observable and controllable

dx
dt
= Ax

y = Cx

Determine the state with an observer and use state feedback
from the observed state. The controller is

u = −Lx̂
dx̂
dt
= Ax̂ + Bu+ K (y− Cx̂)

The controller is a dynamical system whose dynamics is
represented by the observer

The Closed Loop System

dx
dt
= Ax + Bu

y = Cx

u = −Lx̂
dx̂
dt
= Ax̂ + Bu+ K (y− Cx̂)

Introduce the state x̃ = x − x̂ instead of x̂.

dx
dt
= Ax + Bu = Ax − B Lx̂ = Ax − B L(x − x̃) = (A− B L)x + B Lx̃

dx̃
dt
= (A− K C)x̃

Characteristic equation

det (sI − A+ B L) det (sI − A + K C) = 0

Block Diagram of Process and Observer

Process

Σ

A

u x y
B ∫ C

Observer contains a copy of the process model

Σ

A

u x
B

Σ   −1

    ̂y

y 

∫ C

K
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Block Diagram of Closed Loop system

Observer
ˆ x y

Process−L   u

A few things remains

• Integral action

• How to introduce reference signals

Observers and State Feedback - A Summary

Design of a controller for

dx
dt
= Ax + Bu, y = Cx

can be split into two problems

• Design of a state feedback and an observer

• The closed loop system has poles corresponding to the
eigenvalues of the state feedback Ac = A − B L and the
observer Ao = A− K C matrices

• The problems are similar. The observer is obtained by the
transformation A → AT , B → CT and L → K T . The same
computer program can be used.

• Interesting interpretation of controller

Integral Action by Explicit Disturbance Modeling

There are many ways to introduce integral action. Here we will
give a method based on explicit modeling of disturbances.

• What is the meaning of the model

dx
dt
= Ax + Bu

• Why do we introduce integral action?

• Disturbances!

• How to describe disturbances

Modeling Disturbances

Classical disturbance models:

• Step
dv
dt
= 0, v(t) = a = constant

• Ramp
d2v
dt2

= 0, v(t) = a+ bt

• Sinusoid
d2v
dt2

+ω 2v = 0, v(t) = a sin(ω t+ b)
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Constant Disturbance at Process I nput

dx
dt
= Ax + B(u+ v)

dv
dt
= 0

Feedback from estimated states

u = −Lx̂ − v̂

Observer

d
dt

(
x̂

v̂

)
=
(

A B

0 0

)(
x̂

v̂

)
+
(

B

0

)
u+

(
K

Kv

)
ε

ε = (y− Cx̂)

Example - The Car

Constant disturbance x3 = v, physical interpretation.

dx
dt
=
 0 1 0

0 0 1

0 0 0

 x +
0

1

0

u

y = Cx = (1 0 0 ) x

System is observable (check this!). The observer

dx̂
dt
=
( 0 1 0

0 0 1

0 0 0

)
x̂ +

( 0

1

0

)
u+

( k1

k2

k3

)
(y− x̂1)

Example - The Car ...

The matrix

A− K C =
(−k1 1 0

−k2 0 1

−k3 0 0

)
has the characteristic polynomial

det (sI − A+ K C) =
( s+ k1 −1 0

k2 s −1

k3 0 s

)
= s3 + k1s2 + k2s+ k3

choose k1 = a+ 2ζ ω o, k2 = 2aζ ω o +ω 2
o, and k3 = aω 2

o to give
characteristic polynomial

(s+a)(s2+2ζ ω os+ω 2
o) = s3+(a+2ζ ω o)s2+(2aζ ω o+ω 2

o)s+aω 2
o

How to Introduce Ref erence Signals

To introduce the reference values we use the standard configu-
ration with two degrees of freedom.

∑ ∑
x m

uff

ˆ x 
Observer

L Process

−

ufb y

  u   Model and
Feedforward 
  Generator

r

• A nice structure

• Decoupling of estimation of disturbances K

• Reduction of disturbances L

• Response to reference signals
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Example - The Car

dx
dt
=
0 1 0

0 0 1

0 0 0

 x +
0

1

0

u

y = Cx = (1 0 0 ) x

Desired response in Laplace transforms

Ym = Xm1 = MyR = ω 2
m

s2 + 2ζ ω ms+ω 2
m

R, Xm2 = sXm1

Hence

Um = P−1MyR = ω2
ms2

s2 + 2ζ ω ms+ω2
m

R

= ω2
m

(
1− 2ζ ω ms+ω2

m

s2 + 2ζ ω ms+ω2
m

)
R = ω2

m

(
R − 2ζ

ω m
sYm − Ym

)

Example - The Car ...

The complete controller

u = l1(xm1 − x̂1) + l2(xm2 − x̂2) − x̂3 + um

um = ω2
m

(
r − 2ζ ω m

ω2
m

xm2 − xm1

)
dxm

dt
=
(

0 1

−ω2
m −2ζ ω m

)
xm +

(
0

ω2
m

)
r

dx̂
dt
=
0 1 0

0 0 1

0 0 0

 x̂ +
0

1

0

u+
 k1

k2

k3

 (y− x̂1)

A Simulation

0 5 10 15
0

1

2 y och ym

0 5 10 15

0

10

20 uff och ufb

0 5 10 15
0

0.5

1
v and ve

Summary

• An elegant approach to control system design

• Interesting system structure with three components:

– state feedback
– observer
– reference trajectory generator

• Strong similarity between state feedback and observers

• Sensor fusion and diagnosis y− ŷ

• A new interpretation of integral action: disturbance estima-
tor. Can be adapted to other signals.
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