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The ball-balancer, or cart-ball system, demonstrates some basic concepts in control be-

ing nonlinear, multivariable, and non-minimum phase. It is basically an inverted pendulum
problem, which is a much used benchmark problem. The objective here is to provide an
analysis of the system, which can be the basis for designing different kinds of controllers.
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The ball-balancing system in this paper consists of a cart with an arc made of two parallel
pipes on which a steel ball rolls. The cart moves on a pair of tracks horizontally mounted
on a heavy support (Fig. 1). The control objective is to balance the ball on the top of the
arc and at the same time place the cart in a desired position. The cart-ball system was built
for teaching electrical engineers about automatic control, originally with a focus on state-
space control theory. It is educational, because the laboratory rig is sufficiently slow for
visual inspection of different control strategies and the mathematical model is sufficiently
complex to be challenging.

Figure 1: Laboratory rig.

The system was built during an M.Sc. project, and later the mathematical model was
published in an educational journal (Jørgensen, 1974). A description, which includes equa-
tions, can be found in that paper, but it has a few errors, and much emphasis is on state-space
concepts. A simulator of the same system was built in Matlab much later for a course on the
Internet (Jantzen, 1996b; Jantzen & Dotoli, 1998). The simulator is based on a linearised
model of the system,

=
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The model is a linear state-space model, where[ is a vector of state variables,
�

[ is the
vector time derivativeg[@gw, X is a vector of inputs to the system, and\ is a vector of output
variables. The matrices$>%> and& are matrices of appropriate dimensions containing real
numbers.

What is needed is a description and derivation of the cart-ball model, which can be
downloaded from the World Wide Web, and possibly function as a benchmark problem for
controller design.

Our approach is to develop the mathematical model fromILUVW SULQFLSOHV, i.e., the basic
laws of physics. Then to linearise the model in order to make it easier to discuss possible
controller configurations.
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The laboratory rig (Fig. 1), 1.5 meters long, is equipped with a power supply and equipment
for both analog and digital control.

By pushing the cart left and right manually, it is possible to get the ball on top of the arc,
but it is impossible to position the cart at a particular position at the same time. An automatic
control system can do that, however. The cart position and ball angle from vertical are
measured variables, and the manipulated variable is the horizontal force acting on the cart.

The ball rolls on curved pipes, one of which is made of aluminium while the other is
a coil of resistance wire. The ball’s angle from vertical is determined by measuring its
position on the pipes. The ball, being made of steel, connects the pipes electrically, and
acts as a voltage divider producing a voltage proportional to the position (Fig 2). The cart
position is measured the same way using a carbon wheel contact, mounted on the cart,
which rolls on a coil alongside the rails.

The rails are cylindric bars mounted on the support, and the cart wheels are small, low-
friction ball-bearings which roll on the bars. A wire pulls the cart, passing over a pulley in
one end and a wire drum in the other end, both attached to the support. The wire drum is
driven by a current-driven direct current (DC) print-motor. Although the motor is current-
driven, we assume the voltage is proportional to the current and in turn that the force is
proportional to the current. This is an approximation, but it is a relatively fast DC motor
with small electrical and mechanical time-constants. The numerical data of the rig are given
in the appendix.

In the Matlab simulator (Fig. 3), a set of working control parameters are set as default
and the cart and ball can be set in motion at the push of a button. When the system has
come to a rest, plots show the transient response of the cart position and velocity as well as
the ball position and velocity.

�� 0DWKHPDWLFDO 0RGHO

The current to the motor is essentially a function of the controlled variables
�
|>

=
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which | is the position of the cart and* is the angular deviation from vertical of the ball
position. The velocity signals are not directly measured, but obtained by differentiation in
operational amplifiers.

Newton’s laws and various relationships bring out a model consisting of two coupled,
nonlinear differential equations (appendix). After linearisation they can be put on the state
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Figure 2: Ball position measurement.

Figure 3: Matlab animation of cart-ball system.
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Figure 4: Signal flow in the state-space model.
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The state vector [ is the vector
�
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and the output vector is

\ @

�
|
*
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The input vector X consists of just one input I , the horizontal force acting on the cart, which
can be substituted by the voltage X to the motor, as their relationship is 1 volt to 1 Newton;
that is how the motor and the gear were designed. The constants +d> e> f> g, depend on the
physical data. The matrices (2) are the basis for the Matlab simulator (Fig. 3).

An overview of the model is provided by a so-called VLJQDO IORZ JUDSK. Given a state
space model with matrices containing zeros and non-zero elements, the flow of the signals
can be mapped into a directed graph, or GLJUDSK ; the digraph is a picture of the couplings
in the model (Fig. 4).

The node set is given by an input node, four state nodes, and two output nodes; the arc
set is given by the non-zero entries in the matrices. That is, if dlm 9@ 3, then there exists an
arc from the mth state node to the lth state node; if elm 9@ 3, then there exists an arc from
the mth input node to lth state node; and if flm 9@ 3, then there exists an arc from the mth
state node to the lth output node. The numbers dlm > elm > flm are assigned to the arcs, socalled
ZHLJKWV.

If a designer decides to add a feedback connection from the output node * to the input
nodeI , he will create a loop*�I� =

* �*= If, alternatively, he adds a feedback connection
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from the output node | to the input node I , he will create a larger loop, |�I� =
* �*� =

|

�|> as well as a another loop, | � I� =
| �|= In the first case, there is no feedback from

the cart to the ball, while in the second case, there is feedback through the ball into the cart.
Therefore it is easier to design a ball controller than a cart controller; the ball controller can
be designed and tuned independently of how the cart behaves, while a cart controller will
be influenced by the ball behaviour.

Since state space models are not unique � a given physical plant may be modelled
by several state-space models � the digraph reflects the flow of signals in the PRGHO, not
necessarily the physical system itself. For more information about the digraph approach,
see for example Jantzen (1996a).

�� &RQWUROOHU &RQILJXUDWLRQV

Any feedback controller has to measure some or all of the state variables in the cart-ball
system and derive a control signal from that. We will look at two particular configurations:
a state feedback controller, and two cascaded proportional-derivative (PD) controllers. The
former lends itself to mathematical analysis, while the latter is more intuitive with regard
to manual tuning.

��� 6WDWH IHHGEDFN FRQWURO

A state feedback controller generates a control signal

X @ .[ (3)

from the value of the state variables, or

X @ n4| . n5
=
| .n6*. n7

=
* (4)

Notice that the control signal is now the voltage X rather than the force I , for convenience.
The block diagram in Fig. 5 shows how the four states are fed back into the controller, which
combines them linearly.

Cart-ball
model

U

Controller

Figure 5: State feedback control.
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Equation (4) can be viewed as having a cart component and a ball component, simply
by placing some parentheses,

X @
�
n4| . n5

=
|
�
.
�
n6*. n7

=
*
�

(5)

An equivalent block diagram will show two controllers feeding into a summation point.
The constants n4> = = = > n7 are tuning constants, and the trick is to choose them such that

the system becomes stable.
Stability can be checked mathematically. Insert (3) in (1),

=
[ @ $[. %.[ @ +$. %., [ (6)

\ @ &[

This is a state-space form as well, but of the closed-loop system. Stability is guaranteed
if none of the eigenvalues of the closed-loop system matrix $ . %. are in the right half
of the complex plane. Jørgensen (1974) went through the calculations, and his main result
is that alln’s must be positive. Consequently, if just one of them is zero the system will
be unstable; therefore all four state variables must be available to the controller. In the lab
rig, only the positions are directly measurable. The velocities are computed in hardware,
however, and therefore available after all.

It is interesting to notice that the cart has positive feedback. Sincen4 must be positive,
a positive (negative) position will generate a positive (negative) contribution to the control
signalX . As all directions are assumed positive towards the right (appendix), the cart
controller will try to push it right when it is on the right side of the centre of the track, i.e.,
DZD\ from the centre.

By trial and error, Jørgensen (1974) found the following values satisfactory,

. @ ^8> 8> 453> ;`

With all states available, a set of gainsn4> = = = > n7 can be found using optimisation tech-
niques, for example thelqr (Linear Quadratic Regulator) function in the Control Toolbox
of Matlab. The optimisation requires minimising a cost function, a combined weighting of
the state variables and the control signal. A fast and stable controller with little overshoot
results from the following values

. @ ^57> 57> 495> 77`

A plot of the step response is shown in Fig. 6.

��� &DVFDGH FRQWURO

It is quite intuitive to divide the system into two subsystems, one for the ball, another for
the cart; it makes it more manageable.

The ball seems to require faster control reaction than the positioning of the cart (Jør-
gensen, 1974), and it is standard practice to have a fast inner loop, in this case a PD con-
troller reacting on the ball angle, which takes commands from a slower outer loop, in this
case a PD controller reacting on the cart position (Fig. 7).

The inner loop makes the ball reach its reference*u> preferably as quickly as possible
and with as little overshoot as possible. The outer loop commands a desired angle (refer-
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Figure 6: Step responses when . @ ^57> 57> 495> 77` =

ence) *u of the ball controller. If the reference is, say, positive, the ball controller will try to
stabilise the ball in a position on the right side of the top by accelerating the cart towards the
right. In other words, the cart controller should command a positive (negative) reference,
when the cart must move right (left). When the cart is near its reference, the cart controller
will command *u � 3 and the ball controller will try to keep the ball near the top. In the
stable point everything will be at a stand-still with +|> *, @ +3> 3, =

�� &RQFOXVLRQV

According to an old control engineer, a design project is ;3( process knowledge and 53(
controller design. If this is the case here, then this report may save the ;3(, letting students
concentrate on the controller design. The report will be available on the World Wide Web
(reachable via http://www.iau.dtu.dk/~jj).
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The numerical data and associated symbols for the cart-ball rig is given in Table 1 supple-
mented by Fig. 8. All directions are assumed positive towards the right. We will analyse
the ball and cart separately and apply the basic physical equations related to the vertical
reaction force Y and the horizontal reaction force K. Friction forces are neglected.

� The horizontal movement of the ball

p
g5

gw5
^| . +U. u, vlq*` @ K (A-1)

� The vertical movement of the ball

p
g5

gw5
^+U. u, frv*` @ Y �pj (A-2)

� The rotational movement of the ball

L
==

# @ u +Y vlq*�K frv*, (A-3)

� The horizontal movement of the cart

P
==
|@ I �K (A-4)

� The relationship between * and #

# @
U. u

u
* (A-5)

The variables +#> Y>K, can be eliminated from (A-1)-(A-5), yielding two second order
differential equations in * and |,

+P .p,
==
| @ �p +U. u,

�
==
* frv* � =

*
5
vlq*

�
. I (A-6)

L
U. u

u

==
* @ pu +U. u,

�
� ==

* vlq5 * � =
*
5
frv* vlq*

�
(A-7)

.pju vlq*.Pu
==
| frv*� Iu frv*

They are nonlinear due to the trigonometric functions, and they are coupled such that
==
| oc-

curs on the left side of (A-6) and on the right side of (A-7); the situation is the reverse in the

case of
==
*. They can be solved, in principle at least, given

k
I +w,> * +3, >

=
* +3, > | +3, >

=
| +3,

l
.
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Object Symbol Ratings

cart length 0.35 [m]

cart width 0.12 [m]

cart radius of the arc U 0.50 [m]

cart weight, including equivalent

mass of motor and transmission P 3.1 [kg]

cart position |
cart driving force I [N]

ball maximum angle 	0.22 [rad]

ball radius u4 0.0275 [m]

ball rolling radius u 0.025 [m]

ball rolling angle [radian] #
ball angular deviation [radian] * max 0.22 [radian]

ball weight p 0.675 [kg]

ball moment of inertia, 58pu54 L 0.204*10�6 [kgm5]

ball vertical reactive force [N] Y
ball horizontal reactive force [N] K
bar length 1.4 [m]

bar diameter 0.025 [m]

motor power max 21 [W]

motor voltage X max 13 [V]

motor transmission ratio X = I 4 = 4
motor speed 3700 [r.p.m]

gravity j 9.81 [ms�5]

Table 1: Physical data for lab rig
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Figure 8: Symbol definitions.
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Introducing the state vector [ of state variables

{4 @ | (A-8)

{5 @
=
|

{6 @ *

{7 @
=
*

in (A-6)-(A-7), and after a lot of rearranging, the nonlinear state-space equations emerge.

=
{4 @ {5 (A-9)

=
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�p +U. u,
�� +u .U,pu
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vlq{6 frv5 {6

�
{57 .pju vlq{6 frv{6

�
+P .p,

�
L+U.u,

u
. up

�
vlq5 {6

�
+U. u, . uP+frv5 {6,p+U.u,

+P.p,

� (A-10)

.
p +U. u,
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{57 vlq{6

L+U.u,
u

. {57up
�
vlq6 {6

�
+U. u,

�

+P .p,
�
L+U.u,

u
. up

�
vlq5 {6

�
+U. u, . uP+frv5 {6,p+U.u,

+P.p,

�

.
+u .U,

�
pu5 . L

�
u +P .p,

�
L+U.u,

u
. up

�
vlq5 {6

�
+U. u, . uP+frv5 {6,p+U.u,

+P.p,

�I
=
{6 @ {7 (A-11)
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�
�up5{57

U.u
P.p +frv{6 vlq{6, .pju vlq{6

�
L+U.u,

u
. up

�
vlq5 {6

�
+U. u, . uP+frv5 {6,p+U.u,

+P.p,

(A-12)

� u +frv{6,
p

P.p
L+U.u,

u
. up

�
vlq5 {6

�
+U. u, . uP+frv5 {6,p+U.u,

+P.p,

I

The model can be linearised around the origin. In order to avoid errors we will linearise
(A-6)-(A-7) rather than the nonlinear state-space equations. Introduce the following ap-
proximations to the trigonometric functions,

frv* * 4> vlq* * *> frv5 * * 4> vlq5 * * 3 (A-13)

The angle * is in the order of 	3=55 radian, and the error introduced by the linearisation
is small. Furthermore it has been shown (Jørgensen, 1974) that the influence of terms
containing the factor

=
*
5

is less than one percent, so those terms will be neglected. Equations
(A-6)-(A-7) reduce to

+P .p,
==
| @ �p +U. u,

==
* .I (A-14)

L
U. u

u

==
* @ pju*.Pu

==
| �Iu (A-15)

After some rearranging, one gets

==
| @ � p5u5j

PL .pL .pu5P
*.

pu5 . L

PL .pL .pu5P
I (A-16)
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==
* @

pu5j +P .p,

+U. u, +PL .pL .pu5P,
*� pu5

+U. u, +PL .pL .pu5P,
I(A-17)

Introducing the substitution variables

d @ � p5u5j

PL .pL .pu5P
(A-18)

e @
pu5 . L

PL .pL .pu5P

f @
pu5j +P .p,

+U. u, +PL .pL .pu5P,

g @ � pu5

+U. u, +PL .pL .pu5P,

and the state vector (A-8) one obtains a linear state-space model
=
[ @ $[. %X (A-19)
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The matrices are simply
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With the data in Table 1 the actual values of the constants are

+d> e> f> g, @ +�4=67> 3=634> 47=6>�3=6;9,
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