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Abstract

The ball-balancer, or cart-ball system, demonstrates some basic conceptsin control be-
ing nonlinear, multivariable, and non-minimum phase. Itisbasically an inverted pendulum
problem, which is a much used benchmark problem. The objective here is to provide an
analysis of the system, which can be the basis for designing different kinds of controllers.
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1. Introduction

The ball-balancing system in this paper consists of a cart with an arc made of two parallel
pipes on which a stedl ball rolls. The cart moves on apair of tracks horizontally mounted
on aheavy support (Fig. 1). The control objective is to balance the ball on the top of the
arc and at the same time place the cart in adesired position. The cart-ball system was built
for teaching electrical engineers about automatic control, originally with afocus on state-
space control theory. It is educational, because the laboratory rig is sufficiently slow for
visual inspection of different control strategies and the mathematical model is sufficiently
complex to be challenging.
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Figure 1: Laboratory rig.

The system was built during an M.Sc. project, and later the mathematical model was
published in an educational journal (Jargensen, 1974). A description, which includes equa-
tions, can be found in that paper, but it has a few errors, and much emphasis is on state-space
concepts. A simulator of the same system was built in Matlab much later for a course on the
Internet (Jantzen, 1996b; Jantzen & Dotoli, 1998). The simulator is based on a linearised
model of the system,

X

Ax + Bu N
y = Cx

The model is a linear state-space model, wheig a vector of state variables, is the
vector time derivativex/dt, u is a vector of inputs to the system, ayis a vector of output
variables. The matrices, B, andC are matrices of appropriate dimensions containing real
numbers.

What is needed is a description and derivation of the cart-ball model, which can be
downloaded from the World Wide Web, and possibly function as a benchmark problem for
controller design.

Our approach is to develop the mathematical model ffiemprinciples, i.e., the basic
laws of physics. Then to linearise the model in order to make it easier to discuss possible
controller configurations.



2. The Laboratory Rig

Thelaboratory rig (Fig. 1), 1.5 meterslong, isequipped with apower supply and equi pment
for both analog and digital control.

By pushing the cart left and right manually, it is possible to get the ball on top of thearc,
but itisimpossibleto positionthe cart at aparticular position at the sametime. Anautomatic
control system can do that, however. The cart position and ball angle from vertical are
measured variables, and the manipulated variable is the horizontal force acting on the cart.

The ball rolls on curved pipes, one of which is made of auminium while the other is
a cail of resistance wire. The ball’'s angle from vertical is determined by measuring its
position on the pipes. The ball, being made of steel, connects the pipes electrically, and
acts as a voltage divider producing a voltage proportional to the position (Fig 2). The cart
position is measured the same way using a carbon wheel contact, mounted on the cart,
which rolls on a coil alongside the rails.

The rails are cylindric bars mounted on the support, and the cart wheels are small, low-
friction ball-bearings which roll on the bars. A wire pulls the cart, passing over a pulley in
one end and a wire drum in the other end, both attached to the support. The wire drum is
driven by a current-driven direct current (DC) print-motor. Although the motor is current-
driven, we assume the voltage is proportional to the current and in turn that the force is
proportional to the current. This is an approximation, but it is a relatively fast DC motor
with small electrical and mechanical time-constants. The numerical data of the rig are given
in the appendix.

In the Matlab simulator (Fig. 3), a set of working control parameters are set as default
and the cart and ball can be set in motion at the push of a button. When the system has
come to arest, plots show the transient response of the cart position and velocity as well as
the ball position and velocity.

3. Mathematical Model

The current to the motor is essentially a function of the controlled varidblgs ¢, ) in

which y is the position of the cart and is the angular deviation from vertical of the ball
position. The velocity signals are not directly measured, but obtained by differentiation in
operational amplifiers.

Newton’s laws and various relationships bring out a model consisting of two coupled,
nonlinear differential equations (appendix). After linearisation they can be put on the state
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Figure 2: Ball position measurement.
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Figure 3: Matlab animation of cart-ball system.
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Figure 4: Signal flow in the state-space model.
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The state vector x is the vector (y, Y, 0, gb) and the output vector is

1]

Theinput vector u consists of just oneinput F, the horizontal force acting on the cart, which
can be substituted by the voltage U to the motor, astheir relationship is 1 volt to 1 Newton;
that is how the motor and the gear were designed. The constants (a, b, ¢, d) depend on the
physical data. The matrices (2) are the basis for the Matlab simulator (Fig. 3).

An overview of the model is provided by a so-called signal flow graph. Given a state
space model with matrices containing zeros and non-zero elements, the flow of the signals
can be mapped into adirected graph, or digraph ; the digraph is a picture of the couplings
inthe modd (Fig. 4).

The node set is given by an input node, four state nodes, and two output nodes; the arc
set is given by the non-zero entriesin the matrices. That is, if a;; # 0, then there exists an
arc from the jth state node to the ith state node; if b;; # 0, then there exists an arc from
the jth input node to ¢th state node; and if ¢;; # 0, then there exists an arc from the jth
state node to the ith output node. The numbersa,;, b;;, c;; are assigned to the arcs, socalled
weights.

If a designer decidesto add afeedback connection from the output node ¢ to the input
node F', hewill createaloop o — F— ¢ —¢. If, dternatively, he adds afeedback connection



from the output node y to the input node F, he will create alarger loop, y — F— ¢ —p— Y
—y, aswell asaanother loop, y — F— ¥ —y. Inthe first case, there is no feedback from
the cart to the ball, whilein the second case, there isfeedback through the ball into the cart.
Thereforeitiseasier to design aball controller than acart controller; the ball controller can
be designed and tuned independently of how the cart behaves, while a cart controller will
be influenced by the ball behaviour.

Since state space models are not unique — a given physical plant may be modelled
by several state-space models — the digraph reflects the flow of signalsin the model, not
necessarily the physical system itself. For more information about the digraph approach,
see for example Jantzen (19964).

4. Controller Configurations

Any feedback controller has to measure some or al of the state variables in the cart-ball
system and derive acontrol signal from that. We will look at two particular configurations:
astate feedback controller, and two cascaded proportional -derivative (PD) controllers. The
former lends itself to mathematical analysis, while the latter is more intuitive with regard
to manual tuning.

4.1 State feedback control

A state feedback controller generates a control signal
u = Kx 3
from the value of the state variables, or
U=ky+ko¥ +kso+kyp @)

Noticethat the control signal isnow thevoltage U rather than theforce F, for convenience.
Theblock diagraminFig. 5showshow thefour statesarefed back into the controller, which
combines them linearly.
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Figure 5: State feedback control.



Equation (4) can be viewed as having a cart component and a ball component, simply
by placing some parentheses,

U:(hy+by)+%wH%q@ ©)
An equivalent block diagram will show two controllers feeding into a summation point.
The constants k4, . . . , k4 aretuning constants, and the trick is to choose them such that
the system becomes stable.
Stability can be checked mathematically. Insert (3) in (1),
x = Ax+BKx=(A+BK)x (6)
y = Cx

Thisis a state-space form as well, but of the closed-loop system. Stahility is guaranteed
if none of the eigenvalues of the closed-loop system matrix A + BK arein the right half
of the complex plane. Jargensen (1974) went through the calculations, and his main result
is that all ¥'s must be positive. Consequently, if just one of them is zero the system will
be unstable; therefore all four state variables must be available to the controller. In the lab
rig, only the positions are directly measurable. The velocities are computed in hardware,
however, and therefore available after all.

It is interesting to notice that the cart has positive feedback. Zinosust be positive,
a positive (negative) position will generate a positive (negative) contribution to the control
signalU. As all directions are assumed positive towards the right (appendix), the cart
controller will try to push it right when it is on the right side of the centre of the track, i.e.,
away from the centre.

By trial and error, Jgrgensen (1974) found the following values satisfactory,

K = [5,5,120, 8]

With all states available, a set of gailis . . . , k4 can be found using optimisation tech-
nigues, for example theqr (Linear Quadratic Regulator) function in the Control Toolbox
of Matlab. The optimisation requires minimising a cost function, a combined weighting of
the state variables and the control signal. A fast and stable controller with little overshoot
results from the following values

K = [24, 24,162, 44]
A plot of the step response is shown in Fig. 6.

4.2 Cascade control

It is quite intuitive to divide the system into two subsystems, one for the ball, another for
the cart; it makes it more manageable.

The ball seems to require faster control reaction than the positioning of the cart (Jar-
gensen, 1974), and it is standard practice to have a fast inner loop, in this case a PD con-
troller reacting on the ball angle, which takes commands from a slower outer loop, in this
case a PD controller reacting on the cart position (Fig. 7).

The inner loop makes the ball reach its referepgepreferably as quickly as possible
and with as little overshoot as possible. The outer loop commands a desired angle (refer-



Linear Summation Controller

02 1 /\
o 05
z ||
. 7,
E.02 = /
> \ / 8-05
>
Y |
v Rl
06 -15
0 2 4 6 0 2 4 6
04 15
02 z 1 A\
T / \ Eo.s \
—_ O -
ool MRV
02 ﬁ-o.s y
045 2 4 6 o 2 4 6
Time[s] Time[s]

Figure 6: Step responseswhen K = [24, 24,162, 44] .

ence) p,. of the ball controller. If the referenceis, say, positive, theball controller will try to
stabilisethe ball in aposition on the right side of the top by accel erating the cart towardsthe
right. In other words, the cart controller should command a positive (negative) reference,
when the cart must moveright (Ieft). When the cart is near itsreference, the cart controller
will command ¢, =~ 0 and the ball controller will try to keep the ball near the top. In the
stable point everything will be at a stand-still with (y, ¢) = (0,0).

5. Conclusions

According to an old control engineer, a design project is80% process knowledge and 20%
controller design. If thisisthe case here, then thisreport may save the 80%, letting students
concentrate on the controller design. The report will be available on the World Wide Web
(reachableviaht t p: // www. i au. dt u. dk/ ~jj).

References

Jantzen, J. (19964). Digraph analyses of linear control systems, %echnical Report (no number),
Technical University of Denmark: Dept. of Automation, Bldg 326, DK-2800 Lyngby, Den-
mark. 127 pp.

Jantzen, J. (1996b). Fuzzy control course on the internet, http://www.iau.dtu.dk/™ jj/learn.

Jantzen, J. and Dotoli, M. (1998). A fuzzy control course on the intefnd?, K. Chawdry,



Figure 7: Cascade control.

R. Roy and R. K. Pant (eds), Soft Computing in Engineering Design and Manufacturing,
Springer Verlag London Ltd, pp. 122-130.

Jargensen,.\(1974). A ball-balancing system for demonstration of basic concepts in the state-
space control theoryut.J. Elect. Enging Educ. 11: 367-376.



Appendix A. Calculations And Data

The numerical data and associated symbols for the cart-ball rig is given in Table 1 supple-
mented by Fig. 8. All directions are assumed positive towards the right. We will analyse
the ball and cart separately and apply the basic physical equations related to the vertical
reaction force V' and the horizontal reaction force H. Friction forces are neglected.

e The horizontal movement of the ball
2

mes [y+ (R+r)sing] = H (A-1)
e Thevertical movement of the ball
mj—; [(R+7r)cosp] =V —myg (A-2)
e Therotational movement of the ball
Iy=r(Vsing — Hcosp) (A-3)
e Thehorizontal movement of the cart
Miy=F—H (A-4)

The relationship between ¢ and v

R+r
¥
,

Y= (A-5)

The variables (v, V, H) can be eliminated from (A-1)-(A-5), yielding two second order
differential equationsin ¢ and y,
(M+m)y = —-m(R+r) (go cos p — gb2 singo) +F (A-6)

IR+T¢ = mr(R—&—r)(—{psinQ@—<,'02<:osgosingo) (A-7)

r

+mgrsinp + Mr Y cos — Frcos

They are nonlinear due to the trigonometric functions, and they are coupled such that ¥ oc-
cursontheleft side of (A-6) and on theright side of (A-7); the situation isthereverseinthe

caseof (. They canbesolved, in principleat least, given [F(t), 2 (0),¢ (0),y(0),9 (0)].

10



Object Symbol  Ratings

cart length 0.35[m]
cart width 0.12 [m]
cart radius of the arc R 0.50 [m]

cart weight, including equivalent

mass of motor and transmission M 3.1[kg]

cart position Y

cart driving force F [N]

ball maximum angle +0.22 [rad]
ball radius 1 0.0275 [m]
ball rolling radius r 0.025[m]
ball rolling angle [radian] P

ball angular deviation [radian] @) max 0.22 [radian]
ball weight m 0.675 [kg]
ball moment of inertia, %mr% I 0.204*10~3 [kgm?]
ball vertical reactive force [N] 1%

ball horizontal reactiveforce[N] H

bar length 1.4[m]

bar diameter 0.025[m]
motor power max 21 [W]
motor voltage U max 13 [V]
motor transmission ratio U:F 1:1

motor speed 3700 [r.p.m]
gravity g 9.81 [msfg]

Table 1. Physical datafor labrig

Figure 8: Symbol definitions.



Introducing the state vector x of state variables

o =y (A-8)
Ty, = Y
T3 = @
Ty =

in (A-6)-(A-7), and after alot of rearranging, the nonlinear state-space eguations emerge.

b= (A-9)

L om(EEn) (-t Ry (sinrgcostag) o + myrsingcoszg) o

Ty = I (cos? o
(M +m) (J_ZI Rtr) | m (Sin2 1’3) (R+7r)+ TNI(CO(SAij;T;(R+T))

m (R + )(I sin 23 T 4 2 (sin® 23) (R r))

+
(M +m) (@ +rm (Sin x3) (R+7)+ 4 1M (cos? wa)m(R-H))

(M+m)
(r+ R) (mr + I)

+

21.33:I4

—rm2p2 BEr i i
( rm*ay s (cos T sinxy) + mgr sin xg)

I(I‘_i:FT) +rm (SIH2 ZL‘3) (R + ’I“) + r]\l(co(sj\;:iz;rlr;(l%—kr)

r (coszs) Mt

r (M +m) (J—ZI B 1 (sin® as) (R+7) + rM(cos” my)m(R )

T | (i 25) (R 7) + Pzl

)F

(A-11)

(A-12)

The model can be linearised around the origin. In order to avoid errors we will linearise
(A-6)-(A-7) rather than the nonlinear state-space equations. Introduce the following ap-

proximations to the trigonometric functions,
cosp ~ 1,sing ~ ¢, cos?p~1,sin?p~0

(A-13)

The angle ¢ isin the order of +0.22 radian, and the error introduced by the linearisation
is small. Furthermore it has been shown (Jargensen, 1974) that the influence of terms
containing the facto,b2 is less than one percent, so those terms will be neglected. Equations

(A-6)-(A-7) reduce to

(M+m)y = —-m(R+r)p+F
R+7r ..
I v

mgre + Mr Yy —Fr

After some rearranging, one gets
m?r?g mr? 4+ 1

_— -
4 M+ ml+ o2 P T M+ ml +mreM
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(A-14)
(A-15)

(A-16)



2 2
mr4g (M + m) mr 1)

7T R+ MI+ml+mr2M)* " (R+r) (MI+ml +mr2M)
Introducing the substitution variables

m2r2g
~ MI +ml +mr2M (A-18)
mr? 4 1T
MI+mI+mr2M
mr2g (M + m)
(R+7) (MI +mI + mr2M)
mr?
(R+7)(MI +mI +mr2M)

and the state vector (A-8) one obtains alinear state-space model

a =

b pu—

C =

d = -

X = Ax+Bu (A-19)
y = Cx
The matrices are smply
[0 1 0 0 0
0 0 a O b
A=looo 1| B o
(00 c O d (A-20)
1 0 0 0O
C=1lo01 0

With the datain Table 1 the actual values of the constants are
(a,b,c,d) =(—1.34,0.301, 14.3, —0.386)
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