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Preface

Part of these notes were developed for a course of the Duttliddeon Systems and Contr
with the title “Robust control an@{,, optimization,” which was taught in the Spring of 19¢
These first notes were adapted and much expanded for a coitinstaavtitle “Design Methods
for Control Systems,” first taught in the Spring of 1994. Thesgre thoroughly revised for th
Winter 1995-1996 course. For the Winter 1996—-1997 coursgtéh 4 was extensively revise
and expanded, and a number of corrections and small adslitere made to the other chapte
In the Winter 1997-1998 edition some material was added ap€&h 4 but otherwise there we
minor changes only. The changes in the 1999-2000 versioa limited to a number of mino
corrections. In the 2000—-2001 version an index and an apperde added and Chapter 4 w
revised. A couple of mistakes were corrected in the 20012280002-2003 and 2003-2004 issL
Ho theory was updated in 2004-2005 and the main modificatio0@52006 was that chapte
3 and 4 were interchanged.

The aim of the course is to present a mature overview of skivepartant design technique
for linear control systems, varying from classical to “posddern.” The emphasis is on ide¢
methodology, results, and strong and weak points, not oof pechniques.

All the numerical examples were prepared usingmJas. For many examples and exercis
the Control Toolbox is needed. For Chapter 6 the Robust GbRtiolbox or thew-Tools toolbox
is indispensable.
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1. Introduction to Feedback Control
Theory

Overview— Feedback is an essential element of automatic control sys
tems. The primary requirements for feedback control systm stabil-
ity, performance and robustness.

The design targets for linear time-invariant feedbackesystmay be
phrased in terms of frequency response design goals andslagpng.
The design targets need to be consistent with the limits dbpaance
imposed by physical realizability.

Extra degrees of freedom in the feedback system configuarattco-
duce more flexibility.

1.1. Introduction

Designing a control system is a creative process involvingmber of choices and decisior
These choices depend on the properties of the system thathie tontrolled and on the re
quirements that are to be satisfied by the controlled systm.decisions imply compromise
between conflicting requirements. The design of a contrstiesy involves the following steps:

1. Characterize the system boundary, that is, specify thgesof the control problem and ¢
the system to be controlled.

2. Establish the type and the placement of actuators in ttersy and thus specify the inpu
that control the system.

3. Formulate a model for the dynamic behavior of the systemsiply including a descrip
tion of its uncertainty.

4. Decide on the type and the placement of sensors in thensyated thus specify the var
ables that are available for feedforward or feedback.

5. Formulate a model for the disturbances and noise signai@ffect the system.
6. Specify or choose the class of command signals that arefillbwed by certain outputs

7. Decide upon the functional structure and the charactieofontroller, also in dependen
on its technical implementation.



8. Specify the desirable or required properties and gaalidf the control system.

In several of these steps it is crucial to derive useful nmatitecal models of systems, signals a
performance requirements. For the success of a contremydtsign the depth of understandi
of the dynamical properties of the system and the sighadsédtmore important than ttaepriori
qualifications of the particular design method.

The models of systems we consider are in general linear areditivariant. Sometimes the
are the result of physical modelling obtained by applicatd first principles and basic law:
On other occasions they follow from experimental or empgirinodelling involving experimen
tation on a real plant or process, data gathering, and fittiodels using methods for syste
identification.

Some of the steps may need to be performed repeatedly. Teanréathat they involve de
sign decisions whose consequences only become clear mstips. It may then be necessz
or useful to revise an earlier decision. Design thus is agssof gaining experience and dev
oping understanding and expertise that leads to a propant@between conflicting targets a
requirements.

The functional specifications for control systems depentherapplication. We distinguis|
different types of control systems:

Regulator systems. The primary function of a regulator system is to keep a deg&gphoutput
within tolerances at a predetermined value despite thetsfiaf load changes and oth
disturbances.

Servo or positioning systems.  In a servo system or positioning control system the systel
designed to change the value of an output as commanded bgrameé input signal, an
in addition is required to act as a regulator system.

Tracking systems. In this case the reference signal is not predetermined lesepits itself as
measured or observed signal to be tracked by an output.

Feedback is an essential element of automatic control.i¥hiky§ 1.2 presents an elementa
survey of a number of basic issues in feedback control thddmyse includeobustness, linearity
andbandwidth improvemenanddisturbance reduction.

Stability is a primary requirement for automatic contradtgms. After recalling i§ 1.3various
definitions of stability we review several well known waysdaftermining stability, including the
Nyquist criterion.

In view of the importance of stability we elaborateih.4on the notion of stability robustnes
First we recall several classical and more recent notiossatifility margin. More refined result
follow by using the Nyquist criterion to establish conditofor robust stability with respect t
loop gain perturbations and inverse loop gain perturbation

For single-input single-output feedback systems reajizire most important design targe
may be viewed as a process of loop shaping of a one-degrigeenfom feedback loop. Th
targets include

e closed-loop stability,
targets e disturbance attenuation,
e stability robustness,

within the limitations set by

plant capacity,

.. . [}
limitations . .
e corruption by measurement noise.



Further design targets, which may require a two-degrefeegdom configuration, are

satisfactory closed-loop response,

[}
further targets { e robustness of the closed-loop response.

Loop shaping and prefilter design are discusseglirb. This section introduces various impc
tant closed-loop system functions such as the sensitiitgtion, the complementary sensitivi
function, and the input sensitivity function.

Certain properties of the plant, in particular its poleezpattern, impose inherent restrictio
on the closed-loop performance. §rlL.7 the limitations that right-half plane poles and ze
imply are reviewed. Ignoring these limitations may welldeéa unrealistic design specificatior
These results deserve more attention than they generaéivee

l% and 2-degree-of-freedom feedback systems, designed $afqeong and tracking, are dis
cussed in Sectiof.8.

1.2. Basic feedback theory

1.2.1. Introduction

In this section feedback theory is introduced at a low cohcadgevel. It is shown how the
simple idea of feedback has far-reaching technical imptioa.

Example 1.2.1 (Cruise control system). Figurel.1shows a block diagram of an automob
cruise control system, which is used to maintain the spead/ehicle automatically at a consta
level. The speed of the car depends on the throttle openind he throttle opening is controlle
by the cruise controller in such a way that the throttle opgigincreasedf the differencev, —v
between the reference spegdand the actual speed is positive, atetreasedf the difference
is negative.

This feedback mechanism is meant to correct automaticaylglaviations of the actual vehicl
speed from the desired cruise speed.

reference throttle
speed opening
R cruise u car v
controller

Figure 1.1: Block diagram of the cruise control system

For later use we set up a simple model of the cruising vehi@é¢ accounts for the majc
physical effects. By Newton’s law
mi(t) = Foal(?), 120, (1.1)

wherem is the mass of the car, the derivativef the speed its acceleration, andi., the total
force exerted on the car in forward direction. The total éomtay be expressed as

2
Fiowl(t) = cu(t) — pv(1). (1.2)
1This section has been adapted from Section 11Kvafkernaak and Siva(i997).




The first termcu(t) represents the propulsion force of the engine, and is ptiopat to the
throttle openingu(¢), with proportionality constant. The throttle opening varies between
(shut) and 1 (fully open). The second tegn?(¢) is caused by air resistance. The friction for
is proportional to the square of the speed of the car, withe friction coefficient. Substitutior
of Fiotal into Newton’s law results in

mi(t) = cu(t) — pv*(1), t>0. (1.3)

If u(t) = 1,¢ > 0, then the speed has a corresponding steady-state yqglenhich satisfies
0 = ¢ — pv2 4 HeNncemax = /¢/p. Defining

v
w =

(1.4)

Umax

as the speed expressed as a fraction of the top speed, theedifal equation reduces to
Tw(t) = u(t) —w?(1), t>0, (1.5)

whereT = m/ ./pc. Atypical practical value fof" is T = 10 [s].

We linearize the differential equatiod.§). To a constant throttle setting, corresponds &
steady-state cruise speeqg such that) = uy — wé. Letu = up + # andw = wy + w, with
|w| < wop. Substitution into {.5) while neglecting second-order terms yields

Tw(t) = ii(t) — 2w (7). (1.6)

Omitting the circumflexes we thus have the first-order lirdifierential equation

. +1 t>0 1.7)
w = ew Tu, >0, .
with
T
6 =—. (1.8)
Zwo

The time constand strongly depends on the operating conditions. If the crsjged increase
from 25% to 75% of the top speed thémecreases from 20 [s] to 6.7 [s]. O

Exercise 1.2.2 (Acceleration curve).  Show that the solution of the scaled differential equat
(1.5 for a constant maximal throttle position

u(t) =1, t>0, (1.9)
and initial conditionw(0) = 0 is given by

w(t) = tanl’(%), (> 0. (1.10)
Plot the scaled speed as a function of for T = 10 [s]. Is this a powerful car? O

1.2.2. Feedback configurations

To understand and analyze feedback we first consider thegewafion of Fig1.2(a). The signat
is an external control input. The “plant” is a given systerhpse output is to be controlled. Ofte
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Figure 1.2: Feedback configurations: (a) General. (b) Watiback

plant
r e P y r e y
4
@) (b)

return compensator

Figure 1.3: (a) Feedback configuration with input-outpupmab) Equiva-
lent unit feedback configuration

the function of this part of the feedback system is to proyioeer, and its dynamical properti
are not always favorable. The outpubf the plant is fed back via theeturn compensatoand
subtracted from the external input The difference is called theerror signaland is fed to the
plant via theforward compensator.

The system of Figl.2(b), in which the return compensator is a unit gain, is saidaweeunit
feedback.

Example 1.2.3 (Unit feedback system).  The cruise control system of Fig.1is a unit feed-
back system. O

For the purposes of this subsection we reduce the configarafi Fig. 1.2(a) to that of
Fig. 1.3(a), where the forward compensator has been absorbed anfaht. The plant is repre
sented as an input-output-mapping system with input-dft@) map¢, while the return com
pensator has the |O majp. The control input, the error signa¢ and the output signal usually
all are time signals. Correspondingyandy are 10 maps of dynamical systems, mapping ti
signals to time signals.

The feedback system is represented by the equations

y=¢e), e=r—y(). (1.11)

These equations may or may not have a solutiand y for any given control input. If a



solution exists, the error signalsatisfies the equatian=r — (¢ (e)), or
e+yle)=r. (1.12)

Herey = ¢ o ¢, with o denoting map composition, is the 10 map of the series cororeof the

plant followed by the return compensator, and is calleddbp 10 map Equation {.12 reduces
the feedback system to a unit feedback system as inlF¥}). Note that becauge maps time
functions into time functions1(12) is afunctionalequation for the time signal We refer to it
as thefeedback equatian

1.2.3. High-gain feedback

Feedback is most effective if the loop 10 maphas “large gain.” We shall see that one

the important consequences of this is that the map from tteread inputr to the outputy is

approximately the inversg~' of the IO mapy of the return compensator. Hence, the 1O Ir

from the control input to the control system outputis almost independent of the plant 10 me
Suppose that for a given class of external input signaitee feedback equation

e+vy)=r (1.13)

has a solutior. Suppose also that for this class of signals the “gain” ofrttag@y is large, that
is,

Iy (@)l > lell. (1.14)

with || - || some norm on the signal space in whicks defined. This class of signals genera
consists of signals that are limited in bandwidth and in d@ugé. Then in {.13 we may neglect
the first term on the left, so that

y(e) ~r. (1.15)
Since by assumptiofe| < ||y (e)| this implies that
lell < [l ]l- (1.16)

In words: If the gain is large then the err@is small compared with the control input Going
back to the configuration of Fid..3(@), we see that this implies thet(y) ~ r, or

vy, (1.17)

wherey ! is theinverseof the mapy (assuming that it exists).

Note that it is assumed that the feedback equation has a bdsatution e for every boundec
r. This is not necessarily always the casee i§ bounded for every boundedhen the closed
loop system by definition is BIBO stalfle Hence, the existence of solutions to the feedb
equation is equivalent to the (BIBO) stability of the clodedp system.

Note also that generally the gain may only be expected torlge far aclassof error signals,
denotect. The class usually consists of band- and amplitude-lingtgdals, and depends on tl
“capacity” of the plant.

2A signal is bounded if its norm is finite. Norms of signals aiscdssed in AppendiB. See als@ 1.3
3A system is BIBO (bounded-input bounded-output) stablevéfrg bounded input results in a bounded output (:
§1.3.



Example 1.2.4 (Proportional control of the cruise control s ystem). A simple form of feed-
back that works reasonably well but not more than that forctiuése control system of Exan
ple 1.2.1is proportional feedbackThis means that the throttle opening is controlled accay
to

u(t) —uo = glr @) —w@)), (1.18)

with the gain g a constant and, a nominal throttle setting. Denote, as the steady-sta
cruising speed corresponding to the nominal throttlersgity, and writew(z) = wy + w(z) as
in Examplel.2.1 Setting7(¢) = r(t) — wo we have

u(t) = glr(r) —w ()] (1.19)

Substituting this into the linearized equatidni) (once again omitting the circumflexes) we he

|
W :—§w+§(r—w), (1.20)
that is,
. 1 g g
- (-+& £, 1.21
v (9*'T)w*'Tr (1.21)

Stability is ensured as long as

1 g
4250 1.22
ot > (1.22)
After Laplace transformation ofl(21) and solving for the Laplace transform of we identify

the closed-loop transfer functiafd. from

g

T
w=—7> 1.23
s+ 3+ % (1.23)
~—_———

Hq(s)

We follow the custom of operational calculus not to distiisubetween a time signal and i
Laplace transform.

Figurel.4gives Bode magnitude plots of the closed-loop frequengyaeseH(jw), w € R,
for different values of the gaig. If the gaing is large thenH(jw) = 1 for low frequencies.
The larger the gain, the larger the frequency region is ovechthis holds. O

1.2.4. Robustness of feedback systems

The approximate identity ~ v ~!(r) (1.17) remainsvalid as long as the feedback equation |
a bounded solution for everyr and the gain is large. The 10 mapof the return compensat
may often be implemented with good accuracy. This resultsimatching accuracy for the |
map of the feedback system as long as the gain is large, etfemli® map of the plant is poorl
defined or has unfavorable properties. The fact that

yayH(r) (1.24)

in spite of uncertainty about the plant dynamics is cattduistnessf the feedback system wit
respect to plant uncertainty.
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Figure 1.4: Magnitude plots of the closed-loop frequenspomse function
for three values of the gain withy < g, < g3

Example 1.2.5 (Cruise control system).  The proportional cruise feedback control system
Examplel.2.4is a first-order system, like the open-loop system. The didsep time constan
0. follows by inspection of{.23 as

1 1 g
-4 8 1.25
w07 T (1.25)

As long asg > % the closed-loop time constaéd; approximately equal%. Hence 0 does
not depend much on the open-loop time constanthich is quite variable with the speed of tl
vehicle. Forg > £ we have

£
Hy(jo) ~ —L— ~ 1 for |w| <

- - 1.26
TEE: (1.26)

N |0

Hence, up to the frequenéy the closed-loop frequency response is very nearly equbktarit
gain. The frequency response of the open-loop system is

1

~

r 9
jo+3 T

1
H(jw) = for lw| < rk (1.27)

The open-loop frequency response function obviously isimmiore sensitive to variations in th
time constan® than the closed-loop frequency response. O

1.2.5. Linearity and bandwidth improvement by feedback

Besides robustness, several other favorable effects maghieved by feedback. They incluc
linearity improvement, bandwidth improvement, and digéunce reduction.

Linearity improvemenis a consequence of the fact that if the loop gain is large gimothe
IO map of the feedback system approximately equals the sewer! of the 10 map of the
return compensator. If this IO map is linear, so is the 10 miah® feedback system, with goc
approximation, no matter how nonlinear the plant 1O rpap.

Also bandwidthimprovement is a result of the high gain property. If the netcompensator i
a unit gain, the 10 map of the feedback system is close to awity those frequencies for whic
the feedback gain is large. This increases the bandwidth.
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Figure 1.5: (a) Feedback system with disturbance. (b) Edgemt unit feed-
back configuration in the absence of the control input

Example 1.2.6 (Bandwidth improvement of the cruise control system). In Examplel.2.5
the time constant of the closed-loop proportional cruisgmd system is

0

9c|: 9"
14 %2

(1.28)

For positive gairg the closed-loop time constant is smaller than the open-ioog constan®
and, hence, the closed-loop bandwidth is greater than the-tmop bandwidth. O

Exercise 1.2.7 (Steady-state linearity improvement of the proportional cruise control sys-
tem). The dynamics of the vehicle are given by

Tw=u—w’ (1.29)

For a given steady-state soluti¢wy, wy), with wy = ,/u,, consider the proportional feedba
scheme

u—uy=gr—w). (1.30)

Calculate the steady-state dependence ef wy, onr — wy (assuming that is constant). Plo
this dependence fan, = 0.5 andg = 10.

To assess the linearity improvement by feedback compagelbt with a plot ofw —w, versus
u — uy for the open-loop system. Comment on the two plots. O

1.2.6. Disturbance reduction

A further useful property of feedback is that the effect oftéenal)disturbancess reduced. It
frequently happens that in the configuration of HigYa) external disturbances affect the out,
y. These disturbances are usually caused by environmefeetsef

The effect of disturbances may often be modeled by addiistarbance signat at the output
of the plant as in Figl.5a). For simplicity we study the effect of the disturbancéie absenc
of any external control input, that is, we assume 0. The feedback system then is descril
by the equations = d + y, y = ¢(e), ande = —y(z). Eliminating the outpuy and the errol
signale we havez =d + ¢(¢) =d + ¢(—y (2)), or

z=d—¥), (1.31)



wheres = (—¢) o (—y). The maps is also called dop 1O map but it is obtained by “breaking
the loop” at a different point compared with when constngtihe loop IO map = o ¢.

The equation.3]) is a feedback equation for the configuration of Figh(b). By analogy
with the configuration of Figl.3(b) it follows that if the gain idargein the sense thas(z)|| >
lz|| then we have

Izl < lid]l- (1.32)

This means that the outpubf the feedback system is small compared with the disturbdnso
that the effect of the disturbance is much reduced. All toislf provided the feedback equati
(1.3) has at all a bounded solutiarfor any bounded, that is, provided the closed-loop syste
is BIBO stable.

Example 1.2.8 (Disturbance reduction in the proportional ¢ ruise control system).  The
progress of the cruising vehicle of Examdle2.1 may be affected by head or tail winds al
up- or downhill grades. These effects may be representeddayfying the dynamical equatiol
(1.9 tomvd = cu — pv*> + d, with d the disturbing force. After scaling and linearization as
Examplel.2.1this leads to the modification

1 1
h=—sw— —u+td (1.33)

of (1.7). Under the effect of the proportional feedback scheing§ this results in the modifi-
cation

. 1 g g
W= (9+T)w+Tr+d (1.34)

of (1.21). Laplace transformation and solution for(while settingr = 0) shows that the effec
of the disturbance on the closed-loop system is represépted

1

s +

wg = —— d. (1.35)

Ol
From (1.33 we see that in the open-loop system the effect of the diaha®on the outputis

1

Wol = —
S+§

(1.36)

This signalw, actually is the “equivalent disturbance at the output” af.Bi.5a). Comparison
of (1.34 and (.35 shows that

Wel =

— wo. (1.37)

el
N———

S(s)

S is known as thesensitivity functiorof the closed-loop system. Figufie6 shows the Bode
magnitude plot of the frequency response functi(jw). The plot shows that the open-loc
disturbances are attenuated by a factor

90| 1
— = 1.38
6 14+ (1.38)




until the angular frequencly/6. After a gradual rise of the magnitude there is no attennaiic
amplification of the disturbances for frequencies ovéi,.

The disturbance attenuation is not satisfactory at veryfl@guencies. In particular, cor
stant disturbances (that is, zero-frequency disturbrazesnot completely eliminated becat
S(0) # 0. This means that a steady head wind or a long uphill grade tslewar down. Ir§ 2.3
it is explained how this effect may be overcome by applyirtggral control. O

1.2.7. Pitfalls of feedback
As we have shown in this section, feedback may achieve vefylsffects. It also has pitfalls:

1. Naively making the gain of the system large may easilultés an unstablefeedback
system. If the feedback system is unstable then the feedipektion has no bounde
solutions and the beneficial effects of feedback are noteetis

2. Evenifthe feedback system is stable then high gain maytiesoverly large inputs to the
plant, which the plant cannot absorb. The result is redoaifdhe gain and an associat
loss of performance.

3. Feedback implies measuring the output by means of an begmsor. The associate
measurement erromsndmeasurement noisaay cause loss of accuracy.

We return to these points {n1.5

1.3. Closed-loop stability

1.3.1. Introduction

In the remainder of this chapter we elaborate some of thesidé&ectionl.2 for linear time-
invariant feedback systems. Most of the results are statesitigle-input single-output (SISC
systems but from time to time also multi-input multi-outdMiMO) results are discussed.

We consider théwo-degree-of-freedononfiguration of Figl.7. A MIMO or SISO plant with
transfer matrixP is connected in feedback with a forward compensator withsfier matrixC.
The function of the feedback loop is to provide stabilitjpustness, and disturbance attenuat
The feedback loop is connected in series with a prefilter withsfer matrix#. The function of
the prefilter is to improve the closed-loop response to conthirgputs.

The configuration of Figl.7is said to have two degrees of freedom because both the cer
satorC and the prefiltelF’ are free to be chosen by the designer. When the prefilter iaaeg

|S(jo)]
(log scale)

90|/0

1/6 1/6q
o (log scale)

Figure 1.6: Magnitude plot of the sensitivity function ofetiproportional
cruise control system
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Figure 1.8: Single-degree-of-freedom feedback systerfigumations

with the unit system as in Fid..8a) the system is called single-degree-of-freedofeedback
system. Also the configuration of Fig.8(b), with a return compensator instead of a forw:
compensator, is called a single-degree-of-freedom system

In § 1.8we consider alternative two-degree-of-freedom configomat and study which is th
most effective configuration.

1.3.2. Stability

In the rest of this section we discuss the stability of thesetbloop control system of Fid.7.
We assume that the overall system, including the plant, dhgpensator and the prefilter, has
state representation

x() = Ax@)+ Br(1), (1.39)
z(t)
u(t)| = Cx(@)+ Dr(). (1.40)
e(t)

The command signalis the external input to the overall system, while the cdrslystem output
z, the plant inputz and the error signal jointly form the output. The signat is the state of the
overall system4, B, C, andD are constant matrices of appropriate dimensions.

The state representation of the overall system is formeambining the state space represt
tations of the component systems. We assume that thesesgtate representations include
the important dynamic aspects of the systems. They may kentnotlable or unobservable. Be
sides the reference inputhe external input to the overall system may include othegerous
signals such as disturbances and measurement noise.

Definition 1.3.1 (Stability of a closed-loop system). The feedback system of Fig.7 (or any
other control system) istableif the state representatioh.33-1.40 is asymptotically stablehat
is, if for a zero input and any initial state the state of thstegn asymptotically approaches t
zero state as time increases. O



Given the state representatich39-1.40, the overall system is asymptotically stable if a
only if all the eigenvalues of the matrix have strictly negative real part.
There is another important form of stability.

Definition 1.3.2 (BIBO stability). ~ The system of Figl.7is calledBIBO stablg(bounded-input:
bounded-output stable) if every bounded inpuesults in bounded outputs u, ande for any
initial condition on the state. O

To know what “bounded” means we need a norm for the input amgudsignals. A signal is
said to be bounded if its norm is finite. We discuss the notiothe norm of a signal at som
length in AppendidB. For the time being we say that a (vector-valued) sigrigl is bounded if
there exists a constaM such thatv; (¢)| < M for all ¢+ and for each component of v.

Exercise 1.3.3 (Stability and BIBO stability).

1. Prove that if the closed-loop system is stable in the sehBefinition 1.3.1then it is also
BIBO stable.

2. Conversely, prove that if the system is BIBO stable andrimsinstable unobservab
mode$ then it is stable in the sense of Definitiars8.1

3. Often BIBO stability is defined so that bounded input sigrae required to result il
bounded output signals faeroinitial conditions of the state. With this definition, Pat)
of this exercise obviously still holds. Conversely, prolattif the system is BIBO stabl
in this sense and has no unstable unobservable and undabiieahode%then it is stable
in the sense of Definitio.3.1

]

We introduce a further form of stability. It deals with thalsility of interconnected systems,
which the various one- and two-degree-of-freedom feedbgstems we encountered are exe
ples. Stability in the sense of Definitidn3.1is independent of the presence or absence of in
and outputs. BIBO stability, on the other hand, is strongated to the presence and cho
of input and output signalslnternal stability is BIBO stability but decoupled from a partic
lar choice of inputs and outputs. We define the notion of irdkstability of an interconnecte
systems in the following manner.

Definition 1.3.4 (Internal stability of an interconnected s ystem). Ineach “exposed intercor
nection” of the interconnected system, inject an “intérirgbut signalv; (with i an index), anc
define an additional “internal” output signa} just after the injection point. Then the systerr
said to benternally stablef the system whose input consists of the joint (externaliatetnal)
inputs and whose output is formed by the joint (external aternal) outputs is BIBO stable.q

To illustrate the definition of internal stability we considthe two-degree-of-freedom fee
back configuration of Figl.9. The system has the external inpytand the external output
Identifying five exposed interconnections, we include fiinal input-output signal pairs «
shown in Fig.1.1Q The system is internally stable if the system with inpyt, v,, vs, v4, vs)
and outputf, wy, w,, w3, wy, ws) is BIBO stable.

Exercise 1.3.5 (Stability and internal stability).

4A state systemt = Ax + Bu, y = Cx + Du has an unobservable mode if the homogeneous equatisndx has
a nontrivial solutionx such thatCx = 0. The mode is unstable if this solutiorn(¢) does not approach 0 as—> oo.

5The state systent = Ax + Bu, y = Cx + Du has an uncontrollable mode if the state differential equa
X = Ax + Bu has a solutiorx that is independent of.
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Figure 1.10: Two-degree-of-freedom system with intermnplits and outputs
added

1. Prove that if the system of Fi@.9is stable then it is internally stable.

2. Conversely, prove that if the system is internally stayd none of the component sy
tems has any unstable unobservable modes then the syst&hlesia the sense of Defi
nition 1.3.1 Hint: This follows from Exercisd..3.3b).

O

When using input-output descriptions, such as transfectfons, then internal stability i
usually easier to check than stability in the sense of D&imit.3.1 If no unstable unobservab
and uncontrollable modes are present then internal dtalsilequivalent to stability in the sens
of Definition1.3.1

We say that a controllatabilizesa loop, orjs stabilizing if the closed loop with that controlle

is stable or internally stable.

1.3.3. Closed-loop characteristic polynomial

For later use we discuss the relation between the state ansfér functions representations

the closed-loop configuration of Fid.9.
The characteristic polynomigl of a system with state space representation

%(t) = Ax(1)+ Bu(0), (1.41)
y(t) = Cx(t)+ Du(t), (1.42)

is the characteristic polynomial of isystem matri,
x(s) = det(s] — A). (1.43)

The roots of the characteristic polynomjalare the eigenvalues of the system. The syster
stable if and only if the eigenvalues all have strictly nagateal parts, that is, all lie in the ope
left-half complex plane.



The configuration of Figl.9 consists of the series connection of the prefiliewith the
feedback loop of Figl.11(a).

Exercise 1.3.6 (Stability of a series connection). Consider two systems, one with statand
one with state and lety; andx, denote their respective characteristic polynomials. ethat
the characteristic polynomial of the series connectiomeftivo systems with sta{@] iS X1 X2
From this it follows that the eigenvalues of the series catina consist of the eigenvalues of ti
first system together with the eigenvalues of the seconesyst O

(a) (b)
Figure 1.11: MIMO or SISO feedback systems

We conclude that the configuration of Fif.9 is stable if and only if both the prefilter ar
the feedback loop are stable. To study the stability of thiM@lor SISO feedback loop ©
Fig.1.11(a) representitas in Fig.11(b). L = PC is the transfer matrix of the series connect
of the compensator and the platis called théoop transfer matrix We assume thdt is proper,
that is, L (oc0) exists.

Suppose that the series connectiohas the characteristic polynomjal We call y theopen-
loop characteristic polynomiallt is proved in§ 1.10that the characteristic polynomial of tt
closed-loop system of Fig..11is

defl + L(s)]

= . 1.44
Xel(s) = x(s) el + L(o0)] (1.44)
We call x¢ theclosed-loop characteristic polynomial
In the SISO case we may write the loop transfer function as
R \
Lis) = R (1.45)
Q(s)

with R and Q polynomials, wher&) = y is the open-loop characteristic polynomial. Note t
we allowno cancellation between the numerator polynomial and theaciaristic polynomial ir
the denominator. It follows fromil(44) that within the constant factdr+ L (co) the closed-loog
characteristic polynomial is
R(s)

x()(A + L(s)) = Q()[1 + ﬁl = 0(s) + R(s). (1.46)
We return to the configuration of Fi@.11(a) and write the transfer functions of the plant and
compensator as

N(s) _ Y

P(s) = D)’ C(s) = Y6)

(1.47)

D and X are the open-loop characteristic polynomials of the plamt the compensator, re
spectively. N andY are their numerator polynomials. Again we allow no cantielfabe-
tween the numerator polynomials and the characteristignpohials in the denominators. Sin



R(s) = N(s)Y(s) and Q(s) = D(s)X(s) we obtain from (.46 the well-known result
that within a constant factor the closed-loop characierblynomial of the configuration o
Fig.1.11a) is

D(s)X(s) + N(s)Y(s). (1.48)

With a slight abuse of terminology this polynomial is ofteriarred to as the closed-loop che
acteristic polynomial. The actual characteristic polyielns obtained by dividing1.48 by its
leading coefficierft

Exercise 1.3.7 (Hidden modes).  Suppose that the polynomials and D have a common poly
nomial factor. This factor corresponds to one or severabaanvable or uncontrollable modes
the plant. Show that the closed-loop characteristic patyiabalso contains this factor. Henc
the eigenvalues corresponding to unobservable or undtaiti® modes cannot be changed
feedback. In particular, any unstable uncontrollable ahgervable modes cannot be stabiliz
The same observation holds for any unobservable and umdiabie poles of the compensatc

O

The stability of a feedback system may be tested by caloigdlie roots of its characteristi
polynomial. The system is stable if and only if each root haistly negative real part. The
Routh-Hurwitz stability criterionwhich is reviewed in SectioB.2, allows to test for stability
without explicitly computing the roots. Aecessanput not sufficient condition for stability i
that all the coefficients of the characteristic polynomialé the same sign. This condition
known asDescartes’ rule of signs.

1.3.4. Pole assignment

The relation
x=DX+ NY (1.49)

for the characteristic polynomial (possibly within a carg) may be used for what is known :
pole assignmerdr pole placementlf the plant numerator and denominator polynomisllsnd
D are known, ang is specified, thenl(49 may be considered as an equation in the unknt
polynomialsX andY. This equation is known as tHigézoutequation. If the polynomiald/
and D have a common nontrivial polynomial factor that is not adadf x then obviously no
solution exists. Otherwise, a solution always exists.

The Bézout equatiorl(49 may be solved by expanding the various polynomials as p®
of the undeterminate variable and equate coefficients efdibwers. This leads to a set of line
equations in the coefficients of the unknown polynomiélandY, which may easily be solvec
The equations are known as tBglvesteequationsKailath, 1980.

To set up the Sylvester equations we need to know the degféies polynomialsX andY'.
Suppose thaP = N/ D is strictly proper, with degD = »n and degV < n given. We try to
find a strictly proper compensatar = Y /X with degrees deqd = m and deq’ = m — 1
to be determined. The degreepf= DX + NY isn + m, so that by equating coefficients
like powers we obtaim + m + 1 equations. Setting this number equal to the nunwert 1
of unknown coefficients of the polynomialsand X it follows thatm = n. Thus, we expect tc
solve the pole assignment problem with a compensator ofdime ©rder as the plant.

6That is, the coefficient of the highest-order term.
7A rational function or matrixP is strictly properif lim Isl>oo P(s) = 0. A rational functionP is strictly proper if
and only if the degree of its numerator is less than the deafriége denominator.



Example 1.3.8 (Pole assignment).  Consider a second-order plant with transfer function
1
P(s) = = (1.50)

Because the compensator is expected to have order two weémassign four closed-loop pole
We aim at a dominant pole pair élts/i(—l =+ j) to obtain a closed-loop bandwidth of 1 [rad/

and place a non-dominant pairay/2(—1 + j). Hence,

x(s) = (2 +5vV2+ 1)(s> + 10425 + 100)
= s+ 11v25% + 12157 4+ 110+/25 + 100. (1.51)
Write X (s) = x25% + x15 + xo andY (s) = y1s + yo. Then
D()X(s) + N(5)Y(s) = s*(x28” + x15 + X0) + (315 + »0)
= x5t + x18° + x05> + Y18 + Yo. (1.52)
Comparing 1.51) and (.52 the unknown coefficients follow by inspection, and we sext th
X(s) = 2411425 4121, (1.53)
Y(s) = 110425+ 100. (1.54)

mi
Exercise 1.3.9 (Sylvester equations).  More generally, suppose that

bu18"" + by as" 2+ - + bo
P@s) = p - : (1.55)
aps" + ap—18 + -+ ao

yn_lsn—l +yn—25”_2 + ... +y0

C(s) = , 1.56
(s) NI SrI—— (1.56)
X)) = xs™ + xan-15" T+ X0 (1.57)
Show that the equationp = DX + NY may be arranged as
B ay 0 cee e 0 7
an_] an 0 oo 0 xn
Xn—1
ap aq ay
0 dg dj Adp—1
B 0 0 do | T
A
- - 1.58
0 B | ( )
0 e e 0 yn_l X2'1
bn—l 0 0 0 yn—2 XZn—l
bpz by_y 0 0 .. ..
bo by cer eer by
0 bO bl et bn—2
cee . L yo ] | XO N
i 0 ve ve 0 bO ] T WC_/




Figure 1.12: Nyquist plot of the loop gain transfer functibts) = & /(1 +
s60)

This in turn may be represented as

[4 B] m —c (1.59)

and solved fox andy. If the polynomialsD andN are coprim&then the square matr[x4 B]
is nonsingular. O

1.3.5. Nyquist criterion

In classical control theory closed-loop stability is oftstudied with the help of th&lyquist
stability criterion,which is a well-known graphical test. Consider the simplévl feedback
loop of Fig.1.11 The block marked L” is the series connection of the compensatoand the
plant P. The transfer matri{. = PK is called thdoop gain matrix— or loop gain,for short
— of the feedback loop.

For a SISO systent, is a scalar function. Define tidyquist plof of the scalar loop gaitL
as the curve traced in the complex plane by

L(jw), w€eR. (1.60)

Because for finite-dimensional systeiss a rational function with real coefficients, the Nyqu
plot is symmetric with respect to the real axis. Associatétth mcreasings we may define a
positive direction along the locus. If is propert® and has no poles on the imaginary axis tt
the locus is a closed curve. By way of example, Big2shows the Nyquist plot of the loop ga
transfer function

L(s) = (1.61)

1+ 56’
with &k and 6 positive constants. This is the loop gain of the cruise adrgystem of Exam-
plel.2.5withk = g6/ T.

We first state the best known version of the Nyquist criterion

Summary 1.3.10 (Nyquist stability criterion for SISO open- loop stable systems).  Assume
that in the feedback configuration of Fifj.11the SISO systeni is open-loop stable. The

8That is, they have no nontrivial common factors.
9The Nyquist plot is discussed at more lengtf§ b 4.3
10A rational matrix functionZ is properif lim |;|— oo L(s) exists. For a rational functiod this means that the degre
of its numerator is not greater than that of its denominator.



the closed-loop system is stable if and only if the Nyquist pif L does not encircle the poir
—1. O

It follows immediately from the Nyquist criterion and Figr.12that if L(s) =k /(1 + sf8) and
the block “L” is stable then the closed-loop system is stable for alltpeskt and6.

Exercise 1.3.11 (Nyquist plot).  Verify the Nyquist plot of Fig1.12 O

Exercise 1.3.12 (Stability of compensated feedback system ). Consider a SISO single
degree-of-freedom system as in Fig8a) or (b), and define the loop gaih = PC. Prove
that if both the compensator and the plant are stable/asatisfies the Nyquist criterion then t
feedback system is stable. O

The result of Summarnt.3.10is a special case of thgeneralized Nyquist criterion The
generalized Nyquist principle applies to a MIMO unit feedbaystem of the form of Figl.11,
and may be phrased as follows:

Summary 1.3.13 (Generalized Nyquist criterion). Suppose that the loop gain transfer fur
tion L of the MIMO feedback system of Fid.11is proper such thak + L(joo) is nonsingular
(this guarantees the feedback system to be well-defined)@ahdo poles on the imaginary ax
Assume also that the Nyquist plot of ¢&t+ L) does not pass through the origin. Then

the number of unstable closed-loop poles

the number of times the Nyquist plot of dét+ L) encircles the origin clockwidé

+
the number of unstable open-loop poles.

It follows that the closed-loop system is stable if and offilthe number of encirclements ¢
det(/ + L) equals the negative of the number of unstable open-loopole O

Similarly, the “unstable open-loop poles” are the rightfipdane eigenvalues of the syste
matrix of the state space representation of the open-logtpisy This includes any uncontrollak
or unobservable eigenvalues. The “unstable closed-lotgspsimilarly are the right-half plan
eigenvalues of the system matrix of the closed-loop system.

In particular, it follows from the generalized Nyquist efiton that if the open-loop system
stable then the closed-loop system is stable if and onlyefrthmber of encirclements is ze
(i.e., the Nyquist plot of déf + L) doesnotencircle the origin).

For SISO systems the loop galnis scalar, so that the number of times the Nyquist plo
det(/ + L) = 1 + L encircles the origin equals the number of times the Nyquisit @f L
encircles the point1.

The condition that déf + L) has no poles on the imaginary axis and does not pass throe
origin may be relaxed, at the expense of making the analysie scomplicated (see for instan
Dorf (1992).

The proof of the Nyquist criterion is given {11.1Q More about Nyquist plots may be four
in§2.4.3

11This means the number of clockwise encirclements minusuheer of anticlockwise encirclements. I.e., this num
may be negative.



1.3.6. Existence of a stable stabilizing compensator

A compensator that stabilizes the closed-loop system bitisélf is unstable is difficult to handl
in start-up, open-loop, input saturating or testing situed. There are unstable plants for whi
a stable stabilizing controller does not exist. The follogvresult was formulated and proved |
Youla et al.(1974; see alscAnderson and Jurf1976 andBlondel(1994.

Summary 1.3.14 (Existence of stable stabilizing controlle  r). Consider the unit feedbac
system of Fig1.11(a) with plantP and compensataf .

The plant possesses tharity interlacing propertyif it has an even number of poles (count
according to multiplicity) between each pair of zeros ongbesitive real axis (including zeros :

infinity.)
There exists a stable compensatothat makes the closed-loop stable if and only if the pl
P has the parity interlacing property. O

If the denominator of the plant transfer functidhhas degree and its numerator degree
then the plant has poles and (finite) zeros. Ifin < n then the plant is said to hawe- m zeros
at infinity.

Exercise 1.3.15 (Parity interlacing property). Check that the plant

S
P(s)=— 1.62
0 =G (162)
possesses the parity interlacing property while
(s—D(s—3)
=55 (1.63)
does not. Find a stabilizing compensator for each of theseptants (which for the first plant i
itself stable.) |

1.4. Stability robustness

1.4.1. Introduction

In this section we consider SISO feedback systems with thiguration of Fig.1.13 We discuss
their stability robustnesghat is, the property that the closed-loop system remaatsesunder
changes of the plant and the compensator. This discussioisges on thiwop gainL = PC,
with P the plant transfer function, and the compensator transfer function. For simplicity \
assume that the systemdpen-loop stablehat is, bothP andC represent the transfer functic
of a stable system.

We also assume the existence ofaninalfeedback loop with loop gaifiy, which is the loop
gain that is supposed to be valid under nominal circumstance

1.4.2. Stability margins

The closed-loop system of Fig.13remains stable under perturbations of the loop daias
long as the Nyquist plot of the perturbed loop gain does noirele the point—1. Intuitively,
this may be accomplished by “keeping the Nyquist plot of tbenimal feedback system awe
from the point—1."

The classicgain marginand phase marginare well-known indicators for how closely th
Nyquist plot approaches the point .



Figure 1.13: Feedback system configuration

Gain margin The gain margin is the smallest positive numbkgrby which the Nyquist plo
must be multiplied so that it passes through the peintWe have

1
km = ———. (1.64)
|L(jor)]
wherew, is the angular frequency for which the Nyquist plot intetsébe negative ree
axis furthest from the origin (see Fity.14).

Phase margin The phase margin is the extra phasgethat must be added to make the Nyqt
plot pass through the poirtl. The phase margin,, is the angle between the negati
real axis and_(jw,, ), Wwherew,, is the angular frequency where the Nyquist plot inters
the unit circle closest to the pointl (see again Figl.14).

reciprocal of the Im
gain margin

“1‘—1‘
modulus margin~ A~ .~

phase margin

Figure 1.14: Robustness margins

In classical feedback system design, robustness is ofesifigul by establishing minimum valu
for the gain and phase margin. Practical requirementscare- 2 for the gain margin anc
30° < ¢y < 60° for the phase margin.

The gain and phase margin do not necessarily adequatelgatbére the robustness. Fi
urel.15shows an example of a Nyquist plot with excellent gain andsphmaargins but where
relatively smalljoint perturbation of gain and phase suffices to destabilize teesy For this
reasorLandau et al(1993 introduced two more margins.

Modulus margin 12 The modulus margis,, is the radius of the smallest circle with center
that is tangent to the Nyquist plot. Figutel4illustrates this. The modulus margin ve
directly expresses how far the Nyquist plot stays away frem

12French:marge de module.
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Figure 1.15: This Nyquist plot has good gain and phase maigiha small
simultaneous perturbation of gain and phase destabillzes t
system

Delay margin '3 The delay margin,, is the smallest extra delay that may be introduced in
loop that destabilizes the system. The delay margin is tirtkethe phase margip,, by
the relation

T, = Min ¢—* (1.65)
Wk W

Herew, ranges over all nonnegative frequencies at which the Nyglas intersects the

unit circle, andp, denotes the corresponding phase= argL (jw«). In particularz,, <
Im

A practical specification for the modulus marginjs> 0.5. The delay margin should be at lec
of the order ofﬁ, whereB is the bandwidth (in terms of angular frequency) of the daliskep
system.

Adequate margins of these types are not only needed for tred®ss but also to achieve
satisfactory time response of the closed-loop system.elflargins are small, the Nyquist pl
approaches the point] closely. This means that the stability boundary is appreddiosely,
manifesting itself by closed-loop poles that are very neahée imaginary axis. These close
loop poles may cause an oscillatory response (called ‘gigf the resonance frequency is hig
and the damping small.)

Exercise 1.4.1 (Relation between robustness margins). Prove that the gain margiy, and
the phase margin,, are related to the modulus margip by the inequalities
1 .S
ko > ¢ > 2arcsin—. (1.66)
1 =5, 2

This means that if,,, > % thenk,, > 2 and¢,, > 2arcsin§ ~ 28.96° (Landau et al.1993. The
converse is not true in general. O

1.4.3. Robustness for loop gain perturbations

The robustness specifications discussed so far are alr gladitative. They break down whe
the system is not open-loop stable, and, even more speathcibr MIMO systems. We intro-
duce a more refined measure of stability robustness by cenisggthe effect of plant perturbe
tions on the Nyquist plot more in detail. For the time being #ssumptions that the feedba
system is SISO and open-loop stable are upheld. Both areectlater.

B3French:marge de retard.
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Figure 1.16: Nominal and perturbed Nyquist plots

Naturally, we suppose the nominal feedback system to bedesigned so that it is close
loop stable. We investigate whether the feedback systenainsstable when the loop gain
perturbed from the nominal loop gaily to the actual loop gaitd.

By the Nyquist criterion, the Nyquist plot of the nominal fpgain L, does not encircle th
point—1, as shown in Figl.16 The actual closed-loop system is stable if also the Nyqpligt
of the actual loop gairl. does not encircle-1.

Itis easy to see by inspection of Fiy16that the Nyquist plot of. definitely does not encircl
the point—1 if for all w € R the distancéL(jw) — Lo(jw)| between any poinL(jw) and the
corresponding poinL(jw) is lessthan the distancel,(jw) + 1| of the pointL,(jw) and the
point—1, that is, if

|L(jo) — Lo(jo)| < |Lo(jw) + 1| forallw € R. (1.67)
This is equivalent to

|IL(jo) = Lo(jo)|  [Lo(jo)]
|Lo(jw) |Lo(jw) + 1]

Define thecomplementary sensitivity functidf of the nominal closed-loop system as

<1 foralweR. (1.68)

Ly

Ty = . 1.69
=T L (1.69)
Ty bears its name because its complement
1
1-T, So (1.70)

=]+L0=

is thesensitivity functionThe sensitivity function plays an important role in assegthe effect
of disturbances on the feedback system, and is discussetiin1.5.
GivenTy, it follows from (1.68) that if

|L(jw) = Lo(jo)]
|Lo(jw)l
then the perturbed closed-loop system is stable.
The factor| L(jw) — Lo(jw)|/| Lo(jw)| in this expression is thelativesize of the perturbatio
of the loop gainL from its nominal valuel,. The relation {.71) shows that the closed-loc
system is guaranteed to be stable as long as the relativelpatibns satisfy

ILG0) — LoGo)] _
LoGo) |To(o)|

| To(jw)] <1 forallw e R (1.71)

forall w € R. (1.72)




The larger the magnitude of the complementary sensitivitgfion is, the smaller is the allowab
perturbation.

This result is discussed more extensively in Sectlidn where also its MIMO version is de
scribed. It originates frondoyle (1979. The stability robustness condition has been obtai
under the assumption that the open-loop system is stabléctnit also holds for open-loo
unstable systemgyrovidedthe number of right-half plane poles remains invariant wnpeetur-
bation.

Summary 1.4.2 (Doyle’s stability robustness criterion). Suppose that the closed-loop systt
of Fig. 1.13is nominally stable. Then it remains stable under pertishathat do not affect the
number of open-loop unstable poles if

|IL(jw) — Lo(jo)|

. < _ forallw e R, (1.73)
|Lo(jo)| | To(jo)]
with 7}, the nominal complementary sensitivity function of the elddoop system. O
Exercise 1.4.3 (No poles may cross the imaginary axis). Use the general form of the Nyquii
stability criterion of Summaryt.3.13to prove the result of Summady4.2 O

Doyle’s stability robustness condition isafficientcondition. This means that there may wi
exist perturbations that do not satisfl. 13 but nevertheless do not destabilize the closed-I
system. This limits the applicability of the result. With aitable modification the condition i
also necessary, however. Suppose that the relative patitmmbs are known to bounded in tt
form

|IL(jw) — Lo(jo)|
|Lo(jw)

with W a given function. Then the conditiof.(73 is implied by the inequality

<|W(jw)| forallw e R, (1.74)

| Ty(jw)| < forall w € R. (1.75)

1
W(jw)l
Thus, if the latter condition holds, robust stability is garseed for all perturbations satisfyir
(1.74. Moreover, (.75 is not only sufficient but alsnecessaryo guarantee stability fall per-
turbations satisfyingl(.74) (Vidysagar1985. Such perturbations are said to “fill the uncertai
envelope.”

Summary 1.4.4 (Stability robustness). Suppose that the closed-loop system of Rig.3is
nominally stable. It remains stable under all perturbatitvat do not affect the number of ope
loop unstable poles satisfying the bound
|L(jw) = Lo(jo)]
|Lo(jo)]

with W a given function, if and only if

<|W(jw)| forallw e R, (1.76)

ITo(jo)| < forall w € R. (1.77)

1
[W(jo)|
O

Again, the MIMO version is presented in Secti®d. The result is further discussed§ri..5.



1.4.4. Inverse loop gain perturbations

According to the Nyquist criterion, the closed-loop systemains stable under perturbati
as long as under perturbation the Nyquist plot of the loom glies not cross the poirtl.
Equivalently, the closed-loop system remains stable updeurbation as long as thieverse
1/ L of the loop gain does not cross the point. Thus, the sufficient conditiorl(67) may be
replaced with the sufficient condition

‘ L
L(jo)  Lo(jo)

Dividing by the inversel /L, of the nominal loop gain we find that a sufficient condition
robust stability is that

1
< — + 1| forallw € R. 1.78
‘ ‘Lo(Jw) ‘ (1.78)

[
L(jw) Lo(jo)
1
Lo(jw)

1
Lo(jo)
1
Lo(jo)

1
1So(jo)]

for all w € R. This in turn leads to the following conclusions.

=1+ Lo(jo)| =

(1.79)

Summary 1.4.5 (Inverse loop gain stability robustness crit erion). Suppose that the close
loop system of Figl.13is nominally stable. It remains stable under perturbatibas do not
affect the number of open-loop right-half plane zeros ofltlog gain if

1 1
L{o) — LoGo)
] Sol)] forallw € R, (1.80)
Lo(jw)
with Sy the nominal sensitivity function of the closed-loop system O

Exercise 1.4.6 (Reversal of the role of the right half plane p oles and the right-half plane
zeros). Note that the role of the right-half plane poles has beenntdiyethe right-half plane
zeros. Explain this by deriving a stability condition basedheinverseNyquist plot, that is, the
polar plot of1/L. O

Again the result may be generalized to a sufficient and nacgssndition.

Summary 1.4.7 (Stability robustness under inverse perturb ation). Suppose that the close
loop system of Figl.13is nominally stable. It remains stable under all pertudraithat do no
affect the number of right-half plane zeros satisfying tbar
1
L(jo)  Lo(jo)
1
Ly(jo)

< |W(w)| forallweR, (1.81)

with W a given function, if and only if

1
' ——— forall R. 1.82
[So(jw)| < Wia)] orallw € (1.82)

O

Thus, for robustnedsoththe sensitivity functior§ and its complemerif are important. Late
it is seen that for practical feedback design the compleargritinctionsS and 7T need to be
made small in complementary frequency regions (for lowdestgies and for high frequencie
respectively).

We illustrate these results by an example.



Example 1.4.8 (Frequency dependent robustness bounds). Consider a SISO feedback loc
with loop gain

L(s) = , (1.83)

with k£ and6 positive constants. The nominal sensitivity and compleamgrsensitivity functions
Sy andTy are

1 1+ 56,
) = = 1.84
Sols) 1+ Lo(s) 1+ko+s6 (1.84)
L o
To(s) = —20) ko (1.85)

1+ Lo(s) 1+ko+s6p

with k&, andf, the nominal values of andd, respectively. Figuré.17displays doubly logarith-
mic magnitude plots of /Sy and1/ Tj.
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Figure 1.17: Magnitude plots daf/ T, and1/.S,

By the result of Summary.4.4we conclude from the magnitude plot bf 7, that for low
frequencies (up to the bandwidth, + 1)/6,) relative perturbations of the loop galnof relative
size up to 1 and slightly larger are permitted while for higirequencies increasingly large
perturbations are allowed without danger of destabilimatf the closed-loop system.

By the result of Summarg.4.7 on the other hand, we conclude from the magnitude plc
1/Sy, that for low frequencies (up to the frequenigity) relative perturbations of the loop ga
up to1 + k, are permitted. For high frequencies (greater than the baltidthe allowable
relative size of the perturbations drops to the value 1. O

Exercise 1.4.9 (Landau’s modulus margin and the sensitivit y function).

1. In Subsectior.4.2the modulus margin,, is defined as the distance from the paciritto
the Nyquist plot of the loop gaii:

sm = inf |1+ L(jo)]. (1.86)
weR

Prove thatl /s, is the peak value of the magnitude of the sensitivity furrc§o



2. If the Nyquist plot of the loop gai. approaches the poirtl closely then so does that
the inverse loop gaith/ L. Therefore, the number

I — (1.87)

rm = inf -
L(jw)

w€eR

may also be viewed as a robustness margin. Provelthat is the peak value of th
magnitude of the complementary sensitivity functibn
mi

+
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Figure 1.18: Two-degree-of-freedom feedback system

1.5. Frequency response design goals

1.5.1. Introduction

In this section we translate the design targets for a lines-tnvariant two-degree-of-freedo
feedback system as in Fi@.18into requirements on various closed-loop frequency resg
functions. The design goals are

o closed-loop stability,

disturbance attenuation,

o satisfactory closed-loop command response,

stability robustness, and

e robustness of the closed-loop response,
within the limitations set by

e plant capacity, and

e corruption by measurement noise.

We discuss these aspects one by one for single-input-singfrut feedback systems.

1.5.2. Closed-loop stability

Suppose that the feedback system of Rid.3is open-loop stable. By the Nyquist stabili
criterion, for closed-loop stability the loop gain shoukldhaped such that the Nyquist plot/of
does not encircle the pointl.
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Figure 1.19: Feedback loop with disturbance

1.5.3. Disturbance attenuation and bandwidth — the sensitivity function

To study disturbance attenuation, consider the block diagof Fig.1.19 wherev represents
the equivalent disturbance at the output of the plant. Imseof Laplace transforms, the sign
balance equation may be writtenas- v — Lz. Solution forz results in

v = Sv, (1.88)

whereS is the sensitivity function of the closed-loop system. TimaBer|S(jw)| is, withw € R,
the more the disturbances are attenuated at the angulaefregy. |.S| is small if the magnitude
of the loop gainL is large. Hence, for disturbance attenuation it is necggsashape the looy
gain such that it is large over those frequencies whererthiatice attenuation is needed.

Making the loop gain_ large over a large frequency band easily results in erroradég and
resulting plant inpute that are larger than the plant can absorb. Thereforegn only be made
large over a limited frequency band. This is usually a lowsplaand, that is, a band that ranc
from frequency zero up to a maximal frequengyThe numbeB is called thebandwidthof the
feedback loop. Effective disturbance attenuation is onhjieved up to the frequendy.

The larger the “capacity” of the plant is, that is, the lartier inputs are the plant can hanc
before it saturates or otherwise fails, the larger the maktimachievable bandwidth usuall
is. For plants whose transfer functions have zeros with agative real parts, however, tt
maximally achievable bandwidth is limited by the locatidrte right-half plane zero closest t
the origin. This is discussed in Sectiry.

Figurel.2(qa) shows an “ideal” shape of the magnitude of the sengitfuihction. It is small
for low frequencies and approaches the value 1 at high frezjee. Values greater than 1 a
peaking are to be avoided. Peaking easily happens near thiend@®re the curve crosses ov
the level 1 (the O dB line).

The desired shape for the sensitivity functi®mmplies a matching shape for the magnitude
the complementary sensitivity functidn = 1 — S. Figure1.2qQb) shows a possible shafdor
the complementary sensitivit§ corresponding to the sensivity function of Fig2Qa). When
S is as shown in Figl.2Qa) thenT is close to 1 at low frequencies and decreases to 0 at
frequencies.

It may be necessary to impose further requirements on theesbfathe sensitivity functior
if the disturbances have a distinct frequency profile. Gibersior instance the situation that t
actual disturbances enter the plant internally, or evematptant input, and that the plant
highly oscillatory. Then the equivalent disturbance atdbgut is also oscillatory. To attenua
these disturbances effectively the sensitivity functibawdd be small at and near the resonat

14Note thatS andT are complementary, no§| and|T|.
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Figure 1.20: (a) “Ideal” sensitivity function. (b) A cormgsnding comple-
mentary sensitivity function

frequency. For this reason it sometimes is useful to reglaeeequirement tha§ be small with
the requirement that

|S(jo)V(jw)] (1.89)

be small over a suitable low frequency range. The shape aféighting functionV reflects the
frequency contents of the disturbances. If the actual diahces enter the system at the pl
input then a possible choice is to [Bt= P.

Exercise 1.5.1 (Plant input disturbance for oscillatory pl ant). Consider an oscillaton
second-order plant with transfer function

2
@

P(s) = . 1.90
(s) 52+ 28owos + @f ( )
Choose the compensator
2 2 2
Cls) = k s+ 28wos + @y (1.91)

a)_o2 s(s + o)

Show that the sensitivity functioS of the closed-loop system is independent of the reson
frequencyw, and the relative damping. Selectt anda such that a well-behaved high-pa
sensitivity function is obtained.

Next, select the resonance frequengywell within the closed-loop bandwidth and take t
relative dampind, small so that the plant is quite oscillatory. Demonstratesipyulation that
the closed-loop response to disturbances at the plant nefietts this oscillatory nature eve
though the closed-loop sensitivity function is quite wedhlaved. Show that this oscillato
behavior also appears in the response of the closed-lotgnsye a nonzero initial condition c
the plant. O



1.5.4. Command response — the complementary sensitivity function

The response of the two-degree-of-freedom configuratidfigfl.21to the command signal
follows from the signal balance equation= PC(—z + Fr). Solution forz results in

PC
- Fr 1.92
Tivyec (1.92)
————

H

Theclosed-loop transfer functioll may be expressed as

L
H=—— F=TF, (1.93)
1+ L
——

T

with L = PC the loop gain and” the complementary sensitivity function.

Adequate loop shaping ideally results in a complementargiseity function 7' that is close
to 1 up to the bandwidth, and transits smoothly to zero abligeftequency. Thus, without .
prefilter F (that is, with F = 1), the closed-loop transfer functidi ideally is low-pass with the
same bandwidth as the frequency band for disturbance atienu

Like for the sensitivity function, the plant dynamics impdgmitations on the shape that
may assume. In particular, right-half plane plant polesst@in the frequency above whidh
may be made to roll off. This is discussed in Sectloh

If the shape and bandwidth @f are satisfactory then no prefiltét is needed. If the closed
loop bandwidth igreaterthan necessary for adequate command signal response ¢éharrefiter
F may be used to reduce the bandwidth of the closed-loop gafgictionH to prevent overly
large plant inputs. If the bandwidth iessthan required for good command signal response
prefilter may be used to compensate for this. A better salutiay be to increase the closed-lo
bandwidth. If this is not possible then probably the plamazity is too small.

1.5.5. Plant capacity — the input sensitivity function

Any physical plant has limited “capacity,” that is, can atismputs of limited magnitude only
The configuration of Figl.2lincludes both the disturbancesind the measurement noige In
terms of Laplace transforms we have the signal balaneeC(Fr —m — v — Pu). This may be
solved foru as

u=———(Fr—m-—uv). (1.94)
I+CPpP
N—— —

M

The functionM determines the sensitivity of the plant input to disturlemand the comman
signal. It is sometimes known as thmgput sensitivity function

If the loop gainL = CP is large then the input sensitivity/ approximately equals th
inversel/ P of the plant transfer function. If the open-loop plant hasogen the right-half
complex plane then/ P is unstable. For this reason the right-half plane open-fdapt zeros
limit the closed-loop bandwidth. The input sensitivity @tion A may only be made equal t
1/ P up to the frequency which equals the magnitude of the rigiiftfflane plant zero with the
smallest magnitude.



Figure 1.21: Two-degree-of-freedom system with distudesrand measure-
ment noise

The input sensitivity functiord/ is connected to the complementary sensitivity functiohy
the relation

T = MP. (1.95)

By this connection, for a fixed plant transfer functi®ndesign requirements on the input se
sitivity function M may be translated into corresponding requirements on thglamentary
sensitivity 7', and vice-versa.

To prevent overly large inputs, generally should not be too large. At low frequenciesa h
loop gain and correspondingly large valuesifare prerequisites for low sensitivity. If the:
large values are not acceptable, the plant capacity is quade, and either the plant needs to
replaced with a more powerful one, or the specifications nebde relaxed. At high frequencie
— that is, at frequencies above the bandwidthi4—should decrease as fast as possible. Th
consistent with the robustness requirement thatecrease fast.

Except by Horowitz Horowitz, 1963 the term “plant capacity” does not appear to be u
widely in the control literature. Nevertheless it is an impat notion. The maximum bandwid
determined by the plant capacity may roughly be estimatddllasvs. Consider the response
the plant to the step inputl(z), ¢ € R, with a the largest amplitude the plant can handle be
it saturates or otherwise fails, afidhe unit step function. Lt be half the time needed until tt
output either reaches

1. 85% of its steady-state value, or
2. 85% of the largest feasible output amplitude,

whichever is less. Then the angular frequehg¢§ may be taken as an indication of the larg
possible bandwidth of the system.

This rule of thumb is based on the observation that the fidéostep response— e//%,
t > 0, reaches the value 0.865 at tirne.

Exercise 1.5.2 (Input sensitivity function for oscillator y plant). Consider a stabilizing feec
back compensator of the formi.@J) for the plant .90, with k¥ and« selected as suggest
in Exercisel.5.1 Compute and plot the resulting input sensitivity functith and discuss it:
behavior. O

1.5.6. Measurement noise

To study the effect of measurement noise on the closed-lagguowe again consider the co
figuration of Fig.1.21 By solving the signal balance= v + PC(Fr —m — z) for the output



we find

1 PC PC
z= v+ Fr— —— m. (1.96)
1+ PC 1+ PC 1+ PC
~———— ~———— ~————
S T T

This shows that the influence of the measurement naism the control system output is dt
termined by the complementary sensitivity functiBn For low frequencies, where by the oth
design requirementE is close to 1, the measurement noise fully affects the oufthis empha-
sizes the need for good, low-noise sensors.

1.5.7. Stability robustness

In Sectionl.4it is seen that for stability robustness it is necessary épkbe Nyquist plot “away
from the point—1." The target is to achieve satisfactory gain, phase, anduasdanargins.

Alternatively, as also seen in Secti@, robustness for loop gain perturbations requires
complementary sensitivity functiofi to be small. For robustness for inverse loop gain pertu
tions, on the other hand, the sensitivity functi®meeds to be small.

By complementarity7’ and .S cannot be simultaneously small, at least nety small. The
solution is to make&l” and.S small in different frequency ranges. It is consistent with bther
design targets to have the sensitiv€ysmall in thelow frequencyange, andl’ small in the
complementary high frequency range.

The fasterT decreases with frequency — this is called-off — the more protection the
closed-loop system has against high-frequency loop geations. This is important becau:
owing to neglected dynamics — also knownpasasitic effects— high frequency uncertainty i
ever-present.

Small values of the sensitivity function for low frequerssigvhich are required for adequa
disturbance attenuation, ensure protection againstnbations of the inverse loop gain at lo
frequencies. Such perturbations are often caused by lgé@tivas and environmental change

In the crossover regiomeitherS nor 7' can be small. The crossover region is the freque
region where the loop gaih crosses the value 1 (the zero dB line.) It is the region thatdst
critical for robustness. Peaking Sfand7 in this frequency region is to be avoided. Good ge
phase and modulus margins help to ensure this.

1.5.8. Performance robustness

Feedback system performance is determined by the setysitiviction S, the complementan
sensitivity function?’, the input sensitivity functiod/, and the closed-loop transfer functiéh
successively given by

1 L
- T=—"—"_ 1.97
SE1rT 1+ L (1.97)
c L
M=—"_—-8C, H=——_F=TF. (1.98)
1+ L 1+ L

We consider the extent to which each of these functions &adtl by plant variations. For sin
plicity we suppose that the system environment is suffiberantrolled so that the compensat
transfer functiorC and the prefilter transfer functiaf are not subject to perturbation. Inspecti
of (1.97-1.99 shows that under this assumption we only need to study feet&if perturbations



on S andT: The variations inM are proportional to those i, and the variations irf{ are
proportional to those ifT".

Denote byL, thenominalloop gain, that is, the loop gain that is believed to be regmesgtive
and is used in the design calculations. Correspondirfglgnd 7, are the nominal sensitivit
function and complementary sensitivity function.

It is not difficult to establish that when the loop gain chamffem its nominal valud. to its
actual valueL the correspondingelative changeof the reciprocal of the sensitivity functio$i
may be expressed as

%-%ZJ%—SZYBL—M (1.99)

1
% N Ly

Similarly, the relative change of the reciprocal of the céengentary sensitivity function may b
written as

%—%_%—T_SLPL_S%—ﬁ
i T °TL 0T

0 Lo

(1.100)

These relations show that for the sensitivity functfto be robust with respect to changes in
loop gain we desire the nominal complementary sensitivitcfion7; to be small. On the othe
hand, for the complementary sensitivity functidrto be robust we wish the nominal sensitivi
function S, to be small. These requirements are conflicting, becAyssad 7T, add up to 1 anc
therefore cannot simultaneously be small.

The solution is again to have each small in a different fregyeange. As seen before, norn
control system design specifications requigeto be small at low frequencies (below the bat
width). This cause§ to be robust at low frequencies, which is precisely the negibere its
values are significant. Complementarily, is required to be small at high frequencies, caus
S to be robust in the high frequency range.

Exercise 1.5.3 (Formulas for relative changes). Prove (.99-1.100. O

Exercise 1.5.4 (MIMO systems). Suppose that the configuration of Fi§}.21 represents :
MIMO rather than a SISO feedback system. Show that the vartased-loop system funt
tions encountered in this section generalize to the folhgwnatrix system functions:

e thesensitivity matrixS = (7 + L)™', with L = PC theloop gain matrixand/ an identity
matrix of suitable dimensions;

e thecomplementary sensitivitymatriX =7 — S =L(I + L)'= + L)"'L;
e theinput sensitivity matrixM = (I + CP)~'C = C(I + PC)7!;

e theclosed-loop transfer matri#f = (I + L)"'LF = TF.

1.5.9. Review of the design requirements
We summarize the conclusions of this section as follows:
e The sensitivityS should be small at low frequencies to achieve

— disturbance attenuation,



— good command response, and
— robustness at low frequencies.

e The complementary sensitivi§y should be small at high frequencies to prevent

— exceeding the plant capacity,
— adverse effects of measurement noise, and
— loss of robustness at high frequencies.
¢ In the intermediate (crossover) frequency region peakihgath S and 7" should be
avoided to prevent
— overly large sensitivity to disturbances,
— excessive influence of the measurement noise, and

— loss of robustness.

1.6. Loop shaping

1.6.1. Introduction

The design of a feedback control system may be viewed as @&gsaxfloop shaping The
problem is to determine the feedback compenséatas in Fig.1.18 such that the loop gai
frequency response functioh(jw), @ € R, has a suitable shape. The design goals of
previous section may be summarized as follows.

Low frequencies. At low frequencies we nee8l small and”" close to 1. Inspection of

1 L

- T=_= 1.101
S=171 1+ L (1.101)

shows that these targets may be achieved simultaneouslakingithe loop gairl large,
that is, by makingL (jw)| > 1 in the low-frequency region.

High frequencies. At high frequencies we ne€fl small andS close to 1. This may be ac
complished by making the loop gaih small, that is, by makingL(jw)| < 1 in the
high-frequency region.

Figurel.22shows how specifications on the magnitudé&aon the low-frequency region and th:
of T in the high-frequency region result in bounds on the loop dai

Crossover region. In the crossover region we haye(jw)| ~ 1. In this frequency region i
is not sufficient to consider the behavior of the magnitudé. ailone. The behavior o
the magnitude and phase bfin this frequency region together determine how closely
Nyquist plot approaches the critical point.

The more closely the Nyquist plot &f approaches the poirtl the more

S=— (1.102)
1+ L
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Figure 1.22: Robustness boundsbiin the Bode magnitude plot

peaks. If the Nyquist plot of. comes very near the pointl, so does the inverse Nyqui
plot, that is, the Nyquist plot of /L. Hence, the more closely the Nyquist plot bf
approaches-1 the more

(1.103)

peaks.

Gain and phase of the loop gain are not independent. Thiarigiet in the next subsection.

1.6.2. Relations between phase and gain

A well-known and classical result &ode (1940 is that the magnitude. (jw)|, @ € R, and the
phase ard.(jw), » € R, of a minimum phase€ linear time-invariant system with real-ratiok
transfer functionL are uniquely related. If on a log-log scale the plot of the nitagle| L (jw)|
versusw has an approximately constant slopglecade/decade] then

argL(jo) ~ n x % (1.104)

Thus, if | L(jw)| behaves likd /o then we have a phase of approximately/2 [rad] = —90°,
while if | L(jw)| behaves likd /w? then the phase is approximatelyr [rad] = —180°.

Exercise 1.6.1 (Bode's gain-phase relationship). Why (1.109 holds may be understoc
from the way asymptotic Bode magnitude and phase plots argtrewted (se§2.4.9. Make it
plausible that between any two break points of the Bode ptdop gain behaves as

L(jo) ~ c(jw)", (1.105)

with ¢ a real constant. Show thatfollows from the numbers of poles and zerosilofvhose
magnitude is less than the frequency corresponding to therlbreak point. What ig? O

More precisely Bode’s gain-phase relationship may be garas follows Bode 1945.

15A rational transfer function is minimum phase if all its pwland zeros have strictly negative real parts (see E
cisel.6.3.
16That is, L(s) is a rational function i with real coefficients.



Summary 1.6.2 (Bode’s gain-phase relationship). Let L be a minimum phase real-ration
proper transfer function. Then magnitude and phase of theggonding frequency respon
function are related by

1 [ dlog|Le,(
argL(ja)o)=;/ d09I1La G| oy du. g € R (1.106)

oo du

with log denoting the natural logarithm. The intermediaaeableu is defined by

u=logZ. (1.107)
wo

W is the function

Jul w t1
W(u) = log coth7 =log|———]|. (1.108)
wo
L, finally, is given by
Lo (ju) = L(jw),  u=logZ. (1.109)

wo

L., is the frequency response functidndefined on the logaritmically transformed and sca
frequency axis: = logw/wy. O

In (1.109 the first factor under the integral sign is the slope of thgniade Bode plot (in
[decades/decade]) as previously expressed by the variab#é is a weighting function of the
form shown in Fig.1.23 W has most of it weight ned, so that ard_(jay) is determined by

4

\ \ \
1/e 1 /wy e

Figure 1.23: Weighting functioW” in Bode’s gain-phase relationship

the behavior ofL,, near 0, that is, by the behavior éf nearw,. If log|L,,| would have a
constant slope theri (109 would be recovered exactly, and dr¢jw,) would be determined b
n alone. If the slope of logl| varies then the behavior ¢f.| in neighboring frequency region
also affects ard.(jw).

The Bode gain-phase relationship leads to the followingolsion. Suppose that the gene
behavior of the Nyquist plot of the loop gainis as in Fig.1.14 that is, the loop gain is greate
than 1 for low frequencies, and enters the unit disk oncéh@frequencytw,,) without leaving
it again. The frequency,, at which the Nyquist plot of the loop gaib crosses the unit circls



is at the center of the crossover region. For stability thesphof the loop gaiid. at this point
should be betweer180° and180°. To achieve a phase margin of at leé&t the phase should k
between-120° and120°. Figurel.24(Freudenberg and Looz&989 illustrates the bounds o
the phase in the crossover region. Sihtedecreases at the point of intersection Argenerally
may be expected to be negative in the crossover region.
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0dB

w
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low frequencies

180 oo

allowable
phase functions

0° w
(log scale)

argL (jow)
C180C [ N

Figure 1.24: Allowable regions for gain and phase of the Igain L

If at crossover the phase df is, say,—90° then by Bode’s gain-phase relationship de-
creases at a rate of about 1 [decade/decade]. To avoidiiitgttie rate of decrease cannot |
greater than 2 [decades/decade]. Hence, for robust $yaipilihe crossover region the ma
nitude|L| of the loop gain cannot decreases faster than at a rate se@mewhtweerl and?2
[decade/decade]. This bound on the rate of decreask|dh turn implies that the crossove
region cannot be arbitrarily narrow.

Bode’s gain-phase relationship holds for minimum phaséegys. For non-minimum phas
systems the trade-off between gain attenuation and phgse é&ven more troublesome. L&t
be non-minimum phase but stableThenL = L,, - L., whereL,, is minimum phase andl. is
an all-pass functiof¥ such that L. (jw)| = 1 for all w. It follows that|L(jw)| = | L,,(jw)| and

argL(jw) = argL,,(jw) + argL.(jw) < argL,(jw). (1.110)

As L. only introduces phase lag, the trade-off between gain adttion and limited phase la

That is, L has right-half plane zeros but no right-half plane poles.
18That is,| L. (jw)| is constant for ally € R.



is further handicapped. Non-minimum phase behavior gdpéeads to reduction of the oper
loop gains — compared with the corresponding minimum phgses with loop gairl.,, — or
reduced crossover frequencies. The effect of right-halfi@lzeros — and also that of right-he
plane poles — is discussed at greater length in Sedtian

Exercise 1.6.3 (Minimum phase). Let

(s —zD)(s —2z2) -+ (s — zm)

=k
B PR T Py ey

(1.111)

be a rational transfer function with all its poles, p», ---, p, in the left-half complex plane
Then there exists a well-defined corresponding frequerspamse functiord. (jw), w € R.

Changing the sign of the real part of thté zeroz; of L leaves the behavior of the magnitu
|L(jw)|, ® € R, of L unaffected, but modifies the behavior of the phase/4jg), » € R.
Similarly, changing the sign of the gaindoes not affect the magnitude. Prove that under <
changes the phase atgjw), € R, is minimalfor all frequencies if all zeros; lie in the
left-half complex plane andl is a positive gain.

This is why transfer functions whose poles and zeros areahe left-half plane and hav
positive gain are callethinimum phasé&ansfer functions. O

1.6.3. Bode’s sensitivity integral

Another well-known result of Bode’s pioneering work is knoasBode’s sensitivity integral

Summary 1.6.4 (Bode’s sensitivity integral). Suppose that the loop galnhas no poles in the
open right-half plan¥. Then if L has at least two more poles than zeros the sensitivity fomc

satisfies
/ log|S(jw)| dw = 0. (1.113)

0
O

The assumption that is rational may be relaxed (see for instafgegell (1988). The state-
ment thatZ. should have at least two more poles than zeros is sometimasqzhas “the pole-zer
excess ofL. is at least twé.” If the pole-zero excess is one, the integral on the leftenside of
(1.113 is finite but has a nonzero value. If has right-half plane poles theh.( 13 needs to be
modified to

o0
/ log|S(jw)| dw =7 ) " Re p;. (1.114)
0 i

The right-hand side is formed from the open right-half plaotes p; of L, included according
to their multiplicity. The proof of {.114 may be found ir§ 1.10Q

We discuss some of the implications of Bode’s sensitivitggmal. Suppose for the time beir
that L has no open right-half plane poles, so that the sensitivitggral vanishes. Then th

19That is, no poles with strictly positive real part.
201n adaptive control the expression i& ‘has relative degree greater than or equal to 2.”
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Figure 1.25: Low frequency disturbance attenuation may belachieved at
the cost of high frequency disturbance amplification

integral over all frequencies of Id§| is zero. This means that 10§| both assumes negati
and positive values, or, equivalently, that both assumes values less than 1 and values gr
than 1.

For the feedback system to be useffil, needs to be less than 1 over an effective low-freque
band. Bode’s sensitivity integral implies thitthis can be achieved at all then it is at the ¢
of disturbancemplification(rather than attenuation) at high frequencies. Figuebillustrates
this. If the open-loop system has right-half plane poles statement still holds. If the pole-ze
excess of the plant is zero or one then disturbance attemuatpossible over all frequencies.

Exercise 1.6.5 (Bode integral).

1. Suppose that the loop gainfigs) = k/(1 + s0), with k andé positive constants. Calct
late the sensitivity functiol$’ and plot its magnitude. Does Bode’s theorem apply?

2. Repeat this for the loop gaib(s) = k /(1 + s6)>. First check that the closed-loop syste
is stable for all positivéc andé.
mi

Freudenberg and LooZ&988 use Bode's sensitivity integral to derive a lower bound los
peak value of the sensitivity function in the presence okt@ints on the low-frequency behavi
of S and the high-frequency behavior bf Suppose thak is real-rational, minimum phase ar
has a pole-zero excess of two or more. bgtandwy be two frequencies such thak w; < wy.
Assume thatS and L are bounded by

|IS(o)| =<1, 0=Zo=<o, (1.115)
and
k+1
Lol =e(22) . oz on (1.116)
w

with 0 < ¢ < 0.5 andk > 0. Then the peak value of the sensitivity function is boundgd b

sup [S(jw)| > _r (a)L Iogl — 38wH) . (1.117)
wg — W, o

w<w=wy 2k

The proofis givenirg 1.1Q



This result is an example of the more general phenomenorbthatds on the loop gain il
different frequency regions interact with each other. @argystem design therefore involve
trade-offs between phenomenathat occur in different #aquregions. The interaction becon
more severe as the bounds become tighter.dfs decrease or ik, or k increase then the lowe
bound for the peak value of the sensitivity function incesasAlso if the frequencies; andwy
are required to be closely together, that is, the cross@ggon is required to be small, then th
is paid for by a high peak value &f in the crossover region.

The bounds1.115 and (L.116 are examples of the bounds indicated in Hi®24 The in-
equality (L..117 demonstrates that stiff bounds in the low- and high-freqyeegions may caus
serious stability robustness problems in the crossovguérecy range.

The natural limitations on stability, performance and mthess as discussed in this sect
are aggravated by the presence of right-half plane plamtspahd zeros. This is the subject
Sectionl.7.

Exercise 1.6.6 (Bode's integral for the complementary sens itivity). Let 7" be the comple-
mentary sensitivity function of a stable feedback systeat Has integrating action of at lea
order twa*. Prove that

/ooolog T(Jiw)

with the z; the right-half plane zeros of the loop gain(Middleton, 1991 Kwakernaak1995.
What does this equality imply for the behaviorBf O

1
do =7 ] [Re—, (1.118)
. Zj

1.7. Limits of performance

1.7.1. Introduction

In this sectioR? we present a brief review of several inherent limitationshaf behavior of the
sensitivity functionS and its complemerif’ which result from the pole-zero pattern of the pla

In particular, right-half plane zeros and poles play an irtgott role. The reason is that if th
the plant has right-half plane poles, it is unstable, whinpases extra requirements on the lo
gain. If the plant has right-half plane zeros, its inversaristable, which imposes limitations c
the way the dynamics of the plant may be compensated.

More extensive discussions on limits of performance mayodoed in Engell (1989 for the
SISO case anBreudenberg and LooZ&988§ for both the SISO and the MIMO case.

1.7.2. Freudenberg-Looze equality

A central result is theFreudenberg-Looze equaljtywhich is based on the Poisson int
gral formula from complex function theory. The result thalidws was originally obtainec
by Freudenberg and LooZ&985 andFreudenberg and LooZ&989.

Summary 1.7.1 (Freudenberg-Looze equality). Suppose that the closed-loop system
Fig. 1.26is stable, and that the loop gain has a right-half plane zeto x + jy with x > 0.
Then the sensitivity functio§ = 1/(1 + L) must satisfy

| 10801500 s do = 7 Toa | Byledo). (1.119)

(o]

21This means that/ L (s) behaves a€(s?) for s — 0, (see§ 2.3).
22The title has been taken froBngell (1989 andBoyd and Barrat{1991).



Figure 1.26: SISO feedback system

Bpolesis theBlaschke product

Bpoles(s )= 1_[

pis (1.120)
pits

formed from the open right-half plane polgsof the loop gainL = PC. The overbar denote
the complex conjugate. O

The proof is given ir§ 1.1Q It relies on the Poisson integral formula from complex timt
theory.

1.7.3. Trade-offs for the sensitivity function

We discuss the consequences of the Freudenberg-Loozieme(atl19, which holds at any
right-half plane zera = x + jy of the loop gain, and, hence, at any right-half plane zer
the plant. The presentation folloiseudenberg and Loo4&988 andEngell (1988. We first
rewrite the equality in the form

o0
| 1001 w-(@) do = t0g] o). (1121)
with w, the function
1 by X
p = — . 1.122
w: (@) i (x2+(a)—y)2+x2+(a)+y)2) ( )
We arrange1.12) in turn as
o0
| 1oatsto)D dW.() =1og1 Byt (L.123)
with W, the function
@ 1 - 1
W.(w) = / w,(n) dn = — arctanu + — arctanw. (1.124)
0 T X T X

The functionW. is plotted in Fig.1.27for different values of the ratip /x of the imaginary par
to the real part. The plot shows thidt increases monotonically frofto 1. Its steepest increa:
is about the frequenay = |z|.

Exercise 1.7.2 (Weight function). ~ Show that the weight functioW, represents the extra pha
lag contributed to the phase of the plant by the fact that éne zis in the right-half plane, tha
is, W.(w) is the phase of
z 4+ jw
z—jo’

(1.125)

O
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Figure 1.27: The functiolV, for values of arg increasing from (a) O to (b)
almostr /2
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Figure 1.28: Bounds ofS|

Exercise 1.7.3 (Positivity of right-hand side of the Freude nberg-Looze equality). Prove

that log| Bp‘o‘les(z)| is positive for any: whose real part is positive. O

The comments that follow hold for plants that have at leastright-half plane zero.

The functionw. is positive and also |°DBEo]|es(Z)| is positive. Hence,1(.121) implies that if
log|S| is negative over some frequency range so that, equivaleftlys less than 1, then nec
essarily|S| is greater than 1 over a complementary frequency range Wénaready concludet
from Bode’s sensitivity integral.

The Freudenberg-Looze equality strengthens the Boderaltegcause of the weighting fun
tion w. included in the integrand. The quantidV, (jo) = w.(jw)dw may be viewed as
weighted length of the frequency interval. The weightedjtarequals the extra phase added
the right-half plane zero over the frequency interval. The larger the weighted leigytthe more
the interval contributes to the right-hand side f123. The weighting function determines t
what extent small values ¢8| at low frequencies need to be compensated by large valugga
frequencies. We argue that|i$| is required to be small in a certain frequency band—in pat
ular, a low-frequency band—it necessarily peaks in andibhad. Suppose that we wisli(jw)|
to be less than a given small numigdn the frequency banfd, w,], with w; given. We should
like to know something about the peak valuef |S| in the complementary frequency ranc
Figure1.28shows the numbersand . and the desired behavior p§|. Define the bounding
function

e for|w| < w,
b(w) = (1.126)
n for|w| > w.

Then|S(jw)| < b(w) for w € R and the Freudenberg-Looze equality together implyAhreteds



to satisfy

[ toatbi@) aw.(@) = log By (1.127)
Evaluation of the left-hand side leads to

W.(w1)loge + (1 — W.(w1)) log i > 10| Bpgied?)|- (1.128)
Resolution of .12§ results in the inequality

1
1—Wz (1)

1 Wz (01) 1
n > (g)lfwﬂw]) . ‘Bpoles(z) (1129)

We note this:

e Forafixed zera = x +jy and fixedw; > 0 the exponents in this expression are posit
By 1.7.3we have|B,;01,es(z)| > 1. Hence, fore < 1 the peak valugu is greater thar
1. Moreover, the smaller is, the larger is the peak value. Thus, small sensitivityat
frequencies is paid for by a large peak value at high fregesnc

e For fixede, the two exponents increase monotonically with and approacho asw;
goes toco. The first exponent (that df/¢) crosses the value 1 at = /x2 + 2 = |z|.
Hence, if the width of the band over which sensitivity is riegd to be small is greater the
the magnitude of the right-half plane zerathe peak value assumes excessive values

The Freudenberg-Looze equality holds &y right-half plane zero, in particular the one wi
smallest magnitude. Therefore, if excessive peak valuesmbe avoided, the width of th
band over which sensitivity may be made small cannot be dettbeyond the magnitude of tl
smallestright-half plane zero.

The number

|Bp;olles(z)| = l—[ ‘

is replaced with 1 if there are no right-half plane poles. édt¥ise, it is greater than 1. Henc
right-half plane poles make the plant more difficult to cohtr

The number.130 is large if the right-half plane zerois close to any of the right-half plar
polesp;. If this situation occurs, the peak valueg 8f are correspondingly large, and, as a res
the plant is difficult to control. The Freudenberg-Loozeaidy holds for any right-half plane
zero. Therefore, plants with a right-half plane zero clasa tight-half plane pole are difficu
to control. The situation is worst when a right-half planeozeoincides with a right-half plan
pole—then the plant has either an uncontrollable or an werebble unstable mode.

We summarize the qualitative effects of right-half planezeof the plant on the shape of tl
sensitivity functionS (Engell 1988.

pi+:z
pi—zZ

(1.130)

Summary 1.7.4 (Effect of right-half plane open-loop zeros)

1. The upper limit of the band over which effective disturbarattenuation is possible
constrained from above by the magnitude of the smallest-high plane zero.

2. If the plant has unstable poles, the achievable distudattenuation is further impaire
This effect is especially pronounced when one or severht-tiglf plane pole-zero pair
are close.



3. If the plant has no right-half plane zeros the maximallii@eable bandwidth is solel
constrained by the plant capacity. As seen in the next stibsgbe right-half plane pole
with largest magnitude constrains thmallestoandwidth that is required.

The trade-off between disturbance attenuation and amstlific is subject to Bode’s ser
sitivity integral.
mi

We consider an example.

Figure 1.29: Double inverted pendulum system

Example 1.7.5 (Double inverted pendulum). Toillustrate these results we consider the dou
inverted pendulum system of Fif.29 Two pendulums are mounted on top of each other.
input to the system is the horizontal positioof the pivot of the lower pendulum. The measur
outputis the angle that the lower pendulum makes with the vertical. The pendsibave equa
lengthsL, equal masses and equal moments of inertia (taken with respect to the center
gravity).

The transfer functio® from the inpuiz to the angley may be foundKwakernaak and Westd
1985 to be given by

20 2
P(s):l s (—BK + 1)s*+3)

7 , 1.131
L (K24 6K + 1)s*—4(K +2)s2+3 ( )

with K the ratioK = J/(mL?). For a pendulum whose mass is homogeneously distrib
along its lengthX is % If we furthermore let. = 1 then

s2(=252 4 3)
P(s) = B B3
9 3

(1.132)

This plant transfer function has zeros at 0, 0, ahtl22474, and poles at-0.60507 and
+1.62293. The plant has two right-half plane poles and one right-plalfie zero.

By technigues that are explained in Chagfieve may calculate the transfer functiGhof the
compensator that makes the transfer matri§eend 7' stable and at the same time minimiz
thepeak valueof sup,.r |S(jow)| of the sensitivity functiornS of the closed-loop system. Thi
compensator transfer function is

(s + 1.6229)(s + 0.6051)(s — 0.8018)

1.133
(s + 1.2247)s? ( )

C(s) = 1.6292




Figure 1.30 shows the magnitude plot (a) of the corresponding sertgitfuinction S. This
magnitude does not depend on the frequan@nd has the constant value 21.1178. Note
the compensator has a double pole at 0, which in the clos@dclaincels against the double ze
at 0 of the plant. The corresponding double closed-loop @bleactually makes the closed-lo
system unstable. It causes the plant inptd drift.

100 | ‘ ; 40 dB
S|
10 20 dB
1 0dB
1074 1072 10° 10> 10* 10°

]

Figure 1.30: Sensitivity functions for the double pendulsyatem

The peak value 21.1178 for the magnitude of the sensitivibcfion is quite large (as con
pared with 1). No compensator exists with a smaller peakevalio reduce the sensitivity
the feedback system to low frequency disturbances it isalglsi to makd S| smaller at low
frequencies. This is achieved, for instance, by the congdenwith transfer function

(s + 1.6229)(s + 0.6051)(s — 0.8273)

C(s) = 1.6202 .
) (s + 1.2247)(s + 0.017390)(s — 0.025715)

(1.134)

Figurel.30shows the magnitude (b) of the corresponding sensitivitgfion. This compensatc
no longer cancels the double zero at 0. As a result, the 8étysit at zero frequency is 1, whic
means that constant disturbances are not attenuated. d$emnris structural: Because the pl:
transfer functionP equals zero at frequency 0, the plant is unable to compefwat®nstant
disturbances. Actually, the zeros at O play the role of rgdif plane zeros, except that th
bound the frequencies whefemay be made small fromelowrather than from above.

The plot of Fig.1.30also shows that compared with the compensatdt33 the compen-
sator (1.1349 reduces the sensitivity to disturbances up to a frequehapaout 0.01. By furthel
modifying the compensator this frequency may be pushedtupeagrice of an increase in tt
peak value of the magnitude 6f Figurel.30shows two more magnitude plots (c) and (d). T
closer the magnitude 1.2247 of the right-half plane plant i approached the more the pe
value increases.

There exist compensators that achieve magnitudes lessltf@anthe sensitivity in the fre:
qguency range, say, between 0.01 and 0.1. The cost is a fimtttease of the peak value.

The compensators considered so far all result in sengifwitctions that do not approach t
value 1 as frequency increasessto The reason is that the loop gain does not approach 0.
undesirable phenomenon, which results in large plant iapytlitudes and high sensitivity t
measurement noise, is removed in ExanipleQ O

Exercise 1.7.6 (Interlacing property). Check that the double inverted pendulum does not
the parity interlacing property @ 1.3.6(p. 20). Hence, no stabilizing compensator exists t
by itself is stable. o

Exercise 1.7.7 (Lower bound for the peak value of  .S).



1. Define||S ||« as the peak value ¢8|, thatis,||S |lcc = SUR,cr |S(jw)|. Use (.129 to
prove that if the closed-loop system is stable then

IS0 = ‘Bp}l.es(Z) (1.135)

’

where Bpgies is the Blaschke product formed from the right-half planesgadf the plant,
andz any right-half plane zero of the plant.

2. Check that the compensatdr133 actually achieves this lower bound.

1.7.4. Trade-offs for the complementary sensitivity function

Symmetrically to the results for the sensitivity functioelidefined trade-offs hold for the con
plementary sensitivity function. The role of the rightdalane zeros is now taken by the righ
half plant open-loopoles,and vice-versa. This is seen by writing the complementangiteity
function as

L 1

T=-—"_= - (1.136)
I+L 141

Comparison with Freudenberg-Looze equalityl6f. 1leads to the conclusion that for any rigt
half plane open-loop polg = x + jy we have Freudenberg and Looz£988

o0
. X _
[m log(|7" (jw)|) Yro—o) dw = 7 10g|Beod P)I, (1.137)
with B,erosthe Blaschke product
Zi — S8
Brerods) = [ | Ea (1.138)

i

formed from the open right-half plareerosz; of L.

We consider the implications of the equalify 137 on the shape df'. Whereas the sensitivit
S is required to be small dbow frequencies7 needs to be small dtigh frequencies. By ar
argument that is almost dual to that for the sensitivity fiowit follows that if excessive peakin
of the complementary sensitivity function at low and intediate frequencies is to be avoide
|T| may only be made small at frequencies tiateedhe magnitude of the open-loop right-he
planepole with largestmagnitude. Again, close right-half plane pole-zero paiekenthings
worse.

We summarize the qualitative effects of right-half planezef the plant on the shape achie
able for the complementary sensitivity functidn(Engell 1988.

Summary 1.7.8 (Effect of right-half plane open-loop poles)

1. The lower limit of the band over which the complementanys#é/ity function may be
made small is constrained from below by the magnitude of aéingelst right-half plane
open-loop pole. Practically, the achievable bandwidthvigags greater than this magn
tude.

2. If the plant has right-half plane zeros, the achievabdieicdon of 7" is further impaired.
This effect is especially pronounced when one or severht-tiglf plane pole-zero pair
are very close.
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Figure 1.31: Right-half plane zeros and poles constsaamd 7"

O

Figurel.31summarizes the difficulties caused by right-half plane gartd poles of the plar
transfer functionP. S can only be small up to the magnitude of the smallest rigiftgiane
zero. T can only start to roll off to zero at frequencies greater ttenmagnitude of the large
right-half plane pole. The crossover region, whSrand 7" assume their peak values, exter
over the intermediate frequency range.

Example 1.7.9 (Double inverted pendulum).  We return to the double inverted pendulum
Examplel.7.5 For robustness to plant uncertainty and reduction of tiseeqtibility to mea-
surement noise it is necessary that the loop gain decreasesd at high frequencies. Corr
spondingly, the complementary sensitivity function algcr@ases to zero while the sensitiv
function approaches 1. The compensator

1.5136(s + 1.6229)(s 4+ 0.60507)(s — 0.82453)
(s + 1.2247)(s + 0.017226)(s — 0.025394)(1 + 0.00061682s)’

C(s) = (1.139)
whose transfer function is strictly proper, accomplish@s.t Figure1.32 shows that for low
frequencies the magnitude plot (e) of the correspondingiteity function closely follows the
magnitude plot (c) of Figl.30 which is repeated in Fid..32 At high frequencies the magnituc
of S drops off to 1, however, starting at a frequency of about 100.

The lowest frequency at whicl$| may start to drop off to 1 coincides with the lowest fi
quency at which the complementary sensitivity may be madéait decreasing to zero. This,
turn, is determined by the magnitude 1.6229 of the right{lahe plant pole with largest mag
nitude. The magnitude plot (f) in Fig.32shows that makingS| drop off at a lower frequenc
than in (e) causes the peak value to increase. m)

1.8. Two-degrees-of-freedom feedback systems

In § 1.3we introduced the two-degrees-of-freedom configuratioRigf 1.33 The function of
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Figure 1.32: More sensitivity functions for the double peluan system
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Figure 1.33: Two-degrees-of-freedom feedback systemguarafiion

the precompensatdt is to improve the closed-loop response to command inputs
Figurel.34shows two other two-degrees-of-freedom configurationghimsection we study
whether it makes a difference which configuration is cho¥&a restrict the discussion to SIS
systems.
In the configuration of Figl.33we write the plant and compensator transfer functions in
polynomial fraction form

p=2 =2 (1.140)

The feedback loop is stable if and only if the roots of the etboop characteristic polynomis
Dq = DX + NY are all in the open left-half complex plane.

In this same configuration, the closed-loop transfer fumcif from the command signalto
the control system outputis

PC NY
1+ PC D

(1.141)

The prefilter transfer functiol is available to compensate for any deficiencies of the unc
pensated closed-loop transfer function

NY
Dcl ’

Hy, = (1.142)
Right-half plane zeros of this uncompensated transfertfomare a handicap for the compen:
tion. Right-half plane roots oWV (that is, open-loop right-half plane zeros) and right-ipddine
roots of Y may well be present. Such zeros cannot be canceled by condisyg poles ofF
because this would make the precompensator, and, henaghthe control system, unstable.
Next consider the two-degrees-of-freedom configuratiofigf1.34a). We now have for the
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Figure 1.34: Further two-degrees-of-freedom feedbackesysconfigura-
tions

closed-loop transfer function

P NX
H = F = F. (1.143)
1+ PC D
——
H,

Inspection shows that the open-loop plant zeros re-ocatieinncompensated closed-loop tra
fer function H,, but that instead of the roots &f (the compensator zeros) now the rootstofthe
compensator poles) appear as zeros. Hence, the precortgratesign problem for this confic
uration is different from that for the configuration of Fi§.33 In fact, if the compensator he
right-half plane poles or zeros, or both, it is impossiblathieve identical overall closed-loc
transfer functions for the two configurations.

Comparison of1.142 and (1.143 suggests that there may exist a configuration such tha
numerator of the uncompensated closed-loop transferibmistindependent of the compensa
To investigate this, consider the configuration of AigB4b). C; andC, have the polynomia
fractional representations

Y, Y

= — = —. 1.144
G G Y ( )

To match the closed-loop characteristics of the configomatof Figs1.33and1.34a) we need
C = CC,. This implies thatX; X, = X andY;Y, = Y. The closed-loop transfer function nc
is

e PC,  NXpY,
T 14+ PC Dy

(1.145)

Inspection shows that the numeratorfbfis independent of the compensator if welgty; = 1,
so that

Y, 1 1 Y
L= —, G=2=7Y,=VY. (1.146)

C: = =
"X, T x, X
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Figure 1.35:1 %-degrees-of-freedom control system

The closed-loop transfer function now is

N

H=—.
Dcl

(1.147)

The corresponding configuration of Fih34b) has two disadvantages:

1. The configuration appears to require the implementatientock with the purely poly-
nomial transfer functiorC,(s) = Y (s), which is physically impossible (unlegs is of
degree zero).

2. The configuration actually has only one degree of freed®he reason is that one de
gree of freedom has been used to make the numerator of treddlosp transfer functior
independent of the compensator.

The first difficulty may be remedied by noticing that from tHedk diagram we have

1 Y
u = C1V - C1C2Z = YV + ye. (1148)
This implies
Xu=r+Ye. (1.149)

This input-output relation — withh ande as inputs and as output — may be implemented f
a state realization of order equal to the degree of the pofyaloX .
The second disadvantange may be overcome by modiffiig§ to

Xu = Fr + Ye, (1.150)

with F a polynomial of degree less than or equal to thakofThis still allows implementatior
by a state realization of order equal to the degre&’ see Exercisd.8.1). The compensato
is represented in the block diagram of Fig35 The combined blocK, is jointly realized as &
single input-output-state system. The closed-loop texrfsihction is

_NF

H = .
Dcl

(1.151)
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Figure 1.362%-degrees-of-freedom configuration

The design of the prefilter amounts to choosing the polynbifiaThis might be called a%-
degrees-of-freedorontrol systerf®. By application of a further prefilteF, as in Fig.1.36the
closed-loop transfer function becomes

NF
H =
Dcl

F. (1.152)

This results in @%-degrees—of—freedom control system.
An application is described in Exam®e9.5in § 2.9.5

Exercise 1.8.1 (Realization of the lé-degrees-of-freedom compensator). Represent the
polynomialsX’, F andY as

X() = s"+an1s" +apas" + -+ ao, (1.153)
F(s) = bus" + by 18"+ byas" >+ + bo, (1.154)
Y(s) = cus" + 18" " T4+ 0o (1.155)

1. Show that thé%—degrees—of-freedom compensaltw = Fr + Ye may be realized as i
Fig. 1.37

2. Find a state representation for the compensator.

3. Prove that the feedback system of Hid35 with the dashed block realized as in Fig37,
has the closed-loop characteristic polynonit + NY.

O

1.9. Conclusions

It is interesting to observe a number of “symmetries” or “ities” in the results reviewed ir
this chapter Kwakernaak1999. For good performance and robustness the loop gaof a
well-designed linear feedback system should be

¢ large at low frequencies and

23Half degrees of freedom were introduced in control engingetlerminology byGrimble (1994, though with a differ-
ent connotation than the one used here.



Figure 1.37: Realization of thb%-degrees-of-freedom compensafon =
Fr 4+ Ye
e small at high frequencies.
As the result, the sensitivity functiosi is
e small at low frequencies and
e approximately equal to 1 at high frequencies.
The complementary sensitivity functidnis
e approximately equal to 1 at low frequencies and
e small at high frequencies.
Such well-designed feedback systems are
e robust with respect to perturbations of the inverse loop galow frequencies, and
e robust with respect to perturbations of the loop gain at frighuencies.
Furthermore,

¢ right-half plane open-loop zeros limit the frequency up tucekh S may be made small &
low frequencies, and

e right-half plane open-loop poles limit the frequency fromigh 7" may be made small &
high frequencies.

Note that to a large extent performance and robustness gbih&and, that is, the requiremer
for good performance imply good robustness, and vice-versds is also true for the critica
crossover region, where peaking of bdthand T is to be avoided, both for performance a
robustness.

1.10. Appendix: Proofs

In this section we collect a number of proofs for Chagter



1.10.1. Closed-loop characteristic polynomial
We first prove {.44) in Subsectiori.3.3

Proof 1.10.1 (Closed-loop characteristic polynomial). Let
X =Ax+ Bu, y=Cx+ Du, (1.156)

be a state realization of the blogkin the closed-loop system of Fig.11 It follows thatL(s) = C(sI —
A" + D. Fromu = —y we obtain with the output equation that = —Cx — Du, so thatu =
—(I + D)~ Cx. Since by assumptiofi+ D = I + L(joo) is nhonsingular the closed-loop system is we
defined. Substitution af into the state differential equation shows that the cldseg-system is describe
by the state differential equation

% =[4—-B(+ D)"'Clx. (1.157)
The characteristic polynomigl. of the closed-loop system hence is given by
xa(s) = defsI — A+ B(I +D)~'C]
= detis] — A)-defl + (sI — A)~'B(I + D)"'C]. (1.158)
Using the well-known determinant equality et M N) = det(/ + NM) it follows that
xa(s) = detsI —A)-defl + (I + D)~'C(sI — A)~' B]
= detis/ — A)-def(/ + D)"']-de{l + D + C(sI — A)"' B]
= det(s] — A)-de{( + D)"']-de{l + L(s)]. (1.159)

Denoting the open-loop characteristic polynomial agsdet A) = yx(s) we thus have

xo(s) _ defl + L(s)]
x(s) ~ de(l + Ljoo)]

(1.160)

1.10.2. The Nyquist criterion

The proof of the generalized Nyquist criterion of Summ#s¥.13in Subsectiorl.3.5relies on therinciple
of the argumenbf complex function theoR#.

Summary 1.10.2. Principle of the argument LeR be a rational function, an@ a closed contour in th
complex plane as in Fid..38 As the complex numbertraverses the contodrin clockwise direction, its
image R(s) underR traverses a closed contour that is denote®&3), also shown in Figl.38 Then as
traverses the contoudr exactly once in clockwise direction,

(the number of timeR(s) encircles the origin in clockwise direction asraverses’)

(the number of zeros @R insideC) — (the number of poles oR insideC).

We prove the generalized Nyquist criterion of Summhaig.13

Proof of the generalized Nyquist criterioe apply the principle of the argument tb.{60, where we
choose the contout to be the so-calletllyquist contouior D-contourindicated in Fig1.32 The radiuso
of the semicircle is chosen so large that the contour enslaisthe right-half plane roots of bogty) and o
Then by the principle of the argument the number of timestti@image of d&t7 + L) encircles the origin
equals the number of right-half plane rootsygf (i.e., the number of unstable closed-loop poles) minus
number of right-half plane roots gf (i.e., the number of unstable open-loop poles). The Nyauittrion
follows by letting the radiug of the semicircle approacko. Note that ap approacheso the image of the
semicircle under déf + L) shrinks to the single point d@gt + L(joo)). (]

24gee Henrici (1974). The generalized form in which we state the principle may fmund in
Postlethwaite and MacFarla®979.
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Figure 1.38: Principle of the argument. Left: a closed cantbin the com-
plex plane. Right: the imag®&(C) of C under a rational func-
tion R

Im

Re

Figure 1.39: Nyquist contour

1.10.3. Bode’s sensitivity integral

The proof of Bode’s sensitivity integral is postponed utité next subsection. Accepting it as true we t
it to derive the inequalityX.117) of Subsectiori.6.3

Proof 1.10.3 (Lower bound for peak value of sensitivity). If the open-loop system is stable then v
have according to Bode’s sensitivity integral

/oo log|S(jw)| do = 0. (1.161)
0

From the assumption th&f (jw)| < a < 1 for 0 < w < wy itfollows that if 0 < w; < wy < oo then

o0
0 = / log|S(jw)| dw
0
oL WH o]
= / log|S(jw)| dw+/ Iog|S(jw)|dw+/ log|S(jw)| dw
0 oL WH
o0
< wrloga + (wg —wr) sup log|S(jw)| +/ log|S(jw)| dw. (1.162)
oL =w=wy WH
As a result,
1 o0
(wg —wr) sup log|S(jw)| = wr log — f/ log|S(jw)| dw. (1.163)
o <o<og o oy



Next consider the following sequence of (in)equalitiestmmtiil part of the sensitivity integral

o0 . o0 .
/ |09|S(Jw)|dw‘ < / llog|S(o)]| de

H H

IA

o0 o0
/ [log S(jw)| dw = / [log[l + L(jw)]| dew. (1.164)
Wy wH

From the inequalities (4.1.38) and (4.1.35)Atframowitz and Steguii1965 we have for any comple:
numberz such thad) < |z| < 0.5828

3|z
[log(1 +2)| < ~log(1 — |2} = |1og(1 —|zI)| < 2. (1.165)
The assumption that
k+1
IL(jw)| <& (“’—”) for w > wy (1.166)
w

with 0 < ¢ < 0.5, implies that|L(jw)| < ¢ < 0.5 for v > wgy. With this it follows from (.164 and
(1.169 that

®© ®© o0 k+1
/ 'Ong(jw)ldw’ = / %lL(iw)wa/ 38(0)—}[) do = 228 (1.167)
w, w,

" " oy 2\ 2 k-

The final step of of the proof is to conclude froth163 that

. 1 1 3
sup log|S(jw)| > ——— (a)L log— — wH) . (1.168)
oL <w<wy O — 0L, a 2k
This is what we set out to prove. [

1.10.4. Limits of performance

The proof of the Freudenberg-Looze equality of Sumniai/1relies on Poisson’s integral formula fro
complex function theory.

Summary 1.10.4 (Poisson’s integral formula). Let F be a functionC — C that is analytic in the close
right-half plané® and is such that
F(R&?
lim IF(ReD)| =0 (1.169)
R—>o00

forall 6 € [-3, —5]. Then the value of (s) at any points = x + jy in the open right-half plarfé€ can
be recovered from the values Bfjw), w € R, by the integral relation

1 [
F(s) = p / o F(jo) m do. (1.170)

A sketch of the proof of Poisson'’s integral formula follows.

Proof of Poisson’s integral formulaWe present a brief proof of Poisson’s integral formula bazedle-
mentary properties of the Laplace and Fourier transforees {gr instanc&wakernaak and Sivaf1991)).
Since by assumption the functidnis analytic in the closed right-half plane, its inverse lzagg transform
1 is zero on(—oo, 0). Hence, fors = x + jy we may write

F(s) = /_ > F(ye 6t gy = /_ ~ f(oye eyt gy, (1.171)

25For rational F this means thaf has no poles in Rg) > 0.
26That is, for Re(s) > 0.



Forx > 0 the function !l € R, is the inverse Fourier transform of the frequency function

1 I 2x
. » eR. (1.172)

xfja)+x+ja) x2 + w?’

/Oo Fye /Oo 2x ot do dt
—0oQ

Thus, we have

F(s)

oo X2+ w? 27
1 [ X o0 ;
= _/ ﬁ/ F)e 10T dr do (2.173)
T Joo X+ J_co
F(j(y — o))
By replacing the integration variabie with y — w we obtain the desired result
F(s) = - /Oo F(jo) al d (1.174)
S) = — W)—F—= do. .
7l VTG0
]

We next consider the Freudenberg-Looze equality of Summary.

Proof 1.10.5 (Freudenberg-Looze equality).  The proof of the Freudenberg-Looze equality of Su
mary 1.7.1follows that of Freudenberg and Looze (1988). We first wiitas L = N/D, with N and
D coprime polynomia¥’. Then

D
D+ N’

Since by assumption the closed-loop system is stable, thentieatorD + N has all its roots in the opel!
left-half plane. Hence$ is analytic in the closed right-half plane. Moreover, armghtihalf plane pole of
L is aroot of D and, hence, a zero ¢f.

We should like to apply Poisson’s formula to the logarithnthe sensitivity function. Because of th
right-half plane rooty; of D, however, logS is not analytic in the right-half plane, and Poisson’s folan
cannot be used. To remedy this sencelthe right-half plane zeros & by considering

S = BpolesS- (1.176)

(1.175)

Application of Poisson’s formula to lo§ yields

oo

log S(s) = % [ log(S (jw)) (1.177)

X
——d
P -e2
for any open right-half plane poist= x + jy. Taking the real parts of the left- and right-hand sides
have

- 1 [® ~ X
log|S(s)| = — 10g(|S(j - d 1.178
alsel =~ [ 01500 s (1178)
Now replaces with a right-half plane zere = x + jy of L, that is, a right-half plane zero & . Then

1

“1rL)
so thatS(z) = B ojed?). Furthermore| Bpgledjw)| = 1 for » € R, so that|S (jo)| = |S(jw)| for w € R.

Thus, after setting = z we may reducel(178 to

_ 1
1091 Bped2)] = — |

S(z) (1.179)

)

(o]

l0g(1S()) 5=

which is what we set out to prove.

2'That is, N and D have no common factors.



Bode’s sensitivity integrall(. 114 follows from Proof1.10.5

Proof 1.10.6 (Bode’s sensitivity integral). The starting point for the proof of Bode’s sensitivity inta
(1.119 is (1.179. Settingy = 0, replacingS with Bp_ollesfs’ and multiplying on the left and the right b
mx we obtain (exploiting the fact thaBpoled = 1 on the imaginary axis)

00 ) x2 _
/ _109(S(0))) 55 do = 7x10g]S()| + 710G | Bed )l (1.181)

Letting x approachro, the left-hand side of this expression approaches the Budgral, while under the
assumption thaL has pole excess two the quantityog |.S(x)| approaches 0. Finally,

pi +x
pi—X

Di
Pi
=%

Jim _xlog|Bgedx)| = lm xlog ]‘[ ’ = lim Re Z xlog
1 1
= 2 Z Re p;. (1.182)
i

This completes the proof.






2. Classical Control System Design

Overview— Classical criteria for the performance of feedback cdntrg
systems are the error constants and notions such as bahdmdipeak-
ing of the closed-loop frequency response, and rise tintdinggtime
and overshoot of the step response.

The graphical tools Bode, Nyquist, Nichols plots, avid, N - and
root loci belong to the basic techniques of classical andemodontrol.

Important classical control system design methods comdisoop
shaping by lag compensation (including integral contleBd compen-
sation and lag-lead compensation. Quantitative feedbeasigd (QFT)
allows to satisfy quantitative bounds on the performanbestness.

2.1. Introduction

In this chapter we review methods for the design of contreteayps that are known under t
name ofclassical control theory The main results in classical control theory emerged in
period 1930-1950, the initial period of development of tleddfiof feedback and control eng
neering. The methods obtained a degree of maturity duriafjftres and continue to be of gre
importance for the practical design of control systemseeigfly for the case of single-inpu
single-output linear control systems. Much of what now idechmodern robust control theol
has its roots in these classical results.

The historical development of the “classical” field stantgth H. Nyquist’s stability criterion
(Nyquist 1932, H. S. Black’s analysis of the feedback amplifigddck, 1934, H. W. Bode’s
frequency domain analysi8¢de 1940, and W. R. Evans’ root locus methoBvans 1948.
To an extent these methods are dfeuristicnature, which both accounts for their success
for their limitations. With these techniques a designegratits to synthesize a compensat
network or controller that makes the closed-loop systerfoperas required. The terminology |
use in that era (with expressions such as “synthesize,” pmamsation,” and “network”) is fron
the field of amplifier circuit desigrBoyd and Barraft1991).

In this chapter an impression is given of some of the clakhigalights of control. The pre
sentation is far from comprehensive. More extensive intobdns may be found in classic
and modern textbooks, together with an abundance of additiaterial. Well-known source
are for instanc®ode (1945, James et al(1947), Evans(1954, Truxal (1955, Savant(1958,
Horowitz (1963, Ogata (1970, Thaler (1973, Franklin et al. (1986, D’Azzo and Houpis
(1989, Van de Vegt€1990, Franklin et al.(1991), andDorf (1992.
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In § 2.2 (p. 60) we discuss the steady-state error properties of feedlmatkat systems. This
naturally leads to review of the notion of integral contro§i2.3 (p. 64).

The main emphasis in classical control theory is on frequetfmain methods. 1§ 2.4
(p. 69 we review various important classical graphic repregenta of frequency response
Bode, Nyquist and Nichols plots.

The design goals and criteria of classical control theogycansidered i§ 2.5(p. 80). In§ 2.6
(p-82) the basic classical techniques of lead, lag and lag-leagbeasation are discussed. A br
survey of root locus theory as a method for parameter setecti compensators is presented
§2.7(p.88). The historically interesting Guillemin-Truxal desigropedure is considered §?.8
(p-90). In the 1970gjuantitative feedback theof@FT) was initiated byHorowitz (1982. This
powerful extension of the classical frequency domain fee#lllesign methodology is explaine
in§2.9(p.93).

All the design methods ammodel-basedThey rely on an underlying and explicit model
the plant that needs to be controlled. The experimentall&iddichols rules for tuning a PID.
controller mentioned i§ 2.3 (p. 64) form an exception.

2.2. Steady state error behavior

2.2.1. Steady-state behavior

One of the fundamental reasons for adding feedback conteotystem is thateady-state error:
are reduced by the action of the control system. Consideytiieal single-loop control syster
of Fig. 2.1 We analyze the steady-state behavior of this system,ghtité asymptotic behavic
in the time domain for — oo when the reference inputis a polynomial time function of degre
n. Thus,

r(t) = ;—”,ﬂ(t), t>0, (2.1)

wherel is theunit stepfunction,1(z) = 1 forz > 0 andl(¢) = 0 for¢ < 0. Forn = 0 we have a
step of unit amplitude, for = 1 the inputis a ramp with unit slope and for= 2 it is a parabola
with unit second derivative.

The Laplace transform of the reference input(s) = 1/s"*!. The control error is the signz
¢ defined by

ety =r()—z(), t>0. (2.2)
The steady-state erraf,it exists,is

Eoo = rILngo e(1). (2.3)

+
F () c P =

Figure 2.1: Single-loop control system configuration
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The Laplace transform of the control error is

1 H(s 1—-H
£0) = PO = 50) = p =t = @)

The function

PCF L
H = = F
14+ PC 1+ L

(2.5)

is the closed-loop transfer functioh. = PC is the loop gain.

Assuming that the closed-loop system is stable, so thalhalpbles ofH are in the left-half
plane, we may apply the final value theorem of Laplace transfibeory. It follows that the
steady-state erroif,it exists is given by

. R . 1—-H
sgg =lim sé(s) = lim 7@,

2.6
540 540 s ( )

with n the order of the polynomial reference input. Assume for tlen@ant that no prefilter i
installed, that is, ifF(s) = 1. Then

1

1-—H(s) = ——— 2.7
0= T or (27)
and the steady-state error is

(n) i 1

Eo0 = M —F—— (2.8)

540 s"[1 4+ L(s)]

This equation allows to compute the steady-state erroreofélponse of the closed-loop syst
to the polynomial reference inpu2.(l).

2.2.2. Type k systems

A closed-loop system with loop gaihis of typek if for some integek the limit lim, o s L(s)
exists and is nonzero. The system is of typié and only if the loop gainl has exactlyt poles
in the origin. If the system is of typlk then

=o0 for0<n<k,
lim s"L(s) § #0 forn=k, (2.9)
$30 =0 forn>k.

Consequently, from2.8) we have for a typ& system without prefilter (that is, f(s) = 1)

=0 for0<n<k,
u@gg £0 forn =k, (2.10)
st =00 forn>k.

Hence, if the system is of type and stable then it has a zero steady-state error for polyadc
reference inputs of order less thana nonzero finite steady-state error for an input of ofde
and an infinite steady-state error for inputs of order grehtnk .

A type 0 system has a nonzero but finite steady-state erra $bep reference input, and :
infinite steady-state error for ramp and higher-order input
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Nonzero position error Zero position error

If=======-==-=-=--=----4 1fp-==----- <= =
05 type 0 0.5 type
0 0
0 10 20 30 0 10 20 30
Nonzero velocity error Zero velocity error
20 = 20
type . type 2
10 e 10
0 -7 ° 0 -~ =
0 5 10 15 20 0 5 10 15 20
Nonzero acceleration error Zero acceleration error
100 % 100

50 type 2 5

. 10 5 .
time time

Figure 2.2: System type and steady-state errors

A type 1 system has zero steady-state error for a step indirtita steady-state error for
ramp input, and infinite steady-state error for inputs oeottevo or higher.

A type 2 system has zero steady-state error for step and rgmysi a finite steady-state err
for a second-order input, and infinite steady-state ernoinfauts of order three or higher.

Figure2.2illustrates the relation between system type and steatg-strors.

Exercise 2.2.1 (Type k systems with prefilter).  The results of this subsection have be
proved if no prefilter is used, that ig/(s) = 1. What condition needs to be imposed én
in case a prefilter is used? O

2.2.3. Error constants
If the system is of typ® then the steady-state error for step inputs is

1 1
(0)

_ _ , 2.11
TILLO) T+ K, (2.11)

The numbeX, = L(0) is theposition error constant
For a type 1 system the steady-state error for a ramp input is

1 1 1
& =lim ———— =lim =—. 2.12
y sy0 s[1 + L(s)] sio sL(s) K, ( )

The numberX, = lim,y sL(s) is thevelocity constant.
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Table 2.1: Steady-state errors

Input

System| step ramp parabola

type O o0 o0
yp T+K,

type 1 0 KL 'S}
type 2 0 0 KL

The steady-state error of a type 2 system to a second-ouigris

1 1
2 _ lim = 2.13
Foo sto s2L(s) K, (2.13)

The numbetX, = limg, s2L(s) is theacceleration constant.

Table2.1summarizes the various steady-state errors. In each badarger the error consta
is the smaller is the corresponding steady-state error.

The position, velocity and acceleration error provide basguirements that must be satisfi
by servomechanism systems depending upon their functioleal

The steady-state error results are robust in the sensefttie toefficients of the transfe
function of the system vary then the error constants alsy bat the zero steady-state err
properties are preserved — as long as the system does najechiartype. Thus, for a type
system the velocity error constant may vary due to parametréertainty in the system. As lor
as the type 1 property is not destroyed the system presdsveerd steady-state position errol

Exercise 2.2.2 (Steady-state response to polynomial distu  rbance inputs). Consider the
feedback loop with disturbance input of F&)3. Suppose that the closed-loop system is sta
and that the disturbance is polynomial of the form

ZVI
v(t) = —']l(z), t>0. (2.14)
n:
Show that the steady-state response of the output is given by
1
o= lim z(t) = lim ———. 2.15
Zoo t~>ooZ( ) 530 s"[1 4+ L(s)] ( )

This formula is identical to the expressio2.§ for the steady-state error of the response 1
polynomial reference input.

It follows that a typek system has a zero steady-state response to polynomialdiatzes of
order less thai, a nonzero finite steady-state response for polynomialidiances of ordek,
and an infinite steady-state response for polynomial distures of order greater than O

Exercise 2.2.3 (Steady-state errors and closed-loop poles and zeros). Suppose that thi
closed-loop transfer functiofi¢ of (2.5) is expanded in factored form as

(s +z)+z2) (s +zp)
(s+p)(s+p2)-(s+ pn)

Gals) = k (2.16)
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1. Prove that the position error constant may be expressed as

kT12 =

K, = .
! H;l=1 pj — k HT:] Zj

(2.17)

2. Suppose thak, = oo, that is, the system has zero position error. Prove thatelocity
and acceleration error constants may be expressed as

a - — - - (2.18)
v j=1 Dj j=1 J
and
1 1 [ 1 21 1
— == Z—— — -1, (2.19)
2 2 2
Ka 2 j=1 Zj j=l1 Pj Ky

respectively.Hint: Prove thatl/ K, = —G[,(0) and1/K, = —G[;(0)/2, with the prime
denoting the derivative. Next differentiatediy(s) twice with respect ta ats = 0, with
G given by @.16.

These results originate frofiruxal (19595.

The relations2.18 and @.19 represent the connection between the error constantshan
system response characteristics. We observe that thefuhté closed-loop poles are from tl
origin, the larger the velocity constait, is. The velocity constant may also be increased
having closed-loop zeros close to the origin. O

2.3. Integral control

Integral control is a remarkably effective classical taghe to achieve low-frequency disturban
attenuation. It moreover has a useful robustness property.

Disturbance attenuation is achieved by making the looplgaje. The loop gain may be mac
large at low frequencies, and indeed infinite at zero frequdny including a factoid /s in the
loop gainL(s) = P(s)C(s). If P(s) has no “natural” factoi /s then this is accomplished b
including the factor in the compensator transfer functibhy choosing

C(s) = COT(S) (2.20)
The rational functionC, remains to be selected. The compensatar) may be considered a
the series connection of a system with transfer funofigfy) and another with transfer functio
1/s. Because a system with transfer functigfy is an integrator, a compensator of this type
said to haventegrating action

If the loop gainL(s) has a factod /s then in the terminology of 2.2 (p. 60) the system is of
type 1. Its response to a step reference input has a zerq/stestd error.

Obviously, if Ly (s) contains no factos then the loop gain

(2.21)
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is infinite at zero frequency and very large at low frequesiches a result, the sensitivity functic
S, which is given by

_ 1 _ 1 _ s

I LGs) 1Ll s 4 Lo(s)’

S(s) (2.22)

is zero at zero frequency and, by continuity, small at lovg@rencies. The fact th&f is zero
at zero frequency implies that zero frequency disturbanites is, constant disturbances, ¢
completely eliminated. This is callewnstant disturbance rejection

v
e i* :
L

T\

Figure 2.3: Feedback loop

Exercise 2.3.1 (Rejection of constant disturbances). Make the last statement clearer
proving that if the closed-loop system of Fig.3 has integrating action and is stable, then
responsez (from any initial condition) to a constant disturbaneg) = 1, + > 0, has the

property
lim (1) =o. (2.23)

Hint: Use Laplace transforms and the final value property. O

The constant disturbance rejection propertyoisustwith respect to plant and compensa
perturbations as long as the perturbations are such that

¢ the loop gain still contains the factdy's, and
e the closed-loop system remains stable.

In a feedback system with integrating action, the transfecfion of the series connection of tl
plant and compensator contains a fadtgr. A system with transfer functiob/s is capable of
generating a constant output with zero input. Hence, thieseonnection may be thought of

containing anodelof the mechanism that generates constant disturbancesh ate precisely
the disturbances that the feedback system rejects. Thismioas been generalized/onham

1979 to what is known as thiternal model principle This principle states that if a feedba
system is to reject certain disturbances then it shouldadorst model of the mechanism th
generates the disturbances.

Exercise 2.3.2 (Type k control). The loop gain of a typ& system contains a factays*, with
k a positive integer. Prove that if a typeclosed-loop system as in Fig.3is stable then it reject
disturbances of the form
ZVI
v(t) = = 1=z 0, (2.24)
n:
with n any nonnegative integer such that k — 1. “Rejects” means that for such disturbant
lim, 00 z(¢) =0. o
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Compensators with integrating action are easy to build.irldfeectiveness in achieving lov
frequency disturbance attenuation and the robustnesssobthperty make “integral control” ¢
popular tool in practical control system design. The follogwariants are used:

e Pure integral controlwith compensator transfer function

C(s) =

. 2.25
ST (2.25)

The single design paramet@y (called thereset timg does not always allow achievin
closed-loop stability or sufficient bandwidth.

¢ Proportional and integral controlalso known asP| control, with compensator transfe
function

Cis)=¢ (1 + %T) , (2.26)

gives considerably more flexibility.

e PID (proportional-integral-derivativeontrol, finally, is based on a compensator trans
function of the type

Cis)=g (sTd + 14 SLT) . (2.27)

T, is thederivative time The derivative action may help to speed up response bus ter
make the closed-loop system less robust for high frequeardyrbations.

Derivative action technically cannot be realized. In angeci would be undesirable b
cause it greatly amplifies noise at high frequencies. Theeghe derivative term7, in
(2.27) in practice is replaced with a “tame” differentiator

sTy
14+sT’

(2.28)

with 7" a small time constant.

Standard PID controllers are commercially widely avaiéabln practice they are often tune
experimentally with the help of the rules developed by Zegind Nichols (see for instanc
Franklin et al.(1991). The Ziegler-Nichols rulesZjegler and Nichols1942 were developec
under the assumption that the plant transfer function iswwé-damped low-pass type. Whe
tuning a P-, PI- or PID-controller according to the Zieghichols rules first a P-controller i
connected to the plant. The controller ggirs increased until undamped oscillations occur. T
corresponding gain is denoted gsand the period of oscillation &&. Then the parameters
the PID-controller are given by

P-controller: g = 0.5g, T; = o0, T, =0,
Pl-controller: g =0.45g,, 1; =0.85Ty, T,=0,
PID-controller: g = 0.6gy, T; = 0.5Ty, T, = 0.1257,.
The corresponding closed-loop system has a relative dagbiabout 0.25, and its closed-loc

step response to disturbances has a peak value of about@haly experimental fine tuning
is needed to obtain the best results.
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Figure 2.4: Nonlinear plant with integral control

Integral control also works for nonlinear plants. Assumet the plant in the block diagrat
of Fig. 2.4 has the reasonable property that for every constant imptitere is a unique consta
steady-state output,, and that the plant may maintain any constant output The “integral
controller” (of type I, Pl or PID) has the property that it m&ins a constant outpuy, if and
only if its input e is zero. Hence, if the disturbance is a constant signéhen the closed-loo
system is in steady-state if and only if the error signé zero. Therefore, if the closed-loc
system is stable then it rejects constant disturbances.

Example 2.3.3 (Integral control of the cruise control syste m). The linearized cruise contre
system of Examplé.2.1(p. 3) has the linearized plant transfer function

1
P(s) = —1—. 2.29
(5) I (2.29)
If the system is controlled with pure integral control
C(s) = — 2.30
0 =7 (2:30)
then the loop gain and sensitivity functions are
1 1
T 1 s(s + 3
L(s) = P()C(s) = — L, S(s) = _ 6t (o
s(s + 3) L+ L(s) s+ gs+ 71
The roots of the denominator polynomial
s+ Ly + : (2.32)
0 TT; '

are the closed-loop poles. SingeT andT; are all positive these roots have negative real p:
so that the closed-loop system is stable. FigRugshows the loci of the roots dE varies
from oo to O (see als@ 2.7 (p. 88)). Write the closed-loop denominator polynomial32 as
s+ 28owos + o, with o, the resonance frequency aficthe relative damping. It easily follow
that

1 1/6 TT,
= =1 = . 2.33
D= 0T 20 T 29 (2.33)
The best time response is obtainedfer= %\/5 or
262
T = (2.34)

T
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Figure 2.5: Root loci for the cruise control system. Themark the open-
loop poles

If T =6 = 10[s] (corresponding to a cruising speed of 50% of the top spiseth7; = 20 [s].
It follows thatwy = 1/+/200 ~ 0.07 [rad/s]. Figure2.6 shows the Bode magnitude plot of tt
resulting sensitivity function. The plot indicates thahstant disturbance rejection is obtained
well as low-frequency disturbance attenuation, but thatlbsed-loop bandwidth is not great
than the bandwidth of about 0.1 [rad/s] of the open-loopesyst

IncreasingT; decreases the bandwidth. Decreasideyond26?/ T does not increase th
bandwidth but makes the sensitivity functiSnpeak. This adversely affects robustness. Ba
width improvement without peaking may be achieved by intidg proportional gain. (Se

Exercise?.6.2 p.85.) O
10!
[S]
10°
107!
102 i ‘ -40dB
1073 1072 107! 10°

angular frequency [rad/s]

Figure 2.6: Magnitude plot of the sensitivity function oktleruise control
system with integrating action

Exercise 2.3.4 (PI control of the cruise control system). Show that by PI control constatr
disturbance rejection and low-frequency disturbancenattton may be achieved for the crui
control system with satisfactory gain and phase marginafigrclosed-loop bandwidth allowe
by the plant capacity. O

Exercise 2.3.5 (Integral control of a MIMO plant). Suppose that Fig2.3 (p. 65) represents &
stable MIMO feedback loop with rational loop gain matfixsuch that alsd.~! is a well-defined
rational matrix function. Prove that the feedback loopetjevery constant disturbance if al
only if L=1(0) = 0. O

Exercise 2.3.6 (Integral control and constant input distur bances). Not infrequently distur-
bances enter the plant at the input, as schematically itetiéa Fig.2.7. In this case the transfe



disturbance

i*
C o —

N,

Figure 2.7: Plant with input disturbance

function from the disturbancesto the control system outputis

P

R=—. (2.35)
1+ PC

Suppose that the system has integrating action, that idptipegainL. = PC has a pole at 0
Prove that constant disturbances at the input are rejefcgatlionly if the integrating action i
localized in the compensator. O

2.4. Frequency response plots

2.4.1. Introduction

In classical as in modern control engineering the graphéaiesentation of frequency respon
is an important tool in understanding and studying the dyinanf control systems. In this secti
we review three well-known ways of presenting frequencpoeses: Bode plots, Nyquist plot
and Nichols plots.

Consider a stable linear time-invariant system with inpubutput y and transfer functior
L. A sinusoidal inputu(z) = @ sin(wt), t > 0, results in the steady-state sinusoidal out
y(t) = ysin(wt + ¢), t > 0. The amplitudey and phase of the output are given by

y=IL(w)a. ¢ =argL(jo). (2.36)

The magnitudeL (jw)| of the frequency response functidiijw) is thegain at the frequency.
Its argument ard. (jw) is thephase shift

Write
L(s) = kST Z2) (S 7 2m) (2.37)
(s=p)(s—p2)-(z—pn)
with k& a constantzy, z,, ---, z,, the zeros, angh, p>, ---, p, the poles of the system. The

for anys = jo the magnitude and phase f{jw) may be determined by measuring the v
tor lengths and angles from the pole-zero pattern as inZ®y. The magnitude of. follows
by appropriately multiplying and dividing the lengths. Tplease ofL follows by adding anc
subtracting the angles.

A pole p; that is close to the imaginary axis leads to a short vectagtlen— p; at values of
w in the neighborhood of Inp;. This results in large magnitudé (jw)| at this frequency, an
explains why a pole that is close to the imaginary axis lea@sresonance peak in the frequer
response.
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Figure 2.8: Frequency response determined from the potepadtern

2.4.2. Bode plots

A frequency response functidn(jw), ® € R, may be plotted in two separate graphs, magnit
as a function of frequency, and phase as a function of freqyuéfthen the frequency and ma
nitude scales are logarithmic the combined set of the twphg#s called th&ode diagranof
L. Individually, the graphs are referred to as Bade magnitude plaind theBode phase plot
Figure2.9shows the Bode diagrams of a second-order frequency resfamgtion for different
values of the relative damping.

2 G =01

10 40 dB
0 : ‘ ‘ ‘ fo="1 ; :
o 10 0 =1 : : : 0dB
ho] 2 ¢ = 100 S =
S 4
€408 : : > 4100 dB
-8
10 ‘ ‘ i ‘ ‘ ‘ -120 dB
107 1072 10? 10*
0
D 45 gy =0 T
k=3 | \
® -90 |
(7))
e
S 145
-180 ‘ i ‘
107 102 100 102 10%

normalized angular frequenay/ wy

Figure 2.9: Bode diagram of the transfer functigfy (s> + 2¢owo + w?) for
various values of

The construction of Bode diagrams for rational transfecfioms follows simple steps. Writ
the frequency response function in the factored form

(o —z)(o —2) - (jo — 2Zm)

) = & |
L(jw) (jo = p1)(jo — p2) - (jo — pn)

(2.38)
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It follows for the logarithm of the amplitude and for the pbas

log|L(jw)| = log k| + ) logljw —zi| = Y _logljw — p;l. (2.39)
i=1 i=1
argL(jo) = argk + Y _ argjo —z;) — »_ argjo — pi). (2.40)

i=1 i=1

The asymptotes of the individual terms @39 and .40 may be drawn without computatiol
For a first-order factos + wy we have

. [ loglwo| for0 < w < |wol,

loglje + ao| ~ { logw  forw > |wol, (2.41)
. _ | argwo) for0 < < |wol,

argle + @) { 90°  forw > lwl. (2.42)

The asymptotes for the doubly logarithmic amplitude ple&t straight lines. The low frequenc
asymptote is a constant. The high frequency asymptote bps $ldecade/decade. If the amy
tude is plotted in decibels then the slope is 20 dB/decade. afinplitude asymptotes interse
at the frequencywy|. The phase moves from drg)) (0° if wy is positive) at low frequencies t
90° (rr/2 rad) at high frequencies. FiguPel0Oshows the amplitude and phase curves for the
order factor and their asymptotes (foy positive).

60 dB
T .2
2107 P R e et 40 dB
c
o 20 dB
IS
100 = I 0dB
1078 102 107" 100 10 102 103
2
[@)]
(]
S,
(O]
(2]
©
e
o
0
103 102 107 10° 10" 102 108

normalized angular frequenay/ w,

Figure 2.10: Bode amplitude and phase plots for the factprw,. Dashed:
low- and high-frequency asymptotes

Factors corresponding to complex conjugate pairs of paleems are best combined to
second-order factor of the form

5%+ 2Lowos + . (2.43)
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Figure 2.11: Bode plots for a second-order fastor 2¢ywos + w? for differ-
ent values of the relative dampigg. Dashed: low- and high-
frequency asymptotes

Asymptotically,

2log|wy| for0 < <K |wol,

091Gy’ + 2enGa) + il ~ { F09ler 010 = <€ (249
: . 0 for0 <w < ,
arg(jo)? + 2&wo(jo) + o) ~ { 180° for o >>“’|w0|.|“’°| (2.45)

The low frequency amplitude asymptote is again a constarthd Bode magnitude plot the hig
frequency amplitude asymptote is a straight line with sl@mecades/decade (40 dB/decac
The asymptotes intersect at the frequefgy. The phase goes froff at low frequencies tc
180° at high frequencies. Figui11shows amplitude and phase plots for different values of
relative dampind, (with wy positive).

Bode plots of high-order transfer functions, in particidaymptotic Bode plots, are obtain
by adding log magnitude and phase contributions from firstt second-order factors.

The “asymptotic Bode plots” of first- and second-order fexfollow by replacing the low fre-
quency values of magnitude and phase by the low frequencysyes at frequencies below t
break frequency, and similarly using the high-frequengyrgsotes above the break frequen
High-order asymptotic Bode plots follow by adding and satting the asymptotic plots of th
first- and second-order factors that make up the transfetifum

As shown in Fig.2.12the gain and phase margins of a stable feedback loop may &as
identified from the Bode diagram of the loop gain frequenspomse function.

Exercise 2.4.1 (Complex conjugate pole pair).  Consider the factos® + 2{owos + wg. The
positive numbeu, is the characteristic frequency afigthe relative damping.

1. Prove that fof¢y| < 1 the roots of the factor are the complex conjugate pair

wo (—;0 +£jy/1- ;g) . (2.46)
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Figure 2.12: Gain and phase margins from the Bode plot ofdbp gain

For|¢y| > 1 the roots are real.

2. Prove that in the diagram of Fig.13the distance of the complex conjugate pole pai
the origin isw,, and that the angl¢ equals arccog.

3. Assume thab < ¢, < 1. At which frequency has the amplitude plot of the fadfjes)* +
280w (jw) + a)g w € R, its minimum (and, hence, has the amplitude plot of its nexipl
its maximum)? Note that this frequency is not precisely

mi

Im

X e ToE
b
K =—Re
—Cawy 0
Figure 2.13: Complex conjugate root pair of the factor 25wy + w?

Exercise 2.4.2 (Transfer function and Bode plot). Consider the loop gail. whose Bode

diagram is given in Fig2.14

1. Use Bode’s gain-phase relationsh§dl (6, p. 34) to conclude from the Bode plot that tt
loop gain is (probably) minimum-phase, and, hence, stablext argue that the corre
sponding closed-loop system is stable.

2. Fit the Bode diagram as best as possible by a rationalgasterepresentation.
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Figure 2.14: Bode diagram of a loop gdin

The conclusion of (a) is correct as long as outside the frecueange considered the frequen
response behaves in agreement with the low- and high-frexyuesymptotes inferred from th
plot. This is especially important for the low-frequencyhbeior. Slow dynamics that chanc
the number of encirclements of the Nyquist plot invalid&ie tesult. O

2.4.3. Nyquist plots

In § 1.3 (p. 11) we already encountered tiNyquist plotwhich is a polar plot of the frequenc
response function with the frequeneyas parameter. If frequency is not plotted along the lo
— a service that some packages fail to provide — then the Nyglot is less informative thal
the Bode diagram. Figur215shows the Nyquist plots of the second-order frequency resp
functions of Fig.2.9.

Normally the Nyquist plot is only sketched for< w < co. The plot for negative frequencie
follows by mirroring with respect to the real axis.

If L is strictly proper then forn — oo the Nyquist plot approaches the origin. Writein
terms of its poles and zeros as th¥7). Then asymptotically

k
(jw)yr=m

L(jw) ~ for w — 0. (2.47)

If k is positive then the Nyquist plot approaches the origin aagle—(n — m) x 90°. The
numbem — m is called thepole-zero excess relative degreef the system.

In control systems of typk the loop gainL has a pole of ordék at the origin. Hence, at lov
frequencies the loop frequency response asymptoticaliges as

L(jw) ~ for 0, (2.48)

_c
(jw)*
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Figure 2.15: Nyquist plots of the transfer functieg/(s* + 2¢owos + w?)
for different values of the relative dampiigg

with ¢ a real constant. I = 0 then forw | 0 the Nyquist plot ofZ. approaches a point on tf
real axis. Ifk > 0 andc is positive then the Nyquist plot goes to infinity at an anglex 90°.
Figure2.16illustrates this.

Exercise 2.4.3 (Nyquist plots).  Prove the following observations.

1. The shape of the Nyquist plot éf(s) = 1/(1 4+ sT) is a circle whose center and radi
are independent df.

2. The shape of the Nyquist plot éf(s) = 1/(1 + s71)(1 + s73) only depends on the rati
T1/ T>. The shape is the same fof/ T, = « andT»/T) = «.

3. The shape of the Nyquist plot &f(s) = w?/(w? + 2{wos + 5%) is independent o .
O

2.4.4. M-and N -circles

Consider a simple unit feedback loop with loop géiras in Fig.2.17. The closed-loop transfe
function of the system equals the complementary sengifivitction

L

H=T=——.
1+ L

(2.49)

M - andN -circlesare a graphical tool — typical for the classical control erde-determine the
closed-loop frequency response function from the Nyqudstqdf the loop gainl.
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Figure 2.16: Nyquist plots of the loop gain for different was of system
type

‘N L

Figure 2.17: Unit feedback loop
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Figure 2.18:M - circles (left) andV -circles (right)

An M -circle is the locus of pointsin the complex plane where the magnitude of the com|
number

z

2.50
1+z ( )
is constant and equal tf . An M -circle has center and radius
2
center { ———,0]), radius |————|. (2.51)
1—M? 1—M?

An N -circle is the locus of points in the complex plane where tigeiaent of the numbe(50
is constant and equal to arctdn An N -circle has center and radius

11 1 1
t - dius —4/1+4+ —. 2.52
center ( X ZN)’ radius 5 + N2 ( )

Figure2.18shows the arrangement & - and N -circles in the complex plane.

The magnitude of the closed-loop frequency response angleomentary sensitivity functiol
T may be found from the points of intersection of the Nyquisit if the loop gainl with the
M -circles. Likewise, the phase @f follows from the intersections with th& -circles.

Figure2.18includes a typical Nyquist plot of the loop galn These are some of the features
the closed-loop response that are obtained by inspectitiredhtersections with thé7 -circles:

e The height of the resonance peak is the maximum valu@¢/oéncountered along th
Nyquist plot.

e The resonance frequenay, is the frequency where this maximum occurs.

e The bandwidth is the frequency at which the Nyquist plotriseets the 0.707 circle (th
—3 dB circle).
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These and other observations provide useful indicatiomstbanodify and shape the loop fre
quency response to improve the closed-loop properties. Mheand N -loci are more often
included in Nichols plots (see the next subsection) thanyiquist plots.

Exercise 2.4.4 ( M- and N -circles). Verify the formulas 2.51) and .52 for the centers anc
radii of the M - and N -circles. O

2.4.5. Nichols plots

The linear scales of the Nyquist plot sometimes obscureatgelrange of values over whic
the magnitude of the loop gain varies. Also, the effect ofngfiag the compensator frequen
response functiod' or the plant frequency response functiBron the Nyquist plot of the looy
gainL = PC cannot always easily be predicted.

Both difficulties may be overcome by plotting the loop gainttie form of aNichols plot
(James et al1947). A Nichols plot is obtained by plotting the log magnitudetbé loop gain
frequency response function versus its phase. In thesdioates, thelf - en N -circles transform
to M - andN - loci. The phase—log magnitude plane together with a séf ednd N -loci is called
a Nichols chart In Fig. 2.19Nichols plots are given of the second-order frequency nesp
functions whose Bode diagrams and Nyquist plots are showigg 2.9 (p. 70) and2.15(p. 75),
respectively.

In a Nichols diagram, gain change corresponds to a vertigéland phase change to a hc
izontal shift. This makes it easy to assess the effect of gbsiof the compensator frequen
response functiod’ or the plant frequency response functiBron the loop gain. = PC.

Exercise 2.4.5 (Gain and phase margins in the Nichols plot). Explain how the gain margir
and phase margin of a stable feedback loop may be identified thhe Nichols plot. O

Exercise 2.4.6 (Lag-lead compensator).  Consider a compensator with the second-order tr:
fer function

1+ sT)(1 4+ 5T3)

C(s) = . 2.53
() A +sT)( +sT) + 5sT2 ( )
Ti, T, andT), are time constants. The corresponding frequency respansédn is
1 — T, T jo(Th + T
Cliw) = 4z i) +io(h + 1) weR. (2.54)

(1 —?T'TH) + jo(Ty + Tr + Tpp)’

By a proper choice of the time constants the network acts ag aétwork (that is, subtrac
phase) in the lower frequency range and as a lead networkigthadds phase) in the highe
frequency range.

Inspection of the frequency response functi@rb) shows that numerator and denomina
simultaneously become purely imaginary at the frequency: 1/+/T1T>. At this frequency
the frequency response function is real. This frequencligspbint where the character of tf
network changes from lag to lead, and where the magnitudeedféquency response is minim:

1. Plot the Bode, Nyquist, and Nichols diagrams of this festy response function.

2. Prove that the Nyquist plot af has the shape of a circle in the right half of the comp
plane with its center on the real axis. SIRCE) = C(joo) = 1 the plot begins and ena
in the point 1.
O
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Figure 2.19: Nichols plots of the transfer functieg/ (s> + 2{ywos + w?)

for different values ot

Figure 2.20: Basic feedback system




2.5. Classical control system design

2.5.1. Design goals and criteria

For SISO systems we have the following partial list of typidassical performance specific:
tions. Consider the feedback loop of F&y2Q These are the basic requirements for a w
designed control system:

1. The transient response is sufficiently fast.
2. The transient response shows satisfactory damping.

3. The transient response satisfies accuracy requirentdtes, expressed in terms of tf
error constants df 2.2 (p. 60).

4. The system is sufficiently insensitive to external disturces and variations of intern
parameters.

These basic requirements may be further specified in terimstbfa number direquency-domait
specificationgnd certairtime-domain specifications
Figures2.12(p. 73) and2.21illustrate several important frequency-domain quartitie

|H|

0dB
-3dB

frequency

Figure 2.21: Frequency-domain performance quantities

Gain margin. The gain margin — se& 1.4 (p. 20) — measures relative stability. It is define
as the reciprocal of the magnitude of the loop frequencyaespL, evaluated at the
frequencyw, at which the phase angle is180 degrees. The frequenay, is called the
phase crossover frequency

Phase margin. The phase margin — again s&d.4 — also measures relative stability. It
defined ad 80° plus the phase angl of the loop frequency respongeat the frequency
w1 where the gain is unity. The frequeney is called thegain crossover frequency

Bandwidth. The bandwidthB measures the speed of response in frequency-domain tetrn
is defined as the range of frequencies over which the classgfrequency respongé
has a magnitude that is at least within a fac—}aﬁ = 0.707 (3 dB) of its value at zerc
frequency.

Resonance peak. Relative stability may also be measured in terms of the paalews of the
magnitude of the closed-loop frequency respoAsén dB), occurring at theesonance
frequencyw, .

Figure2.22shows five important time-domain quantities that may be seperformance spec
ifications for the response of the control system output te & the reference input:
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Figure 2.22: Time-domain quantities

Delay time T7,. delay time measures the total average delay between retessd output. |
may for instance be defined as time where the response is abbihis step amplitude.

Rise time 7,. The rise time expresses the “sharpness” of the leading €dfe oesponse. Var
ious definitions exist. One defind% as the time needed to rise from 10% to 90% of
final value.

Percentage overshoot PO. This quantity expresses the maximum difference (in % of
steady-state value) between the transient and the steéaigyrasponse to a step input.

Settling time 7. The settling time is often defined as time required for th@oese to a ste
input to reach and remain within a specified percentaged@ipi 2 or 5%) of its final
value.

Final value of error FVE. The FVE is the steady-state position error.

This list is not exhaustive. It includes no specificationthefdisturbance attenuating propertie
These specifications can not be easily expressed in geeensd.t They should be consider
individually for each application.

Horowitz (1963 pp. 190-194) lists a number of quasi-empirical relatioetsveen the time
domain parameter$,, 7,, T, and the overshoot on the one hand and the frequency dc
parameters?, M and the phase at the frequengyon the other. The author advises to use tf
with caution.

Exercise 2.5.1. Cruise control system Evaluate the various time and frequeerformance
indicators for the integral cruise control system desigBxdmple2.3.3(p. 67). O

2.5.2. Compensator design

In the classical control engineering era the design of faekltompensation to a great exte
relied on trial-and-error procedures. Experience andregging sense were as important a
thorough theoretical understanding of the tools that warpleyed.

In this section we consider the basic goals that may be pdfsom a classical point of view
In the classical view the following series of steps leadssaecessful control system design:

e Determine the plant transfer functidhbased on a (linearized) model of the plant.


Pedro


Pedro


Pedro


Pedro


Pedro


Pedro


Pedro



¢ Investigate the shape of the frequency respdge), » € R, to understand the propertie
of the system fully.

e Consider the desired steady-state error properties ofysters (se€ 2.2 p.60). Choose
a compensator structure — for instance by introducing natiagg action or lag compen
sation — that provides the required steady-state erroracheristics of the compensate
system.

¢ Plot the Bode, Nyquist or Nichols diagram of the loop frequieresponse of the compel
sated system. Adjust the gain to obtain a desired degreahifist of the systemM - and
N-circles are useful tools. The gain and phase margins arsuresfor the success of tt
design.

¢ If the specifications are not met then determine the adjustofehe loop gain frequenc
response function that is required. Use lag, lead, lag-te@ther compensation to reali:
the necessary modification of the loop frequency responsdifin. The Bode gain-phas
relation sets the limits.

The graphic tools essential to go through these steps thratdeseloped in former time now ai
integrated in computer aided design environments.

The design sequence summarizes the main ideas of classigablctheory developed in thi
period 1940-1960. It is presented in termsshéping loop transfer functiorfsr single-input,
single-output systems.

In § 2.6 (p. 82) we consider techniques for loop shaping using simple ofiatrstructures
— lead, lag, and lead-lag compensators§ A8 (p. 90) we discuss the Guillemin-Truxal de
sign procedure. SectioR.9 (p. 93) is devoted to Horowitz's Quantitative Feedback The
(Horowitz and Sidj 1972, which allows to impose and satisfy quantitative boundghenro-
bustness of the feedback system.

2.6. Lead, lag, and lag-lead compensation

2.6.1. Introduction

In this section we discuss the classical techniques of lagdand lag-lead compensation. /
extensive account of these techniques is giveDbsf (1992).

2.6.2. Lead compensation

Making the loop gairl. large at low frequencies — by introducing integrating attio making
the static gain large — may result in a Nyquist plot that shawstable behavior. Even if th
closed-loop system is stable the gain and phase margins enalydzceptably small, resulting
nearly unstable, oscillatory behavior.

Figure2.23shows an instance of this. To obtain satisfactory stabilitynay reshape the loo
gain in such a way that its Nyquist plot remains outsidelartircle that guarantees sufficie
closed-loop damping. A minimal value 8f = 1.4 (3 dB) might be a useful choice.

The required phase advance in the resonance frequency ragip be obtained by utilizing :
phase-advance network in series with the plant. The netmagkbe of first order with frequenc
response function

1 +joT

(2.55)
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Figure 2.23: Nyquist plot of uncompensated and compengdaed

For0 < a < 1 we obtain a lead compensator and for> 1 a lag compensator. In the fir
case the compensator creates phase advance, in the sec@adds extra phase lag. Fig@r@4
shows the Bode diagrams.

Over the frequency intervdll /T, 1/aT) the phase advance compensator has the char
of a differentiating network. By making sufficiently small the compensator may be given
character of a differentiator over a large enough frequeacyge.

Phase lead compensation, also used in PD control, incréesbandwidth and, hence, mak
the closed-loop system faster. Keeping the Nyquist plotydinan the critical point—1 has the
effect of improving the transient response.

Phase lead compensation results in an increase of the resofr@quency. If very sma
values of are used then the danger of undesired amplification of measnt noise in the loo
exists. The bandwidth increase associated with makiamall may aggravate the effect of hi
frequency parasitic dynamics in the loop.

The characteristics of phase-lead compensation are redi@wTable2.2 An application of
lead compensation is described in Exanthig 3(p. 85).

Exercise 2.6.1 (Specifics of the first-order lead or lag compe nsator). Inspection of
Fig. 2.24 shows that the maximum amount of phase lead or lag that mayptaéned with the
compensatorq.59 is determined byr. Also the width of the frequency window over whi
significant phase lead or lag is achieved depends.dfinally, the low frequency gain loss (fc
lead compensation) or gain boost (for lag compensationgmigpro.

1. Prove that the peak phase lead or lag occurs at the noadditequency
(,()peakT = 1/\/&, (2.56)

and that the peak phase lead or lag equals

111
Dmax = arctang ‘ﬁ - \/E‘ ) (2.57)
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Figure 2.24: Log magnitude and phase of lead and lag compmeaéds) =

1+sT
a 1+saT

2. Show that the width of the window over which phase lead gris¢aeffected is roughly
[log,, «| decades.

3. Show that the low frequency gain loss or boostilog,, «| dB.

Figure2.25shows plots of the peak phase lead or lag, the window widith tta low-frequency
gain loss or boost. O

First-order phase advance compensation is not effectigasigresonant modes in the pla
corresponding to second order dynamics with low damping rBipid change of phase froin
to —180 degrees caused by lightly damped second-order dynamicetadequately be cour
tered. This requires compensation by a second order filédlie(tanotch filte) with zeros near
the lightly damped poles and stable poles on the real linecainagiderable distance from tk
imaginary axis.

2.6.3. Lag compensation

The loop gain may be increased at low frequencies by a lag ensgtor. If the time constafit
in

1+ joT

Clw) = al + joaT

(2.58)
is chosen such that/ 7" is much greater than the resonance frequengyof the loop gain
then there is hardly any additional phase lag in the cross@ggon. In the limite — oo the
compensator frequency response function becomes

. 1
Cjo) =1+ T (2.59)
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Figure 2.25: Peak phase lead or lag

This is a compensator with proportional and integral action

Increasing the low frequency gain by lag compensation resltlte steady-state errors. It al
has the effect of decreasing the bandwidth, and, hence ng&hké closed-loop system slow:
On the other hand, the effect of high frequency measurentése irs reduced. Tab22reviews
and summarizes the characteristics of lead and lag comii@msa

Lag compensation is fully compatible with phase-lead caomspéon as the two compensatic
affect frequency regions that are widely apart.

Exercise 2.6.2 (Phase lag compensation).  An example of phase lag compensation is
integral compensation scheme for the cruise control sysfeixample2.3.3(p. 67). The first-
order plant requires a large gain boost at low frequenciegdod steady-state accuracy. Tl
gainis provided by integral control. As we also saw in Exas208.3(p.67) pure integral contro
limits the bandwidth. To speed up the response additioredg@lead compensation is needec
To accomplish this modify the pure integral compensatidresee to the PI compensator

1 T;
C(s) = k—210 (2.60)
sT;

This provides integrating action up to the freque¢y;. At higher frequencies the associat
90° phase lag vanishes. A suitable choice for the frequéndy is, say, half a decade below tl
desired bandwidth.

Suppose that the desired bandwidth is 0.3 [rad/s]. S&leas recommended, and choose
gaink such that the loop gain crossover frequency is 0.3 [rad/Beck whether the resultin
design is satisfactory. o

2.6.4. Lag-lead compensation

We illustrate the design of a lag-lead compensator by an planiNote the successive desi
steps.
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Table 2.2: Characteristics of lead and lag compensatiogmuies

| Compensation || Phase-lead | Phase-lag |

Method Addition of phase-lead angle near| Increase the gain at low frequencigs
the crossover frequency

Purpose Improve the phase margin and the Increase the error constants while
transient response maintaining the phase margin and

transient response properties

Applications When a fast transient response is| When error constants are specified
desired

Results Increases the system bandwidth | Decreases the system bandwidth

Advantages Yields desired response Suppresses high frequency noise

Speeds dynamic response

Reduces the steady-state error

Increases the bandwidth and thus

Slows down the transient respons

11

Disadvantages
the susceptibility to measurement
noise

If the phase decreases rapidly near If no low frequency range exists
the crossover frequency where the phase is equal to the
desired phase margin

Not applicable

Example 2.6.3 (Lag-lead compensator).
function

Consider the simple second-order plant with trans

2
@y

52+ 28owos + a)g ’

P(s) = (2.61)

with wy = 0.1 [rad/s] and};, = 0.2. The system is poorly damped. The design specification:s
e Constant disturbance rejection by integral action.
e A closed-loop bandwidth of 1 [rad/s].

e Satisfactory gain and phase margins.

Step 1: Lag compensation.  To achieve integral control we introduce lag compensatiche

form

1+ sT;
sT;

Co(s) =k (2.62)
The phase lag compensation may be extended to 1 decade beldedired bandwidth b
choosingl/T; = 0.1 [rad/s], thatis,T; = 10 [s]. Lettingk, = 98.6 makes sure that thi
crossover frequency of the loop gain is 1 [rad/s]. FigRuZ6shows the Bode diagram ¢
the resulting loop gain. Inspection reveals a negative@hzgin, so that the closed-loc
system is unstable.

Step 2: Phase lead compensation.  We stabilize the closed loop by lead compensation of

form

1+sT

Cils) = 1 +saT’

kio (2.63)
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gain [db]

phase [deq]

Phase advance is needed in the frequency region betweer).tagnd 10 [rad/s]. In
spection of Fig2.24or 2.25and some experimenting leads to the chaice- 0.1 and
T = 3 [rad/s]. Settingk; = 3.3 makes the crossover frequency equal to 1 [rad/s].

resulting Bode diagram of the loop gain is included in Rig.6 The closed-loop system
stable with infinite gain margin (because the phase neves gelew—180°) and a phast

100

Lag compensationonly : ::
0 Lead-lag-compensation—==
w00 Lead-lag compensation with HF roll-oft~
10 10" 10° 10" 10
0
07 Lead-lag compensation
-180 | Tl :
Lag compensation only~x
-270 | PR N
360 Lead-lag compensation:with HF roll-o
10 10" 10° 10" 10°

frequency [rad/s]

Figure 2.26: Bode diagrams of the loop gain

margin of more thars0°.

Figure2.27shows the Bode magnitude plot of the closed-loop frequessyonse functiol

and of the closed-loop step response. They are quite adequat

Step 3. High-frequency roll-off.

compensation of the form

Ga(s) =

Settingw; = 10 [rad/s] and;; = 0.5 makes the roll-off set in at 10 [rad/s] without unne
essary peaking and without appreciable effect in the cx@ssegion. The correspondir
loop gain is shown in Fig2.26 The gain margin is now about 17 dB and the phase 1
gin abou#5°. Figure2.27shows the extra roll-off of the closed-loop frequency resgo
Enhancing high-frequency roll-off slightly increases twershoot of the closed-loop st

response.

2
Wi

s2 + 2§1a)]S + a)lzl

For measurement noise reduction and high-frequency rol
ness we provide high-frequency roll-off of the compensatpincluding additional lac
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Figure 2.27: Closed-loop frequency and step responses

2.7. The root locus approach to parameter selection

2.7.1. Introduction

The root locus technique was conceiveddyans(1950 — see alsdevans(19549. It consists of
plotting the loci of the roots of the characteristic equatiéthe closed-loop system as a functi
of a proportional gain factor in the loop transfer functidihis graphical approach yields a cle
picture of the stability properties of the system as a furctf the gain. It leads to a desic
decision about the value of the gain.

The root locus method is not a complete design procedurest fie controller structure
including its pole and zero locations, should be chosen. robelocus method then allows t
adjust the gain. Inspection of the loci often provides ukieflications how to revise the choic
of the compensator poles and zeros.

2.7.2. Root loci rules

We review the basic construction rules for root loci. Let litngp transfer function of a feedbac
system be given in the form

(s—z)(—z2) - (s —zp)
(s=p)(s—p2)(s—pu)

L(s)=k (2.65)
For physically realizable systems the loop transfer fwnt[!f is proper, that is;m < n. The
rootszy, zz, - - - , z,, Of the numerator polynomial are tlwpen-loop zero®f the system. The

roots pi, p2,--- , p» Of the denominator polynomial are tlopen-loop polesThe constank is
thegain.
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The closed-loop poles are those values fifr which 1 + L(s) = 0, or, equivalently,

(s=p)(s—=p2)---(s = pa) + k(s —21)(s = 22) -+ (5 — 2m) = 0. (2.66)

Under the assumption that < n there are precisely closed-loop poles. Theot loci are the
loci of the closed-loop poles &svaries from 0 to+oo.

Computer calculations based on subroutines for the cailonlaf the roots of a polynomie
are commonly used to provide accurate plots of the root |dtie graphical rules that follov
provide useful insight into the general properties of root.|

Summary 2.7.1 (Basic construction rules for root loci).

1.
2.

7.

Fork = 0 the closed-loop poles coincide with the open-loop p@lesps, - -, pa.

If &k — oo thenm of the closed-loop poles approach the (finite) open-loopzey, z»,
.-+, z,,. The remaining: — m closed-loop poles tend to infinity.

. There are as many locus branches as there are open-lcap gehch branch starts f

k = 0 at an open-loop pole location and endsko# oo at an open-loop zero (which tht
may be at infinity).

. If m < n thenn — m branches approach infinity along straight line asymptofEise

directions of the asymptotes are given by the angles

2i 41
@ =25 fradl i=0.1..n—m—1. (2.67)
n—m

Thus, forn — m = 1 we havex = 7, forn — m = 2 we haver = +x/2, and so on. The
angles are evenly distributed o\er2x].

. All asymptotes intersect the real axis at a single poiatdistance, from the origin, with

__ (sum of open-loop poles) (sum of open-loop zeros)
n—m '

50 (2.68)

. As we consider real-rational functions only the loci ammmetrical about the real axis.

@) (b) (©

4 “ Y
e
.

) :
¥

-4 0 4 -4 0 4 -4 0 4
Re Re Re

Figure 2.28: Examples of root loci:
_ _k _ k(42 _ k
@LG) =55 OLG) =551 ©LG) = 5mem

Those sections of the real axis located to the left of anto@dinumber of open-loop pole
and zeros on this axis belong to a locus.
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8. There may exist points where a locus breaks away from thleases and points wher
a locus arrives on the real axis. Breakaway points occur ibrthe part of the real axis
located between two open-loop poles belongs to a locusvalpioints occur only if the
part of the real axis located between two open-loop zerasigslto a locus.

mi

Figure2.28illustrates several typical root loci plots.

The root locus method has received much attention in theatilee subsequent t
Evans’ pioneering work. Its theoretical background hasnbsteidied byFollinger (1958,
Berman and Stanto(1963, Krall (1961, Krall (1963, Krall (1970, andKrall and Fornaro
(1967. The application of the root locus method in control desigrdescribed in almos
any basic control engineering book — see for instaboef (1992, Franklin et al.(1989,
Franklin et al(1997), andVan de Vegtg€1990.

Exercise 2.7.2 (Root loci).  Check for each of the root locus diagrams of Ad@28which of the
rules (a)—(h) of Summarg.7.1lapplies. O

2.8. The Guillemin-Truxal design procedure

2.8.1. Introduction

A network-theory oriented approach to the synthesis oflfeel control systems was proposed
Truxal(1955. The idea is simple. Instead of designing a compensatdr®hdsis of an analysi
of the open-loop transfer function the closed-loop tranfsfiection / is directly chosen such the
it satisfies a number of favorable properties. Next, the cmsptor that realizes this behavior
computed. Generally an approximation is necessary toeaatia practical compensator of lo
order.

oM c p y

Figure 2.29: Unit feedback system

2.8.2. Procedure

Let H be the chosen closed-loop transfer function. For unit faekiystems as in Fig.29with
plant and compensator transfer functidhandC, respectively, we have

PC
=—. 2.69
1+ PC ( )
Solving for the compensator transfer functiGnve obtain
1 H
=——. (2.70)
P1—-H

The determination of the desired is not simple. SometimeH may be selected on the basis
a preliminary analysis of the behavior of a closed-loopesysivith a low-order compensator.
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A classical approach is to consider the steady-state @nr@edecting the closed-loop systel
Suppose that the closed-loop system is desired to be ofktypee§ 2.2, p. 60). Then the loop
gain L needs to be of the form

N(s)
L(s) = 2.71
0) = Spey (271)
with N and D polynomials that have no roots at 0. It follows that
Hs) L(s) N(s) AS™ + -+ aps® 4+ b5+ -+ by
S) = = = .
14+ L(s) skD(s)+ N(s)  cps" + -+ sk + broyisk1+---+ by
(2.72)

Conversely, choosing the firgtcoefficientsh; in the numerator polynomial equal to that of t
denominator polynomial ensures the system to be of kype

This still leaves considerable freedom to achieve othetsgo&uppose that we select tl
closed-loop transfer function as

bo

H(s) = - I T (2.73)
which implies a zero steady-state error for step inp@ts = 1(z).
Exercise 2.8.1 (Zero steady-state error).  Prove this. O
One way to choose the coefficielts by, - - -, b,—1 is to place the closed-loop poles evenly c

tributed on the left half of a circle with center at the origimd radiusv,. This yields closed-looj
responses with a desired degree of damping. The resultilypqmials are known aButter-
worth polynomials For the normalized case, = 1 the reference step responses are give
Fig. 2.30@). Table2.3shows the coefficients for increasing orders. For geneayahe polyno-
mials follow by substituting := s/wy.

Another popular choice is to choose the coefficients sudttlileantegral of the time multiplie
absolute error

/oot|e(t)| dt (2.74)
0

is minimal, with e the error for a step input3raham and Lathrqdl953. The resulting stej
responses and the corresponding so-cdllé&E standard formsre shown in Fig2.30b) and
Table2.4, respectively. The ITAE step responses have a shorteiimigeaind less overshoot the
the corresponding Butterworth responses.

2.8.3. Example

We consider the Guillemin-Truxal design procedure for theise control system of Exarnr
ple2.3.3(p. 67). The plant has the first-order transfer function

1

P(s) = - 1 T (2.75)
6

with T = 6 = 10 [s]. We specify the desired closed-loop transfer function
g

Bz + 1.4wys +a)§'

H(s)

(2.76)
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Figure 2.30: Step responses for Butterworth (left) and ITAght) denomi-

nator polynomials

Table 2.3: Normalized denominator polynomials for Buttertlr pole pat-

terns

‘ Order ‘

Denominator

s+ 1

24 145 + 1

3 4+2.0524+2.05s + 1

s 4+ 2.65% +3.452 +2.65 + 1

$° 4 3.245% + 5.2453 + 5.245% + 3245 + 1

$O 4+ 3.865° + 7.465% + 9.1453 + 7.465% + 3.865 + 1

s7T +4.495% +10.15° + 14.65% + 14.65% + 10.15% 4+ 4.495 + 1

O (IN|oO|a |~ W[IN|PF

s8 + 51357 + 13.145° + 21.855° + 25.695% + 21.855% + 13.1452 + 5.135 + 1

Table 2.4: Normalized denominator polynomials for ITARerion

‘ Order ‘

Denominator

s+ 1

52+ 14s + 1

s34+ 17552 + 2,155 + 1

sP 4215 + 34524275+ 1

$° 4+ 2.85% +5.05% + 5552 +3.45 + 1

$% 4+ 3.255° + 6.60s* + 8.60s3 + 7.455% + 3.955 + 1

s7T + 4.4755% + 10.425° + 15.085% + 15.5453 + 10.64s2 + 4.58s + 1

O (IN[oja|bd|W[N|F

s8 452057 + 12.805° + 21.60s° + 25.75s% + 22.2053 + 13.30s% + 5.15s5 + 1




The denominator is a second-order ITAE polynomial. The maiee has been chosen for a ze
position error, that is, type 1 control. It is easy to find ttreg required compensator trans
function is

1 H)  oiT(s+3)
T OP(s)1—H(s)  s(s+ 1.4s)’

C(s) 2.77)

The integrating action is patent. As seen in Exan2pB3(p. 67) the largest obtainable bandwid
with pure integral control is about/ /200 ~ 0.07 [rad/s]. For the Guillemin-Truxal design w
aim for a closed-loop bandwidthy = 1/+/2 & 0.7 [rad/s].

Figure 2.31 shows the resulting sensitivity function and the closemplstep response.
confirms that the desired bandwidth has been obtained. dtispeof (2.75 and .77 shows
that in the closed loop the plant pole-at /0 is canceled by a compensator zero at the si
location. This does not bode well for the design, even thahghsensitivity function and th
closed-loop step response of Fiy31look quite attractive. The canceling pole-at/é is also
a closed-loop pole. It causes a slow response (with the mgntime constan®) to nonzero
initial conditions of the plant and slow transients (witle #ame time constant) in the plant inp

This cancelation phenomenon s typical for naive appbcatof the Guillemin-Truxal methoc
Inspection of 2.70 shows that cancelation may be avoided by letting the cléseg transfer
function H have a zero at the location of the offending pole. This cairstrthe choice of7, and
illustrates what is meant by the comment that the selectitimecclosed-loop transfer function
not simple.

|H | Step response

10° 1.5
3]
S 1
€ 10"
g 0.5

102 0

q 0 1
10 10 10 0 5 10
angular frequency [rad/s] time [s]

Figure 2.31: Closed-loop transfer functiéhand closed-loop step response
of a Guillemin-Truxal design for the cruise control system

2.9. Quantitative feedback theory (QFT)

2.9.1. Introduction

Quantitative feedback theory (QFT) is a term coined Hgrowitz (1982 (see also
Horowitz and Sidi(1972). A useful account is given biunze(1989. The method is deepl
rooted in classical control. It aims at satisfying quaitagibounds that are imposed on t
variations in the closed-loop transfer function as a resfudpecified variations of the loop gai
The design method relies on the graphical representatitmedbop gain in the Nichols chart.
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2.9.2. Effect of parameter variations

Nichols plots may be used to study the effect of parametéatians and other uncertainties
the plant transfer function on a closed-loop system.

In particular, it may be checked whether the closed-loofesgsemains stable. By the Nyqui
criterion, closed-loop stability is retained as long asltap gain does not cross the point
under perturbation. In the Nichols chart, the critical pdirat is to be avoided is the point {80°,
0 dB), located at the heart of the chart.

The effect of the perturbations on the closed-loop trarfafestion may be assessed by study
the width of the track that is swept out by the perturbatiansiag theM -loci.

nominal| 7| 15 nominal step response

2 0 2
10 10 10 0 5 10
w [rad/s] time [s]

perturbed T'| perturbed step responses

[dB]

-50 ¢t

-100 5 ) ‘
10 10 10 0 5 10
o [rad/s] time [s]

Figure 2.32: Nominal and perturbed complementary seityitiunctions
and step responses for the nominal design

Example 2.9.1 (Uncertain second-order system). As an example we consider the plant wi
transfer function
g
P(s)= —"—. 2.78
(s) s2(1 + s0) ( )

Nominally g = 1 andf = 0. Under perturbation the gaign varies between 0.5 and 2. Tt
parasitic time constant may independently vary from 0 to[§].2We assume that a preliminal
study has led to a tentative design in the form of a lead cosgtenwith transfer function

k + Tys

) 2.79
1+ Tos ( )

Cls) =
with k. = 1, T, = /2 [s] andT, = 0.1 [s]. The nominal system has closed-loop po
—0.7652 4+ j0.7715 and—8.4697. The closed-loop bandwidth is 1 [rad/s]. Fig@&2shows
the nominal and perturbed complementary sensitivity fioncand closed-loop step respon:
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Figure2.33shows the Nichols plot of the nominal loop gain = P,C, with Py(s) = 1/s.
The figure also shows with the uncertainty regions causekdgdrameter variations at a numk
of fixed frequencies. These diagrams are constructed bylatileg the loop gairl (jw) with @
fixed as a function of the uncertain parameteendd along the edges of the uncertainty regiol
The corners of the uncertainty regions, as marked in thefpiab = 5, correspond to extrem
values of the parameters as follows:

A: 0 =0, g=0.5
B: 0=02 g=0.5,
C: 0=02 g=2,
D: 6 =0, g=2.

Inspection shows that no perturbation makes the Nicholsgotiss over the center of the cha
This means that the closed-loop system remains stable atigerturbations. O

2.9.3. Stability and performance robustness

Robust stabilityf the closed-loop system is guaranteed if perturbationsodcause the Nichol
plot of the loop gain to cross over the center of the chart.

In the QFT approach, destabilization causedibgnodeled perturbatioris prevented by spec
ifying a forbidden regiorabout the origin for the loop gain as in Fi§33 The forbidden regior
is aregion enclosed by a¥f -locus, for instance the 6 dB locus. If the Nichols plotohever en-
ters the forbidden region, not even under perturbatiom the modulus margin is always great
than 6 dB. Besides providing stability robustness, the giu@ed distance df from the critical
point prevents ringing.

In the QFT approach, in the simplest situatfmrformance robustness specified in the forrr
of bounds on the variation of the magnitude of the closeg-foequency response functidi.
Typically, for each frequency the maximally allowable variatior (w) of | H(jw)|, called the
tolerance bandis specified. Sincél = TF, with T the complementary sensitivity function ar
F the prefilter transfer function, it follows after taking gthms that

log|H| = log|T'| + log| F|. (2.80)

For simplicity we suppress the angular frequeacy Inspection of 2.80 shows that ifF is
not subject to uncertainty then robust performance is nbthif and only if for each frequenc
log|T'| varies by at most\ on the uncertainty region. Whether this condition is s&ikfnay be
verified graphically by checking in the Nichols chart whetthee uncertainty region fits betwee
two M -loci whose values differ by less thah

In the next subsection we discuss how to design the feedloagkduch thafl" satisfies the
stability and performance robustness conditions.

Example 2.9.2 (Performance robustness of the design exampl  e). Inspection of the plots
of Fig. 2.33reveals that the perturbations sweep out a very narrow bawariations of| 7’| at
frequencies less than 0.2, a band with a width of about 5 dBegtiency 1, a band with a widt
of about 10 dB between the frequencies 2 and 10, while thehwafithe band further increase
for higher frequencies. This is borne out by F2g32 O

2.9.4. QFT design of robust feedback systems

A feedback system design may easily fail to satisfy the parémce robustness specificatior
This often may be remedied by re-shaping the loop dain
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Changing the compensator frequency respange) for some frequency amounts tchift-
ingthe loop gainl (jw) at that same frequency in the Nichols plot. By visual insjpedhe shape
of the Nichols plot ofL may be adjusted by suitable shifts at the various frequsrscighat the
plot fits the tolerance bounds dn

Part of the technique is to prepammplatesof the uncertainty regions at a number of fi
quencies (usually not many more than five), and shiftingataesund in the Nichols chart. Tt
translations needed to shift the Nichols plot to make it fittilerance requirements are achie
by a frequency dependent correction of the compensatarérezy respons€. Note that chang
ing the loop gain by changing the compensator frequencyorespfunction does not affect t
shapes of the templates.

The procedure is best explained by an example.

Example 2.9.3 (QFT design). We continue the second-order design problem of the prev
examples, and begin by specifying the tolerance baridr a number of critical frequencies ¢
in Table2.5. The desired bandwidth is 1 rad/s.

Table 2.5: Tolerance band specifications.

frequency| tolerance band
0.2 0.5dB
1 2dB
2 5dB
5 10dB
10 18dB
Determination of the performance boundaries. The first step of the procedure is to trace

each selected critical frequency the locus ofribeninalpoints such that the tolerance ba
is satisfied with the tightest fit. This locus is called gfegformance boundaryoints on
the performance boundary may for instance be obtained hygfitkie nominal point at :
certain phase, and shifting the template up or down untidtvestposition is found where
the tolerance band condition is satisfied.

Determination of the robustness boundaries. Next, by shifting the template around the fc
bidden region so that it touches it but does not enter irdbeistness boundaig traced
for each critical frequency.

A feedback design satisfies the performance bounds andtrasgsbounds if for each critic:
frequency the corresponding value of the loop gain is on owvatihe performance bounda
and to the right of or on the robustness boundary. If it is anlibundaries then the boun
are satisfied tightly. Figur2.34shows the performance boundaries thus obtained for theadr
frequencies 1, 2 and 5 rad/s to the right in the Nichols cidre performance boundary for tt
frequency .1 rad/s is above the portion that is shown anddh&0 rad/s below it. The robustne
boundaries are shown for all five critical frequencies tortgkt of the center of the chart.

Inspection shows that the nominal design satisfies thefsgamns for the critical frequencie
w =2, 5 and 10 rad/s, but not fer = 1 rad/s, and also fo®& = 0.2 it may be shown that th
specifications are not satisfied.

Loop gain shaping.  The crucial step in the design is to shape the loop gain suath th

1. at each critical frequencay the corresponding loop gaih(jw) is on or above the
corresponding performance boundary;
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Figure 2.34: Performance and robustness boundaries
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Figure 2.35: Redesign of the loop gain

2. at each critical frequeney the corresponding loop gaih(jw) is to the right of the
corresponding stability robustness boundary.

This target should be achieved with a compensator transfeatibn of least complexity
and without overdesign (that is, the loop gain shouldobehe boundaries rather the
above or to the right). This stage of the design requiresrempee and intuition, and is th
least satisfactory from a methodical point of view.

In the problem at hand a design may be found in the followingigihtforward manner. Th
vertical line (a) in Fig.2.35is the Nichols plot of the nominal plant transfer functiis) =
1/s%. Obviously phase lead is needed. This is provided with a @rsator with transfer functio

C(s) =1+sT. (2.81)

The curves marked; = 1, T, = 3and7; = 9 representthe corresponding loop gains= PC.
The loop gains fofl; = 3 and7; = 9 satisfy the requirements; the latter with wide margi
We choosdl| = 3.

To reduce the high-frequency compensator gain we modityatssfer function to

1 45T,
1+ST2.

C(s) = (2.82)
The resulting loop gain fof, = 0.02 is also included in Fig2.35 It very nearly satisfies th
requirements Figure2.36gives plots of the resulting nominal and perturbed stepmesgs anc
complementary sensitivity functions. The robustness awgment is evident. O

1The requirements may be completely satisfied by adding a Rto the loop gain.



nominal|T'| 15 nominal step response

0
[dB] 1
-50 /
0.5
-100 0
2 0 2
10 10 10 0 5 10
angular frequency [rad/s] time [s]
perturbed T'| 15 perturbed step responses
o .
[dB] 1 DD@
-50
0.5
-100 0
2 0 2
10 10 10 0 5 10
angular frequency [rad/s] time [s]

Figure 2.36: Nominal and perturbed complementary seitgitiunctions
and step responses of the revised design

Exercise 2.9.4 (Performance and robustness boundaries). Traditional QFT relies on shift:
ing paper templates around on Nichols charts to determiagpdrformance and robustne
bounds such as in Fi@.34 Think of ways to do this using routines from theaWL.AB Control
Toolbox. Practice these ideas by re-creating Eiga O

2.9.5. Prefilter design

Once the feedback compensaor has been selected the QFifl desits to be completed with tf
design of the prefilter.

Example 2.9.5 (Prefilter design).  We continue the design example, and complete it a%-a
degree-of-freedom design as proposed h8 (p. 47). Figure2.37 shows the block diagrarn
The choice of the numerator polynomi&l provides half a degree of freedom and the ratio
transfer functionF, of the rational prefilter constitutes another degree ofdoee. The closed-
loop transfer function (from the reference inpub the controlled output) is

NF
Dcl

H =

Fo. (2.83)

P = N/D is the plant transfer function anfl;; = DX + NY the closed-loop characterist
polynomial.

In the problem at hand/(s) = 1 and D(s) = s2. The compensatdr(s) = 3s + 1, X(s) =
0.025+1 constructed in Examp9.3(p. 97) results in the closed-loop characteristic polynor

Dq(s) = 0.025% + 5> + 35 + 1. (2.84)

Its roots are-0.3815, —2.7995, and—46.8190. Completing the design amounts to choosing
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Figure 2.372%-degree-of-freed0m feedback system

correct polynomialF and transfer functiot, to provide the necessary compensation in

F(s)

H =
() 0.02(s + 0.3815)(s + 2.7995)(s + 46.8190)

Fo(s). (2.85)

The pole at—0.3815 slows the response down, so we cancel it by selecting thenpotial F
— whose degree can be at most 1 —/&S) = 5/0.3815 + 1. To reduce the bandwidth to tt
desired 1 rad/s and to obtain a critically damped close@-&tep response we let

2
@

52 4+ 28owos + @f

Fo(s) = (2.86)

with wy = 1 rad/s and = /2.

Figure2.38displays the ensuing nominal and perturbed step respondegda@sed-loop trans
fer functions. Comparison with Fi¢.33makes it clear that the robustness has been drasti
improved. O

2.9.6. Concluding remark

The QFT method has been extended to open-loop unstabls platihon-minimum phase plan
and also to MIMO and nonlinear plantsdorowitz (1982 provides references and a revie
Recently a M\TLAB toolbox for QFT design has appeafed

2.10. Concluding remarks

This chapter deals with approaches to classical compeardes@n. The focus is on compens
tion by shaping the open-loop frequency response.

The design goals in terms of shaping the loop gain are extelgsionsidered in the classic
control literature. The classical design techniques cople tvem in anad hocand qualitative
manner. It requires profound experience to handle theickgschniques, but if this experien
is available then for single-input single-output systemis inot easy to obtain the quality «
classical design results by the analytical control desigthimnds that form the subject of the laf
chapters of this book.

2Quantitative Feedback Theory Toolbox, The MathWorks INatick, MA, USA, 1995 release.



nominal ¢l10s€ad-100pP nominal closed-loop

transfer functior| H | i step response
o .
[dB] 1
-50
0.5
100 5 ) 0
10 10 10 0 5 10
w [rad/s] time [rad/s]
perturbed closed-loop perturbed closed-loop
transfer function$H | .5 step responses
[dB] 0 —
1 /
-50
0.5
-100 0
107 10 160 0 5 10
o [rad/s] time [rad/s]

Figure 2.38: Nominal and perturbed step responses anddelosp transfer
functions of the final QFT design

If the design problem has a much more complex structuren&tance with multi-input multi-
output plants or when complicated uncertainty descripteomd performance requirements apy
then the analytical techniques are the only reliable to&sen in this case a designer nee

considerable expertise and experience with classicahtgabs to appreciate and understand
design issues involved.



3. Multivariable Control System Design

Overview— Design of controllers for multivariable systems requies
assessment of structural properties of transfer matri€as. zeros and
gains in multivariable systems have directions.

With norms of multivariable signals and systems it is pdsdibobtain
bounds for gains, bandwidth and other system properties.

A possible approach to multivariable controller desigmisaduce the
problem to a series of single loop controller design prolslexamples
are decentralized control and decoupling control.

The internal model principle applies to multivariable syst and, for
example, may be used to design for multivariable integradac

3.1. Introduction

Many complex engineering systems are equipped with seaetahtors that may influence the
static and dynamic behavior. Commonly, in cases where some ¢éf automatic control is re
quired over the system, also several sensors are avaitapi®vide measurement informatic
about important system variables that may be used for feddimntrol purposes. Systems wi
more than one actuating control input and more than one s@ugput may be considered
multivariable systems omulti-input-multi-output (MIMO)systems. The control objective f
multivariable systems is to obtain a desirable behavioewégal output variables by simultan
ously manipulating several input channels.

3.1.1. Examples of multivariable feedback systems

The following two examples discuss various phenomena fretically occur in MIMO feed-
back systems and not in SISO systems, such as interactioredetioops and multivariabl
non-minimum phase behavior.

Example 3.1.1 (Two-tank liquid flow process). Consider the flow process of Fig.1L The
incoming flow¢, and recycle flowp, act as manipulable input variables to the system, anc
outgoing flowgs; acts as a disturbance. The control objective is to keep glédlilevelss; and
h, between acceptable limits by applying feedback from meamants of these liquid level
while accommodating variations in the output flgw: As derived in Appendi®.4, a dynamic
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Figure 3.2: Two-loop feedback control of the two-tank lidjfiow process




model, linearized about a given steady state, is

mO] _[=1 0)[m@] 1 1 fao] [0
! B : A
[hz(f)] [ 1 01| |:hz(l) Tlo —1||ese)| T |=1 #3(1) (3.1)
Here thei; and¢; denote the deviations from the steady state levels and floeyslace trans:
formation yields

-H(S)-_-S—i-] 071 1 17 ®1(s) 0
_H;(S)_ L -1 sj| ([o —1] [q)l(s)} + [_1} 453(s)),

which results in the transfer matrix relationship
~ - B 1 1 -
Hi(s) S 5 } [051 (s)

0

The example demonstrates the following typical MIMO syst@renomena:

e Each of the manipulable inputls and¢, affects each of the outputs to be controlled
and/,, as a consequence the transfer matrix

I
P(s) = [ o ] (3.3)
sGFD) T s+ 1

has nonzero entries both at the diagonal and at the off-dagmtries.

e Consequently, if we control the two output variablesand/, using two separate contr
loops, itis notimmediately clear which input to use to cohtr;, and which one to contrc
h,. This issue is called thieput/output pairingoroblem.

e A possible feedback scheme using two separate loops is simoiig. 3.2 Note that in
this control scheme, there exists a coupling between baipslaue to the non-diagon
terms in the transfer matrix(3). As a result, the plant transfer function in the open ug
loop from¢; to &, with the lower loop closed with proportional gdin, depends o#;,

1 ky
Pu(s)|,. = A (1 ~ 6T _kz)). (3.4)

Herellc indicates that the lower loop is closed. Owing to the negatteady state gain i
the lower loop, negative values &f stabilize the lower loop. The dynamics 8f; (s)|,,

changes witlk;:
kr»=10: Pll(s)‘uczﬁ’
_ . s+l
ky=—1: Pll(s)‘uc  s(s+2)°

k2 = —Q . P11(S)|"C = -.

S

The phenomenon that the loop gain in one loop also dependsedndp gain in anothe
loop is callednteraction Themultiple loopcontrol structure used here does not explic
acknowledge interaction phenomena. A control structuieguisdividual loops, such a
multiple loop control, is an example ofdecentralizedcontrol structure, as opposed tc
centralizedcontrol structure where all measured information is atdédor feedback in
all feedback channels.
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Figure 3.3: Decoupling feedback control of two-tank liqfl@v process

o A different approach to multivariable control is to try torapensate for the plant intera
tion. In Example3.1.1a precompensatdcP™ in series with the plant can be found whi
removes the interaction completely. The precompendgatris to be designed such th:
the transfer matrixPKP™ is diagonal. Figur&.3 shows the feedback structure. Suppc
that the precompensat&™'® is given the structure

1 KP%(s)
pre/ .\ 12
K (.S) = |:K§1re(s) 1 :| (35)
then PKP™is diagonal by selecting
1
K(s)=—-1.  KN%(s)=-. (3.6)
N
The compensated plafK ™ for which a multi-loop feedback is to be designed as a r
step, reads
10
P(s)KP™(s) = [(S) _1} . (3.7)

Closing both loops with proportional gaiks > 0 andk, < 0 leads to a stable system. |
doing so, a multivariable controllgf has been designed having transfer matrix

k] 0 kl _k2

— pre —

K(s) = KP™(s) |:0 k2:| = |:k1/s ks :| (3.8)
This approach of removing interaction before actually iclgsnultiple individual loops is

calleddecoupling contral

The next example shows that a multivariable system may stomanminimum phase behavior.

Example 3.1.2 (Multivariable non-minimum phase behavior) . Consider the two input, twc
output linear system

ya(s) T Lue(s)
If the lower loop is closed with constant gaim;(s) = —k>y2(s), then for high gain value:

(k» — o0) the lower feedback loop is stable but has a zero in the tglftplane,

1 2 s—1
ils) = (S+1 —SH)ul(s):—m i (s). (3.10)



Thus under high gain feedback of the lower loop, the upper gfathe system exhibits nor
minimum phase behavior. Conversely if the upper loop isedosnder high gain feedbac
uy = —k] Vi with k1 — 00, then

s—1

—7@ TG 1) us(s). (3.11)

ya(s) =
Apparently, the non-minimum phase behavior of the systenotsconnected to one particul
input-output relation, but shows up in both relations. Omapl can be closed with high gai
under stability of the loop, and the other loop is then rettd to have limited gain due to tt
non-minimum phase behavior. Analysis of the transfer matri

_[= ] 1 S+3 2542
G i B o= T @12

shows that it loses rank at= 1. In the next section it will be shown that= 1 is an unstable
transmission zeref the multivariable system and this limits the closed loeb#vior irrespec:
tive of the controller used. Consider the method of decogptirecompensation. Express t
precompensator as

o= [0 820 @19

Decoupling means tha K" is diagonal. Inserting the matri8(12 into PKP', a solution for
a decouplingkP®is

s+ 1

Ku(s) =1,  Kn(s)=1,  Kp(s) = —22"_
11(s) 2(s) 12(5) 13

K (s) = —1. (3.14)

Then the compensated system is

L2 1 —pstl -l 0
P(s)K‘”e(s)=[i Sﬂ[ f“}Z T |- 319

1 e L1 “GENGTY

The requirement of decoupling has introduced a right-Hati@ zero in each of the loops, so tt
either loop now only can have a restricted gain in the feekllmap. O

The example suggests that the occurrence of non-minimuseghteenomena is a property
the transfer matrix and exhibits itself in a matrix sense comnected to a particular input-outp
pair. It shows that a zero of a multivariable system has raticriship with the possible zeros
individual entries of the transfer matrix.

In the example the input-output pairing has been the natmal outputi is connected by
a feedback loop to input This is however quite an arbitrary choice, as it is the testibur
model formulation that determines which inputs and whictpats are ordered as one, two a
so on. Thus the selection of the most useful input-outpuspgianon-trivial issue inmultiloop
control or decentralized contrgl.e. in control configurations where one has individuapieas
in the example. A classical approach towards dealing witltivamiable systems is to bring
multivariable system to a structure that is a collectionrod eput, one output control problemn
This approach oflecoupling contromay have some advantages in certain practical situat
and was thought to lead to a simpler design approach. Honwaséhe above example showe
decoupling may introduce additional restrictions regagdhe feedback properties of the syste



3.1.2. Survey of developments in multivariable control

The first papers on multivariable control systems appeardie fifties and considered aspet
of noninteracting control. In the sixties, the workRbsenbrock1970 considered matrix tech
niques to study questions of rational and polynomial regmesgtion of multivariable system:
The polynomial representation was also studiedWglovich (1974. The books byKailath
(1980 and Vardulakis(199]) provide a broad overview. The use of Nyquist techniques
multivariable control design was developed RgsenbrocK19743. The generalization of the
Nyquist criterion and of root locus techniques to the maltigble case can be found in t
work of Postlethwaite and MacFarlaif€979. The geometric approach to multivariable sta
space control design is contained in the classical booWbgham(1979 and in the book by
Basile and Marrq1992. A survey of classical design methods for multivariablatcol sys-
tems can be found iorn and Wilfert (1982, Lunze (1988 and in the two books byolle
(1983, 1985 Modern approaches to frequency domain methods can be fourRaisch(1993,
Maciejowski(1989, andSkogestad and Postlethwa({tE995. Interaction phenomena in mu
tivariable process control systems are discussed in tefrasppocess control formulation il
McAvoy (1983. A modern, process-control oriented approach to muitde control is pre-
sented inMorari and Zafiriou(1989. The numerical properties of several computational al
rithms relevant to the area of multivariable control desigmdiscussed iBvaricek(19995.

3.2. Poles and zeros of multivariable systems

In this section, a number of structural properties of matii@ble systems are discussed. Th
properties are important for the understanding of the biena¥the system under feedback. T
systems are analyzed both in the time domain and frequenngito

3.2.1. Polynomial and rational matrices

Let P be a proper real-rational transfer matrieal-rationalmeans that every enti;; of P is
a ratio of two polynomials having real coefficients. Any oatal matrix P may be written as ¢
fraction

1
P = 7 N

whereN is apolynomial matrix andd is the monic least common multiple of all denomina
polynomials of the entries aP. Polynomial matrices will be studied first. Many results ab
polynomial matrices may be foundin, e.g., the bookdaeDuffee(1956, Gohberg et a1982
andKailath (1980.

In the scalar case a polynomial has no zeros if and only ifat i®nzero constant, or, to p
it differently, if and only if its inverse is polynomial as We The matrix generalization is a
follows.

Definition 3.2.1 (Unimodular polynomial matrix). A polynomial matrix isunimodularif it
square and its inverse exists and is a polynomial matrix. O

It may be shown that a square polynomial matiixis unimodular if and only if detV is a
nonzero constant. Unimodular matrices are consideredigan zeros and, hence, multiplicati
by unimodular matrices does not affect the zeros.

1That is, a matrix whose entries are polynomials.



Summary 3.2.2 (Smith form of a polynomial matrix). For every polynomial matrixV there
exist unimodulalU andV such that

g 0 0 0 0 0
0 & 0 0 00
uNy =0 0 000 (3.16)
0 0 0 £ 00
0O 0 0 0 0 O
0O 0 0 0 0 O
S
wheree}, (i = 1,...,r) are monic polynomials with the property thaye;_, is polynomial.

The matrixS is known as th&mith formof N and the polynomials; theinvariant polynomials
of N.

In this caser is thenormal rankof the polynomial matrixV, and thezerosof N are defined
as the zeros of one or more of its invariant polynomials. O

The Smith formS of N may be obtained by applying t8§ a sequence aflementary row anc
column operationswhich are:

e multiply a row/column by a nonzero constant;
e interchange two rows or two columns;
¢ add a row/column multiplied by a polynomial to another raoienn.

Example 3.2.3 (Elementary row/column operations). The following sequence of elementa
operations brings the polynomial matrix

s+ 1 os—1
N(S)_|:s+2 s—2:|

to diagonal Smith-form:

s+1 s—1] @O [s+1 s—1| @ [s+1 2s] & [0 25| @ |1 O
I:s+2s—2:|:>|:1 —1}:>[1 O}i[l 0:|:>|:Osj|‘
Here, in step (1) we subtracted row 1 from row 2; in step (2) deea the first column to th
second column; in step (39,+ 1 times the second row was subtracted from row 1. Finally

step (4), we interchanged the rows and then divided the (seegnd row by a factor 2.
Elementaryrow operations correspond tipeemultiplication by unimodular matrices, and e

ementarycolumnoperations correspond tip@smultiplication by unimodular matrices. For t
above four elementary operations these are

(1) premultiply byUy(s) := |:_11 (1)1|’
. 1 1
(2) postmultiply byVz,(s) := [0 1}

(3) premultiply byU;3(s) := [(1) _(Sl+ 1)}



. 0 1
(4) premultiply byUr4(s) := [1/2 0:|'
Instead of applying sequentially multiplication @&hwe may also first combine the sequence

unimodular matrices into two unimodular matridés= U;,U;3U;; andV = Vj,, and then
apply theU andV,

-1 I s+1 s—1 117 1o
[1+s/2 —1/2—s/2 s+2 s-2 0 1 10 s
——

U(s) = Ura(s)Ur3(s)UL1(s) N(s) V(s) = Vra(s) S(s)

This clearly shows thaf is the Smith-form ofNV. The polynomial matrixV has rank and has
one zero at = 0. i

Now consider a rational matriR. We write P as

1
P=- 3.17
y (3.17)
whereN is a polynomial matrix and a scalar polynomial. We immediately get a generaliza
of the Smith form.

Summary 3.2.4 (Smith-McMillan form of a rational matrix). For every rational matrixP
there exist unimodular polynomial matricEsandV such that

_;—] 0 0 0 0 0]
e 0 0 O
0 %
vpy =0 0 000 (3.18)
0 0 0 :;—’ 0 0
0O 0 O 0 0 O
(0 0 0 0 0 0]
M
where thes; andy; are coprime such that
s _ Ei (3.19)
Vi d '
andthes), (i = 1,...,r) are the invariant polynomials & = dP. The matrixM is known as

the Smith-McMillan formof P.
In this caser is thenormal rankof the rational matrixP. Thetransmission zerosf P are
defined as the zeros §I’_, ¢; and thepolesare the zeros of[;_, ;. O

Definitions for other notions of zeros may be foundRiasenbrock1970, RosenbrocKk1973
andRosenbrocK1974h), and inSchrader and Saif1989.

Example 3.2.5 (Smith-McMillan form).  Consider the transfer matrix

1 1
|y sem|_ 1 s+1 1] _ 1
o= L )= e




The Smith form ofN is obtained by the following sequence of elementary opeamati

(s +1 1 s+1 1 1 s+1 1 0
R R e P R

Division of each diagonal entry by yields the Smith-McMillan form

r 1
s(s+1) 0 j|
L0 &

The set of transmission zeros{i¥}, the set of poles i§—1, —1, 0}. This shows that transmissic
zeros of a multivariable transfer matrix may coincide withigs without being canceled if the
occur in different diagonal entries of the Smith-McMillaorfn. In the determinant they ©
cancel. Therefore from the determinant

detP(s) = ——
(s) (s +1)2

we may not always uncovetl poles and transmission zeros Bf (GenerallyP need not be
square so its determinant may not even exist.) O

An sy € C is apoleof P if and only if it is a pole of one or more entrigy; of P. Ansy € C
that is not a pole ofP is a transmission zero aP if and only if the rank of P(s¢) is strictly
less than the normal rankas defined by the Smith-McMillan form d@?. For square invertible
matricesP there further holds tha, is a transmission zero a? if and only it is pole if P~'.
For example

P(s) = [(1) lﬂ

has a transmission zero at= 0 — even though deP(s) = 1 — becauseP™!(s) = [} 71" ]
has a pole at = 0.

3.2.2. Squaring down

If the normal rank of am, x n, plantP is r then at most entries of the outpup = Pu can
be given independent values by manipulating the inputhis generally means thatentries of
the output are enough for feedback control. Kebe anyn, x n, controller transfer matrix, the
the sensitivity matrixS and complementary sensitivity matrixas previously defined are for tt
multivariable case (see Exercise.4)

S =+ PK)"!, T =( + PK)"'PK. (3.20)

If r < n,, thenthes, xn, loop gainPK is singular, so thas has one or more eigenvalues= 1
for any s in the complex plane, in particular everywhere on the imagiraxis. In such case
IS(jw)| in whatever norm does not converge to zeravas> 0. This indicates an undesire
situation which is to be prevented by ascertaining the rdnR ¢o equal the number of the &
controller outputs. This must be realized by proper sadacéind application of actuators al
sensors in the feedback control system.

Feedback around a nonsqudtecan only occur in conjunction with a compensatomhich
makes the series connecti®X square, as required by unity feedback. Such controkeese
said tosquare dowrthe plantP. We investigate down squaring.



Example 3.2.6 (Squaring down).  Consider
Pis)=[1 3]

Its Smith-McMillan form isM (s) = [1/s* 0]. The plant has no transmission zeros and h:
double pole at = 0. As pre-compensator we propose

Ko(S) = I:;j| .

This results in the squared-down system

s+a

P(s)Ko(s) = —5—.

Apparently squaring down may introduces transmissionszeho this example the choiee >
0 creates a zero in the left-half plane, so that subsequehtdain feedback can be applie
allowing a stable closed-loop system with high loop gain. O

In the exampleP does not have transmission zeros. A genexd@ plant P(s) = [a(s) b(s)]
has transmission zeros if and onlyifandb have common zeros. i andb are in some sens
randomly chosen then it is very unlikely thatand» have common zeros. Generally it hol
that nonsquare plants have no transmission zeros assungm@tries ofP;; are in some sens
uncorrelated with other entries. However, many physicateys bear structure in the entri
of their transfer matrix, so that these cannot be considasduklonging to the class of gene
systems. Many physically existing nonsquare systems lctuan out to possess transmissic
Zeros.

The theory of transmission zero placement by squaring davprésently not complete
although a number of results are available in the literatuBain and Schrade(1990 de-
scribe the general problem area, and results regardingghariag problem are describe
in Horowitz and Gerg1979, Karcanias and Giannakopoul¢t989, Le and Safonoy1992,
Sebakhy et a1986, Stoorvogel and Ludlag@ 994, andShaked1976.

Example 3.2.7 (Squaring down).  Consider the transfer matri® and its Smith-McMillan form

- s2—1 1
s s(s2—1) 1 5
P(s)= |1 ﬁ = m s(sZ—=1) s (3.21)
0 0 s?
s*—1
1
0 0w Qe
= s 0 1 0 s 1 ol (3.22)
2 -1 0 0 0
1 V—I(s)
U—1(s) M(s)

There is one transmission zef@®; and the set of poles is-1, 1, 0}. The postcompensatdf, is
now?2 x 3, which we parameterize as

a b ¢
Koz[d e f]

We obtain the newly formed set of transmission zeros as thef zeros of

det | ¢ b ¢ 1 0 _
et d e f s 0 | =(d—af)+ (ce—bf)s,

s =1



where the second matrix in this expression are the first tianwas of U~!. Thus one single
transmission zero can be assigned to a desired locatiorogehhis zero at = —1. This leads
for example tothe choice =0, b =0,c=1,d=1,e=1, f =0,

wo=[1 1]

and the squared-down system

0 1 1 0 s?
K"(S)P(S):[ﬂ X(JL}_M[(S+1)(S2—1) s+1]

S

This squared-down matrix may be shown to have Smith-McMiltam

1
s(s2—1) 0
0 s(s+ 1)

and consequently the set of transmission zerd8,is 1}, the set of poles remain unchanged
{—1,1,0}. These values are as expected, i.e., the zeso=at0 has been retained, and the n
zero at—1 has been formed. Note that= 0 is both a zero and a pole. O

3.2.3. Transmission zeros of state-space realizations

Any propern,, x n, rational matrixP has astate-space realization
P(s) = C(sl,— A)"'B + D, AeR™ BeR™mu CeRW M DeRWMm,

Realizations are commonly denoted as a quadrupleB, C, D). There are many realizatior
(A4, B, C, D) that define the same transfer matfix For one, therder n is not fixed, A realiza-
tion of ordem of P is minimalif no realization ofP exists that has a lower order. Realizations
minimal if and only if the order. equals the degree of the polynomialy, . .. v, formed from
the denominator polynomials ir3 (18, seeRosenbrocK1970. The poles ofP then equal the
eigenvalues o4, which, incidentally, shows that computation of poles isamdard eigenvalu
problem. Numerical computation of the transmission zerag be more difficult. In some spe
cial cases, computation can be done by standard operatiarther cases specialized numeri
algorithms have to be used.

Lemma 3.2.8 (Transmission zeros of a minimal state-space sy  stem). Let (4, B,C, D) be
a minimal state-space realization of oraeof a proper real-rational, x n, transfer matrixP
of rankr. Then the transmission zergse C of P as defined in Summa.2.4are the zeros,
of the polynomial matrix

A—sol B
[ c D} . (3.23)
That s, s, is transmission zero if and only if rafk' " 2] < n +r. O

The proof of this result may be found in Appendxd. Several further properties may |
derived from this result.

Summary 3.2.9 (Invariance of transmission zeros). The zeros of (3.23 are invariant unde
the following operations:



e nonsingulainput spacdransformationg7;) andoutput spacéransformationg73):

¢ »p|7| nCc DL

[A—sI B [A—sI BT, i|

e nonsingulastate spacéransformations7}):

(A—sl Bl _ [TAT'—sI TiB

| C D] CTy! D

e Static output feedbaadkperations, i.e. for the systetn = Ax + Bu, y = Cx + Du,
we apply the feedback law = —Ky + v wherev acts as new input. Assuming th
det(/ + DK) # 0, this involves the transformation:

A—sI B A— BK(I + DK)~'C —sI B(I + KD)™!
cC D (I + DK)~'C (I + DK)™'D

e State feedbackF) andoutput injection(L) operations,

A—slI B A—BF—sI B A—BF—-LC+ LDF—-sI B-LD
[ C D} [ C — DF D} [ C — DF D }
The transmission zeros have a clear interpretation as thHalbokingcertain exponential in.
puts,Desoer and Schulmdt974, MacFarlane and Karcanigs976. Under constant high gai
output feedback = Ky the finite closed loop poles generally approach the trarsomsze-
ros of the transfer matriX. In this respect the transmission zeros of a MIMO system l:
similar role in determining performance limitations as tle zeros in the SISO case. See ¢
Francis and Wonhartl979. If P is square and invertible, then the transmission zeros ar¢
zeros of the polynomial
[A—sI B

det_ ¢ D] (3.24)

If in addition D is invertible, then

[A—sI B[ I 0] _ . .[(A4—BD7'C)—sI B
det C D] [_ch I} = det[ 0 D] (3.25)

So then the transmission zeros are the eigenvalugs-ofBD~'C. If D is not invertible then
computation of transmission zeros is less straightforwdfel may have to resort to computati
of the Smith-McMillan form, but preferably we use methodsdxhon state-space realizations

Example 3.2.10 (Transmission zeros of the liquid flow system ). Consider the Exam
ple 3.1.1with plant transfer matrix

1 1
e 1 s s
P(s) = ST] S+11 — [ j| .
|:s(s+1) ol s(s+ 1[I —s
Elementary row and column operations successively apfdi¢ke polynomial part lead to th
Smith form

s s|Wfs+1 0]®[s+1 s(s+1D] ®[1 0
[1 —s]:>|: 1 —si|:>|: 1 0 }i[o s(s+1)i|'




The Smith-McMillan form hence is

1 1 0 — 0
M(é) - s(s—|— 1) |:0 s(s + 1)i| - |: ((-)H) ]j|'

The liquid flow system has no zeros but has two péles-1}.
We may compute the poles and zeros also from the state spaeseatation of,

—“1-s 0|1 1
_ A—sI| B 1 —s |0 -1

P(s)=C(sI —A)'B+ D, [ e D}: — 5 To o
0 —1‘0 0

The realization is minimal because bathand C are square and nonsingular. The poles
therefore the eigenvalues df, which indeed arg0, —1} as before. There are no transmiss|
zeros because det*’ 5 ] is a nonzero constant (verify this). o

Example 3.2.11 (Transmission zeros via state space and tran  sfer matrix representation).
Consider the system with state space realizatibnB, C, D), with

0 0 O 0 1
A=|1 0 0], B=]1 0f, C=|:8 (l) (1)1| D:[g 8j|
0 1 0 0 0

The system’s transfer matriR equals
B e _ s st L [s? s
P(s) =C(sI — A) B+D—|:1/S2 1/s3| 7 3 |s 1|

Elementary operations on the numerator polynomial magsxlts in

2 s N 0 s N 1 0
s 1 0 1 00
so the Smith-McMillan form ofP is
L1 o 1/s* 0
o= slo o) =[5 o]
The system therefore has three poles, all at z¢6o0,0}. As the matrixA € R*3 has an
equal number of eigenvalues, it must be that the realizésioninimal and that its eigenvalug

coincide with the poles of the system. From the Smith-Mcfilform we see that there are |
transmission zeros. This may also be verified from the magncil

—s 0 00 1

Al | B I = 0|1 0
—Tp|=|0 1 —s|oo
0 -1 00 0

0 0 —1]/0 0

Elementary row and column operations do not affect the rdrthis matrix pencil. Therefore
the rank equals that of

- 0 0 0 1 - 0 0 0 1 0 0 0 01
I —s 0 1 0 1 0 0 1 0 0 0 0 1 0
0 1 —s 0 O|=(0 O O O O|=|0 O O 0 O
0 -1 0 0 O 60 -1 0 0 O 0 -1 0 0 O
0 0 -1 00 0 0 -1 00 0 0 -1 0 O



As s has disappeared from the matrix pencil it is direct that &mk of the matrix pencil does nc
depend on. The system hence has no transmission zeros. O

3.2.4. Numerical computation of transmission zeros

If a transfer matrixP is given, the numerical computation of transmission zesdis igeneral
based on a minimal state space realizatioR dfecause reliable numerical algorithms for ratio
and polynomial matrix operations are not yet numericallyediable as state space methods. !
briefly discuss two approaches.

Algorithm 3.2.12 (Transmission zeros via high gain output f eedback). The approach ha
been proposed bpavison and Wan@1974, 1978 Let (4, B, C, D) be a minimal realizatior
of P and assume tha? is either left-invertible or right-invertible. Then:

1. Determine an arbitrary full rank output feedback maftix R"+*"r, e.g. using a randor
number generator.

2. Determine the eigenvalues of the matrix
1
Z,:= A+ BK(-1-DK)"'C
g

for various large real values pf e.g.p = 10'°, ..., 10* at double precision computatio
Now asp goes tooco we observe that some eigenvalues go to infinity will othersveoge
(the so calledinite eigenvalues).

3. For square systems, the transmission zeros equal the digienvalues oZ,. For non-
square systems, the transmission zeros equal the finiteveilges ofZ, for almostall
choices of the output feedback matiix

4. In cases of doubt, vary the values@fnd K and repeat the calculations.

See Sectiord.4for a sketch of the proof.

Algorithm 3.2.13 (Transmission zeros via generalized eige  nvalues). The approach ha
been proposed ihaub and Moorg1978 and makes use of th@ Z algorithm for solving the
generalized eigenvalue problem. l(et, B, C, D) be a minimal realization oP of orderr hav-
ing the additional property that it is left-invertible (li¢ system is right-invertible, then use t
dual system(A”,CT, BT, DT)). Then:

1. Define the matriced/ andL as
I, 0 |4 B
C L A |
2. Compute a solution to thgeneralized eigenvalygroblem i.e. determine all valuese C

andr € C"*" satisfying

[sM—-Llr =0

3. The set ofinite values fors are the transmission zeros of the system.

Although reliable numerical algorithms exist for the s@utof generalized eigenvalue prol
lems, a major problem is to decide which values tielong to the finite transmission zeros a
which values are to be considered as infinite. However, tliblpm is inherent in all numerice
approaches to transmission zero computation. O



3.3. MIMO structural requirements and design methods

During both the construction and the design of a controlesyst is mandatory that structur
requirements of plant and controller and the control coméiian are taken into account. F
example, the choice of placement of the actuators and sensay affect the number of righ
half plane zeros of the plant and thereby may limit the cldseg performance, irrespecti
which controller is used. In this section a number of sucluiregnents will be identified. Thes
requirements show up in the MIMO design methods that areid#sd in this section.

3.3.1. Output controllability and functional reproducibility

Various concepts ofontrollability are relevant for the design of control systems. A minir
requirement for almost any control system, to be includedrin control objective, is the re
quirement that the output of the system can be steered toesiged position in output space |
manipulating the input variables. This property is forrmadl in the concept adutput controlla-
bility.

Summary 3.3.1 (Output controllability). A time-invariant linear system with input(z) and
output y(¢) is said to beoutput controllableif for any y;, y, € R? there exists an input(z),

t € [t1, ] with #; < t, that brings the output from(#;) = y; to y(2) = y,. In case the syster
has a strictly proper transfer matrix and is described byagestpace realizatiofd, B, C), the
system isoutput controllabléf and only if the constant matrix

[CB CAB CA’B ... CA"'B] (3.26)

has full row rank 0

If in the above definitionC = I, then we obtain the definition of state controllability. T
concept of output controllability is generally weaker: ateyn(4, B, C) may be output control
lable and yet not be (state) controllabl@he property of output controllability is @anput-output
propertyof the system while (state) controllability is not.

Note that the concept of output controllability only reaasithat the output can be given a ¢
sired value at each instant of time. A stronger requirengetd demand the output to be able
follow any preassigned trajectory in time over a given timeival. A system capable of satisf
ing this requirement is said to leeitput functional reproducibler functional controllable Func-
tional controllability is a necessary requirement for autggulator and servo/tracking problen
Brockett and Mesarovif1965 introduced the notion ateproducibility, termedoutput control-
lability by Rosenbrock1970).

Summary 3.3.2 (Output functional reproducibility). A system having proper real-ration
n, x n, transfer matrix is said to beinctionally reproduciblef rank P = n,. In particular for
functionally reproducible it is necessary that< n,. O

Example 3.3.3 (Output controllability and Functional repr ~ oducibility).  Consider the linea
time-invariant state-space system of Exangz11

00 0 0 1 o 1 o
A=1|1 0 ofl, B=|1 0], C:[O 0 1] (3.27)
010 0 0

2Here we assume thét has full row rank, which is a natural assumption becauserwtbe the entries of are linearly
dependent.



This forms a minimal realization of the transfer matrix

1
P(s)=C(sI —A)"'B = [ f} . (3.28)

s3

G= i

The system(4, B, C) is controllable and observable, add has full rank. Thus the syster
also is output controllable. However, the rank Bfis 1. Thus the system igot functionally
reproducible. ]

3.3.2. Decoupling control

A classical approach to multivariable control design cstssof the design of a precompensa
that brings the system transfer matrix to diagonal formhveitbsequent design of the actt
feedback loops for the various single-input, single-otifhannels separately. This allows tl
tuning of individual controllers in separate feedback lmamnd it is thought to provide an accej
able control structure providing ease of survey for prooggsators and maintenance personi
The subject of noninteracting or decoupling control asulised in this section is based on t
works of Silverman(1970, Williams and Antsaklis(1986. The presentation follows that ¢
Williams and Antsaklig1996.

In this section we investigate whether and how a squwacan be brought to diagonal form k
applying feedback and/or static precompensation. Supghas® has state-space representat

x(t) = Ax()+ Bu(t),

y@) = Cx(@)+ Du(t)
with « andy having equally many entries, = n, = m, i.e., P(s) = C(sI—A)~' B+ D square.
Assume in what follows thaP is invertible. The inverse transfer matriR~'—necessarily @
rational matrix—may be viewed as a precompensatdt tifat diagonalizes the series connect

PP~ If the direct feedthrough ternl® = P(oco) of P is invertible, then the invers€~! is
proper and has realization

P Y(s)=-D"'C(sI — A+ BD'C)"'BD™' + D!, (3.29)

If D is singular then the inversB~'—assuming it exists—is not proper. In this case we proc
as follows. Define the indiceg > 0 (i = 1,...m) such thatD, defined as

Dy(s) = diag(s/1, 572, ..., s/m (3.30)
is such that
D= | llim Dy (s)P(s) (3.31)

is defined and every row dP has at least one nonzero entry. This identifies the indj¢e
uniquely. Thef; equal the maximum of the relative degrees of the entriesdrtthrow of P.
Indeed, then by construction the largest relative degresaah row of D, P is zero, and as
consequence lim-.. Dy (s) P(s) has a nonzero value at precisely the entries of relativesde
zero. The indices; may also be determined using the realizationPoflf the ith row of D is
not identical to zero therf; = 0, otherwise

fi =min{k > 0] rowi of CA*"! B is not identical to zerd.

It may be shown that; < n, wheren is the state dimension. The indicgsso defined are know
as thedecoupling indices
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Figure 3.4: (a) closed loop with original plant, (b) with depled plant

Summary 3.3.4 (Decoupling state feedback). If D as defined in%.3J) is nonsingular, ther
the regular state feedback

u(t) = D' (=Cx(t) + v(1))
where

C]*Af]

Cm* Aﬁn

renders the system with output and new inputv decoupled with diagonal transfer mat
D;'(s) = diagls—/1,57/,...,s7/m). The compensated plant is shown in FBgi(b). O

Here C;. is denotes théth row of the matrixC. A proof is given in Appendix3.4 The
decoupled pIanD,‘.‘ has all its poles at = 0 and it has no transmission zeros. We also kr

that regular state-feedback does not change the zeros ofatrex [ 47 5 ]. This implies that
after state feedback all non-zero transmission zeros dfytsiem are canceled by poles. In otl
words, after state feedback the realization has unobslersaides at the open loop transmiss|
zeros. This is undesirable # has unstable transmission zeros as it precludes closedtabitity
using output feedback. P has no unstable transmission zeros, then we may proceedhei
decoupled pIaan—1 and use (diagonalX to further the design, see Fig.4. A decoupled plan
that is stable may offer better perspectives for furthefguerance enhancement by multiloc
feedback in individual channels. To obtain a stable decmliplant we take instead 03.30 a
Dy of the form

Dy =diag(pi, ..., pm)

where thep; are strictly HurwitZ if monic* polynomials of degreg;. The formulae are nov
more messy, but the main results holds true also for thiscehwiiD,

Summary 3.3.5 (Decoupling, stabilizing state feedback). Suppose the transfer matrix of
the plant is proper, square x m and invertible, and suppose it has no unstable transmi:
zeros. Let(4, B, C, D) be a minimal realization o and let f; be the decoupling indices ar
suppose thap; are Hurwitz polynomials of degreg. Then there is a regular state feedb:
u(t) = Fx(t) + Wo(r) for which the loop fromw(z) to y(¢z) is decoupled. Its realization |
controllable and detectable and has a stable transfemmﬁmg(ﬁ, el #). O

3A strictly Hurwitz polynomial is a polynomial whose zeros have strictly negateal part.
4A monicpolynomial is a polynomial whose highest degree coefficsntals 1.



Example 3.3.6 (Diagonal decoupling by state feedback preco mpensation). Consider a
plant with transfer matrix

. .2
ro=[ e ]

A minimal realization ofP is

000 0[0 1
10001 0
AlB]l_ 000 0|1 —1
[C }_001000
0 1.00[0 0
000 1[0 0

Its transmission zeros follow after a sequence of elemgntay and column operations

o Ls 1 Lls+1 1 1r o ] _[t/s? 0
P(S)—S_z[l —1}:>S_z[o 1}:>S_z[o s+1:|_[0 (s + /5]
Thus P has one transmission zerossatE —1. It is a stable zero hence we may proceed. -

direct feedthrough ternD is the zero matrix so the decoupling indicgsare all greater thar
zero. We need to compu@, A<~ B.

c.B=[0 1 0 ol °|=[ o

it is not identically zero so that;, = 1. Likewise

0 1
1o

CuB=[0 0 0 1], " [=[0 0]
0 0

Itis zero hence we must compuie, A B,
CoxAB =1 —1].
As it is nonzero we have; = 2. This gives us
[c«B] 1 o0
b= [CQ*AB:| - [1 —1]
The matrixD is nonsingular so a decoupling state feedback exists. Take

1 0
D./'(S) = |:S _|(; (s + 1)2:| .

Its diagonal entries have the degregs= 1 and f, = 2 as required. A realization of

_[G+D/s (s+1D/s?
Df(S)P(S) - I:(‘S + 1)2/5‘2 —(S + 1)2/S2j|



is (4, B,C, D) with

1100 10
C—[o 0 2 1] D_[l —1]

Now the regular state feedback

-1
w=1 T ([ 3 Yro+w)

renders the system with inputand outputy, decoupled. After applying this state feedback
arrive at the state-space system

-1 -1 -2 1 1 -1

i) = A+ BDV(=Cx(t) +v(t)) = 8 ‘01 _02 0+ é (1) o(t)
__0 0 1 0 0 0

¥ = Cx(0)+ Do) - e ﬂx(z)
) (3.32)

and its transfer matrix by construction is

_ {1+ 0
Dy (s) = [ 0 1/(s + 1)2]

Note that a minimal realization ab;! has ordeB whereas the realizatior3 (32 has order 4.
Therefore 8.32 is not minimal. This is typical for decoupling procedures. O

3.3.3. Directional properties of gains

In contrast to a SISO system, a MIMO system generally doesiawd a unique gain. A trivia
example is th@ x 2 system with constant transfer matrix

P(s) = |:(1) (2)] .

The gain is in betweeh and2 depending on the direction of the input.

There are various ways to define gains for MIMO systems. Anadfieneralization of the SIS
gain|y(jw)|/|u(jw)| from inputu(jw) to outputy (jw) is to use norms instead of merely absol
values. We take the 2-norm. This subsection assumes knge/tethorms see AppendiB.

Summary 3.3.7 (Bounds on gains).  For any given input: and fixed frequency there holds

[P (j@)ulw)l.

o(PU0) = o)

<G(P(jw)) (3:33)

and the lower bound (P (jw)) and upper bound (P (jw)) are achieved for certain inputs o



Figure 3.5: Lower and upper bound on the gairf ¢fw)

Example 3.3.8 (Upper and lower bounds on gains). Consider the plant with transfer matri
1 .
P(s) = [ ' “”FS*‘} :
T 2G+D) s

In unity feedback the complementary sensitivity maffix= P(/ + P)~! has dimensioa x 2.
So at each frequenay the matrix T (jw) has two singular values. FiguB5 shows the two
singular value® (jw) ando (jw) as a function of frequency. Near the crossover frequency
singular values differ considerably. O

Let
P(jo) = Y(jo) Z(jw)U*(jo) (3.34)
be an SVD (at each frequency) Bi(jw), that is,Y (jw) andU (jw) are unitary and
Y(jw) = diag(o1(jo), 02(jw), . . . . Omingu,.n,) (J®))
with
o1(jw) > o2(jo) > ... = Omin(a,m,) (jw) = 0.

The columnsi, (jw) of U(jw) theinput principal directionsPostlethwaite et a(1981) and they
have the special property that their gains are preciselgdhesponding singular values

P (je)uk (joo) I
lur (jeo) 12

= oy (jw)

and the responsg, (jw) = P(jow)ui(jw) in fact equalsr (jw) times thekth column ofY (jw).
The columns ofY (jw) are theoutput principal directiongnd theoy (jw) the principal gains
Thecondition numbek defined as

F(P(io))
s 3.3
2(P(0)) (3:35)

is a possible measure of the difficulty of controlling theteys. If for a plant all principal gain:
are the same, such as wh&ijw) is unitary, thenc(jw) = 1. If «(jw) > 1 then the loop

K(P(jw)) =



gain L = PK around the crossover frequentyybe difficult to shape. Note that the conditi
number is not invariant under scaling. Describing the sapstem in terms of a different se
of physical units leads to a different condition number. gthtondition number indicates th
the system is “close” to losing its full rank, i.e. close ta satisfying the property of functionz
controllability.

Example 3.3.9 (Multivariable control system—design goals ). The performance of a mul
tivariable feedback system can be assessed using the mdtpmcipal gains as follows. Th
basic idea follows the ideas previously discussed for sifrgdut, single output systems.

The disturbance rejecting properties of the loop trangguire the sensitivity matrix to b
small:

7 (S(jw)) < 1.
At the same time the restriction of the propagation of mezrsent noise requires
(T (jw)) < 1.

As in the SISO case these two requirements are conflictimpdd, using the triangle inequali
we have the bounds

I1-0(S(jw))| =o(T(jw)) =1+0(S(jw)) (3.36)
and
1 —o(T(jw))| <o (S(jw)) <1 +0(T(jw)). (3.37)

It is useful to try to make the difference betweef?") ando (7'), and betweewm (S) anda (S),
not too large in the cross over region. Making them equal dianiply that the whole plan
behaves identical in all directions and this is in generapuossible.

We must also be concerned to make the control inputs not tge.ld hus the transfer matri
(I + KP)~'K fromr to u must not be too large.

lu(je)2 I + K(jo) P(j))" K(jo)r (jo) 2

I (Ge)ll2 I Ge)l2
(I + K(jo) P(jo) ™ K(jw))
o((I + K(jo) P(jo))"T(K(jw))
o(K(jw))
o(I + K(jo) P(jo))
0(K(jw))
T 1-0(K(jw) P(jo))
0(K(jw))
1 =5 (K(jo))T(P(jw)
Here several properties of ExerciB& are used and in the last two inequalities it is assur
thato (K (jw))a (P (jw)) < 1. The upperbound shows that wheéréP (jw)) is not too large tha
o(K(jw)) <« 1guarantees a small gain fronjw) to u(jw). The upper bound3(38 of this gain
is easily determined numerically.
The direction of an important disturbance can be taken iotwsitleration to advantage. L

v(jw) be a disturbance acting additively on the output of the syst@omplete rejection of th
disturbance would require an input

IATA

IA

(3.38)

u(jo) = —P7' (jo)v(jo). (3.39)



Thus

o)l _ 1P~ (@)v(o)l:
o)l o)l

(3.40)

measures the magnitudepheeded to reject a unit magnitude disturbance acting initeetébn
v. The most and least favorable disturbance directions asetfor whichw is into the direction
of the principal output directions correspondingt@P (jw)) anda (P (jw)), respectively. This
leads to thalisturbance condition numberf the plant,

. Pl jo)v(jw)|a_ . .
(o)) = LU0 4, ), (3.42)
[v(j@)ll2
which measures the input needed to reject the disturbanslative to the input needed to reje
the disturbance acting in the most favorable directiorollbfvs that

1 <k,(P) Zk(P) (3.42)

andk, (P) generalizes the notion of condition number of the plant @efim 3.35. O

3.3.4. Decentralized control structures

Dual to decoupling control where the aim is make the plmliagonal, iddecentralized control
where it is the controlleK that is restricted to be diagonal or block diagonal,

K 0
K
K = diagK;} = t . (3.43)

0 K m

This control structure is callemhultiloop controland it assumes that there as many control ing
as control outputs. In a multiloop control structure it igggneral desirable to make an orderi
of the input and output variables such that the interactetwben the various control loops is
small as possible. This is theput-output pairing problem

Example 3.3.10 (Relative gain of a two-input-two-output sy ~ stem). Consider a two-input-
two-output system

)=o)

V2 U

and suppose we decide to close the loop by a diagonal caringl= K;(r; — y;), that is, the
first component of: is only controlled by the first component of and similarlyx;, is controlled
only by y,. Suppose we leave the second control loop open for the maanerthat we vary the
first control loop. If the open loop gain from to y, does not change a lot as we vary the fi
loopu; = K (r; — 1), it is save to say that we can design the second control |agp@ndent
from the first, or to put it differently, that the second cahioop is insensitive to tuning of the
first. This is desirable. In summary, we want the ratio

__gain fromu; to y, if first loop is open
" gain fromu; to y, if first loop is closed

(3.44)



preferably close to 1. To make thismore explicit we assume now that the reference sign
is constant and that all signals have settled to their cahstaady state values. Now if the fir
loop is open then the first input entry is zero (or constant). However if the first loopci®sed
then—assuming perfect control—it is the outpythat is constant (equal tq). This allows us
to express3.44 as

_ dyz/duz |u]
= dyz/d”2|y]

Where|ul expresses that; is considered constant in the differentiation. This exgimsfor A
exists and may be computed#f(0) is invertible:

23
du2

_ d Py1(0)u; + Pn(0)u;

= P»(0
du2 22( )

uj uj

and because = P~!(0)y we also have

a1 = ! - = —— = P30
du, " duy/dy, " d P, (O)J;;PZZ o |, P11 (0)
The relative gairk hence equal#s,(0) P5,' (0). O

For general square MIMO systenfiswe want to consider thelative gain array (RGAyvhich
is the (rational matrix)A defined element-wise as

Aij = Py Py
or, equivalently as a matrix, as
A=Po(PH (3.45)

whereo denotes thédadamard productvhich is the entry-wise product of two matrices of t
same dimensions.

Summary 3.3.11 (Properties of the RGA).

1. In constant steady state there holds that

dyi
du i
dyi
du i

all loops(uy, yx), k # j open

A (0) =

all loops (u, yx), k # j closed

2. The sum of the elements of each row or each colum isf1

3. Any permutation of rows and columns mresults in the same permutations of rows ¢
columnsinA

4. Ais invariant under diagonal input and output scalingPof

5. If P is diagonal or upper or lower triangular then= 1,



6. The normo (A(jw)) of the RGA is believed to be closely related to the minimized-c
dition number ofP (jw) under diagonal scaling, and thus serves as an indicatomaftly k
conditioned systems. Sé&&ett and Manousiouthak{4987, Grosdidier et al(1985, and
Skogestad and Moraf1987).

7. The RGA measures the sensitivity Bfto relative element-by-element uncertainty.
indicates thatP becomes singular by an element perturbation figmto P;;[1 — A;jl].

If A deviates a lot fronT,, then this is an indication that interaction is present ingygem.

Example 3.3.12 (Relative Gain Array for 2 x 2 systems). For the two-input, two-output cas

Py Pp ZINT 1 Py =Py
P = , P = ,
|:P21 P22i| ( ) P11P22—P21P12 _P12 Pll
the relative gain arrayt = P o P~ T equals
A 1—A Py Py
A= , Aim ———————
I:l_)‘ A j| Py Py, — Py Py

We immediate see that rows and columns add up to one, as daiB@ne interesting speci
cases are

[ 8] - a0
= n) = A=l ]
[ ] - e f ]
R EA I

In the first and second example, the relative gain sugges@ita; with y;, andu, with y;. In
the first example this pairing is also direct from the fact tRads diagonal. In the third exampl
the RGA isantidiagonal, so we want to pair; with y, andu; with y,. In the fourth example al
entries of the RGA are the same, hence no pairing can be deflere the RGA.

If P is close to singular then several entries/oére large. The corresponding pairings are
be avoided, and possibly no sensible pairing exists. Fanpia

¢« s
S T R ]

with § ~ 0. O

>

Although the RGA has been derived originally Byistol (1966 for the evaluation ofP(s)
at steady-state = 0 assuming stable steady-state behavior, the RGA may beluseafuthe
complete frequency range. The followiilg pairing ruleshave been in use on the basis of
heuristic understanding of the properties of the RGA:

1. Prefer those pairing selections whet§w) is close to unity around the crossover fr
guency region. This prevents undesirable stability irttoa with other loops.



2. Avoid pairings with negative steady-state or low-freggyevalues ofy;; (jw) on the diag-
onal.

The following result byHovd and Skogestad 992 makes more precise the statemerBiistol
(1969 relating negative entries in the RGA, and nonminimum-ghiashavior. See also tt
counterexample against Bristol’s claim@rosdidier and Morar(1987).

Summary 3.3.13 (Relative Gain Array and RHP transmission ze  ros). Suppose thaP has
stable elements having no poles nor zeros at 0. Assume that the entries of are nonzerc
and finite fors — oo. If A;; shows different signs when evaluated at 0 ands = oo, then at
least one of the following statements holds:

1. The entryP;; has a zero in the right half plane
2. P has atransmission zero in the right half plane

3. The subsystem a? with input j and outpui removed has a transmission zero in the ri
half plane

O

As decentralized or multiloop control structures are widmbplied in industrial practice,
requirement arises regarding the ability to take one lodpbwoperation without destabilizin
the other loops. In a problem setting employing integratifeeek, this leads to the notion «
decentralized integral controllabilitfampo and Morar(1994.

Definition 3.3.14 (Decentralized integral controllabilit ~ y (DIC)). The systen® is DIC if there
exists a decentralized (multiloop) controller having gred action in each loop such that tl
feedback system is stable and remains stable when each Imomndividually detuned by ¢
factorg; for0 <¢; < 1. O

The definition of DIC implies that the systemmust be open-loop stable. It is also assun
that the integrator in the control loop is put out of order whe= 0 in loopi. The steady-stat
RGA provides a tool for testing on DIC. The following resudtdbeen shown bgrosdidier et al.
(1985.

Summary 3.3.15 (Steady-state RGA and stability). Let the plantP be stable and square, al
consider a multiloop controllek with diagonal transfer matrix having integral action in le
diagonal element. Assume further that the loop g2k is strictly proper. If the RGAA(s) of
the plant contains a negative diagonal valuesfee 0 then the closed-loop system satisfies
least one of the following properties:

1. The overall closed-loop system is unstable
2. The loop with the negative steady-state relative gaim#able by itself

3. The closed-loop system is unstable if the loop corresipgno the negative steady-sts
relative gain is opened

O

A further result regarding stability under multivariabieegral feedback has been provided
Lunze(1989; see alsdsrosdidier et al(1985, andMorari (1985.



Summary 3.3.16 (Steady-state gain and DIC).  Consider the closed loop system consisting
the open-loop stable plaf®t and the controllek having transfer matrix

K(s) := %KSS (3.46)

Assume unity feedback around the loop and assume that theaisignjunction in the loop in-
troduces a minus sign in the loop. Then a necessary conditiche closed loop system to b
stable for alle in an intervald < o < & with @ > 0 is that the matrixP (0) Kss must have all its
eigenvalues in the open right half plane. O

Further results on decentralized i/o pairing can be fourtskiogestad and Morafi 992, and
in Hovd and Skogesta@l994. The inherent control limitations of decentralized cohtrave
been studied bpkogestad et a{(1991]). Further results on decentralized integral controligbi
can be foundinLe et al.(199]) and inNwokah et al(1993.

3.3.5. Internal model principle and the servomechanism problem

Theservomechanism probleismito design a controller — calleskrvocompensater that renders
the plant output as insensitive as possible to disturbanbés at the same asymptotically trac
certain reference inputs We discuss a state space solution to this problem; a solttai works
for SISO as well as MIMO systems. Consider a plant with stpges realization

x(t) = Ax(@)+ Bu(t) u(t) e R, yeR"™, x(0)=xyeR"
y@) = Cx(@)+v() (3.47)

and assume thatis a disturbance that is generated by a dynamic system hailingits poles
on the imaginary axis

xu(t) = Avxu(t)7 Xu(()):Xvo
w(6) = Coxo(t). (3.48)

The disturbance ipersistenbecause the eigenvaluesf are assumed to lie on the imagina
axis. Without loss of generality we further assume v, C,) is an observable pair. Then
possible choice of theervocompensatas the compensator (controller) with realization

xs(t) = Asxs(t) + Bse(t)7 XS(O) = Xs0
ey = r@)—y@) (3.49)

whereA; is block-diagonal withz, blocks
Ay =diag(4,, Ay, ..., Ay) (3.50)

and whereB; is of compatible dimensions and such thdt, By) is controllable, but otherwis
arbitrary. The composite system, consisting of the plamtd and the servocompensat349

yields
) e o e O AR

yo) = [C 0] [;CS((?)}+U(t).



Figure 3.6: Servomechanism configuration

As its stands the closed loop is not stable, but it may belstafiby an appropriate state feedbsz
u(t) = Fx(t) + Fyxg(t) (3.51)

where F and F are chosen by any method for designing stabilizing statdbfaek, such as L
theory. The resulting closed loop is shown in R

Summary 3.3.17 (Servocompensator).  Suppose that the following conditions are satisfiec
1. (A, B) is stabilizable andA4, C) is detectable,
2. n, > n,, i.e.there are at least as many inputs as there are outputs
3. rank[ 2! B] =n + n, for every eigenvalug; of 4,.

ThenF, F, can be selected such that the closed loop system matrix

[A + BF BFS} (3.52)

_B\C As

has all its eigenvalues in the open left-half plane. In tteecthe controller3(49,(3.5]) is a
servocompensator in thafr) — 0 ast — oo for any of the persistentthat satisfy 8.48. o

The system matri¥; of the servocompensator contains several copies of theraysatrices
A, that defines. This means that the servocompensator contains the mech#mt generate
v; it is an example of the more genematernal model principle The conditions as mentione
imply the following, seeDavison(1996 andDesoer and Wan{1980.

¢ No transmission zero of the system should coincide with drieeimaginary axis pole:
of the disturbance model

e The system should be functionally controllable

e The variables andv occur in the equations in a completely interchangeable sol¢hat
the disturbance model used focan also be utilized far. That is, for any that satisfies

XU(Z) = Auxu(l)v V(l) = Crxu(l)
the error signa(¢) converges to zero. Hence the outpit) approaches(r) ast — oc.

e Asymptotically, where () is zero, the disturbanag?) is still present and the servocor
pensator acts in an open loop fashion as the autonomousagenef a compensatin
disturbance at the outpui(r), of equal form as(¢) but of opposite sign.



o If the state of the system is not available for feedback, theruse of a state estimator
possible without altering the essentials of the precedbsglts.

Example 3.3.18 (Integral action).  If the servocompensator is taken to be an integratos e
then constant disturbancesre asymptotically rejected and constant reference inpasymp-
totically tracked. We shall verify the conditions of Summa&r3.17for this case. As before th
plant P is assumed strictly proper with state space realizatiorcandipted with noise,

x(t) = Ax(t) + Bu(1), y(t) = Cx(t) + v(2).

Combined with the integrating action of the servocompenwsaiz) = e(¢), with e(¢) = r(¢) —
y(t), we obtain

(1) A4 0l[x0)]  [B 0
Bt I ] | o R A R W
_ [—Ac 8} [ﬂju[ﬂu(z)jtm (r (1) — v(0)).

Closing the loop with state feedbagk ) = Fx(t) + F;x,(¢) renders the closed loop state spe
representation

ol = 22 2]+ 2] ew -

yo = [C 0] [;((It))}—kv(t).

All closed-loop poles can be arbitrarily assigned by statdlback: (1) = Fx(t) + Fyx(¢) if
andonly if([4 ].[ 2]) is controllable. This is the case if and only if

B AB A*B ---
0 CB CAB

has full row rank. The above matrix may be decomposed as
A B||0 B AB ---
c O0f|1, O o .-

and therefore has full row rank if and only if

1. (4, B) is controllable,

2. n, > ny,

A B
3. rank[c 0}:n+ny.

(In fact the third condition implies the second.) The threaditions are exactly what Sun
mary 3.3.17states. If the full stater is not available for feedback then we may replace
feedback lawu(z) = Fx(t) + Fsx,(¢) by an approximating observer,

() = (A—KC)X(t) + Bu(t) + Ky(1)
u(t)y = FX(0) + Fox,(0).



3.4. Appendix: Proofs and Derivations

Derivation of process dynamic model of the two-tank liqued/fprocess.A dynamic proces:
model for the liquid flow process of figufelis derived under the following assumptions:

e The liquid is incompressible;

The pressure in both vessels is atmospheric;

e The flow¢, depends instantaneously on the static pressure definee tigtfd level Hy;

The flowg, is the instantaneous result of a flow-controlled recycle pum

¢ is determined by a valve or pump outside the system boundaihegrocess unde
consideration, independent of the variables under coretide in the model.

Let p denote density of the liquid expressed in ké/rand let4, and 4, denote the cross
sectional areas (in ) of each vessel, then the mass balances over each vessetelatica for
outflow are:

Amf:n(t) Plp1(t) + ¢a(t) — ¢a(1)] (3.53)
A phy (1) Plp2(1) — ¢a(t) — P3(1)] (3.54)

The flow rategp,(¢) of the first tank is assumed to be a function of the lémedf this tank. The
common model is that

$2(t) = k/hi(1). (3.55)

wherek is a valve dependent constant. Next we linearize these iegsaround an assume
equilibrium stateg(/i o, ¢:0). Define the deviations from the equilibrium values with e that
is,

bi(t) = ¢io+di(t), i=1...4

hi(t) = heo+he(0), k=12 (3.56)
Linearization of equation3,59 around(/y o, ¢i o) gives
$t) = @) = F250), (3.57)

\/_2

Inserting this relation into equation3.63), (3.5 yields the linearized equations

= $2.0 ~
h](t) _2A]/11() [ I(Z)} A |:¢1(Z)} [ }
. = : + 1 + 3(1) (3.58)
[mm] [ s 0 U@ $a(t) ’
Assuming thatps oy = ¢10, and thusp,o = 2¢1, and taking numerical valuaeg;, = 1,
Ay = A, = 1,andh, o = 1 leads to Equation3(1). ]

Proof of Algorithm3.2.12 We only prove the square case, i.e., whBrand K are square. Ag
goes to infinity, the zeras of

A—sI B 0
C D I
0 %I K



converge to the transmission zeros. Now apply the folloviing elementary operations to tt
above matrix: subtragiK times the second column from the third column and then ihtarge
these columns. Then we get the matrix

A—slI —pBK B
C I1—-pDK D
0 0 %I

In this form it is clear that its zeros are the zero§ 6¢*/ ;7%3% ]. However, since

A—sI —pBK I 0] _ A+BK(%I—DK)*1C—SI oB
C I—-pDK||-(I—-pDK)"'C I|~ 0 I — pDK

nonsingular
we see that these zeros are simply the eigenvaluﬂs@fBK(%I — DK)~'C. L]

Proof of Summar.3.4 We make use of the fact that if

x(1) Ax(t) + Bu(t), x(0) =0,
y@) = Cx()

then the derivative (¢) satisfies
y@) = Cx()=CAx()+ CBu(?)

The matrix D/ (s) = diag(s/,...,s/m) is a diagonal matrix oflifferentiators Since the plan
y = Pu satisfies

() Ax(t) + Bu(t),  x(0) =0,
y(t) = Cx(t)+ Du(t) (3.59)

it follows that the component-wise differentiatediefined as := Dy y satisfies

x(t) = Ax(t) + Bu(r), x(0) =0,
S
%yl([) Cl*Af]
4" 5
S 2(1) Cr A
o) = | 7 = k() + Dul)
(l'ﬁ'” ' Cm;4fm
mym(t)
C

By assumptiorD is nonsingular, sa () = D~'(—Cx(t) + v(¢)). Inserting this in the stat
realization 8.59 yields

x(t) = (4A—BD'0)x(t) + BD (), x(0) =0,
y(t) = (C—-DD'O)x(t)+ DD 'v(r)

Sincev = Dy y it must be that the above is a realization of m;l. L



Proof of Lemma3.2.8(sketch).We only prove it for the case that none of the transmissioos
so are poles. Thend — so7,)~" exists for any transmission zero, ands a transmission zero |
and only if P(sq) drops rank. Since

A—sol, BV[I, (sol,—A)'B] [Ad—sol, 0
C D||o I | c P(s0)

we see that the rank ¢f*" 2/ ] equalsn plus the rank ofP (so). Hences, is a transmissior
zero of P if and only if [ 4720/» 2] drops rank. n

3.5. Exercises

3.1 Poles and transmission zeros.

a) Find the poles and transmission zeros;oftrick question).
b) Find the poles and transmission zeros of

1 2
[ s+3 (s—2)(s+3):|
—2 s+2

(s=2)(s+3)  (s=2)(s+3)

using the Smith-McMillan form.
¢) Find the transmission zeros of

1 2
s+3 s—2)(s+3
S IOR

(s=2)(s+3)  (s=2)(s+3)

using the inverse of this rational matrix.

3.2 Blocking property of transmission zer@®nsider the system = Pu and assume tha®
has minimal realizatio® (s) = C(sI — A)~' B + D and thatP has full column rank, tha
is rankP = n,.

a) Show that with any transmission zexpthere is au, € C" such that for the ex
ponential inputu (1) = uye® and appropriate initial state(0) the outputy(z( is
identically zero for all time.

b) Show the converse: If an exponential inpt) = uy€*’ and initial statex(0) exist
such thaty(¢) = 0 for all ¢ thens, is a transmission zero.

3.3 Non-minimum phase loop gaim Example3.1.2onedecoupling precompensator is fou
that diagonalizes the loop gaiK with the property that both diagonal elements”RE
have a right half-plane zero at= 1. Show thateveryinternally stabilizing decouplin
controllerK has this property (unless is singular). [See Definitioth.3.4]

3.4 Internal model control & MIMO disturbance rejectio@onsider the MIMO system show
in Fig. 3.7and suppose that the plaftis stable.

a) Show that the closed loop is internally stable if and oh@i:= K(I + PK) 'isa
stable transfer matrix.

b) Expressk andS := (I + PK)~!interms of P andQ. Why is it useful to expres
K andS interms of P andQ?
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Figure 3.7: Disturbance rejection for MIMO systems

c) Let P be the2 x 2 systemP(s) = —<[ ! 1] and suppose that is a persisten
harmonic disturbance(r) = [ }]e* for some knownyy.

i. Assumew, # +1. Find a stabilizingK (using the parameterization by stat
Q) such that in closed loop the effectoft) onz(¢) is asymptotically rejectec
(i.e.,e(t) > 0 ast — oo forr(r) = 0).

ii. Does there exist such a stabilizig if wy = £1? (Explain.)

3.5 Realization of inversé/erify Eqn. 3.29.

3.6 An invertible system that is not decouplable by state fegdb@onsider the plant witt
transfer matrix

{1/ s+1) 1/s
Pls) = [1/(3— N 1/s|
a) Find the transmission zeros.
b) Show that the methods of Summa&rg.4and Summar.3.5are not applicable here
¢) Find a stable precompensafy that renders the produétk, diagonal.

3.7 Determine the zeros of

s$24+6s+7  s+1
P(s) = (s+2)1(s+3) s+2
s+ 3

Does the method df 3.3.2apply to this plant?



4. LQ, LQG and H, Control System
Design

Overview— LQ and LQG design methods convert control system de
sign problems to an optimization problem with quadraticgidomain
performance criteria.

In LQG disturbances and measurement noise are modeledcasisto
tic processes. Thel, formulation of the same method eliminates the
stochastic element. It permits a frequency domain view dlod/a the
introduction of frequency dependent weighting functions.

MIMO problems can be handled almost as easily as SISO prablem

4.1. Introduction

The application of optimal control theory to the practicakijn of multivariable control sys
tems attracted much attention during the period 1960-19Bi3. theory considers linear finite
dimensional systems represented in state space form, wétirgtic performance criteria. Tt
system may be affected by disturbances and measuremeatnepi®sented as stochastic p
cesses, in particular, by Gaussian white noise. The thealeesults obtained for this cla
of design methods are known under the general nani€) theory Standard references a
Anderson and Moor¢1971), Kwakernaak and Siva(i1972 and Anderson and Moor¢1990.
The deterministic part is calldd) theory.

In the period since 1980 the theory has been further refineéruthe name of+, theory
Doyle et al.(1989, in the wake of the attention for the so-caltBd, control theory.

In the present chapter we present a short overview of a nupfh@sults of LQG andH,
theory with an eye to using them for control system design. th€pry is basic to the whol
chapter, and is dealt with at some length in Sectidh(p. 136). Besides presenting the soluti
to the LQ problem we discuss its properties, the choice ofatbigihting matrices, and how t
obtain systems with a prescribed degree of stability. Usliregnotion of return difference ar
the associated return difference equality we discuss frapatetic properties and the guarante
gain and phase margins associated with the LQ solution. &ttes concludes with a subsecti
on the numerical solution of Riccati equations.

Section4.3 (p. 145 deals with the LQG problem. The LQ paradigm leads to statdidack.
By using optimal observers—Kalman filters—compensatosetan output feedback may |
designed. For well-behaved plants—specifically, plaras tlave no right-half plane zeros—tl



favorable properties of the LQ solution may asymptoticeiyrecovered by assuming very sm
measurement noise. This is knownl@sp transfer recovery.

In Section4.4 (p. 152) it is demonstrated that LQG optimization amounts to miagtion of
the H,-norm of the closed-loop system. This interpretation reesothe stochastic ingrediel
from the LQG framework, and reduces the role of the intensigjrices that describe the whi
noise processes in the LQG problem to that of design parasaftee?, interpretation naturally
leads toH, optimization with frequency dependent weighting funcéiohese permit a gre:
deal of extra flexibility and mak®{, theory a tool for shaping closed-loop system functions
useful application is the design of feedback systems witiral control.

Multi-input multi-output systems are handled almost (bat quite) effortlessly in the LQC
andH, framework. In Sectiod.6(p. 161) we present both a SISO and a MIMO design exam

In Sectiord.7 (p. 167) a number of proofs for this chapter are collected.

4.2. LQ theory

4.2.1. Introduction

In this section we describe the LQ paradigm. The acronynrsef@ Linear systems witt
Quadratic performance criteria. Consider a linear timexiiant system represented in state sp
form as

X(t) = Ax(t) + Bu(1),

z(t) = Dx(¢t), 0. (4.1)

For eachr > 0 the statex(¢) is ann-dimensional vector, the input(¢) a k-dimensional vector
and the output (1) anm-dimensional vector.

We wish to control the system from any initial stat€)) such that the outputis reduced to &
very small value as quickly as possible without making theut: unduly large. To this end we
introduce the performance index

J = /OO[ZT(I)QZ([) +u"(t)Ru(r)] dt. (4.2)
0

0 and R are symmetric weighting matrices, that@,= Q" andR = R'. Often it is adequate
to let the two matrices simply be diagonal.

The two terms " (r) Oz (¢) andu (1) Ru(t) are quadratic forms in the components of the ou
z and the inputz, respectively. The first term in the integral criterign?) measures the accumi
lated deviation of the output from zero. The second term meashe accumulated amplituc
of the control input. It is most sensible to choose the wéighmatricesQ and R such that the
two terms are nonnegative, that is, to taReand R nonnegative-definife If the matrices are
diagonal then this means that their diagonal entries shHmeiltbnnegative.

The problem of controlling the system such that the perforceandex 4.2) is minimal along
all possible trajectories of the system is thtimal linear regulator problem

4.2.2. Solution of the LQ problem

There is a wealth of literature on the linear regulator peabl The reason why it attracted ¢
much attention is that its solution may be representdédeédbackorm. An optimal trajectory is

1An n x n symmetric matrixR is nonnegative-definite it ' Rx > 0 for everyn-dimensional vectox. R is positive-
definite if xT Rx > 0 for all nonzerax.



generated by choosing the input for 0 as
u(t) = —Fx(1). (4.3)

This solution requires that the stat¢r) be fully accessible for measurement at all times.
return to this unreasonable assumptio 43 (p. 145. Thek x n state feedback gain matrik
is given by

F=R'B"X. (4.4)

The symmetriaz x n matrix X is the nonnegative-definite solution of thalgebraic matrix Riccat
equation(ARE)

A"X + XA+ D'OD— XBR™'B"X =0. (4.5)

The proof is sketched i§4.7 (p. 167), the appendix to this chapter. The solution of the algeh
Riccati equation is discussed§mt.2.9(p. 144).

We summarize a number of well-known important facts aboaistiiution of the LQ problen
An outline of the proofis given i§ 4.7.1(p. 167).

Summary 4.2.1 (Properties of the solution of the optimal lin ear regulator problem).
Assumptions:

e The system4.]) is stabilizablé and detectabfe Sufficient for stabilizability is that the
system is controllable. Sufficient for detectability isttitas observable.

e The weighting matrice®) and R are positive-definite.

The following facts are well documented (see for instakeeakernaak and Siva(ll972 and
Anderson and Moorgl990).

1. The algebraic Riccati equation (ARE)
A'X + XA+ D'OD—XBR'B'X =0 (4.6)

has a unique nonnegative-definite symmetric solufianif the systemx(z) = Ax(¢),
z(t) = Dx(t) is observable therX is positive-definite. There are finitely many ot
solutions of the ARE.

2. The minimal value of the performance indéxd) is Jmin = x ' (0) X x(0).
3. The minimal value of the performance index is achievedeyféedback control law
u(t) = —Fx(t), t>0, 4.7)
with F = R7'BTX.
4. The closed-loop system
x(t) = (A — BF)x(¢), t >0, (4.8)

is stable, that is, all the eigenvalues of the ma#tix BF have strictly negative real part

2That is, there exists a state feedbagk) = — Fx(¢) such that the closed-loop systeirtr) = (4 — BF)x(¢) is stable.
3That is, there exists a matriX such that the systed(r) = (4 — K D)e(7) is stable.



O

The reasons for the assumptions may be explained as follbthe system is not stabilizabl
then obviously it cannot be stabilized. If it is not detedtathen there exist state feedback cc
trollers that do not stabilize the system but hide the iritafrom the output—hence, stability
of the optimal solution is not guaranteeRl .needs to be positive-definite to prevent infinite iny
amplitudes. IfQ is not positive-definite then there may be unstable closeg-inodes that hav
no effect on the performance index.

4.2.3. Choice of the weighting matrices

The choice of the weighting matric&3 and R is a trade-off between control performane? |
large) and low input energyR large). Increasing botlp and R by the same factor leaves tt
optimal solution invariant. Thus, only relative values agéevant. TheQ and R parameters
generally need to be tuned until satisfactory behavior taiakd, or until the designer is satisfie
with the result.

An initial guess is to choose both and R diagonal

o 0 0 --- 0 Rr 0 0 - 0
o ISR PR S B N PR
0 -+ -+ 0 On 0 -« -+ 0 Ry
whereQ and R have positive diagonal entries such that
1 1
\/Q,':W(, i:],2,“‘,m, \/R[:W(, l:],2,,k (410)

i i

The numbet"® denotes the maximally acceptable deviation value fof theomponent of the
outputz. The other quantity"® has a similar meaning for thi¢gh component of the input.

1

Starting with this initial guess the values of the diagomdfies of Q and R may be adjustec
by systematic trial and error.

4.2.4. Prescribed degree of stability

By including a time-dependent weighting function in thefpanance index that grows expc
nentially with time we may force the optimal solutions to dgdaster than the correspondi
exponential rate. The modified performance index is

T = / - e [zT(1)Qz(¢) + u' (t) Ru(1)] dt, (4.11)
0
with « a real number. Define
Xq (1) = x(1)e”, Uy (1) = u(r)e”, t>0. (4.12)
These signals satisfy
Xo(t) = (A + al)xy(t) + Buy(t) (4.13)

and

Ju = /OO[ZJ(Z)QZa(l) + ug (1) Rug (1)) dt. (4.14)
0



Consequently, the minimizing, is

ue(t) = —R7'BT Xy x4 (1), (4.15)
or

u(t)y = —Fyx(t), (4.16)

with F, = R7'BTX,. X, is the positive-definite solution of the modified algebraicdati
equation

(A" +al)Xy + Xy(A +al) + DTQOD — X, BR'B'X, = 0. (4.17)
The stabilizing property of the optimal solution of the migetl problem implies that
Re A;(A 4+ «al — BF,) <0, i=1,2,...,n, (4.18)

with A; (4 +al — BF,) denoting the th eigenvalue. Application of the control law.(.6 to the
system 4.1) creates a closed-loop system matfix = 4 — BF,. It follows from (4.18 that its
eigenvalues satisfy

Re A (4dy) < —a. (4.19)

Thus, choosingr positive results in an optimal closed-loop system withr@scribed degree o
stability.

(sI—A)~'B

(sI —A)"'B

-}

-}

(@)
Figure 4.1: State feedback

(b)

4.2.5. Return difference equality and inequality

Figure4.1(a) shows the feedback connection of the system Ax + Bu with the state feedbac
controlleru = —Fx. If the loop is broken as in Figt.1(b) then the loop gain is

L(s) = F(sI — A)™'B. (4.20)
The quantity
J(s) =1+ L(s) (4.21)

is known as theeturn differenceJ (s)u is the difference between the signain Fig. 4.1(b) and
the “returned” signal = —L(s)u.
Several properties of the closed-loop system may be retatént return difference. Consid

detJ(s) = defl + L(s)] = de{l + F(sI — A)"'B]. (4.22)



Using the well-known matrix equality dgt + M N) = det(/ + N M) we obtain
detJ(s) = defl + (sI — A)"'BF]
= det(s]/ — A)"'dei(s] — A + BF)

det(s/ — A+ BF) _ xal(s)
de(s/ —4)  Xo(s)'

The quantitiesyo(s) = det(s/ — A) and xq(s) = det(s/ — A + BF) are the open- and th
closed-loop characteristic polynomial, respectively. fdfend the same result 1.3 (p. 11) in
the formyq(s) = xol(s) defl + L(s)].

Suppose that the gain matrixis optimal as in Summarg.2.1 Itis provedin§ 4.7.2(p.177)
by manipulation of the algebraic Riccati equatidngf that the corresponding return differen
satisfies the equality

(4.23)

JT(=s)RJ(s) = R+ GT(—s5)0G(s). (4.24)

G(s) = D(sI — A)~' B is theopen-loop transfer matrigf the system4.1).

The relation 4.24) is known as theeturn difference equalitpr as theKalman-Yakubo-
Popov (KYP) equality, after its discoverers. In Subsecti2.6 (p. 140) we use the returr
difference equality to study the root loci of the optimalss#d-loop poles.

By settings = jw, with » € R, we obtain theeturn difference inequality

J (—jw)RJ(jw) = R forallw € R. (4.25)
In Subsectior.2.7(p. 143 we apply the return difference inequality to establish d-keown

robustness property of the optimal state feedback system.

4.2.6. Asymptotic performance weighting

For simplicity we first consider the case thét) is a SISO system. To reflect this in the notati
we rewrite the system equationk ) in the form

X(t) = Ax(t) + bu(r),

z(t) = dx(t), (4.26)

with b a column vector and a row vector. Similarly, we represent the optimal state lieett
controller as

u(t) = — £x(t), (4.27)

with f a row vector. The open-loop transfer functi6its) = d(sI — A)~'h, the loop gain
L(s) = f(sI — A)~'b and the return differencé(s) = 1 + L(s) now all are scalar functions
Without loss of generality we consider the performancexnde

7= [TF0+plwn (4.28)
0

with p a positive number. This amounts to setti@g= 1 andR = p.

41f P and Q are symmetric matrices of the same dimensions thea Q means thak' Px > x' Qx for every real
n-dimensional vectox.



Under these assumptions the return difference equdli4(reduces to
1
J(=s)J(s) =1+ ;G(S)G(—S). (4.29)

From @.25 we have

_ Xa(s)

)= Xol(s)’

(4.30)

with x¢ the closed-loop characteristic polynomial apgl the open-loop characteristic polyn
mial. We furthermore write
ky(s)

Gl = Xol(s)'

(4.31)

The constank is chosen such that the polynomiais monic. From @.29-4.31) we now obtain

k2
Xcl (=) Xcl($) = Xol(—$) Xl () + XW(—S)W(S)- (4.32)

The left-hand sideggq(—s) xq(s) of this relation defines a polynomial whose roots consist
the closed-loop poles (the roots g (s)) together with theimirror imageswith respect to the
imaginary axis (the roots of¢(—s)). It is easy to separate the two sets of poles, becaus
stability the closed-loop poles are always in the left-lsalfiplex plane.

From the right-hand side 0#(32 we may determine the following facts about the loci of
closed-loop poles as the weightn the input varies.

Infinite weight on the input term.  If p — oo then the closed-loop poles and their mirror i
ages approach the roots xfi(s) xoi(—s). This means that the closed-loop poles appro

e those open-loop poles that lie in the left-half complex pléte “stable” open-looj
poles), and

e the mirror images of those open-loop poles that lie in thatrlgalf complex plane
(the “unstable” open-loop poles).

If the open-loop system is stable to begin with then the ddeep poles approach tr
open-loop poles as the input is more and more heavily pesthlizn fact, in the limit
p — oo all entries of the gairF become zero—optimal control in this case amounts t
control at all.

If the open-loop system is unstable then in the limit> oo the least control effort is use
that is needed to stabilize the system but no effort is spenégulating the output.

Vanishing weight on the inputterm.  As p | 0 the closed-loop poles the open-loop zeros (
roots ofyr) come into play. Suppose that open-loop zeros lie in the left-half comple
plane or on the imaginary axis, apg zeros in the right-half plane.

e If p | 0theng_ closed-loop poles approach the left-half plane open-loop zeros

o A furtherg4 closed-loop poles approach the mirror images in the ldftgiane of
theg right-half plane open-loop zeros.

5That is, the coefficient of the term of highest degree is 1.



e The remaining: — g— — ¢+ closed-loop poles approach infinity according to a B
terworth pattern of order — g_ — ¢ (see§ 2.7, p. 88).

Just how small or large should be chosen depends on the desired or achievable thd
We first estimate the radius of the Butterworth pole confijonathat is created gs decreases
Taking leading terms only, the right-hand side 4132 reduces to

k2
(—s)"s" + ?(—s)‘/s‘f, (4.33)

with ¢ the degree of/, and, hence, the number of open-loop zeros. From thig (e ¢) roots
that go to infinity as | 0 may be estimated as the roots of

k2
s 4 (=)' — =0. (4.34)
P

Then — ¢ left-half plane roots are approximations of the closedslpoles. They form a Butter
worth pattern of order — ¢ and radius

1

k2 2(n—q)

We = (—) : (4.35)
0

If the plant has no right-half plane zeros then this radimigstimate of the closed-loop ban
width. The smallerp is the more accurate the estimate is. The bandwidth we refer the
bandwidth of the closed-loop system witlas output.

If the plant has right-half plane open-loop zeros then thedladth is limited to the magnitud
of the right-half plane zero that is closest to the originisdgrees with the limits of performanc
established i§ 1.7 (p. 40). For the MIMO case the situation is more complex. The resulty be
summarized as follows. L&R = pR,, with p a positive number, anfl,, a fixed positive-definite
symmetric matrix. We study the root loci of the closed-loges as a function gé.

e As p — oo the closed-loop poles approach those open-loop polesi¢hiat the left-half
plane and the mirror images in the left-half plane of the trigdlf plane open-loop poles.

e If p | 0then those closed-loop poles that remain finite approacteftibalf plane zeros
of detGT(—s) QG (s).
If the open-loop transfer matri(s) = D(sI — A)~! B is square then we define the zer
of detG(s) as the open-loop zeros. In this case the closed-loop pofaeagh the left-
half plane open-loop zeros and the left-half plane mirroages of the right-half plan
open-loop zeros.

The closed-loop poles that do not remain finitepals 0 go to infinity according to severe
Butterworth patterns of different orders and differentiradhe number of patterns an
their radii depend on the open-loop plakiakernaak1978.

Understanding the asymptotic behavior of the closed-lasegyprovides insight into the prope
ties of the closed-loop systems. We note some further facts:

e Asp | 0the gain matrixF approacheso, that is, some or all of its entries go to infinity

e Assume that the open-loop transfer matfixs/ — 4)~' B is square, and that all its zerc
are in the left-half plane. Then as we saw the closed-looglbatih inreases withou
bound aso | 0. Correspondingly, the solutiok’ of the Riccati equation approachest
zero matrix.
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Figure 4.2: Loop gain for state feedback

4.2.7. Guaranteed gain and phase margins

If the state feedback loop is opened at the plant input asgrdR2 then the loop gain id.(s) =
F(sI — A)~'B. For the single-input case discussed in Subsecti@r6 (see Eqn.4.29) the
return difference inequality4(25 takes the form

1+ L(jw)|>1, weR. (4.36)

This inequality implies that the Nyquist plot of the loop gatays outside the circle with cent
at—1 and radius 1. Figuré.3shows two possible behaviors of the Nyquist plot.

Im

Re

= e
g

Q)

() (b)
© = unit circle

Figure 4.3: Examples of Nyquist plots of optimal loop gaifsg: Open-loop
stable plant. (b): Open-loop unstable plant with one riggif-
plane pole

Inspection shows that the modulus margin of the closed-tystem is 1. The gain margin
infinite and the phase margin is at le68t. More precisely, for open-loop stable systems the ¢
may vary between 0 ansb without destabilizing the system. For open-loop unstapdtesns it
may vary betweeré andoo. The guaranteed stability margins are very favorable. Scaméon
in interpreting these results is needed, however. The msugily apply to perturbations at t
point where the loop is broken, that is, at the plant inpute €losed-loop system may well |
very sensitive to perturbations at any other point.

The SISO results may be generalized to the multi-input c&appose that the loop ga
satisfies the return difference inequali/Z5. Assume that the loop gaih(s) is perturbed tc
W(s)L(s), with W a stable transfer matrix. It is proved in Subsection.3(p. 172 of § 4.7, the
appendix to this chapter, that the closed-loemainsstable provided

RW(jw) + W (—jw)R > R, w €R. (4.37)



If both R andW are diagonal then this reduces to
W(jw) + WT(—jw) > I, w €R. (4.38)

This shows that if théth diagonal entryV; of W is real then it may have any value in the inter
(%, o0) without destabilizing the closed-loop system. If thile diagonal entry i9V; (jw) = &
then the closed-loop system remains stable as long as the qug less thang, that is, 60°.
Thus, the SISO results applies to each input channel separat

4.2.8. Cross term in the performance index

In the optimal regulator problem for the stabilizable anted&able system

%(t) = Ax () + Bu(t),

2(t) = Dx (1), 120, (4.39)

we may consider the generalized quadratic performanceinde

_ [T 0 S|[=0

j_/o [zT() u'(1)] [ST R} |:u(t)j| dt. (4.40)
We assume that

0 S

[ST R} (4.41)

is positive-definite. Define(r) = u(t) + R~'STz(z). Then minimization of7 is equivalent to
minimizing

J= /OO[ZT(I)(Q —SR7'ST)z(t) + v () Ru(1)] dt (4.42)
0

for the system
x(t) = (A— BR™'STD)x(t) + Bv(?). (4.43)

The condition that4.41) be positive-definite is equivalent to the condition thathb®& and
0 — SR7'ST be positive-definite (see Exercides, p. 180. Thus we satisfy the condition
of Summary.2.1 The Riccati equation now is

A"X + XA+ D'OD— (XB+ D'S)R'(B'X +S"D) = 0. (4.44)
The optimal input for the systerd 39 is u(¢) = —Fx(¢), with

F=RYB"X +S™D). (4.45)

4.2.9. Solution of the ARE

There are several algorithms for the solution of the algetRéccati equation4.6) or (4.44.
For all but the simplest problem recourse needs to be takanrt@rical computer calculatior
Equation 4.44) is the most general form of the Riccati equation. By redefid™ QD asQ and
DTS asS the ARE @.44) reduces to

ATX + XA+ Q- (XB+S)R'(B'X +ST) =0. (4.46)



The most dependable solution method relies orHamiltonian matrix

yo [ A-BR'ST —BR™'BT
T |0+ SR'ST —(4—BR'ST)T

associated with the LQ problem. Under the assumptions ofnSamp4.2.1(p. 137) or § 4.2.7
(p. 143 the Hamiltonian matri#{ has no eigenvalues on the imaginary axis. i an eigenvalu
of the 2n x 2n matrix H then—A is also an eigenvalue. HencH, has exactly: eigenvalues
with negative real part. Let the columns of the réalx n matrix E form a basis for the:-
dimensional space spanned by the eigenvectors and geeeralgenvectors ¢f corresponding
to the eigenvalues with strictly negative real parts. Rarti

(4.47)

_ | E
E= [EJ : (4.48)
with £, and E, both square. It is proved in4.7.4(p. 173 that
X = E,E7! (4.49)

is the desired solution of the algebraic Riccati equation.
E may efficiently be computed by Schur decompositiGolb and Van Loail983

H=UTU" (4.50)

of the Hamiltonian matrix{. U is unitary, thatisUU" = U"U = I. I is a unit matrix and
the superscript H denotes the complex-conjugate transpbsie upper triangular, that is, a
entries below the main diagonal &fare zero. The diagonal entries Bfare the eigenvalues
‘H. The diagonal entries df may be arranged in any order. In particular, they may be edl
such that the eigenvalues with negative real part precexse tith positive real parts. Partitic
U = [U; U], whereU, andU, both haven columns. Then the columns &f; span the sam
subspace as the eigenvectors and generalized eigenvemtia@sponding to the eigenvaluesiof
with negative real parts. Hence, we may take= U;.

This is the algorithm implemented in most numerical rowifier the solution of algebrai
Riccati equations. An up-to-date account of the numerispkats of the solution of the AR
may be found irSima(1999.

4.2.10. Concluding remarks

The LQ paradigm would appear to be useless as a design métggd@cause full state feedba
is almost never feasible. Normally it simply is too costlyiristall the instrumentation needed
measure all the state variables. Sometimes it is actuajppgsible to measure some of the st
variables.

In Section4.3 (p. 145 we see how instead of using state feedback control systegysbom
designed based on feedback of selected output variablesTdrd idea is to reconstruct the stz
as accurately as possible using an observer or Kalman #jebasing feedback oastimate®f
the state several of the favorable properties of state tdinay be retained or closely recover

4.3. LQG Theory

4.3.1. Introduction

In this section we review what is known as LQG theory. LQG dtdfior Linear Quadratic Gua:s
sian. By including Gaussian white noise in the LQ paradigredr optimal feedback syster



based oroutput feedbackather than state feedback may be found.
We consider the system

X(t) = Ax(t) + Bu(t) + Gv(t)
y(@)=Cx(@) +w() teR
z(t) = Dx(¢)

Themeasured output is available for feedback. As §12.3(p. 64) the output: is thecontrolled

output.The noise signal models theplant disturbanceandw themeasurement noise.
The signalsy andw are vector-valued Gaussian white noise processes with

Ev()vT(s) = V8(t — )
t,s € R.

(4.51)

Ev(HwT(s) =0
Ewt)w'(s) = W8(t —s)

V andW are nonnegative-definite symmetric constant matriceied#heintensity matrice®f
the two white noise processes. We do not go into the theoryochastic processes in genel
and that of white noise in particular, but refer to texts saskong (1983 andBagchi(1993.
The initial statex(0) is assumed to be a random vector.

The various assumptions define the stat®, ¢ € R, and the controlled output(z),t € R, as
random processes. As a result, also the quadratic erroegsipn

21 (6)0z(t) + u' () Ru(t), t>0, (4.53)

is a random process. The problem of controlling the systech #hat the integrated expecte
value

(4.52)

/ ' E[z7(t)Qz(t) + u' (t)Ru(t)] dt (4.54)
0

is minimal is thestochastic linear regulator problemThe time interval0, 7] at this point is
taken to be finite but eventually we consider the casefhat co. At any timer the entire past
measurement signal(s), s < ¢, is assumed to be available for feedback. Figudlarifies the
situation.

v plant

- : y
w

Controller

Figure 4.4: LQG feedback

4.3.2. Observers
Consider the observed system

X(t) = Ax(t) + Bu(t),

O = Cxlo, t e R. (4.55)
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Figure 4.5: Structure of an observer

This is the system4(51) but without the state noiseand the measurement noige The state
x of the system4.59 is not directly accessible because only the outpigt measured. We ma
reconstruct the state with arbitrary precision by conmgcsinobserverof the form

£(t) = AR(1) + Bu(t) + K[y(1) — CX(1)], te€R. (4.56)

The signak is meant to be an estimate of the state). It satisfies the state differential equati
of the system4.55 with an additional input ternk [y (1) —C X (¢)] on the right-hand sideX is the
observer gain matrixIt needs to be suitably chosen. Tbleservation errory(t) — Cx(¢) is the

difference between the actual measured ouggdtand the outpuf(z) = Cx(¢) as reconstructe
from the estimated state(z). The extra input ternK[y(z) — Cx(¢)] on the right-hand side ©
(4.56 provides a correction that is active as soon as the obsenatror is nonzero. Figuré.5

shows the structure of the observer. Define

e(t) = £(t) — x(t) (4.57)

as thestate estimation error Differentiation ofe yields after substitution of4(56 and @.55
that the error satisfies the differential equation

é(t) = (A— KQC)e(1), t € R. (4.58)

If the system 4.59 is detectable then there always exists a gain marigsuch that the erro
system 4.58) is stable. If the error system is stable thgn) — 0 ast — oo for any initial error
e(0). Hence,

20 =2 x (), (4.59)

so that the estimated state converges to the actual state.

4.3.3. The Kalman filter
Suppose that we connect the observer

2(t) = AX(1) + Bu(t) + K[y(1) = CX(1)],  t€R. (4.60)
to the noisy system

%(1) = Ax(t) + Bu(t) + Gu(1).

y(t) = Cx(t) + w(?), t €R. (4.61)



Differentiation ofe(r) = x(¢) — x(¢) leads to the error differential equation
é(t) =(A—KC)e(t) — Gu(t) + Kw(z), t € R. (4.62)

Owing to the two noise terms on the right-hand side the eroar no longer converges to zer
even if the error system is stable. Suppose that the errterayis stable. It is proved i©4.7.7
(p- 176 that as¥ — oo theerror covariance matrix

Ee(t)e' (1) (4.63)
converges to a constant steady-state valubat satisfies the linear matrix equation
(A—KC)Y +Y(A—-KCO)"+GVG' + KWK = 0. (4.64)

This type of matrix equation is known ad gapunov equationlt is made plausible in Subse
tion 4.7.5that as a function of the gain matriX the steady-state error covariance maifixs
minimalif K is chosen as

K=yC'w. (4.65)

“Minimal” means here that it is the steady-state error covariance matrix corresportdiagy
other observer gaiX thenY > Y. This inequality is to be taken in the sense tiiat- Y is
nonnegative-definite.

A consequence of this result is that the g&ir6§ minimizes the steady-state mean square <
reconstruction error lim, o, Ee'(t)e(t). As a matter of fact, the gain minimizes the weight
mean square construction error Jimy,, Ee' (t)W,e(¢) for any nonnegative-definite weightir
matrix W,.

Substitution of the optimal gain matri4 65 into the Lyapunov equatior(64) yields

AY + YA+ GVGT —YC™W™lCYy = 0. (4.66)
This is another matrix Riccati equation. The observer
£(t) = AR(t) + Bu(t) + K[y(t) — CX(t)].  t€R, (4.67)

with the gain chosen as id 69 and the covariance matrik the nonnegative-definite solutio
of the Riccati equatior4(66 is the famougKalman filter(Kalman and Bucy1961).

We review several properties of the Kalman filter. They aeedhals of the properties listed |
Summary4.2.1(p. 137 for the Riccati equation associated with the regulatobfof .

Summary 4.3.1 (Properties of the Kalman filter).
Assumptions:

e The system

X(t) = Ax () + Gu(z),
y() = Cx(),

is stabilizable and detectable.

teR, (4.68)

6The optimal regulator and the Kalman filter are dual in théofing sense. Given the regulator problem§o4.2
(p- 136), replaced with AT, B with CT, D with GT, Q with V7, and R with W. Then the regulator Riccati equatio
(4.6) becomes the observer Riccati equatidn6@), its solution X becomesY’, the state feedback gaif is the
transpose of the observer gafy and the closed-loop system matrix— BF is the transpose of the error syste
matrix A — KC. By matching substitutions the observer problem may besprased to a regulator problem.



e The noise intensity matricds andW are positive-definite.
The following facts follow from Summarg.2.1(p. 137) by duality:
1. The algebraic Riccati equation
AY + YAT+GVGT—YC"W™lCcYy =0 (4.69)

has a unique nonnegative-definite symmetric solulionf the system 4.68 is control-
lable rather than just stabilizable th&nis positive-definite.

2. The minimal value of the steady-state weighted mean sgstate reconstruction err
lim; o0 EeT(t)W,e(t) is” tr Y W,.

3. The minimal value of the mean square reconstruction érachieved by the observ:
gain matrixk = YCTW .

4. The error system
é(t) =(A— KC)e(t), t e R, (4.70)

is stable, that is, all the eigenvalues of the ma#tix KC have strictly negative real part
As a consequence also the observer

£(t) = AR(t) + Bu(t) + K[y(t) — C(t)].  t€R, (4.71)

is stable.
O

The reasons for the assumptions may be explained as follthathe system 4.68 is not
detectable then no observer with a stable error systemsexisthe system is not stabilizab
(with v as input) then there exist observers that are not stablerbuinenune to the state nois
v. Hence, stability of the error system is not guaranteBd.needs to be positive-definite |
prevent the Kalman filter from having infinite gain. Uf is not positive-definite then there m:
be unstable modes that are not excited by the state noisbeamck, are not stabilized in the er1
system.

4.3.4. Kalman filter with cross correlated noises

A useful generalization of the Kalman filter follows by assngicross correlation of the whit
noise processasandw. Suppose that

E [11;((?)] [vT(s) wl(s)] = [JT Vl[]/j| 3t —s), t,s €R. (4.72)
Assume that
[ LI]/T Vl[]/ } (4.73)

is positive-definite, and, as before, that the systdm) = Ax(t) + Gv(t), y(t) = Cx(t) is
stabilizable and detectable. Then the optimal observerigai

K=Cc"+Gcuyw, (4.74)

where the steady-state error covariance matris the positive-definite solution of the Ricce
equation

AY +YAT + GVGT — (¥ CT+ GUYWI(CY +UTGT) = 0. (4.75)

"The quantity trM/ = Y_7_, M;; is called therace of them x m matrix M with entriesM;;,i,j =1,2,--- ,m.




4.3.5. Solution of the stochastic linear regulator problem

The stochastic linear regulator problem consists of miniingj

T
/ E[z"(t)Qz(t) + u" (t)Ru(t)] dt (4.76)
0
for the system

X(@) = Ax(t) + Bu(t) + Gv(¢)
y(@)=Cx(@) +w() teR
z(t) = Dx(¢)

4.77)

We successively consider the situation of no state noiats &edback, and output feedback.

No state noise. From§ 4.2 (p. 167) we know that if the disturbanceis absent and the sta
x(t) may be directly and accurately accessed for measurementidhl” — oo the performance
index is minimized by the state feedback law

u(t) = —Fx(t), (4.78)
with the feedback gai” as in Summary.2.1(p. 137).

State feedback. If the white noise disturbance is present then the state and input can
be driven to 0, and the integrated generalized square etro@ (does not converge to a finit
number as" — oo. Itis proved in Subsectiod.7.6(p. 175 that the state feedback law.78
minimizes therate at which @.76 approacheso, that is, it minimizes

; 1 /T T T
im — | E["()0z(t) +u" () Ru(@)] dt. (4.79)
0

T—o0

This limit equals thesteady-state mean square error
lim E[zT(1)Qz(t) + u' (1) Ru(t)). (4.80)

Hence, the state feedback law minimizes the steady-stada stpiare error.

Output feedback.  We next consider the situation that the stedégnotbe accessed for me:
surement. The state may be optimally estimated, howevén, tve help of the Kalman filter
Then the solution of the stochastic linear regulator pnobleith output feedbackrather than
state feedback) is to replace the state) in the state feedback lawt (78 with the estimated
statex(z). Thus, the optimal controler is given by

(1) = AR(t) + Bu(t) + K[y(1) — C£ ()],

u(t) = —FR(1), t eR. (4.81)

The controller minimizes the steady-state mean square @:@0 under output feedback. Th
feedback gairf and the observer gaik follow from Summaried.2.1(p.137) and4.3.1(p. 148),
respectively. Figurd.6 shows the arrangement of the closed-loop system.

Using the estimated state as if it were the actual state isvikres certainty equivalence
It divorces state estimation and control input selectiorhisTidea is often referred to as tt
separation principle
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Figure 4.6: Observer based feedback control

The closed-loop system that results from interconnectiagptant &.77) with the compensatc
(4.8)) is stable—under the assumptions of Summati@sland4.3.1 of course. This is mos
easily recognized as follows. Substitutionaf) = —Fx(¢) intox (1) = Ax () + Bu(t)+Gv(r)
yields with the further substitutiofi(r) = x(¢) + e(¢)

%(t) = (A — BF)x(t) — BFe(t) + Gu(t). (4.82)

Together with 4.62 we thus have

x@)| |A—-BF —BF x(t) Gu(t)
[é(z)} = [ 0 A- KC} [e(z) T ZGu() + Kw() | (4.83)
The eigenvalues of this system are the eigenvalues of tiseditmop system. Inspection sho
that these eigenvalues consist of the eigenvaluds-oB F (theregulator pole}together with the

eigenvalues off — KC (theobserver poleks If the plant @.77) has order. then the compensat:
also has order. Hence, there argn closed-loop poles.

4.3.6. Asymptotic analysis and loop transfer recovery

In this subsection we study the effect of decreasing thengittg W of the measurement nois
Suppose thaV = oW, with W, a fixed symmetric positive-definite weighting matrix amc
a positive number. We investigate the asymptotic behavititeoclosed-loop system as | 0.
Before doing this we need to introduce two assumptions:

e The disturbance is additive to the plant input, that is,G = B. This allows the tightes
control of the disturbances.

e The open-loop plant transfer mati(s/ —A)~' B is square, and its zeros all have negat
real parts.

Breaking the loop at the plant input as in Fig7 we obtain the loop gain
L,(s) = Co(s)P(s) = F(sI — A+ BF + K,C)'K,C(sI — A)"'B. (4.84)

(Compare Exercisé.11, p. 181) To emphasize the dependencecothe observer gain and tt
loop gain are each provided with a subscript.cA$ 0 the gainkK, approachesc. At the same
time the error covariance matrkg approaches the zero matrix. This is the dual of the conaiu
of Subsectiort.2.6(p. 140 that the state feedback galhgoes tooco and the solutionX” of the
Riccati equation approaches the zero matrix as the weigtit@mput decreases.

The fact thatr, | 0 indicates that in the limit the observer reconstructs thtesiith complete
accuracy. Itis provedif4.7.7(p. 176) that ass | 0 the loop gainL,, approaches the expressi

Lo(s) = F(sI — A)"'B. (4.85)



Plant

Observer

Figure 4.7: Breaking the loop

The asymptotic loop gaii, is precisely the loop gain for full state feedback. Accoglynthe
guaranteed gain and phase margins of Subse§ti8.7(p. 143 are recouped. This is calle
loop transfer recoveryl TR).

The term loop transfer recovery appears to have been coinBayle and Steir(198]). Ex-
tensive treatments may be founddnderson and Moorél 990 andSaberi et al(1993. We use
the method in the design examplesef.6 (p. 155.

4.4. 'H, optimization

4.4.1. Introduction

In this section we define the LQG problem as a special caseasfari class of problems, whic
has become known &g, optimization. Most importantly, this approach allows toneve the
stochastic ingredient of the LQG formulation. In many apgions it is difficult to establish the
precise stochastic properties of disturbances and najsalsi Very often in the application c
the LQG problem to control system design the noise intexsditiand W play the role ofdesign
parametersather than that they model reality.

The stochastic element is eliminated by recognizing thaipierformance index for the LQ(
problem may be represented asyastem norm-the H,-norm. To introduce this point of view
consider the stable system

%(t) = Ax(t) + Bu(1),

6 = Cxlo, t e R. (4.86)

The system has the transfer matfi(s) = C(sI — A)~! B. Suppose that the signalis white
noise with covariance functioBv(¢)v'(s) = V§(t — s). Then the outpuy of the system is ¢
stationary stochastic process with spectral density matri

Sy(f) = H@2n/)VH"(-j2nf).  f€R. (4.87)

As aresult, the mean square output is

o0

By =t [ s, = [ HGanvE G50 dr (4.88)

Here we introduce the notatiaii~(s) = H'(—s). The quantity

||H||2=\/tr / H(jZﬂf)H~(jZﬂf)df=\/%tr / H(jw)H~(j0) do  (4.89)



u \'
Ce~AL%P4>Z
+
w
+
y

Figure 4.8: Feedback system with stochastic inputs andutsitp

is called theH,-norm of the system. If the white noise has intensityl’ = [ then the mear
square outpuE yT(r) y(t) equals precisely the square of tHe-norm of the system.

‘H, refers to the space of square integrable functions on thgiimasy axis whose invers
Fourier transform is zero for negative time.

4.4.2. 'H, optimization

In this subsection we rewrite the time domain LQG problero ant equivalent frequency doma
‘H, optimization problem. While the LQG problem requires stsppi@ce realizations, the,-
optimization problem is in terms of transfer matrices. Tolify the expressions to come w
assume tha@ = I andR = I, that s, the LQG performance index is

lim E[z7(0)z(t) + u" ()u(?)]. (4.90)

This assumption causes no loss of generality because bggeald transforming the variable
z andu the performance index may always be brought into this form.
For the open-loop system

X = Ax+ Bu+ Gv, (4.91)

z = Dx, (4.92)

y = Cx+w (4.93)

we have in terms of transfer matrices

z = DGI—A)7'Gv+DI—A)""'Bu, (4.94)
Pri(s) Pia(s)

y = CEI—A)7"'Gv+CsI—A)"'Bu+w. (4.95)
Py (s) Py (s)

Interconnecting the system as in F§8 with a compensato€, we have the signal balanc
u=—-Cy=—-C,(Pyyv+ Ppu+ w), sothat

u = —(I+CPn)'C.Pyv—(I+C.Pn)'C w. (4.96)
Hy (s) Hy(s)
Fromz = Pyjv + Pjpu we obtain
z = Py—Pu(+CPn)'CoPy v—Pi(I +C.P)'C, w. (4.97)

Hii(s) Hi(s)



A more compact notation is

| _ H]](S) H]Q(S) v
L=l o] [o] (4:99)
H(s)
From this we find for the steady-state mean square error
T
I E(T0=00+u"0u) = lim E([zgﬂ [28}) (4.99)
= tr /oo HG2x ) H™ (27 f) df (4.100)
= |H|3 (4.101)

Hence, solving the LQG problem amounts to minimizingyenorm of the closed-loop systel
of Fig. 4.8with (v, w) as input andz, «) as output.

The configuration of Fig4.8is a special case of the configuration of Hg9. In the latter
diagramw is theexternal input(v andw in Fig. 4.8). The signalz is theerror signal, which
ideally should be zeroz(andu in Fig. 4.8). Furthermorey is the control input,and y the
observed outputThe blockG is thegeneralized plantandC, the compensator. Note that tf
sign reversion at the compensator input in Bigg has been absorbed into the compenséator

Figure 4.9: The standafdd, problem

4.4.3. The standard H, problem and its solution

The standardH, optimization problem is the problem of choosing the comp&<, in the
block diagram of Fig4.9such that it

1. stabilizes the closed-loop system, and
2. minimizes the&,-norm of the closed-loop system (with as input and: as output).

We represent the generalized plahof Fig. 4.9in state space form as

(1) = Ax(t) + Biw(t) + Bu(t). (4.102)
z(t) = Cix(@) + Duw() + Diou(t), (4.103)
y(@©) = Gx(0) + Dyw() + Daoul(r). (4.104)

The H, problem may be solved by reducing it to an LQG problem. Thiddse in§ 4.7.8
(p- 177). The derivation necessitates the introduction of somamptions, which are listed it
the summary that follows. They are natural assumptions @Glproblems.



Summary 4.4.1 (Solution of the H, problem). Consider the standafld, optimization prob-
lem for the generalized plant

X(1) = Ax(t)+ Biw(r) + Bou(t). (4.105)

z(t) = Cix(@) + Dyru(?), (4.106)

y(@) = Cx(t)+ Dyw(t) + Daou(r). (4.107)
Assumptions:

e The systemx(z) = Ax(¢) + Bou(t), y(t) = Cox(¢) is stabilizable and detectable.

e The matrix[Agz” g;l] has full row rank for every = jw, and D,; has full row rank.

e The matrix[Agf’ gfz] has full column rank for every = jo, and Dy, has full column
rank.

Under these assumptions the optimal output feedback demtio= C, y is

£1) = AR+ Bu(t) + K[y(t) — G (t) — Daru(1)] (4.108)
u(t) = —Fx(@). (4.109)

The observer and state feedback gain matrices are
F=(DLDn) " (BJX + D,C)), K= (YC]+ B D},)(DyD])™". (4.110)

The symmetric matricex” and Y are the unique positive-definite solutions of the algeb
Riccati equations

ATX + XA + CJC, — (XBy + CT Do) (DL, D) " (BIX + DL,C)) =

(4.111)
AY + AY" + BBl — (YC] + B, D1,)(Dy DI,)"(CyY + Dy BY) =

O

The condition thatD,, has full column rank means that there is “direct feedthr&digim the
inputu to the error signat. Dually, the condition thaD,; has full row rank means that the sor
noisew is directly fed through to the observed output

The™H, optimization problem and its solution are discussed attleimgSaberi et al(1999. In
§§ 4.5(p. 155 and4.6 (p. 161) we discuss the application &f, optimization to control systen
design.

4.5. Feedback system design by H, optimization

4.5.1. Introduction

In this section we review how LQG and, optimization may be used to design SISO and MI
linear beedback systems.



4.5.2. Parameter selection for the LQG problem

We discuss how to select the design parameters for the LQ@emmowithout a cross term in th
performance index and without cross correlation betweemtises. The LQG problem consis
of the minimization of

lim E[zT(t)Qz(t) + u" (1) Ru(1)] (4.112)
for the system

X(@) = Ax(t) + Bu(t) + Gv(¢)
z(t) = Dx(¢) teR
y(t) = Cx(t) + w(r)

(4.113)

Important design parameters are the weighting matrggesd R and the intensitiey andW.
In the absence of specific information about the nature ofitseirbances also the noise inp
matrix G may be viewed as a design parameter. Finally there usuadlgrize freedom in the
selection of the control output this means that also the matrx may be considered a desic
parameter.

We discuss some rules of thumb for selecting the design peteaimn They are based on t
assumption that we operate in the asymptotic domain whenediighting matrice® (the weight
on the input) andV (the measurement noise intensity) are small.

1. First the parameter®, Q and R for the regulator partare selected. These quantiti
determine the dominant characteristics of the closed-¢yspem.

a) D determines the controlled output Often the controlled outputis also the mea.
sured outpuy. The case whereis noty is calledinferential control There may be
compelling engineering reasons for selectimgjfferent from y.

b) Inthe SISO cas@® may be chosen equal to 1.
In the MIMO caseQ is best chosen to be diagonal according to the rul€s4o?.3
(p-138.

¢) Inthe SISO case is a scalar design parameter. It is adjusted by trial and antil
the desired bandwidth is achieved (see §l4d.6 p. 140).

In the MIMO case one may leR = pR,, where the fixed matrixR, is selected
according to the rules df 4.2.3(p. 138 and p is selected to achieve the desir
bandwidth.

2. Next, the design parameters for thleserver partare determined. They are chosen
achieve loop transfer recovery, as describe§l4r3.6(p. 151).

a) To take advantage of loop transfer recovery we need toGake B. LTR is only
effective if the open-loop transfer functiaP(s) = C(sI — A)~!' B has no right-
half plane zeros, or only has right-half plane zeros whosgnitades are sufficiently
much greater than the desired bandwidth.

b) Inthe SISO case we 1&t = 1.

In the MIMO case we may seledf to be diagonal by the “dual” of the rules ¢
§ 4.2.3(p. 138. This amounts to choosing each diagonal entry/oproportional
to the inverse of the square root of the amplitude of the Erdisturbance that ma
occur at the corresponding input channel.



¢) In the SISO casé&V is a scalar parameter that is chosen small enough to ac
loop transfer recovery. Asymptotically the finite obserpetes are the zeros «
detC(sI — A)~' B. These closed-loop poles correspond to canceling potegzers
between the plant and the compensator. The far-away obigavies determine th
bandwidth of the compensator and the high-frequency fbfequency for the com:-
plementary sensitivity. The magnitude of the dominant olesepoles should be pe
haps a decade larger than the magnitude of the dominanategpbles.
In the MIMO case we leW = oW,. W, is chosen diagonally with each diagor
entry proportional to the inverse of the square root of thigdat expected measur
ment error at the corresponding output channel. The sedkachosen small enoug
to achieve LTR.

Ce P

y

Figure 4.10: Block diagram for loop recovery design

4.5.3. 'H, Interpretation

In this subsection we discuss the interpretation of the L@gblem as arH, optimization prob-
lem.

If we chooseG = B to take advantage of loop transfer recovery then the opepdguations
(4.94-4.995 may be rewritten as

R(s)(u + v), (4.114)

y = P@E)u+v)+w, (4.115)
where

P(s) = C(sI — A)~'B, R(s) = D(sI — A)"'B. (4.116)

The corresponding block diagram is represented in £iyQ If P is invertible then by block
diagram substitution Figt.10may be redrawn as in Fig.11 whereW, = RP~'. In the case
of non-inferential controW, = I.

We consider the frequency domain interpretation of thengreanent of Fig4.11 By setting
up two appropriate signal balances it is easy to find that

z = WySPv—WyTw, (4.117)

u = —-T'v—Uw. (4.118)
Here

S =+ PC)7 !, T =+ PC,)"'PC,, (4.119)

T"=(I+C/P)y'C,p, U=C,(+PC)™". (4.120)
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Figure 4.11: Equivalent block diagram

S is the sensitivity matrix7” the complementary sensitivity matrix, abdthe input sensitivity
matrix. T’ is the complementary sensitivity function if the loop is kea at the plant inpu
rather than at the plant output. In the SISO c&$e= T. From @4.1174.118 we find for the
performance index

o0
|H|3? = tr / (WoSPP~S~Wy* + WoTT~W," + T'T"™ + UU™) df. (4.121)
—0o0

The argumentdr /' is omitted from each term in the integrand. Inspection risvéaat the
performance index involves a trade-off of the sensiti\tythe complementary sensitiviti€s
and7’, and the input sensitivity/ . The importance given to each of the system functions dep
on W, and P, which act as frequency dependent weighting functions.

The weighting functions in4.121) arise from the LQG problem and are not very flexible. |
more freedom we generalize the block diagram of Big1to that of Fig.4.12 V; andV, are
shaping filters and¥; and W, weighting filters that may be used to modify the design. Itds
difficult to establish that

Z] = W]SPV]U— W]TVzw, (4122)
Zy = —WzT/Vlv — WzUVzw. (4123)

As aresult, the performance index now takes the form
o0
1HE = u [ ORSPVIVEPUSTWY 4 WV T
—00

+ W T'ViVIT™W + WaU VSV U~WY) df. (4.124)

In the next subsections some applications of this genexhfizoblem are discussed.

4.5.4. Design for integral control

There are various ways to obtain integrating action in th&Ligamework. We discuss a solt
tion that follows logically from the frequency domain inpeetation 4.124. For simplicity we
only consider the SISO case. For the MIMO case the idea magied through similarly by
introducing integrating action in each input channel agtierSISO case.

Integral control aims at suppressing constant disturtsmeeich requires making (0) = 0.
If the system has no natural integrating action then intéggaction needs to be introduced
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Figure 4.12: Generalized configuration

the compensator. Inspection @f.{249 shows that takind/; (0) = oo forcesS(0) to be zero—
otherwise the integral cannot be finite. Hence, we tidkas a rational function with a pole at
In particular, we let

Vi(s) = > JSF « (4.125)

Vi may be seen as a filter that shapes the frequency distriboftitve disturbance. The positi
constantx models the width of the band over which the low-frequencyudizance extends.

Further inspection of4.124 reveals that the functiofi; also enters the third term of tf
integrand. In the SISO case the factf in this term reduces td@". If S(0) = 0 then by
complementarityl’(0) = 1. This means that this third term is infinite at frequency@lessW,
has a factos that cancels the corresponding factan the numerator o¥;. This has a clea
interpretation: If the closed-loop system is to suppressstant disturbances then we need
allow constant inputs—hence we ned(0) = 0.

More in particular we could take

Wa(s) = H%Wzo(s), (4.126)

whereW,, remains to be chosen but usually is taken constant. ThicehadilV, reduces the
weight on the input over the frequency band where the diatwres are large. This allows tl
gain to be large in this frequency band.

A practical disadvantage of chooosihf as in @.125 is that it makes the open-loop sy
tem unstabilizable, because of the integrator outsideabp.| This violates one of the assum
tions of § 4.4.3(p. 154) required for the solution of th&{, problem. The difficulty may be
circumvented by a suitable partitioning of the state spamkthe algebraic Riccati equatiol
(Kwakernaak and Sivari972. We prefer to eliminate the problem by the block diagrams
stitutions (a)— (b) — (c) of Fig.4.13 The end result is that an extra facﬁa‘isi£ is included
in both the plant transfer function and the weighting fuoctfor the input. The extra factor i
the weighting function on the input cancels against theofagt; that we include according t
(4.129. W,, remains.

Additionally an extra factor; is included in the compensator. If the modified problem le
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Figure 4.13: Block diagram substitutions for integral cohfa)— (b)—(c)

to an optimal compensat@i, then the optimal compensator for the original problem is

s +

Cs) = — 2 Co(s). (4.127)

This compensator explicitly includes integrating action.

Note that by the block diagram substitutions this methodbdéiming integral control come
down to including an integrator in the plant. After doing tiesign for the modified plant th
extra factor is moved over to the compensator. This way afilemg integrating action is calle
theintegrator in the loopmethod. We apply it in the example #.6.3(p. 163. The method is
explained in greater generality §6.7 (p. 258 in the context ofH{, optimization.

4.5.5. High-frequency roll-off

Solving the LQG problems leads to compensators with a stirbper transfer matrix. Thi
means that the high-frequency roll-off of the compensatat af the input sensitivity is 1
decade/decade (20 dB/decade). Correspondingly the hagjadncy roll-off of the complemer
tary sensitivity is at least 1 decade/decade. For somecaiolns it may be desirable to have
steeper high-frequency roll-off. Inspection df124 shows that extra roll-off may be imposed |
letting the weighting functioi?, increasewith frequency. Consider the SISO case and supy
thatV,(s) = 1. Let

Wa(s) = p(1 +rs), (4.128)

with r a positive constant. Then by inspecting the fourth term @ittiegrand of4.124 we
conclude that the integral can only converge if at high festpies the input sensitivity/, and,
hence, also the compensator transfer funcfigjrolls off at at least 2 decades/decade.
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The difficulty that there is no state space realization fertitock W, with the transfer functior
(4.128 may be avoided by the block diagram substitution of Big4 If the modified problen
is solved by the compensat6p then the optimal compensator for the original problem is

Co(s) _ Co(s)
Wa(s)  p(l +rs)°
The extra roll-off is apparent. Even more roll-off may beaibed by lettingW, (s) = O(s™) as

|s| = oo, withm > 2.
For a more general exposition of the block diagram subgiituhethod seg 6.7 (p. 258).

Co(s) = (4.129)

4.6. Examples and applications

4.6.1. Introduction

In this section we present two design applicationsletheory: A simple SISO systemand ar
very complicated MIMO system.

4.6.2. LQG design of a double integrator plant

We consider the double integrator plant

P(s) = éiz (4.130)
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Figure 4.15: Loci of the closed-loop poles

The design target is a closed-loop system with a bandwidthrafl/s. Because the plant has
natural double integration there is no need to design fagiral control and we expect exce
lent low-frequency characteristics. The plant has no fitif zeros that impair the achievab
performance. Neither do the poles.

In state space form the system may be represented as

. 0 1 0
X = |:0 Oi| X + [11| u, y=[1 0]x. (4.131)
~_—— —— C
A B

Completing the system equations we have

= Ax+ Bu+ Gv, (4.132)
= Cx+w, (4.133)
z = Dx. (4.134)

We choose the controlled variatdeequal to the measured variableso thatD = C. To profit
from loop transfer recovery we l&f = B. In the SISO case we may chooge= V = 1
without loss of generality. Finally we writ®@ = p andW = ¢, with the constantg ando to be
determined.

We first consider the regulator design. In the notatio df2.6 (p. 140 we havek = 1,
Y(s) = 1 andyq(s) = s2. It follows from (4.32 that the closed-loop characteristic polynom
xcl for state feedback satisfies

k? 1
Xel(=9) Xel(5) = Xol(=5) Xol(5) + ;vf(—sW(s) = st + o (4.135)

The roots of the polynomial on the right-hand side énﬁ(ﬂ:l + j)/p%. To determine the
closed-loop poles we select those two roots that have vegatl parts. They are given by

%ﬁ(—l +)/pt. (4.136)

Figure4.15shows the loci of the closed-loop poles@saries. As the magnitude of the close
loop pole pair isl/,o% the desired bandwidth of 1 rad/s is achieveddo« 1.



We next turn to the observer design. By Exeralsgc) (p. 180 the observer characterist
polynomialy, satisfies

X =9276) = X o)1 + ~ M) M ()] = s+ . (4137)

whereM (s) = C(sI — A)~'G = 1/s* andy.(s) = s*. This expression is completely similar
that for the regulator characteristic polynomial, and weatade that the observer characteris
values are

%«/5(—1 +j)/os. (4.138)

By the rule of thumb o8 4.5.2(p. 156) we choose the magnitude!o% of the observer pole pa
10 times greater than the bandwidth, that is, 10 rad/s. liviad thato = 0.0001.
By numerical computatidhit is found that the optimal compensator transfer functsn i

155.6(s + 0.6428)

Ce(s) = . 4,139
(s) 52+ 15.565 + 121.0 ( )
This is a lead compensator.
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Figure 4.16: Sensitivity function and complementary sénsi function for
the’H, design

Figure4.16shows the magnitude plots of the sensitivity and compleargrensitivity func-
tions forc = .01, ¢ = .0001 ando = .000001. The smallefs is the better loop transfer i
recovered. Since the high-frequency roll-off of the compdatary sensitivity of 40 dB/decac
sets in at the angular frequeni:yai it is advantageous not to choosetoo small. Takings
large, though, results in extra peaking at crossover. Theeva = .0001 seems a reasonakb
compromise. Figurd.17gives the closed-loop step response. The valuie .000001 gives the
best response but that fer= .0001 is very close.

4.6.3. A MIMO system

As a second example we consider the two-input two-outpuhtplaith transfer ma-

trix (Kwakernaak1986
1 1
P =[5 ST (4.140)
s+2

8This may be done very conveniently withAviLAB using the Control ToolboxQontrol Toolbox 1990).
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Figure 4.17: Closed-loop step response forihedesign

Figure4.18shows the block diagram. The plant is triangularly coupléds easy to see that i
may be represented in state space form as

‘ 01 0 00 L0 1
xX=]0 0 O |(x+|1 O0]|u, Y=lo o 1|* (4.141)
0 0 -2 0 1
A B c

The first two components of the state represent the blgekin Fig. 4.18 and the third the blocl
1/(s +2).

1
U ——> gz Y1

1

Uy ——> —S+_2_ Yo

Figure 4.18: MIMO system

The plant has no right-half plane poles or zeros, so thaéther no fundamental limitations 1
its performance. We aim at a closed-loop bandwidth of 1 rad/soth channels, with good low
and high-frequency characteristics.

We complete the system description to

= Ax + Bu+ Gv, (4.142)
Cx +w, (4.143)
z = Dx. (4.144)

To take advantage of loop transfer recovery we&ilet B. As the controlled outputis available

for feedback we havdd = C. Assuming that the inputs and outputs are properly scalec
choose

O0=1I1, R=pl, V=1 W=ol, (4.145)
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Figure 4.19: Loci of the regulator poles

with the positive scalars ando to be determined. First we consider the design of the regu
part, which determines the dominant characteristics. Byerical solution of the appropria
algebraic Riccati equation for a range of valuegafie obtain the loci of closed-loop poles
Fig. 4.19 As p decreases the closed-loop poles move away from the doublelopp pole at
0 and the open-loop pole a2. Forp = 0.8 the closed-loop poles are2.5424 and—.7162 +
j .7034. The latter pole pair is dominant with magnitutd@038, which is the correct value for
closed-loop bandwidth of 1 rad/s.

Next we consider the loci of the optimal observer poles asatfan ofo. Like in the double
integrator example, they are identical to those of the @gulpoles.. Again following the rul
that the dominant observer poles have magnitude 10 time¢sthlae dominant regulator pole
we leto = 5 x 107>, This results in the optimal observer pole200.01 and—7.076 & j 7.067.
The latter pole pair has magnitudé. Using standard software tHé, solution may now be
found. Figure4.20shows the magnitudes of the four entries of the resulling2 sensitivity
matrix S

The attenuation of disturbances that enter the system dirfteoutput correponds to th
entriesS;; andS,; and is quite adequate, thanks to the double integrator icdh@sponding
input channel. The attenuation of disturbances that affecsecond output (represented$yy
andsSy,) is disappointing, however. The reason is that the lowtfezpy disturbances generat
by the double integrator completely dominate the distuckamgenerated in in the other chanr

We improve the performance of the second channel by intiaduotegrating action. Appli-
cation of the integrator-in-the-loop method$ef.5.4(p. 158 amounts to including an extra bloc

s+ o
N
in the second channel, as indicated in Fi®21 After completion of the design the extra blo
is absorbed into the compensator. Representing the exick by the state space realizati
X4 = uly, u» = axy + u) we obtain the modified plant

(4.146)

01 0 O 0 0
0 0 0 O 1 0 1 01 0
=10 0 22 « X+ 0 11% y:|:0 0 1 Oj|x. (4.147)
0 0 0 O 0 1 _
—_— S — C
A B

The inputz now has the components andu’, andx has the components, x,, x3, andx,.
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Figure 4.21: Expanded plant for integrating action in theosel channel
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Figure 4.22: Loci of the regulator poles of the extendedeyst

Againwe letD = C,G =B, Q =V =1,R = pl andW = oI, with p ando to be
determined. We chooge= 1 so that the low-frequency disturbance at the second inpartrod
extends up to the desired bandwidth. Figdira2shows the loci of the regulator poles wijthas
parameter. Three of the loci move outdo from the open-loop poles 0, 0, are?. The fourth
moves out from the open-loop pole at 0 to the open-loop zerewat= —1. Forp = 0.5 the
regulator poles are-2.7200, —0.8141 £ j 0.7394 and—0.6079. The latter pole turns out to b
nondominant. The pole pair0.8141 & j 0.7394, which has magnitude 1.0998, determines
bandwidth.

The loci of the optimal observer poles are again identicéthtse for the regulator poles. F
o = 5 x 1073 the observer poles are200.01, —7.076 & j 7.067 and—1. The latter pole is
nondominant and the pole pai7.076 4 j 7.067 has magnitudé0.

Figure 4.23 shows the magnitudes of the four entries of the sensitivity @mplementan
sensitivity matricess and7 that follow forp = .5 ando = 5 x 107>, The results are now muc
more acceptable.

Note that the off-diagonal entries 6f and 7" are small (though less so in the crossover
gion). This means that the feedback compensator to an exthigves decoupling. This is
consequence of the high feedback gain at low frequencidsiténgain at all frequencies wit
unit feedback would make the closed-loop transfer matrixaétp the unit matrix, and, henc
completely decouple the system. The decoupling effecsis @kible in Fig.4.24 which shows
the entries;;, i, j = 1,2 of the closed-loop response to unit steps on the two inputs.

4.7. Appendix: Proofs

In this appendix we provide sketches of several of the prfwfthis chapter.

4.7.1. Outline of the solution of the regulator problem

We consider the problem of minimizing

o0
/ 7)) 0z(t) + u' (1) Ru(?)] dt (4.148)
0
for the stabilizable and detectable system

X(t) = Ax(¢) + Bu(t), z(t) = Dx(¢). (4.149)
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Lyapunov equation.  We first study how to compute the quantity

n
/ xT($)0(s)x(s) ds + x" (1) X1x(t1) (4.150)
0
for solutions of the time-varying state differential eqaatx(r) = A(¢)x(¢). Q(¢) is a time-dependen

nonnegative-definite symmetric matrix aig is a nonnegative-definite symmetric matrix. Substitutién
x(s) = &(s,0)x(0), with @ the state transition matrix of the system, yields

/0 ' XT(9)0()x(s) ds + xT () Xix(1y)

‘ (4.151)
=x1(0) (/0 l @7 (5,0)0(s)P(5,0) ds + " (1, 0) X, D (11, 0)) x(0).
Define the time-dependent matrix
X@) = /rtl DT (5,0)0()P(s,1) ds + @ (1, ) X1 (11, 1). (4.152)
Then
/0 ! xT(5)0(9)x(s) ds + x (1)) X1x(t1) = x " (0) X (0)x(0). (4.153)

Differentiation of X'(¢) with respect ta using%ms, t) = &(s, 1) A(t) shows thatX () satisfies the matrix
differential equation and terminal condition

—X@t) = AT(l)X(I) + X()A@) + Q(1), X() = X. (4.154)

This equation is &yapunov matrix differential equatiotf 4 is constant and stable amlis constant then
ast; — oo the matrixX (¢) approaches a constant nonnegative-definite matrikat is independent of;
and is the unique solution of ttegebraic Lyapunov equation

0=A"X+XA+ Q. (4.155)

Solution of the regulator problem. We consider how to determine the time-dependent ddin
such that the state feedbaek) = —F(¢)x(¢), 0 < ¢t < t;, minimizes the performance criterion

A
/ ET(00=(0) + uT () Ru()] di + xT (1) Xyx(11)
0 (4.156)

= /[l x' (@) (DTQD + FT(z)RF(z)) x(1) di + x" (1) X1x(11)
0

for the systemx () = Ax(¢t) + Bu(t) = [A — BF(t)]x(¢). X, is a nonnegative-definite symmetric matri
It follows that

/ oo[zT(t)Qz(t) +uT () Ru(t)] dr + x" (1) X1x(t1) = x"(0)X(0)x(0), (4.157)
0

whereX (¢) is the solution of
—X (1) =[A—BF(O]"X(t) + X(1)[A — BF(1)] + D" OD + FT(t)RF(1). (4.158)
X(t;) = X;. Completion of the square on the right-hand side (with refsfeF(¢) results in

—X@) = [F@&)—R'BTXWO]"R[F(t)— R™'BTX(1)]
+ATXt)+ X()A+D'OD - X(1)BR™'BTX(1),  X(1) = X;. (4.159)



Tracing the solutionX (r) backwards from; to 0 we see that at each timéhe least increase df (¢) results
if the gain F(¢) is selected as

F(r)=—-R'BTX(). (4.160)
Correspondingly,4.159 reduces to thenatrix differential Riccati equation
—X(1)=A"X(t)+ X()A+ D"OD - X(1)BR™'BTX(1),  X(1) = X|. (4.161)

If the system is stabilizable then the minimum of the perfamnge criterion on the left-hand side @£ {56
is a nonincreasing function of the terminal timeBecause it is bounded from below (by 0) the criterion
a well-defined limit ag; — oco. Hence, also¥(¢) has a well-defined limit ag — oco. Because of the tim
independence of the system this linditis independent of. The limit is obviously nonnegative-definit
and satisfies the algebraic Riccati equation

0=A"X+XA+D"OD—XBR'BTX. (4.162)
Correspondingly the optimal feedback gain is time-invatrend equal to
F=-R'BTX. (4.163)

The left-hand side 0f4.156 can only converge to a finite limit if(1) = Dx(t) — 0 ast — oo. By

detectability this implies that(z) — 0, that is, the closed-loop system is stable. If the systerhsewable
then X is positive-definite; otherwise there exist nonzero ihii@tes such that(r) = Dx(t) = 0 for

t>0.

4.7.2. Kalman-Yakubovi ¢-Popov equality

The Kalman-Yakubovi¢-Popov equality is a generalizatbthe return difference equality that we use
§4.2.5(p. 139. The KYP equality establishes the connection betweemffaettions and algebraic Ricca
equations.

Summary 4.7.1 (Kalman-Yakubovi ¢-Popov equality).  Consider the linear time-invariant systeir(r) =
Ax(t) + Bu(?), y(t) = Cx(t) + Du(t), with transfer matri>xG(s) = C(sI — A)~' B + D, and letQ and
R be given symmetric constant matrices. Suppose that thbraligematrix Riccati equation

0=A"X+XA+CTQC—(XB+CTOD)D"OD + R~ (B"X + DTQC) (4.164)

has a symmetric solutiok’. Then

R+ G™(s)0QG(s) = J~(s)RpJ(s). (4.165)
The constant symmetric matri® p and the rational matrix functiosi are given by
Rp=R+D'OD, J(s)=1+ F(sI —A)"'B, (4.166)

with F = R (BTX + DTQC). The zeros of the numerator of detare the eigenvalues of the matr
A — BF. -
We use the notatioG ™~ (s) = G T (—s).

The KYP equality arises in the study of the regulator probfenthe systemx(z) = Ax(¢) + Bu(t),
y(t) = Cx(t) + Du(t), with the criterion

/0 “BTO 0y + T (0 Ru(0) dr. (4.167)

The equation4.164) is the algebraic Riccati equation associated with thiblem, and: () = —Fx(¢) is
the corresponding optimal state feedback law.

The KYP equality is best known for the cafe= 0 (see for instanc&wakernaak and Sivaf1972). It
then reduces to theturn difference equality

J~(5)RJ(s) = R+ G~ (5)QG(s). (4.168)



Kalman-Yakubovi¢-Popov equalitithe proof starts from the algebraic Riccati equation
0=A"X 4+ XA+CTQC—(XB+CTQD)R;(B"X + DTQC), (4.169)

with Rp = R+ DT QD. From the relation = R (BTX + DTQC) we haveB™X + DTQC = RpF,
so that the Riccati equation may be written as

0=A"X +XA+CTQC - F'RpF. (4.170)
This in turn we rewrite as

0=—(—sI —A")X — X(sI —A)+ CTQC — F'RpF. (4.171)
Premultiplication byBT (—sI — AT)~! and postmultiplication bys/ — A4)~! B results in

0=—B"X(sI —A)'B—B"(—sI —A")"'xB

4.172
+ BT (—=sI — A" (CTQC = FTRpF)(sI — 4)"'B. ( )
SubstitutingBT X = Rp F — DT QC we find
0=(D"QC — RpF)(sI —A) " 'B+ BT (—sI — A" ' (cTOoD - F'R
(D'Q pF)( ) ( ) (€0 D) 4.173)

+ BT (=sI — A"Y™/(CTQC — FTRpF)(sI — A)~'B.

Expansion of this expression, substitution@fs/ — A)~!B = G(s) — D andF(sI — A" 'B = J(s)— I
and simplification lead to the desired result

R+ G™(s)QG(s) = J~(s)RpJ(s). (4.174)

4.7.3. Robustness under state feedback

We consider an open-loop stable system with loop gain méatthat satisfies the return difference inequal
(I+L)RUI+L)=R on the imaginary axis. (4.175

We prove that if the loop gain is perturbed WL, with W stable rational, then the closed-loop syst:
remains stable as long as

RW +W~R >R on the imaginary axis. (4.176)

The proof followsAnderson and Moor¢1990. First consider the case th& = I. It follows from the
return difference inequality thdt™ + L + L~ L > 0 on the imaginary axis, or

L'+ @L™H~+71>0 ontheimaginary axis. (4.177

The perturbed system is stablelif+ WL has no zeros in the right-half complex plane. Equivaleitg,
perturbed system is stable if for< ¢ < 1 no zeros of

I+[(1—e)l+eW]L (4.178)
cross the imaginary axis. Hence, the perturbed systembtesfanly if
L'+ (=) +eW =M, (4.179)

is nonsingular on the imaginary axis for @ll< ¢ < 1. Substitution ofL~™! = M, — (1 — &)1 — W into
(4.177 yields

M+ M 220 +e(W+WT)=Q—e)l +e(W+ W™ —1). (4.180)
Inspection shows that if
W4+Ww~>1 (4.181)

on the imaginary axis thed, + M/ > 0 on the imaginary axis for all < ¢ < 1, which means that/,
is nonsingular on the imaginary axis. Hencelif+ W~ > I on the imaginary axis then the perturb
system is stable.



4.7.4. Riccati equations and the Hamiltonian matrix

We consider the algebraic Riccati equation

ATX + XA+ 0—-(XB+S)R'B'Xx+5T) =0 (4.182)

and the associated Hamiltonian matrix

_ pp—lgT _pp—1pT
H:[A BR™'S BR™'B ] (4.183)

—Q0+SR7IST —(4—BR'STHT

Summary 4.7.2 (Riccati equation and the Hamiltonian matrix).

1.
2.

3.

If A is an eigenvalue df{ then also-A is an eigenvalue of{.
Given a solution¥ of the Riccati equation, define = R~1(BTX + ST). Then

H [ )1(] = [ ;,] (A — BF). (4.184)

If A is an eigenvalue oft — BF corresponding to the eigenvectoithen is also an eigenvalue c
'H, corresponding to the eigenvector

[ )I(] X. (4.185)

Hence, if then x n matrix A — BF hasn eigenvalues with negative real parts—such as in
solution of the LQ problem of Summa#2.1(p. 137)—then the eigenvalues 6{ consist of these
n eigenvalues ol — BF and their negatives.

. Assume that{ has no eigenvalues with zero real part. Then there is a sityiteansformationl/

that bringsH into upper triangular fornT” such that

H=UTU ' =U [78' 22] U, (4.186)

where the eigenvalues of thex n diagonal block?;; all have negative real parts and those7ef
have positive real parts. Write

Un Un
U= s 4,187
|:U21 Uzz} ( )

where each of the subblocks has dimensiensn. Then there is a solutio” of the Riccati equa:
tion such that the eigenvalues df— BF all have strictly negative real part, if and onlyTf;; is
nonsingular. In that case

X =UyUy;! (4.188)

is the unique solution of the Riccati equation such that therevalues ofd — BF all have strictly
negative real part. For the LQ problem of Summaérg.1(p. 137) U, is nonsingular.

O

For the transformation unddrthere are several possibilities. One is to bri#gnto Jordan normal form
For numerical computation it is to great advantage to us&tmeir transformation.

Riccati equation and the Hamiltonian matrix (sketch).



1. The Hamiltonian matrix is of the form

_|14 0
H—[R —AT]’ (4.189)

with all blocks square, an@ and R symmetric. We have for the characteristic polynomiatof

demu—H):det[“*A -0 }gdet[7A1+A 0 ]

—R AL+ AT R —Al — AT
@ R A —AT @ A —AT R
= D det[—u +4 0 |T® o 44
@ M+ A 0 ) [-M+4 -0
= det[ R —M—AT] = det[ R g — AT (4.190)

In step (1) we multiply the matrix by-1. In step (2) we interchange the first and second row:
blocks and in step (3) the firt and second columns of blockstep (4) we transpose the matrix.
step (5) we multiply the second row and the second columnazfdsl by—1.

Inspection shows that the characteristic polynomial daeshange ifA is replaced with.. Hence,
if A is an eigenvalue, so isA.

2. Using the Riccati equation we obtain frorh 183
1 A — BF
" [X] - [—Q + SR7'ST — (4 - BR™! ST)TX] (4.191)

[ i F} = [)I(] (4~ BF). (4.192)

3. If (4 — BF)x = Ax then

B4 I I
H_Xi|,\_|:Xi| (A_BF)X_A[X}X' (4.193)
4. FromHU = UT we obtain
_Un] [Un}
H = 1. 4.194
Usy Uy | T ( )

After multiplying on the right byl it follows that

I I 1
H 1| = 1 |UnThUg. 4.195
_U21U11]} [U21U”1} e ( )

We identify X = Uy, Ufll andA4 — BF = U”T”U]*l‘. For the LQ problem the nonsingularity
Uy, follows by the existence ok such thatd — BF is stable.

4.7.5. The Kalman filter

In this subsection we sketch the derivation of the Kalmaarfilt

Linear system driven by white noise Consider the stable linear systerr) = Ax(¢)+v(¢), driven
by white noise with intensity’, that is, Ev(t)v' (s) = V§(t — s). The state of the system

x(1) = [ el=y(s)ds, teR, (4.196)



is a stationary stochastic process with covariance matrix

Y

Ex(t)x"(1) = /[ /I eA(’_S‘)(Ev(sl)vT(sz))eAT(’_SZ) dsids,
= / " et T g / T eryed™ 4y (4.197)
—00 0

It follows that

o0
AY + AT = / (AeATVeATf + eAfVeATfAT) dt
0

© d
/ d_ (eATVeATT) dt = eAII/eATI
0 T

o0
, =V (4.198)

Hence, the covariance matriXis the unique solution of the Lyapunov equation
AY + YAT + Vv =o. (4.199)
Observer error covariance matrix. We consider the syster(t) = Ax(¢) + Bu(t) + v(2), y(t) =

Cx(t) + w(¢), wherev is white noise with intensity” andw white noise with intensity¥. The estimatior
errore(t) = x(t) — x(¢) of the observer

X(1) = AR(1) + Bu(t) + K[y(t) — CX(1)] (4.200)
satisfies the differential equation
é(t) = (A— KC)e(t) — Gu(t) + Kw(). (4.201)

The noise processGv(r) + Kw(r) is white noise with intensitys' VG + KTWK. Hence, if the error
system is stable then the error covariance madfrix= Ee(r)e (¢) is the unique solution of the Lyapunc
equation

(A— KC)Y +Y(A—KC)" +G"VG + K"TWK = 0. (4.202)
The Kalman filter.  We discuss how to choose the observer giito minimize the error covarianc
matrix Y. To this end we complete the square i and rewrite the Lyapunov equatioh.202 as

(K=YCTW OYWK -YCTW T + 4y +YAT + GVGT —YCTW~'Cy =0.  (4.203)

Suppose that there exists a géirthat stabilizes the error system and minimizes the erréanae matrixy”.
Then changing the gain t& + ¢ K, with ¢ a small scalar an&” an arbitrary matrix of the same dimensio
as K, should only affect” quadratically ire. Inspection of 4.203 shows that this implies

K=yCc"w (4.204)

With this gain the observer reduces to the Kalman filter. Th&nmal error variance matri¥™ satisfies the
Riccati equation

AY +YAT + GVGT —yCcTWTCcYy =o. (4.205)

4.7.6. Minimization of the steady-state mean square error under state
feedback

We consider the problem of choosing the géif the state feedback law(r) = — Fx(¢) to minimize the
steady state mean square error

E (zT(z)Qz(z) n uT(t)Ru(z)> (4.206)



for the systemx (1) = Ax(¢) + Bu(t) 4+ v(¢). The white noise has intensityy.
If the feedback law stabilizes the systertr) = (4 — BF)x(t) + v(¢) then the steady-state covarian
matrix Y of the state is given by

Y = Ex()x"(t) = /0 % (A=BF)sy g A=BF)Ts g (4.207)
Hence we have for the steady-state mean square error
E (zT(t)Qz(t) + uT(t)Ru(t)> —E (xT(t)DT ODx(1) + xT(z)FTRFx(z))
- Et (x(z)xT(t)DT oD + x(t)xT(t)FTRF) —try (DT oD + FTRF) . (4.208)
We rewrite this in the form

E (zT(z)Qz(z) + uT(t)Ru(z)> —try (DTQD + FTRF)

o0 T
- / (A=BF)sy (A=BF)Ts 4 (DTQD n FTRF>
0

o0
- V/ A=B)Ts (DTQD + FTRF> eA=BF)s 4o —tr VX, (4.200)
0

X
X is the solution of the Lyapunov equation

(A—BF)'X + X(A— BF)+ D" QD + FTRF = 0. (4.210)

X and, hence, t¥’ X, is minimized by choosing” = R~! BT X, with X the solution of the Riccati equatio
ATX + XA+ D'OD - XBR'BTX =0.

4.7.7. Loop transfer recovery

We study an LQG optimal system with measurement noise iitjfe8 = oW, aso | 0 under the
assumptions thaf = B and that the plant transfer matrix(s) = C(sI — A)~! B is square with stable
inverseG ! (s).

Under the assumptioi = B we have in the absence of any measurement noise

y=C(sI— A7 Bu +v) = G(s)(u + v). (4.211)

Because by assumptiagfi—! is stable the input noise may be recovered with arbitrary precision by z
proximating the inverse relation

v=G"Ys)y—u (4.212)

with sufficient accuracy. From the noiseand the known inpuk the statex may in turn be reconstructe
with arbitrary precision. Hence, we expect thatagecreases to 0 the covarianiGe of the estimation errol
decreases to the zero matrix.

Under the assumptiof = B the Riccati equation for the optimal observer is

AYy + Y, A" + BVBT —Y,CTwW~lCY, = 0. (4.213)
We rewrite this as

AY, + Y, AT + BVBT — 6K, WoK[ =0, (4.214)
with K, = Y,CTW~! the gain. Inspection shows that¥i§ | 0 then necessarilk, — co. In fact we
may write

Ky =~ BU, aso |0, (4.215)

1
Jo



whereU, is a square nonsingular matrix (which may depend psuch that/, W, UUT =V.
We study the asymptotic behavior of the loop gain

Lo(s) = F(sI—A+ BF+ K,C)"'K,C(sI —A4)~'B
~ F(sI —A+ BF + %BUUC)’I%BUUC(SI—A)”B
~ F(sI—A+ %BUGC)_I %BUUC(SI —A)7'B
= F(sI—A)~" (1 + %BUGC(SI - A)—l)1 %BUGC(H —A)7'B
D I — A)’IB%UJ (1 + %C(sl —A)7! BUC,)_1 C(sI—A)~'B
= F(sI — A)"'BU, (u/& L C(sI — A)! BUJ>71 C(sI — A)~'B. (4.216)

In step (1) we use the well-known matrix identity + AB)~' 4 = A(I + BA)~'. Inspection of the fina
equality shows that

Lo(s) 2 F(sT — 4y B, (4.217)

which is the loop gain under full state feedback.

4.7.8. Solution of the H, optimization problem

We solve the standarH, optimization problem of 4.4.3(p. 154) as if it is an LQG problem, that is, w
set out to minimize the steady-state value of

EzT(1)z(1) (4.218)

under the assumption thatis a white noise input with intensity matrik

State feedback. We first consider the solution with state feedback. For this énough to study th
equations

x(@) = Ax(@)+ Biw(t) + Byu(?), (4.219)
z(t) = Cix(t) + Dpw(t) + Diu(z). (4.220)

If D11 # 0 then the output has a white noise component that may well make the mean squgrat
(4.218 infinite. We therefore assume that; = 0. Under this assumption we have

2(t) = C1x(1) + Dyu(t) = [I D11 [C;(Ct()’)} —[I D] [uo((t’))] (4.221)

wherezy(z) = Cyx(t). As aresult,

S . I 20
E[z]() u(l)][Dsz][’ Dlz][u(t)]

i I Dp 1[:
E[zJ(1) u"(1)] |:D'1|'2 D']I'ZDIZ:| [u(ot)]. (4.222)

This defines a linear regulator problem with a cross term éndiitput and input. It has a solution if tt
systemx(¢) = Ax(¢) + Bou(t), zo(t) = Cyx(¢) is stabilizable and detectable, and the weighting matr

1 Dy, ]
T T (4.223)
|:Dl2 Dy, Dy,

Ez' ®)z(t)



is positive-definite. A necessary and sufficient conditionthe latter is thaDIT2 Dy be nonsingular. The
solution to the regulator problem is a state feedback lavh@form

u(t) = —Fx(1). (4.224)
The gain matrixF may easily be found from the resultsp#.2.8(p. 144) and is given in Summarg.4.1
(p. 148).

Output feedback.  If the state is not available for feedback then it needs tostienated with a Kalmar
filter. To this end we consider the equations

x(t) = Ax(@t)+ Biw(t) + Byu(?), (4.225)
y@©) = Cx(t) + Dyw(t) + Dypu(t). (4.226)

The second equation may be put into the standard form for ghe#n filter if we considep(t) — Dayu(t)
as the observed variable rather tham). If we denote the observation noisewds) = D ;w(¢) then

x(@t) = Ax@) + Biw(t) + Byu(?), (4.227)
y(@) = Dpu(t) = Cux(t) +v(r) (4.228)

defines a stochastic system with cross correlated noise tékm have

£ |:l:)}(([l))i| [wT(S) UT(S)] =F |:D[21i| w(t)wT(s) [1 D;rl] (4.229)
I DI
- [Dzl 1)21211);] 8t =) (4.230)

Suppose that the systeifr) = Ax(¢1) + Byw(t), y(1) = Cox(¢) is stabilizable and detectable, and t
intensity matrix

I DI
21 4.231
[Dzl Dy DL] ( )

is positive-definite. A necessary and sufficient conditionthe latter is thaD,; D'zr1 be nonsingular. Ther
there exists a well-defined Kalman filter of the form

£(0) = AR(t) + Bou(t) + K[y (1) — Cr2(t) — Daru(1)]. (4.232)

The gain matrixK may be solved from the formulas #.3.4(p. 149. Once the Kalman filter4(.232 is
in place the optimal input for the output feedback problembtained as

u(t) = —F%(1). (4.233)

F is the same state feedback gain aslir24.

4.8. Exercises

4.1 Cruise control systemThe linearized dynamics of the vehicle of Exampl@.1 (p. 3)
may be described by the equati®fr) = —ax(¢) + au(t), wherea = 1/6 is a positive
constant. Without loss of generality we may take- 1.

Consider finding the linear state feedback that minimizesctiterion

[ o+ prworar (4.234)
0



with p a positive constant. Determine the ARE, find its positiveisoh, and compute th
optimal state feedback gain.

Compute the closed-loop pole of the resulting optimal feettsystem and check that ti
closed-loop system is always stable. How does the closguldole vary withp? Explain.

Plot the closed-loop response of the stafe) and inputu(¢) to the initial statex(0) = 1
in dependence op. Explain the way the closed-loop responses vary with

4.2 Cruise control systemModify the criterion é.234 to

/ ” e [x%(t) + pu*(1)] dt, (4.235)
0

with o a positive constant. Rework Exercidel while explaining and interpreting th
effect ofa.

Figure 4.25: State feedback with reference inpahd output

4.3 Closed-loop frequency response characteristiRtscall these statements on pddge

If the plant has right-half plane open-loop zeros then thedbadth is limited
to the magnitude of the right-half plane zero that is closeshe origin. This
agrees with the limits of performance establishegl 1n7 (p. 40).

Verify these statements by considering the SISO configuradf Fig.4.25 Let L(s) =
f(sI —A)~'bandG(s) = d(sI — A)~'b.

a) Prove that
1 _ G(y)

= —r, =—r. 4.236
“T1rLe)” T I1¥Le) (4.236)
N——
H (s)
It follows that the closed-loop transfer functiéh is
k
His) = YO (4.237)
Xei(s)

b) Assume that the open-loop transfer funct@ras no right-half plane zeros. Pro
that asp | 0 the closed-loop transfer function behaves as

__k
B, (s/wc) .

By denotes a Butterworth polynomial of order(see Table?.3, p. 92). Hence, the
closed-loop bandwidth ..

H(s) ~ (4.238)



¢) Next assume that the open-loop transfer function hasgdes{real) right-half plane
zero¢. Prove that asymptotically the closed-loop transfer fiomcbehaves as
— k
s=¢ . (4.239)
S+C anq(s/wc)

H(s) ~

Argue that this means that asymptotically the bandwidth(that is, the frequency
response functio® (jw)/H(0)— 1, w € R, is small over the frequency ranfie ¢J).

4.4 Phase marginln Subsectior.2.7it is claimed that the phase margin is at le@¥t. Prove
it.

4.5 LQ problem for system with direct feedthrougie system

X(t) = Ax(t) + Bu(?),
z(t) = Dx(t) + Eu(?), t>0, (4.240)

has what is called “direct feedthrough” because of the teith win the output:. Show
that the problem of minimizing

J = / OO[ZT(I)QZ(I) + u" (1) Ru(t)] dt (4.241)
0

for this system may be converted into the cross term probfhi©subsection.

4.6 Positive-definiteness and Schur complemErayve that the condition that the matrik41)
be positive-definite is equivalent to either of the follogyitwo conditions:

a) BothR andQ — SR~'ST are positive-definite.Q — SR™'ST is called theSchur
complementf R. Hint:

S I SR7! —SR7IST 0 1 0
[SQT R} - [0 I } [Q 0 R} [R‘ST 1] (4.242)
b) BothQ andR — STQ~'S are positive-definiteR — STQ 'S is the Schur comple

ment of Q.

4.7 Cruise control systemJse the method of this Subsectiér?.9to solve the ARE that arise
in Exercise4.1

4.8 Asymptotic resultsThe asymptotic results for the regulator problem may be lided” to
the Kalman filter.

a) Define the “observer return difference”

Jr(s) =1+ C(sI — A)7'K. (4.243)
Prove that
Xz (s)
detJs(s) = , 4.244
etJy(s) ol (5) ( )

where xq(s) = det(s/ — A) is the system characteristic polynomial agels) =
det(s/ — A + KC) the observer characteristic polynomial.



b) Prove that the return differendg of the Kalman filter satisfies
Jr(WIT(=s) =W + M(s)VM(~s), (4.245)

whereM is the open-loop transfer matrid (s) = C(sI — 4)~'G.
c) Considerthe SISO case with= 1 andW = o. Jr andM are now scalar function:

Prove that
Xr () xr (=) = Xoi(s) xor (=$)[1 + éM(S)M(—S)]- (4.246)
d) Write
M(s) = gxifzs)), (4.247)

with ¢ a monic polynomial ang a constant.

e Prove that ag — oo the optimal observer poles approach the open-loop
that lie in the left-half plane and the mirror images of thewpoop poles tha
lie in the right-half plane.

e Prove that ag | 0 the optimal observer poles that do not gostoapproach
the open-loop zeros that lie in the left-half plane and theranimages of the
open-loop zeros that lie in the right-half plane.

e Establish the asymptotic pattern of the optimal observéegihat approacto
aso | 0.

4.9 Cross correlated noise®rove the claim of Subsectigh3.4
4.10 Closed-loop eigenvalues.

a) Prove that the eigenvalues df&3 are the eigenvalues of the closed-loop systen

b) Show (most easily by a counterexample) that the fact tieadlbserver and the close
loop system are stable does not mean that the compenda&drly itself is stable.

4.11 Compensator transfer functionThe configuration of Fig4.6 may be rearranged as
Fig. 4.26 Show that the equivalent compensa€qr has the transfer matri€, (s) =
F(sI — A+ BF + KC)™'K.

yA
u .

Ce4>P
— “y

Figure 4.26: Equivalent unit feedback configuration

4.12 Dual loop transfer recoveryDual loop recovery provides an alternative approach to |
recovery. Dual loop recovery results when the loop is brakethe planbutput y rather
than at the inputi{wakernaak and Sivai972 § 5.6). In this case it is necessary to assu
that D = C, that is, the controlled output is measured. Again we réed — 4)~' B to
be square with left-half plane zeros only. We Rt= pR, and consider the asymptot
behavior forp | 0.



a) Make it plausible that the loop gain approaches
Lo(s) = C(sI — A)"'K. (4.248)

b) Show that the corresponding return differedgé) = I + L (s) satisfies the returt
difference inequality

Jo(jo)WJJ (—jw) = W, w eR. (4.249)

¢) Show that gain and phase margins apply that agree witletfmsd in Subsec
tion4.2.7(p. 143).

4.13 Lyapunov equation.Prove that theH,-norm of the stable systen?.86 is given by
|H|3 =tr CYCT, where the matri¥’ is the unique symmetric solution of the Lyapun
equationdY + YA" + BBT = 0.

4.14 Generalized plant for the LQG problerBhow that for the LQG problem the generaliz
plant of the corresponding standdid problem in state space form may be represente

x(1t) = Ax@)+[G 0] [;’)((’Z))}+Bu(t), (4.250)
2(1) D 0 0 o(0) 0
u@®)| = |0 |x@+[0 0 |:w(l):|+ I|u). (4.251)
y(1) C 0 I 0

4.15 Transfer matricesDerive @.1174.120Q.

4.16 High-frequency roll-off.Prove that LQG optimal compensators are strictly propeedit
for the SISO case what the resulting roll-off is for the ingatsitivity function and the
complementary sensitivity function, dependent on the {iigguency roll-off of the plant.

4.17 Poles and zerosVhat are the open-loop poles and zeros of the system ofiFi§.

4.18 Identical loci. On pagel65it is claimed that “Like in the double integrator examplegyth
are identical to those of the regulator poles.”

Check that this is a consequence of choogthgs V = I, R = pI, W =ol, D = C
andG = B.

4.19 The caseR # I. Subsectiort.7.3considers the casR = I. Show that the case th&
is not necessarily the unit matrix may be reduced to the ptsvcase by factoring@—
for instance by Cholesky factorization—#& = R} R,. Work this out to prove that th
closed-loop system remains stable under perturbatiosfgiaty RW + W™~ R > R onthe
imaginary axis.

4.20 Consider the plant

1000
s(s + 10s + 300%)

P(s) =

Design a stabilizing controllef (s) that achieves a cross-over frequency/biz (i.e. the
0dB pointof L = PC is at7Hz), and such thdtS(jw)| < 2 for all frequencies.



5. Uncertainty Models and Robustness

Overview— Various techniques exist to examine the stability robessn
of control systems subject to parametric uncertainty.

Parametric and nonparametric uncertainty with varyingrelegf
structure may be captured by thesic perturbation model. The size
of the perturbation is characterized by bounds on the nortinegbertur-
bation. The small gain theorem provides the tool to analleestability
robustness of this model.

These methods allow to generalize the various stabilitysttess re-
sults for SISO systems of Chapteém several ways.

5.1. Introduction

In this chapter we discuss various paradigms for reprasgnthcertainty about thdynamic
propertiesof a plant. Moreover, we present methods to analyze theteffeancertainty on
closed-loop stability and performance.

Section5.2is devoted tgparametricuncertainty models. The idea is to assume that the e
tions that describe the dynamics of the plant and compen@atparticular, their transfer func
tions or matrices) are known, but that there is uncertaibtyua the precise values of variol
parameters in these equations. The uncertainty is chameddy aninterval of possible values
We discuss some methods to analyze closed-loop stabildgruhis type of uncertainty. Th
most famous result iKharitonov’s theorem.

In § 5.3we introduce the so-calldshsic perturbation moddbr linear systems, which admi
a much wider class of perturbations, includimgstructured perturbationsgJnstructured pertur
bations may involve changes in the order of the dynamics eendrearacterized byorm bounds
Norm bounds are bounds on the norms of operators corresmptalsystems.

In § 5.4we review the small gain theorem. With the help of that weldista sufficient anc
necessary conditions for the robust stability of the basitysbation model. Next, i§ 5.5the
basic stability robustness result is applied to propostipproportional inverse perturbations a
fractional perturbations of feedback loops.

The perturbation models §f5.5are relatively crude. Doyle'structured singular valuallows
much finer structuring. It is introduced §5.6. An appealing feature of structured singular va
analysis is that it allows studyingopmbinedstability and performance robustness in a unif
framework. This is explained if5.7. In § 5.8a number of proofs for this chapter are presen
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input signal input output

r prefilter o~ e compensatof plant z
F C P

Figure 5.1: Feedback system

5.2. Parametric robustness analysis

In this section we review thparametricapproach to robustness analysis. In this view of un
tainty the plant and compensator transfer functions angnasd to be given, but contain sevel
parameters whose values are not precisely known. We #ligsthis by an example.

Example 5.2.1 (Third-order uncertain plant). Consider a feedback configuration as in FBid.
where the plant transfer function is given by
g
P(s) = ——"——. 5.1
(s) s2(1 + 6s) ®-1)

The gaing is not precisely known but is nominally equal 49 = 1 [s™2]. The numbed is a

parasitic time constant and nominally 0Ysh system of this type can successfully be control
by a PD controller with transfer functiofi(s) = k + T;s. The latter transfer function is nc
proper so we modify it to

_k+Tys

where the time constaf is small so that the PD action is not affected at low frequesidiVith
these plant and compensator transfer functions, the refiiferenceJ =1+ L =1+ PC is
given by

g k+Tys  0Tos* 4 (0 4 To)s® + 57 + gTus + gk
s2(1+0s) 1+ Tys $2(1 4 0s)(1 + Tps) ’

Hence, the stability of the feedback system is determinethbylocations of the roots of th
closed-loop characteristic polynomial

J(s)=1+ (5.3)

x(s) = 0Tos* + (0 + To)s® + s> + gTys + gk. (5.4)

Presumably, the compensator can be constructed with suffiprecision so that the values
the parameters, T,;, and T, are accurately known, and such that the closed-loop syste
stable at the nominal plant parameter valges g, = 1 andf = 0. The question is whether tt
system remains stable under variationg&nd6, that is, whether the roots of the closed-lo
characteristic polynomial remain in the open left-half qdex plane. O

Because we pursue this example at some length we use thetapipoto demonstrate hov
the compensator may be designed by using the clagsictlocusdesign tool. We assume th:
the ground rules for the construction of root loci are known.

1All physical units are SI. From this point on they are usualtyitted.



Figure 5.2: Root locus for compensator consisting of a sngjlin

Im
Re
zero at double
—k/Ty poleat O

Figure 5.3: Root locus for a PD compensator

Example 5.2.2 (Compensator design by root locus method). Given the nominal plant witt
transfer function
8o
Py(s) = =, (5.5)
N

the simplest choice for a compensator would be a simple@é&in= k. Varyingk from 0 tooco
or from 0 to—oo results in the root locus of Fig.2 For no value of stability is achieved.

Modification to a PD controller with transfer functi@n(s) = k + s7;, amounts to addition o
a zero at-k/ T,. Accordingly, keeping-k/ T, fixed while varyingk the root locus of Fig5.2
is altered to that of Fig5.3 (only the part fork > 0 is shown). We assume that a close
loop bandwidth of 1 is required. This may be achieved by plathe two closed-loop poles
%\/5(—1 =+ j). The distance of this pole pair from the origin is 1, resutim the desired closec
loop bandwidth. Setting the ratio of the imaginary to thd peat of this pole pair equal to
ensures an adequate time response with a good compromigegmatise time and overshoot.

The closed-loop characteristic polynomial corresponttirtge PD compensator transfer fur
tion C(s) =k + sTy is easily found to be given by

s* + goTyus + gok. (5.6)

Choosinggo 7, = v/2 andgok =1 (i.e.,T; = ~/2 andk = 1) places the closed-loop poles at t

desired locations. The zero in Fig.3may now be found atk/ T, = —% 2=-0.7071.

The final step in the design is to make the compensator tnafusfetion proper by changin
it to

k+ Tys

CO =T 75

(5.7)



This amounts to adding a pole at the locatieh/ T,. Assuming thatl; is small the root lo-
cus now takes the appearance shown in Big. The corresponding closed-loop characteri:
polynomial is

Tos® + s + goTus + gok. (5.8)

Keeping the value§; = +/2 andk = 1 and choosing somewhat arbitrarily equal tb/10
(which places the additional pole in Fig.4 at —10) results in the closed-loop poles

—0.7652 +j0.7715,  —8.4697. (5.9)

The dominant pole pair %tﬁ(—l =+j) has been slightly shifted and an additional non-domir

pole at—8.4697 appears. |
J Im
\ %\ Re
pole zero double
at —1/To W a —k/Td po|e ao

Figure 5.4: Root locus for the modified PD compensator

5.2.1. Routh-Hurwitz Criterion

In the parametric approach, stability robustness anatysises down to investigating the roo
of a characteristic polynomial of the form

X(8) = xa(P)s" + xu—1(P)s" ™"+ -+ + x0(p). (5.10)

whose coefficienty, (p), x.—1(p), - -+, xo(p) depend on the parameter vecjar Usually it is
not possible to determine the dependence of the roogsexplicitly.

Sometimes, if the problem is not very complicated, the Réduiwitz criterion may be in-
voked for testing stability. For completeness we summadhiscelebrated result (see for instar
Chen(1970). Recall that a polynomial islurwitz if all its roots have zero or negative real pa
It is strictly Hurwitzif all its roots have strictly negative real part.



Theorem 5.2.3 (Routh-Hurwitz criterion). A polynomial
X(S) :aOSn +alsn71 + -t ag—18s +ay (511)

with real coefficientsy, ay, - - -, a, is stable if and only the + 1 entries in the first colum
of theHurwitz tableauexist, are nonzero and have the same sign.
TheHurwitz tableaus of the form

dog dy dg dg
ap ds ds dayg

by by by --- (5.12)
by by bs

The first two rows of the tableau are directly taken from theet€ and “odd” coefficients o
the polynomialy, respectively. The third row is constructed from the twoceding rows by
letting

ao

[b() bz b4 ] = [az a4 dg ] — a— [03 ds dg ] (513)
1
The fourth rowb,, bs, - - - is formed from the two preceeding rows in the same way the tgi
row is formed from the first and second rows. All further rows eonstructed in this mann
Missing entries at the end of the rows are replaced with zéksstop after + 1 rows.

In principle, the Routh-Hurwitz criterion allows estaliisg thestability regionof the parame:
ter dependent polynomiglas given by %.10), that is, the set of all parameter valyefor which
the roots ofy all have strictly negative real part. In practice, this ieeafnot simple.

Example 5.2.4 (Stability region for third-order plant). By way of example we consider tt
third-order plant of Examples.2.1and5.2.2 Using the numerical values established in Exarr
5.2.2we have from ExamplB.2.1that the closed-loop characteristic polynomial is given by

0 1
x(s) = ES4 + (0 + E)SB +5>+gV2s + g (5.14)

The parameter vectgr has componentg and6. The Hurwitz tableau may easily be found
be given by

1 ! g

0+ ,io gv2
b g (5.15)
b,




where

g1l _ 2,9
by = Sl e (5.16)
1
0+ 1

yo_ Ot - wEVI- 6+ ) 517
o O 0. (5.17)

Inspection of the coefficients of the closed-loop charastierpolynomial 6.14 shows that a
necessary condition for closed-loop stability is that bgthnd 6 be positive. This conditior
ensures the first, second and fifth entries of the first colufitheotableau to be positive. Th
third entryb, is positive ifg < g5(0), wheregs is the function

5v2(0 + 1)
23(0) = fl" (5.18)
The fourth entryp, is positive ifg < g4(0), with g4 the function
50+ ) (V2—+ -0
auity = 0T W27 520 (5.19)

0

Figure5.5shows the graphs @f; andg, and the resulting stability region.
The cased = 0 needs to be considered separately. Inspection of thelooas of Fig.5.4
(which applies ifd = 0) shows that fof = 0 closed-loop stability is obtained for gll> 0. g

40
g
20+
O3
94
0 \
0 1 2

Figure 5.5: Stability region

Exercise 5.2.5 (Stability margins).  The stability of the feedback system of Exampl@.4is
quite robust with respect to variations in the parameieandg. Inspect the Nyquist plot of the
nominal loop gain to determine the various stability masgifi§ 1.4.2and Exercisd..4.9b) of
the closed-loop system. O

5.2.2. Gridding

If the number of parameters is larger than two or three theelitom is possible to establish tl
stability region analytically as in Exampf2.4 A simple but laborious alternative method



known asgridding. It consists of covering the relevant part of the paramegiacs with a grid,
and testing for stability in each grid point. The grid doesmecessarily need to be rectangul:

Clearly this is a task that easily can be coded for a compilitee. number of grid points in
creases exponentially with the dimension of the parampgeres however, and the computatio
load for a reasonably fine grid may well be enormous.

Example 5.2.6 (Gridding the stability region for the third- order plant). Figure5.6 shows
the results of gridding the parameter space in the regionelfiy0.5 < g <4and0 <6 < 1.
The small circles indicate points where the closed-loopesyss stable. Plus signs correspo
to unstable points. Each point may be obtained by applyiadRbuth-Hurwitz criterion or an)
other stability test. O
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270000000001’
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Figure 5.6: Stability region obtained by gridding

5.2.3. Kharitonov’s theorem
Gridding is straightforward but may involve a tremendougant of repetitious computation. |
1978,Kharitonov (see alsKharitonov(1978h)) published a result that subsequently attrac

much attention in the control literatifrbecause it may save a great deal of work. Khariton
theorem deals with the stability of a system with closedslobaracteristic polynomial

xX() = xo+ x15+ -+ xus". (5.20)
Each of the coefficientg; is known to be bounded in the form
X = Xi <X (5.21)

with X; andy; given numbers foi =0, 1,---, n. Kharitonov's theorem allows verifying wheth
all these characteristic polynomials are strlctly Huniyzchecking onlyffour special polynomi-
als out of the infinite family.

2For a survey seBarmish and Kang1993.



Theorem 5.2.7 (Kharitonov's theorem).  Each member of the infinite family of polynom
als

X(8) = xo+ x18 + -+ xus" : with ljfx,-f%,i:(),lj,---,n, (5.22)

is stable if and only if each of the four Kharitonov polynoisia

ki(s) = x,+ x5+ %o5” + X8’ A+ x5t xS+ Tes o0 (5.23)
ka(s) = Ko+ x5+ lzsz + K3S3 + X5t 4 X8 + K6S6 + e (5.24)
ky(s) = Yo+ XS+ lzsz + %38+ xust + K5S5 + K6S6 4o (5.25)
ka(s) = x,+ %15 + %5’ + x8” + x5t A8+ Tes - (5.26)
is stable. ]

Note the repeated patterns of under- and overbars. A simptd pf Kharitonov’s theorem is
given byMinnichelli et al.(1989. We see what we can do with this result for our example.

Example 5.2.8 (Application of Kharitonov's theorem). From Examples.2.1we know that
the stability of the third-order uncertain feedback sysisndetermined by the characterist
polynomial

x(s) = 0Tos* + (0 + To)s® + s> + gTys + gk, (5.27)

where in Examplé.2.2we tookk = 1, T, = +/2 andT; = 1/10. Suppose that the variations
the plant parametegsand® are known to be bounded by

g<g<g 0<60<0. (5.28)

Inspection of .27 shows that the coefficientg,, x1, x2, x3, and x4 are correspondingly
bounded by

1< =<1, (5.29)

We assume that
0<6=<0.2, (5.30)
so thatd = 0.2, but consider two cases for the ggin

1. 0.5 < g < 5, so thatg = 0.5 andg = 5. This corresponds to a variation in the gain b;
factor of ten. Inspection of Figh.5 shows that this region of variation is well within tf



stability region. It is easily found that the four Kharitonpolynomials are

ki(s)
ka(s)
ks(s)
ka(s)

0.5 4 0.5v/2s + s> 4 0.35%,
545425 + 57+ 0.157 + 0.025%,
540.5v2s + 52 + 035 + 0.02s5%,
0.5+ 5v2 + 5> +0.1s>.

(5.31)
(5.32)
(5.33)
(5.34)

By the Routh-Hurwitz test or by numerical computation of thets using MTLAB or
another computer tool it may be found thgtandk, are strictly Hurwitz, whilek, and
k3 are not Hurwitz. This shows that the polynomjal + x15 + x252 + x35° + yas* is
not strictly Hurwitz for all variations of the coefficientsitwin the boundsj.29. This
doesnot prove that the closed-loop system is not stable for all tiaria of g andd within
the bounds§.29, however, because the coefficients of the polynomial do not van
independentlwithin the bounds§.29.

2. 0.5 < g <2, sothatg = 0.5 andg = 2. The gain now only varies by a factor of fot
Repeating the calculations we find that each of the four Ktwaolv polynomials is strictly

Hurwitz, so that the closed-loop system is stable for alahp@eter variations.

5.2.4. The edge theorem

Example5.2.8shows that Kharitonov’s theorem usually only yields sudfitibut not necessat
conditions for robust stability in problems where the caédfits of the characteristic polynomi

do not vary independently. We therefore consider charatitepolynomials of the form

X(5) = xo(p)s" + x1(P)s" ™" -+ xa(p), (5.35)
where the parameter vectprof uncertain coefficientg;, i = 1, 2,---, N, enterdinearly into
the coefficients; (p), i =0, 1,---, n. Such problems are quite common; indeed, the exar

we are pursuing is of this type. We may rearrange the charstitepolynomial in the form

N
x(s) = ¢o(s) + Zai¢i(é‘),

(5.36)

i=1
where the polynomialg;, i = 0, 1,---, N are fixed and given. Assuming that each of |
parameters; lies in a bounded interval of the form) < a; <a;,i =1, 2,---, N, the family

of polynomials 6.36 forms apolytopeof polynomials. Then thedge theoreniBartlett et al,

1989 states that to check whether each polynomial in the pofy/tepiurwitz it is sufficient to
verify whether the polynomials on each of tbeposed edges the polytope are Hurwitz. Th
exposed edges are obtained by fixiNg— 1 of the parameterp; at their minimal or maxima
value, and varying the remaining parameter over its interva



Theorem 5.2.9 (Edge theorem). Let D be a simply connected domain in the compl
plane. Then all the roots of each polynomial3g are contained ifD if and only if the roots
of all polynomials on the edges of

N
X(5) = go(s) + Y aihi(s) (5.37)

i=1

are inD. O

A simply connected domain is a domain such that every simpked contour (i.e., a contou
that does not intersect itself) inside the domain enclosdg points of the domain. For ou
purposed® is the open left-half complex plane. The edgeso8{) are obtained by fixingv — 1
of the parameters; at their minimal or maximal value, and varying the remainpeagameter
over its interval. There ar&/ 2"V ~! edges. Although obviously application of the edge theol
involves much more work than that of Kharitonov’s theorerdaduces more results.

Example 5.2.10 (Application of the edge theorem). We apply the edge theorem to the thir
order uncertain plant. From Exam@e2.1we know that the closed-loop characteristic polyt
mial is given by

x(s) = O0Tys* + (0 + To)s® + s + gTys + gk (5.38)
= (Tos> 4+ 5% + 0(Tos* + 5°) + g(Tys + k). (5.39)

Assuming thad < 6 < 9 andg =< g < g this forms a polytope. By the edge theorem, we n
to check the locations of the roots of the four “exposed etdges

0=0: Tos? + s + gTys + gk, g=g=2g
0=0: OTs*+@+T)s’+s>+gTus+gk., g<g<g.
g=g: 0Tos* + (6 + To)s® + s> + gTus + gk, 0<6<9, (5.40)
g=3%: OTs*+O+T))s’+s>+3gTys+3gk, 0<6<86.

Figure5.7 shows the patterns traced by the various root loci so defirdd Wy, 7, andk as
determined in Exampl6.2.2 andf = 0.2,g = 0.5,7 = 5. This is the case where in Examg
5.2.10application of Kharitonov’s theorem was not successfuldmdnstrating robust stability
Figure 5.7 shows that the four root loci are all contained within the-tedlf complex plane.
By the edge theorem, the closed-loop system is stable fgraalimeter perturbations that a
considered. O

5.2.5. Testing the edges

Actually, to apply the edge theorem it is not necessary ta"dhe edges, as we did in Examp
5.2.10 By a result ofBiatas (1989 the stability of convex combinations of stable polynorsia
p1 and p, of the form

p=Aip1+ (1 =21)pa, A €0, 1], (5.41)

3Stable polynomiais the same as strictly Hurwitz polynomial.
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Figure 5.7: Loci of the roots of the four exposed edges

may be established by a single test. Given a polynomial
q(s) = qos" + 15" + qas" T+ -+ gy (5.42)

define itsHurwitz matrix Q (Gantmacherl964) as then x n matrix

q1 43 4s
qo 4> 44
0 q1 q3 qs cee e
= . 5.43
Q O qo qz q4 cee oo ( )

0 0 ¢ g3 gs

Biatas’ result may be rendered as follows.

Summary 5.2.11 (Biatas' test).  Suppose that the polynomiats and p, are strictly Hurwitz
with their leading coefficient nonnegative and the remajroefficients positive. LeP, and P,
be their Hurwitz matrices, and define the matrix

W = —P Py, (5.44)
Then each of the polynomials

p=Aipi+ (1 =2)p:, Ael0,1], (5.45)
is strictly Hurwitz iff the real eigenvalues 6% all are strictly negative. O

Note that no restrictions are imposed on the non-real eaaag of V.

Example 5.2.12 (Application of Biatas’ test). We apply Bialas’ test to the third-order plar
In Example5.2.10we found that by the edge theorem we need to check the losatfdhe roots



of the four “exposed edges”

Tos® + 57 + gTys + gk, g<g=g,
OTos* + (0 + To)s® + s> + gTus + gk. g<g<3.
0Tos* + (0 + To)s* + s + gTus + gk, 0<6 <8, (5.46)
OTos* + (0 + To)s® + s> +5Tys +gk, 0<6<86.

The first of these families of polynomials is the convex camaltion of the two polynomials

pis) = Tos® + s>+ gTus + gk, (5.47)
pa(s) = Tos® +s* +gTys + gk, (5.48)

which both are strictly Hurwitz for the given numerical vatu The Hurwitz matrices of thes
two polynomials are

1 ogk 0 1 gk 0
Pr=|Ty gTa O |, P=|T, gy O |, (5.49)
0 1 gk 0 1 gk

respectively. Numerical evaluation, withy = 1/10, Ty = v/2, k = 1, g = 05, andg =5,
yields

—1.068  0.6848 0
W =—-PP;' =|-009685 —0.03152 0 |. (5.50)
0.01370  —0.1370 —0.1

The eigenvalues di are—1, —0.1, and—0.1. They are all real and negative. Hence, by Biat
test, the system is stable on the edge under investigation.
Similarly, it may be checked that the system is stable onthere@dges. By the edge theore

the system is stable for the parameter perturbations studie O
w1
+ T
q Ay p v N\ Ay
+
H H < "
l N
w»
(a) (b)

Figure 5.8: (a) Basic perturbation model. (b) Arrangementtiternal sta-
bility
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Figure 5.9: Uncertainty models of a unit feedback loop. (ajrihal system.
(b) Additive uncertainty. (c) Multiplicative uncertainty

5.3. The basic perturbation model

This section presents a quite general uncertainty modegadls with both parametric—struc-

tured—andunstructureduncertainties, although it is more suited to the latter. ttlresured un-
certainties are uncertainties that may involve essentiahges in the dynamics of the syste
The common assumption in Robust Control is that the unceiggimay be modeled as an 1/¢
system separate from the rest of the system. The simplelstsyistem is shown in Fich.8. It

is sometimes called theasic perturbation model (BPMHere H is the system whose stabilit
robustness is under investigation. Its transfer matfixss sometimes called thiaterconnection
matrix. The block “Ay” represents a uncertainty of the dynamics of the systens incertainty
model is simple but the same time powetful

Lemma 5.3.1 (Internal stability of the basic perturbation m odel). Supposethalf andAy
are stable systems. The following three statements argaqnt.

1. The BPM of Fig5.8(a) is internally stable.
2. (I — HAp)7! exists and is stable.
3. (I — Ay H)7! exists and is stable.

Many robust stability problems can be brought back to robtaiility of the BPM.

Example 5.3.2 (The additive uncertainty model). Figure5.9(a) shows a feedback loop wi
loop gain L. After perturbing the loop gain froni to L + Ap, the feedback system mz
be represented as in Fi§.9b). The block within the dashed lines is the unperturbedtesys
denotedH, and A is the uncertaintyl ; in the basic model.

To computeH, denote the input to the uncertainty blogk asq and its output ap, as in
Fig. 5.8 Inspection of the diagram of Fi§.9(b) shows that with the uncertainty blogk taken
away, the system satisfies the signal balance equatien-p — Lgq, so that

q=—-(+L)"p. (5.51)
It follows that the interconnection matrif{ is
H=-(I+L)"=-5, (5.52)

41t may be attributed t®oyle (1984.




with S the sensitivity matrix of the feedback system. The modeligf 5.9(b) is known as the
additiveuncertainty model. O

Example 5.3.3 (The multiplicative uncertainty model). An alternative uncertainty mode
called multiplicative or proportional uncertainty model, is shown in Fi§.9(c). The transfer
matrix of the perturbed loop gain is

1+ Ap)L, (5.53)

which is equivalent to an additive uncertaimtyy .. The quantityA; may be viewed as the
relative sizeof the uncertainty. From the signal balance- L(—p — ¢) we obtaing = —(I +
L)~'Lp, so that the interconnection matrix is

H=-(I+L)"'L=-T (5.54)
T is the complementary sensitivity matrix of the feedbackeys O

In the above two examples internal stability of the BPM isieglent to internal stability of the
underlying additive and multiplicative uncertain feedbagstems. So as far as robust stabil
is concerned we may as well consider the simple BPM and fadgeat the internal structure c
the interconnection matri¥/. This explains the interest in the BPM. The following im@ort
theorem shows that the BPM is useful foryinterconnected system, not just the for the ab
two unit feedback loops.

Theorem 5.3.4 (A detectability theorem).  Suppose we have a systethof interconnec-
tions of subsystemé€,, C,, ..., Pi, P5,...and Ay, A,, ... and suppose tha is internally
stable for zero uncertaintie$; = 0, A, = 0,.... Then for any set of stable uncertaintif§s
Ay, A, ... the following two statements are equivalent.

1. The overall interconnected systenis internally stable,

2. the corresponding BPM is internally stable.

Typically the controller is designed to work well for theminalsystem, which is the syster
when all uncertainties are taken zefp = 0. In particular then the controller stabilizes tl
system for allA; = 0. So this assumption needed in the above theorem is noteiring

Example 5.3.5 (Parameter perturbation).  Consider the third-order plant of Exampbe?.1
with transfer function

g

PO = Ga ey

(5.55)
The parameterg andf are uncertain. It is not difficult to represent this trandterction by a
block diagram where the parametgrandd are found in distinct blocks. Figuge10shows one
way of doing this. It does not matter that one of the blockspsige differentiator. Note the wa
the factorl + s6 in the denominator is handled by incorporating a feedbagf.lo

After perturbingg to g + A, andf to 8 + Ag and including a feedback compensator w
transfer functionC the block diagram may be arranged as in Eid.1l The large block inside
the dashed lines is the interconnection maftirof the basic perturbation model.
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Figure 5.10: Block diagram for third-order plant
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Figure 5.11: Application of the the basic uncertainty madehe third-order
plant

To compute the interconnection matik we consider the block diagram of Fig.11 Inspec-
tion shows that with the perturbation blocks and A, omitted, the system satisfies the sig
balance equation

gr = —s(p2+0q2) + slz (p1 —2C(s)q2) . (5.56)

Solution forg, yields

1/s? s
- - . 5.57
=T 0+ cwe/2 P T 150+ Cgsst P2 (5.57)
Further inspection reveals that = —C(s)g,, So that
C(5)/5> sC(s)
S . 5.58
=T 0+ g/t PP T 150+ Cog/se P2 (5.58)

Consequently, the interconnection matrix is

_Ce sc
H(s) = %[ . (S)] (5.59)

L e I S

1
T+ [C(s)
I+ L(s) [ -1 }[_SLZ sl (569

whereL = PC is the (unperturbed) loop gain. O
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Figure 5.12: Left: feedback loop. Right: feedback loop witternal input
and output.

5.4. The small gain theorem

In this section we analyze the stability of the basic un@etyanodel using what is known as tt
small gain theoremThis section and the rest of the lecture notes assumes &aityilivith the
material of AppendiB on norms of signals and systems.

Theorem 5.4.1 (Small gain theorem).  In the feedback loop of Figh.14a), suppose that :
U — U for some complete normed spdée Then a sufficient condition for the feedback loop
Fig.5.14a) to be internally stable is that the input-output nias a contraction. IfL is linear
then it is a contraction if and only if

L] <1, (5.61)
where|| - || is the norm induced by the signal norm,
[ Leles
|L| := sup .
wert [ullu

O

A proof is given in Appendids.8 The small gain theorem is a classic result in systems
ory (see for instancBesoer and Vidyasagét975). The small gain theorem givessafficient
condition for internal stability that is very simple buteftalso very conservative. The power
the small gain theorem is that it does not only apply to SI$@dr time-invariant systems b
also to MIMO systems and even nonlinear time-varying systéor that the theorem has to &
reformulated somewhat, see Subsectioh?. The signal spaces of signals of finifg-norm
llu|lz, and the signals of finite amplitude:| ., are two examples of complete normed spa
(see AppendiB), hence, for these norms the small gain theorem applieas@leonsult Ap-
pendixB about norms of signals and systems. Here we summarize the faro most importan
norms. TheC,-norm of signals is defined as

o) 1/2
||z||£2=(/_ Z(I)Tz(l)dt) |

and the system norm induced by tifis-norm:

[ Hul e
I1H oo := sup :
w Nulle,
In the literature this system norm is denoted|#||+,., in honor of the mathematician Hard
or as| H||«- We adopt the latter notation. The subscriptin this notation may seem awkwar
but the reason is the following very useful result:




Lemma 5.4.2 (oo-norm). For an LTI systeny = Hu there holds

[ H oo = Sup O (H(s)).

es>0

If H isrational ther|| H || exists (that is, is finite) ifff is proper and stable and in that case

[Hlloo = supo(H(jw)).
w€eR

Hereo denotes the largest singular value (see AppeBdlix

Example 5.4.3 (Small gain theorem).  Consider a feedback system as in Fd.2a), wherelL
is a linear time-invariant system with transfer function

k
1456

L(s) = — (5.62)

0 is a positive time constant arkda positive or negative gain. We investigate the stabilityhef
feedback system with the help of the small gain theorem.

1. Norm induced by th&,-norm. First consider BIBO stability in the sense of tlig,-
norm on the input and output signals. By inverse Laplacesframation it follows that the
impulse response corresponding/tas given by

—%e /% for ¢t >0,
I(t) =

i (5.63)
0 otherwise.
The norm|| L || of the system induced by th&,,-norm is (see Summaig.4.4)
o0
LI = [lZ]lz, =/ [[()] dr = [k|. (5.64)

Hence, by the small gain theorem a sufficient condition ftarimal stability of the feedbac
system is that

—1<k<l. (5.65)

2. Norm induced by th&,-norm. For positived the systemL is stable so according t
SummaryB.4.4the £,-induced norm exists and equals

IL]loo = sup |L(jw)| = sup

weR weR

= |k|. 5.66

Again we find from the small gain theorem thatg5 is a sufficient condition for closec
loop stability.

In conclusion, we determine the exact stability region. Téeglback equation of the system

Fig.5.12b) isw = v + Lw. Interpreting this in terms of Laplace transforms we mayesdbr
w to obtain

= (5.67)



so that the closed-loop transfer function is

1 _ 1 . 1+ s6
1—L(s) 1+ 2 (k) +s6°

(5.68)

Inspection shows that the closed-loop transfer functiomdaingle pole at-(1 + k)/6. The
corresponding system is BIBO stable if and onliift £ > 0. The closed-loop system i
internally stable if and only if

k> —1. (5.69)
This stability region is much larger than that indicated 5)66). O

The small gain theorem applied to the BPM establishes thbilgy of H and Ay in combi-
nation with the small gain conditiop/ Ay | < 1 imply internal stability of the BPM. Howeve
this by itself is not in a very useful form since typically we dot know the uncertainty g, so
verifying the small gain conditiofHAy|| < 1 can not be done. It is useful to reformulate t
small gain theorem in such a way that the known part (thedotamection matrixH) appears
separate from the unknown part (the uncertainty matiiy. Different such forms exist:

Theorem 5.4.4 (Small gain theorems for the BPM). Suppose that in the basic uncertairfgy
model of Fig.5.8(a) bothH andAy are£,-stable.

1. Sufficient for internal stability is that

5 (An(jw) < forallw € R U {oo}. (5.70)

1
o (H(jw))
with @ denoting the largest singular value.

2. Another sufficient condition for internal stability isath

[Anlloo < (5.71)

IH oo

Inequalities $.705.71) are asufficientconditions for internal stability. It is easy to find exar
ples that admit uncertainties that violate these condstlmurt at the same time dwt destabilize
the system. It may be proved, tholdgthat if robust stability is desired f@il uncertainties sat
isfying (5.71) then the condition is also necessary. This means thatlivesya possible to find e
uncertainty that violate$(71) within an arbitrarily small margin but destabilizes thetgm:

Theorem 5.4.5 (Necessary and sufficient stability conditio ns). Suppose that in the BPM c
Fig.5.8a) bothH andAj; are stable. Ley be a positive constant. Then

1. The BPM s internally for alh g with |Ag|lco < 1/ iff |H|oo < y-

2. The BPM is internally for alA g with || Ay |lec < 1/y iff | H|loo < y.
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Figure 5.13: (a) Block diagram. (b) Uncertainty model
5.4.1. Examples
We consider two applications of the basic stability robassresult.
Example 5.4.6 (Stability under uncertainty). By way of example, we study which uncertai

ties of the real parametérpreserve the stability of the system with transfer function

P(s) (5.72)

o 1+s6
Arranging the system as in Fi§.13a) we obtain the uncertainty model of Fi§13b), with 6,
the nominal value o and Ay its uncertainty. Because the system should be nominalbfes
we need), to be positive.

The interconnection matri¥ of the standard uncertainty model is obtained from the i
balance equatiop = —s(p + 6yg) (omittingu andy). Solution forq yields

—S

1 1 4 56, p ( )

It follows that
—s —s6y 1
H(s) = = — 5.74
(S) 1+ S@o 1+ S@o 90’ ( )

so that

S(H(jo)) = |Hijo) = L | 2% (5.75)

o w = w)| = — _ 90 .

: : 6o \ 1+ w26}
and
_ . 1
[ H|loo = SUpa(H(jw)) = s (5.76)

Sinceo (Ay(jw)) = |Ag| = |Axlleo, both (1) and (2) of Summary.4.4imply that internal
stability is guaranteed for all uncertainties such {gt| < 6,, or

—90 < A@ < 90. (577)

5See Yidysagar 1985 for a proof for the rational case.



Obviously, though, the system is stable forelb 0, that is, for all uncertaintiedy such that
—0y < Ag < 0. (5.78)

Hence, the estimate for the stability region is quite covesare. On the other hand, it is eas
to find a uncertainty that violate$.(f7 and destabilizes the system. The uncertainty=
—6h(1 + ¢), for instance, withe positive but arbitrarily small, violate$(77) with an arbitrarily
small margin, andlestabilizeshe system (because it makésegative).

Note that the class of uncertainties such At || < 6y is much larger than just real unce
tainties satisfyingg.77). For instanceqy could be a transfer function, such as

o

Ap(s) = 6 , 5.79
o(5) = b (5.79)
with 7 any positive time constant, anda real number with magnitude less than 1. This “pe
sitic” uncertainty leaves the system stable. O
O] Ag P P2 Ay =2
B o a2 B2

" ¢ fff 1 - y
¢ + 2 |+

Figure 5.14: Scaled uncertainty model for the third-ordanp

Example 5.4.7 (Two-parameter uncertainty). A more complicated example is the feedbs
system discussed in Example2.1, 5.2.2and5.3.5 It consists of a plant and a compensa
with transfer functions

g k + Tys
P(s)= —"—, C(s) = ,

)= Z0+50) )= 17705

respectively. In Exampl6.3.5we found that the interconnection matix with respect to un-
certainties in the parametegsandé is

(5.80)

1
N IFshy Ce)|r_ 1
H(s) = TF L) To®) |: 1 i| [ = s], (5.81)

with gy and 6, denoting the nominal values of the two uncertain parameteasd 6. Before
continuing the analysis we modify the uncertainty modeligf B.11to that of Fig.5.14 This



model includes scaling factots and g, for the uncertaintyd, and scaling factora, and j,
for the uncertaintydy. The scaled uncertainties are denatgdndd,, respectively. The produc
a11 = e is the largest possible uncertainty gn while ax8, = ¢, is the largest possibl
uncertainty ind. Itis easily verified that the interconnection matrix cepending to Fig5.14is

1
s C(S) ]
H(s) = — =0 | A 4 qs]. 5.82
) 1+Lo(s)|: —B> [=5 o] (5.82)
It may also easily be worked out that the largest eigenvalué (—jw) H(jo) is
;2 5
—2 1+026g 210 N2 2\ [ % 2 2
— _ il R. :
@) = T Lagop BiICF +8) (w4 + oo ) we (5.83)

The other eigenvalue is 0. The nonnegative quantfty) is the largest singular value éf (jw).
By substitution ofL, andC into (5.83 it follows that

(B> + 0T + B3(1 + 0*TY)) (o} + 2w®)

7 (w) = . (5.84)
Ix(a)I?
with x the closed-loop characteristic polynomial
x(s) = 00Tos* + (60 + To)s® + s* + goTus + gok. (5.85)

First we note that if we choose the nominal valiy®f the parasitic time constafitequal to zera
— which is a natural choice — and = a8, # 0 theno(co) = oo, S0 that stability is no
guaranteed. Indeed, this situation admits negative valfiéswhich destabilize the closed-loc
system. Hence, we need to chodéseositive but such that the nominal closed-loop syster
stable, of course.

Second, inspection 0b(84) shows that for fixed uncertainties = «; 8, ande, = o, 8, the
functiono depends on the way the individual values of the scaling eonst,, 5, o2, andg, are
chosen. On first sight this seems surprising. Reflectioratewbat this phenomenonis caused
the fact that the stability robustness test is baseflibruncertaintiesA ;. Full uncertainties are
uncertainties such that all entries of the uncertaintysimmmatrixA are filled with dynamica
uncertainties.

We choose the numerical valuks= 1, 7T; = +/2, andT, = 1/10 as in Examplé&.2.2 In
Exampleb.2.8we consider variations in the time constértetween 0 and 0.2. Corresponding
we letg, = 0.1 ande, = 0.1. For the variations in the gaig we study two cases as |
Example5.2.8

1. 0.5 < g < 5. Correspondingly, we lety, = 2.75 ande; = 2.25.
2. 0.5 < g < 2. Correspondingly, we takg, = 1.25 ande; = 0.75.

For lack of a better choice we select for the time being

ap = fi1 = e, o = fr = e (5.86)

Figure5.15shows the resulting plots of(w) for the cases (1) and (2). In case (1) the peak v:
is about 67.1, while in case (2) it is approximately 38.7.Bcases fail the stability robustne
test by a very wide margin, although from Exam®bl2.4we know that in both situations stabilit
is ensured. The reasons that the test fails are that (i) siéstbased on full uncertainties ratt
than the structured uncertainties implied by the variatiorthe two parameters, and (ii) the te
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Figure 5.15: Plots of (H (jw)) for the two-parameter plant

also allowsdynamicaluncertainties rather than the real uncertainties impliethle paramete
variations.

Less conservative results may be obtained by allowing thngcfactorse, 81, a2, andg,;
to be frequency-dependent, and to choose them so as to @) for eachw. Substituting
B1 = e1/a; andB, = &,/a, we obtain

s%(kz-l-a)z Tj)a)(’

el(k* + o’T7) + +&3(1 + &’ TP)p + &3(1 + *T3)0®

Ix(w)I?

wherep = a7 /a3. Itis easy to establish that for fixedthe quantitys(w) is minimized for

3€1 kz—i—a)szz
=w —, —, 5.88
p & \/ 1 + 02T} ( )

and that for this value of

g1/ k2 + 0 T? + e20° /1 + 02T}
T(J | ) (5.89)
x(jow

Figure5.16shows plots ot for the same two cases (a) and (b) as before. In case (a) the
value ofo is about 1.83, while in case (b) it is 1. Hence, only in caser@blst stability is
established. The reason that in case (a) robust stabilitgtiproved is that the uncertainty mod
allows dynamic uncertainties. Only if the size of the unaiaties is downsized by a factor ¢
almost 2 robust stability is guaranteed.

In Example5.6.8in the section on the structured singular value this exangpferther dis-
cussed. m)

() = , (5.87)

o(w) =

5.4.2. Nonlinear perturbations

The basic stability robustness result also appliesforlinear perturbations. Suppose that tl
perturbationA g in the block diagram of Figs.8a) is a nonlinear operator that maps the sig
e(t),t € R, into the signalAge)(r), t € R. Assume that there exists a positive constaatich
that

[Amer — Aner| < kler —ea| (5.90)
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Figure 5.16: Plots of (H (jw)) with optimal scaling for the two-parameter
plant

Figure 5.17: Sector bounded function

for every two input, ¢, to the nonlinearity. We use th&,-norm for signals. By application ¢
the fixed point theorem it follows that the perturbed systéig. 5.8(a) is stable if

k|H|oo < 1. (5.91)
Suppose for instance that the signals are scalar, and\tha& a static nonlinearity described |
(Ane)(t) = fle@)). (5.92)
with /1 R — R. Let f satisfy the inequality
‘& <ec, e#0, e eR, (5.93)
e

with ¢ a nonnegative constant. Figusel 7illustrates the way the functiofi is bounded. We cal
f asector bounded functiont is not difficult to see thatg.90 holds withk = c. It follows
that the perturbed system is stable for any static nonlipegiurbation satisfyingy(93 as long
asc < 1/||H|loo-

Similarly, the basic stability robustness result holdstiime-varyingperturbations and pertu
bations that are both nonlinear and time-varying, provithed these perturbations are suital
bounded.

5.5. Stability robustness of feedback systems

In this section we apply the results 5.4 to various perturbation models for single-degr
of-freedom feedback systems. We successively discusopiopal, proportional inverse an
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Figure 5.18: Proportional and scaled perturbations of efaadback loop

fractional perturbations for MIMO systems. The result§ &f4 emerge as special cases.

5.5.1. Proportional perturbations

In § 5.3we consider additive and multiplicative (proportional perturbation models for single
degree-of-freedom feedback systems. The proportionakiisgreferred because it represe
therelativesize of the perturbation. The corresponding block diagsarepeated in Fich.18a).
It represents a perturbation

L — (I+A)L (5.94)
Sinceq = —L(p + q), so thaly = —(I + L)™' Lp, the interconnection matrix is
H=—-(I+L)"L=-T, (5.95)

with T = (I + L)"'L = L(I + L)™' thecomplementary sensitivity matrdf the closed-loop
system.

To scalethe proportional perturbation we modify the block diagrainfig. 5.1§a) to that of
Fig.5.18b). This diagram represents a perturbation

L — (I+VS W)L, (5.96)

whereV andW are available to scale such thidf ||.o < 1. For this configuration the intercor
nection matrix isH = —-WTV.
Application of the results of Summaby4.4leads to the following conclusions.

Summary 5.5.1 (Robust stability of feedback systems for pro portional perturbations).
Assume that the feedback system of Fdlga) is nominally stable.

1. A sufficient condition for the closed-loop system to békainder proportional perturbe
tions of the form

L — (14 AL (5.97)



is thatA; be stable with

5(AL(jo)) < forall w € R. (5.98)

1
o(T(jo))

with 7= (I + L)' L = L(I + L)™' the complementary sensitivity matrix of the feedb:
loop. If stability is required forll perturbations satisfying the bound then the conditio
also necessary.

2. Underscaledperturbations
L — (1+4+VéW)L (5.99)
the system is stable for gJb, | < 1 if and only if

IWTV]o < 1. (5.100)
O

For SISO systems part (1) of this result reduces to Doyld®sistness criterion df 1.4. In
fact, Summanp.5.1is the original MIMO version of Doyle’s robustness critarioyle, 1979.
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Figure 5.19: Proportional inverse perturbation of unitiiezck loop

5.5.2. Proportional inverse perturbations

The result of the preceding subsection confirms the impoetafithe complementary sensitivi
matrix (or function)7" for robustness. We complement it with a “dual” result invoty the
sensitivity functionS. To this end, consider the perturbation model of Fid.9a), where the
perturbationA; - is included in a feedback loop. The model represents a fation

L — (I+A,-)7'L. (5.101)
Assuming thatl. has an inverse, this may be rewritten as the perturbation

L' — L7'U+A4A,-). (5.102)



Hence, the perturbation represents a proportional pextianp of theinverseloop gain. The
interconnection matrix? follows from the signal balancg = —p — Lq so thaty = —(1 +
L)™' p. Hence, the interconnection matrix is

H=-(I+L)"=-85. (5.103)

S = (I + L)~ is the sensitivity matrix of the feedback loop.
We allow for scaling by modifying the model to that of Fi19b). This model represent
perturbations of the form

L' — L'+ V§W), (5.104)

whereV andW provide freedom to scale such th# -1 || < 1. The interconnection matri
nowisH = -WSV.
Application of the results of Summaby4.4yields the following conclusions.

Summary 5.5.2 (Robust stability of feedback systems for pro portional inverse perturba-
tions). Assume that the feedback system of FidL9a) and (b) is nominally stable.

1. Underproportional inverse perturbationsf the form
L' — L'+ 4,-) (5.105)

a sufficient condition for stability is that; -1 be stable with

o (A -1 (jw)) < forallw € R, (5.106)

1
o (S(jw))
with S = (I + L)™' the sensitivity matrix of the feedback loop. If stabilityriquired for
all perturbations satisfying the bound then the conditionss akecessary.
2. Underscaledinverse perturbations of the form
L' — LI 4V W) (5.107)
the closed-loop system is stable for @} -1 ||oo < 1 if and only if

IWSV|loo < 1. (5.108)
O

5.5.3. Example
We illustrate the results of Summarig$.1and5.5.2by application to an example.

Example 5.5.3 (Robustness of a SISO closed-loop system). In Example5.2.1we con-
sidered a SISO single-degree-of-freedom feedback sysiémplant and compensator transf
functions
g k+ Tys
P(s) = ———r, C(s) = ,
©) = 30 1s0) )= T 70y
respectively. Nominally the gaip equalsgy = 1, while the parasitic time constaftis nom-
inally 0. In Example5.2.2we chose the compensator parameteré as 1, 7, = +/2 and
Ty = 1/10.
We use the results of Summar&$.1and5.5.2to study what perturbations of the paramet
g and@ leave the closed-loop system stable.

(5.109)



1. Loop gain perturbation modeStarting with the expression

g k+ Tys
L(s) = P(s)C(s) = 5.110
(s) (5)C(s) s2(1 4+ s0) 1+ Tys ( )
it is easy to find that the proportional loop gain perturbagiare
L(s)— L 0
Ay = EO = Lol) _ T (5.111)

Ly(s) 146

Figures5.2(@) and (b) show the magnitude plot of the invetgd; of the nominal com-
plementary sensitivity function. Inspection shows thaf, assumes relatively small va
ues in the low-frequency region. This is where the propagigerturbations of the loo
gain need to be the smallest. Rbe= 0 the proportional perturbatiob (119 of the loop
gain reduces to
An(s) = £=50 (5.112)
8o

and, hence, is constant. The minimal value of the functjdff;| is about 0.75. Therefore
for 8 = 0 the robustness criteriohof Summarys.5.1allows relative perturbations f
up to 0.75, so that.25 < g < 1.75.

For g = go, on the other hand, the proportional perturbatiérif{l) of the loop gain
reduces to
—s6

A =

(5.113)

Figure5.2(Qa) shows magnitude plots of this perturbation for sevesfles of6. The
robustness criterion (a) of Summasys.1permits values o up to about 1.15. For thi
value off the gaing can be neither increased nor decreased without violategriterion.

For smaller values of the parasitic time constaatwider range of gains is permitted. T
plots of of| A, | of Fig. 5.2Q(b) demonstrate that f@t = 0.2 the gaing may vary betweer
about 0.255 and 1.745.

The stability bounds og and6 are conservative. The reason is of course that the pe
bation model allows a much wider class of perturbations phstrthose caused by chang
in the parameterg andé.

2. Inverse loop gain perturbation modeThe proportional inverse loop gain perturbatior
given by

L7 - Ly' () _go-g
Ly'(s) g

We apply the results of Summaby5.2 Figure5.21gives the magnitude plot of the ir
versel /S, of the nominal sensitivity function. Inspection shows tfaatthe inverse looy
gain perturbation model the high-frequency region is thetneatical. By inspection of
(5.119 we see that if # 0 then|A; -1 (c0)| = oo, SO that robust stability is not ensure
Apparently, this model cannot handle high-frequency pbetions caused by parasit
dynamics.

Ap-i(s) = + 5052, (5.114)
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Figure 5.20: Robust stability test for the loop gain peratidn model: (a)
1/|T,| and the relative perturbations fer= 1. (b) 1/|7;,| and
the relative perturbations fér = 0.2

For 6 = 0 the proportional inverse loop gain perturbation reduces to
Api(s) = 2=£, (5.115)
g

and, hence, is constant. The magnitudd 0§, has a minimum of about 0.867, so th
for & = 0 stability is ensured for%| < 0.867, 0r0.536 < g < 7.523. This range of
variation is larger than that found by application of thegmdional loop gain perturbatio
model.

Again, the result is conservative. It is disturbing that thedel does not handle parasi
perturbations.
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Figure 5.21: Magnitude plot df/ .Sy

The derivation of the unstructured robust stability te§tSuommary5.5.1is based on the sma
gain theorem, and presumes the perturbatiépgo beBIBO stable This is highly restrictive
if the loop gainL by itself represents an unstable system, which may easilyrgin particular,
when the plant by itself is unstable).



It is well-known (Vidysagar 1985 that the stability assumption on the perturbation may
relaxed to the assumption that both the nominal loop gaintla@gerturbed loop gain have tl
same number of right-half plane poles

Likewise, the proofs of the inverse perturbation tests ah8iary5.5.2require the perturbatio
of the inverseof the loop gain to be stable. This is highly restrictive i€tloop gain by itself
has right-half plane zeros. This occurs, in particular, atiee plant has right-half plane zerc
The requirement, however, may be relaxed to the assumptiintte nominal loop gain and tf
perturbed loop gain have tlsame number of right-half plane zeros

5.5.4. Fractional representation

The stability robustness analysis of feedback systemsit@aseerturbations of the loop gain «
its inverse is simple, but often overly conservative.

Another model that is encountered in the literaturglies on what we term herfeactional
perturbations It combines, in a way, loop gain perturbations and invesee bain perturbation:s
In this analysis, the loop gaih is represented as

L=ND", (5.116)

where thedenominatorD is a square nonsingular rational or polynomial matrix, ahd rational
or polynomial matrix. Any rational transfer matrix may be represented like this in many wa
If D and N are polynomial then the representation is known as a (figidlynomial matrix
fraction representation If D and N are rational and proper with all their poles in the of
left-half complex plane then the representation is knowma gdght) rational matrix fraction
representation

Example 5.5.4 (Fractional representations). For a SISO system the fractional represental
is obvious. Suppose that

g

L® = G0 say

(5.117)

Clearly we have the polynomial fractional representation= ND~! with N(s) = g and
D(s) = s*(1 + s0). The fractional representation may be made rational bintett

s2(1 + s0) g
D(s)y=——, N(s)=— 5.118
="y YO=g745 (5.118)
with d any strictly Hurwitz polynomial. O

Right fractional representation may also be obtained foM®MIsystems (see for instan
(Vidysagar 1985).
5.5.5. Fractional perturbations

Figure5.22 shows the fractional perturbation model. Inspection shihas the perturbation i:
given by

L — (I+Ay)LU + Ap)~!, (5.119)

6The idea originates from VidyasagaiVidyasagar eta). 1982 Vidysagar 1985. It is elaborated in
(McFarlane and Glovel990.
“Because the denominator is on the right.
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Figure 5.22: Fractional perturbation model
or
ND™' — (I 4+ Ay)ND'(I + Ap)~L. (5.120)
Hence, the numerator and denominator are perturbed as
N — (I + Ay)N, D — (I + Ap)D. (5.121)

Thus,Ap andAy represenproportional perturbations of the denominatandof the numerator,
respectively.
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Figure 5.23: Equivalent configurations

By block diagram substitution it is easily seen that the @pifition of Fig.5.22is equivalent
to that of Fig.5.23a). The latter, in turn, may be rearranged as in big3b). Here

p=-4pq1 +Angx = AL [Zl:| , (5.122)
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Figure 5.24: Perturbation model with scaling

with
AL =[-Ap Ay]. (5.123)

To establish the interconnection mattk of the configuration of Figs.23b) we consider the
signal balance equatian = p — Lq,. It follows that

qi=U+L)""p=Sp, (5.124)
with S = (I + L)™' the sensitivity matrix. Sincg, = —Lq; we have
¢ =—-LU+L)"'p=-Tp, (5.125)

with T = L(I + L)™' the complementary sensitivity matrix. Inspection®fi24-5.125 shows
that the interconnection matrix is

= [_ST} . (5.126)

Investigation of the frequency dependence of the greaitegtilar value ofH (jw) yields infor-
mation about the largest possible perturbatidpshat leave the loop stable.

It is useful to allow for scaling by modifying the configurati of Fig. 5.23b) to that of
Fig.5.24 This modification corresponds to representing the peatiohs as

Ap = VépWy, Ay = VSN Wy, (5.127)
whereV, Wy, andW, are suitably chosen (stable) rational matrices such that
6Ll <1, with 8, =[-6p Sn]. (5.128)

Accordingly, the interconnection matrix changes to

[ wmsy
H= [_WzTV] (5.129)

Application of the results of SummaBy4.4yields the following conclusions.
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Figure 5.25: Feedback loop

Summary 5.5.5 (Numerator-denominator perturbations). In the stable feedback configur
tion of Fig.5.25 suppose that the loop gain is perturbed as

L=ND" — [(I+VSyW,)N](I+ VépW;)D]™! (5.130)
with V', W, and W, stable transfer matrices. Then the closed-loop systemalidestor all stable
perturbationsp = [—8p dn] suchthal|dp|le < 1if and only if

[Hloo < 1. (5.131)

Here we have

[ wmsv
H= [_WZTV}, (5.132)

with § = (1 + L)™' the sensitivity matrix and” = L(I + L)~! the complementary sensitivit
matrix. O

The largest singular value d¥ (jw), with H given by 6.132, equals the square root of tf
largest eigenvalue of

H'(mjo)H(jo) = V' (jo)ST(=jo)W (=jo)W(jo)S ()
+ TT(=jo)W, (mjo)Wa(jo) T (jo)]V(jo).  (5.133)
For SISO systems this is the scalar function

H'(—jo)H(jo) = |V(io)P[S(o) P[Wi (o) + T (o) Waio) '] (5.134)

5.5.6. Discussion

We consider how to arrange the fractional perturbation hddehe SISO case, without l0ss
generality we may take the scaling functibnequal to 1. TherW; represents the scaling fact
for the denominator perturbations aid that for the numerator perturbations. We accordin
have

1H 13 = sup (ISGo)PIWi(j)* + I T (j) P Wa(iw)?) - (5.135)

For well-designed control systems the sensitivity funtSois small at low frequencies while th
complementary sensitivity functiofi is small at high frequencies. Figute26illustrates this.
Hence,W; may be large at low frequencies aild large at high frequencies without violatin
the robustness conditiohf/ | .. < 1. This means that at low frequencies we may allow la
denominator perturbations, and at high frequencies langgenator perturbations.
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Figure 5.26: Sensitivity function and complementary sérii function for
a well-designed feedback system

The most extreme point of view is to structure the pertudrathodel such that all low fre
quency perturbations are denominator perturbations, dridgh frequency perturbations al
numerator perturbations. Since we may trivially write

L=—, (5.136)

modeling low frequency perturbations as pure denominadupbations implies modeling lo
frequency perturbations @&sverseloop gain perturbations. Likewise, modeling high frequel
perturbations as pure numerator perturbations impliesatiraglhigh frequency perturbations
loop gain perturbations. This amounts to taking

. _ W;-1(w) atlow frequencies,

(Wie)] = { 0 at high frequencies, (5.137)
. 0 at low frequencies,

Wa(jo)] { Wi (w) at high frequencies, (5.138)

with W; -1 a bound on the size of the inverse loop perturbations,@p@ bound on the size c
the loop perturbations.

Obviously, the boundary between “low” and “high” frequesglies in the “crossover” regiot
that is, near the frequency where the loop gain crosses beearero dB line. In this frequenc
region neithetS nor 7" is small.

Another way of dealing with this perturbation model is to rifpdhe stability robustness te:
to checking whether for eaeh € R

1
1S ()l T (jw)|

This test amounts to verifying whether either the propoidoop gain perturbation test succe
or the proportional inverse loop gain test. Obviously, dsults are less conservative than
individual tests. Feedback systems are robustly stabledidurbations in the frequency regio
where either the sensitivity is small (at low frequencieghe complementary sensitivity is sm:
(at high frequencies). In therossover regiomeither sensitivity is small. Hence, the feedbe
system is not robust for perturbations that strongly affieetcrossover region.

A1 (jo)| <

or |AL(jw)] <

(5.139)



In the crossover region the uncertainty therefore shouldirbiéed. On the one hand thi
limitation restrictsstructureduncertainty — caused by load variations and environmehtaiges
— that the system can handle. On the other hamstructureduncertainty — deriving from
neglected dynamics and parasitic effects — should be kepimbounds by adequate modelir

5.5.7. Plant perturbation models

In the previous subsections we modeled the uncertainty ase@rtainty in the loop gaiid,
which results in interconnection matrices in terms of tloisg gain, such a§ andT. It is
important to realize that we have a choice in how to model tieettainty and that we need n
necessarily do that in terms of the loop gain. In particutatre uncertainty is usually prese
in the plantP only, and not in controllek, it makes sense to model the uncertainty as sl
Table5.1lists several ways to model plant uncertainty.

plant perturbed plant interconnection matrid{ perturbationA
P P+ VApW —-WKSV Ap
P (I 4+ VApW)P -WTV Ap
P P(I 4+ VApW) ~WKSPV Ap
P (I+VApW) P —-WSV Ap
P P(I+VApW)™! -W( + KP)"'v Ap
D7'N | (D+ VApW)™YN + VAyW,) —[wis 1DV [4p an]
ND™' | (N + W ANV (D + WrApV)~! —VD_I[KSWI (I+KPy~' | [ﬁ,‘)]

Table 5.1: A list of perturbation models with plaftand controllerk

5.6. Structured singular value robustness analysis

We return to the basic perturbation model of Fig8 which we repeat in Figs.27a). As
demonstrated i§ 5.3 the model is very flexible in representing both structuredyrbations
(i.e., variations of well-defined parameters) and unstmect perturbations.

The stability robustness theorem of Summarg.4(p. 200 guarantees robustness under
perturbationsA such that (A(jw)) - 6 (H(jw)) < 1 forall w € R. Perturbationg\(jw) whose
norma (A(jw)) does not exceed the numbegt (H (jw)), however, are completelynstructured.
As a result, often quite conservative estimates are oldaiféhe stability region fostructured
perturbations. Several examples that we considered inrtdeegding sections confirm this.

Doyle (1982 proposed another measure for stability robustness bas#teanotion of what
he callsstructured singular valueln this approach, the perturbation structure is detaileih s
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Figure 5.27: (a) Basic perturbation model. (b) Structuredyrbation model

Fig.5.21b) (Safonov and Athand98]). The overall perturbatioa has the block diagonal forr

Al 0 0
A= 0 %2. 0 (5.140)
0 - 0 Ag

Each diagonal block entr; has fixed dimensions, and has one of the following forms:

e A; = 61, with § areal number. If the unit matrik has dimension 1 this represents a
parameter variation. Otherwise, this isspeated real scalar perturbation

e A, = §I, with § a stabl@ scalar transfer matrix. This representsaalar or repeated
scalar dynamic perturbation

e A; is a (not necessarily square) stable transfer matrix. Tépsasents anultivariable
dynamic perturbation

A wide variety of perturbations may be modeled this way.

We study which are the largest perturbatighwiith the given structure that do not destabili
the system of Figh.27a). Suppose that a given perturbatidrdestabilizes the system. Then
the generalized Nyquist criterion of Summary.13the Nyquist plot of dgt/ — HA) encircles
the origin at least once, as illustrated in Fig28 Consider the Nyquist plot of dgt — e HA),
with ¢ a real number that varies between 0 and 1.d~er 1 the modified Nyquist plot coincide
with that of Fig.5.28 while for e = 0 the plot reduces to the point 1. Since obviously the |
depends continuously enthere must exist a value ein the intervak0, 1] such that the Nyquis
plot of de{I — ¢ HA) passes through the origin. HenceAifdestabilizes the perturbed syste
there exist € (0, 1] andw € R such that d€t/ — e H(jw)A(jw)) = 0. Therefore A doesnot
destabilize the perturbed system if and only if there do rigte € (0, 1] andw € R such that
det/ —eH(jwA(jw)) = 0.

8A transfer function or matrix is “stable” if all its poles airethe open left-half plane.
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Figure 5.28: Nyquist plot of déf — H A) for a destabilizing perturbation

Fix w, and letx (H (jw)) be thelargestreal number such that dét— H(jw)A(jw)) # 0 for
all A(jw) (with the prescribed structure) such thdtA (jw)) < «(H(jw)). Then, obviously, if
for a given perturbationt (jw), w € R,

5(A(jw)) < k(H(jw))  forallw e R (5.141)

thendet/ —¢H (jw)A(jw)) # 0fore € (0, 1]andw € R. Therefore, the Nyquist plot of dgt—
H A) does not encircle the origin, and, hengdedoes not destabilize the system. Conversely,
always possible to find a perturbatighthat violates $.141) within an arbitrarily small margir
that destabilizes the perturbed system. The numiféf(jw)) is known as thenultivariable
robustness margiof the systen¥ at the frequencw (Safonov and Athan4.981).

We note that for fixed

k(H(jw)) = sugy|d(A(jw)) <y = detll — H(jo)A(jw)) # 0}
= inf{5(A(w)) | delI — H(jw)A(jw)) = 0}. (5.142)

If no structure is imposed on the perturbatidrihen« (H (jw)) = 1/6 (H (jw)). This led Doyle
to terming the numben (H (jw)) = 1/x(H (jw)) thestructured singular valuef the complex-
valued matrixH (jw).

Besides being determined #(jw) the structured singular value is of course also depen
on the perturbation structure. Given the perturbationcstine of the perturbationa of the
structured perturbation model, define Bythe class otonstanicomplex-valued matrices of th
form

Ay 0 0
a=|0 & 0 (5.143)
0 -+ 0 Ag

The diagonal blockA; has the same dimensions as the corresponding block of thendgr
perturbation, and has the following form:

e A; = &1, with § a real number, if the dynamic perturbation is a scalar oratgaereal
scalar perturbation.

e A; = 61, with § a complex number, if the dynamic perturbation is a scalaadyio or a
repeated scalar dynamic perturbation.

e A; is a complex-valued matrix if the dynamic perturbation is altivariable dynamic
perturbation.



5.6.1. The structured singular value

We are now ready to define tiseructured singular valuef a complex-valued matrit/ :

Definition 5.6.1 (Structured singular value). Let M be ann x m complex-valued matrix
andD a set ofm x n structured uncertainty matrices. Then #trictured singular valuef
M given the seD is the numbey (M) defined by

1

w(M) = aep, delt(r}]:MA)=o a(4). (5.144)

If det(/ — MA) # 0 forall A € Dthenu(M) = 0. O

The structured singular valye(M) is the inverse of the norm of the smallest perturbatio
(within the given clas®) that maked — M A singular. Thus, the larger(M ), the smaller the
perturbationA is that is needed to make— M A singular.

Example 5.6.2 (Structured singular value). By way of example we consider the computati
of the structured singular value obax 2 complex-valued matrix
V- [mn mlz] (5.145)
nay Ny
under the real perturbation structure
a0
A= [ 0 AJ, (5.146)

with A; € R andA,; € R. Itis easily found that
5'(A):ma)(|A]|,|A2|), del([—i—MA)Z 1 +Wl]1A1 +I’VZ22A2+WZA]A2, (5147)

with m = det(M) = my1my» —mamsy;. Hence, the structured singular valueldfis the inverse
of

k(M) = inf max(| A, |As)). (5.148)
{A]ER, AreR: 1+m11A1+m22A2+H1A1A2=0}

Elimination of, sayA, results in the equivalent expression
1 +mp4

. 5.149
My + mA ) ( )

k(M) = Ainef]R max(|A,],
1

Suppose thad/ is numerically given by

1 2
M = [3 4}. (5.150)
Then it may be found (the details are left to the reader) that
-5+ V33
(M) = %, (5.151)
so that
4 54433
WM = = 2TVP 53 (5.152)
-5++/33 2

O



5.6.2. Structured singular value and robustness

We discuss the structured singular value in more det&ibirs.3 but first summarize its applice
tion to robustness analysis.

Summary 5.6.3 (Structured robust stability). Given the stable unperturbed systdihthe
perturbed system of Fich.27b) is stable for all perturbationd such thatA(jw) € D for all
w e Rif

5(Ajo)) < forall w € R, (5.153)

1
1(H (jw))

with p the structured singular value with respect to the pertiwhadtructureD. If robust sta-
bility is required with respect tall perturbations within the perturbation class that satikg
bound 6.153 then the condition is besides sufficient also necessary. O

Given a structured perturbatiah such thatA(jw) € D for everyw € R, we have

[Alloo = sup 0 (A(jw)). (5.154)

Suppose that the perturbations acaled so that]| Al < 1. Then Summanp.6.3implies that
the perturbed system is stable.f; < 1, where

pr = sup w(H(jo)). (5.155)

weR

With some abuse of terminology, we call; thestructured singular valuef H. Even more car
be said:

Theorem 5.6.4 (Structured robust stability for scaled pert urbations). The perturbe
system of Fig5.271b) is stable for all stable perturbatiomssuch thatA(jw) € D for all

w € Rand||Alle < lifandonly if ug < 1. O

Clearly, if the perturbations are scaled to a maximum norfntben a necessary and sufficie
condition for robust stability is thaty < 1.

5.6.3. Properties of the structured singular value

Before discussing the numerical computation of the strectgingular value we list some of tf
principal properties of the structured singular valDeyle, 1982 Packard and Doy|€1993.

Summary 5.6.5 (Principal properties of the structured sing ular value). The structured sin-:
gular valueu (M) of a matrix M under a structured perturbation g2thas the following prop-
erties:

1. Scaling property:
plaM) = |af (M) (5.156)

for everya € R. If none of the perturbations are real then this holds as feelevery
complexa.



2. Upper and lower boundsSuppose thad/ is square. Then
PR(M) = (M) = 6(M), (5.157)

with pr defined as in Exercise10Q
If none of the perturbations is real then

p(M) = p(M) <6(M), (5.158)
with p denoting the spectral radius. The upper bounds also applyig not square.

3. Preservation of the structured singular value under diagjostaling: Suppose that th
ith diagonal block of the perturbation structure has dim@msi; x n;. Form two block
diagonal matrice® and D whoseith diagonal blocks are given by

D; =dil,,, D;=dl,,, (5.159)
respectively, with?; a positive real numbery;, denotes & x k unit matrix. Then

w(M) = u(DM D). (5.160)

4. Preservation of the structured singular value under unjtaelansformation:Suppose tha
theith diagonal block of the perturbation structure has dinmnsii; xn;. Form the block
diagonal matrice®) and O whoseith diagonal blocks are given by the x m; unitary
matrix Q; and then; x n; unitary matrixQ;, respectively. Then

(M) = n(OM) = (M Q). (5.161)
O

The scaling property is obvious. The upper boun@ ifollows by considering unrestricte
perturbations of the forrd € C"™*" (that is, A is a full m x n complex matrix). The lowe
bound in2 is obtained by considering restricted perturbations ofden A = §7, with § a real
or complex number. The propertidgend4 are easily checked.

The following formula for the structured singular value of & 2 dyadic matrix has useft
applications.

Summary 5.6.6 (Structured singular value of a dyadic matrix ). The structured singuls
value of the2 x 2 dyadic matrix

_ [“"’1 ‘”bz} _ [‘”} (b ba]. (5.162)

a2b1 azbz aj

with ay, a», by, andb, complex numbers, with respect to the perturbation strectur

A= [Al 0 } A eC, A, eC, (5.163)
0 A,
is
wW(M) = |aiby| + |asbs|. (5.164)
O

The proofis given ir§ 5.8



5.6.4. Numerical approximation of the structured singular value

Exact calculation of the structured singular value is oftetipossible pracytically and in any ca
computationally intensive. The numerical methods thapaesently available for approximatir
the structured singular value are based on calculatingruppklower bounds for the structure
singular value.

Summary 5.6.7 (Upper and lower bounds for the structured sin gular value).

1. D-scaling upper boundLet the diagonal matrice® and D be chosen as in (3) of Sun
mary5.6.5 Then with property (b) we have

u(M) = u(DM D" <5(DMD™). (5.165)
The rightmost side may be numerically minimized with respeche free positive num

bersd; that determined and D.

Suppose that the perturbation structure consists t#peated scalar dynamic perturbati
blocks andM full multivariable perturbation blocks. Thendin + M < 3 the minimized
upper bound actuallgqualsthe structured singular valbie

2. Lower bound.Let Q be a unitary matrix as constructed in (4.) of Summzu§.5 With
property (2.) we have (for complex perturbations only)
M) = pn(MQ) = p(MQ). (5.166)
Actually, (Doyle, 1982,
(M) = max p(MQ), (5.167)

with Q varying over the set of matrices as constructed in (4.) of Barg5.6.5
O

Practical algorithms for computing lower and upper bountthe structured singular value f
complex perturbations have been implemented in theMB p-Analysis and Synthesis Toolb
(Balas et al.1997). The closeness of the bounds is a measure of the reliabilitye calculation.

The MATLAB Robust Control ToolbogChiang and Safongw992) provides routines for cal
culating upper bounds on the structured singular valuedtit bomplex and real perturbations

5.6.5. Example
We apply the singular value method for the analysis of thigilittarobustness to an example.

Example 5.6.8 (SISO system with two parameters). By way of example, consider the SIS
feedback system that was studied in ExantpRland several other places. A plant with trans
function

8
P(s) = 5.168
)= Z0+50) (5.168)
is connected in feedback with a compensator with transfestian
k+sTy
= —. 5.169
=17 (5.169)

9If there arereal parametric perturbations then this result remains validyiged that we use a generalization Bf
scaling called D, G)-scaling This is a generalization that allows to exploit realnespesturbations.



We use the design values of the parameters establishedin®.2.2 In Examples.3.5it was
found that the interconnection matrix for scaled pertudretin the gaing and time constart
is given by

1
N 14569 ﬂ]C(.S) _ay
H“)—m[ b }[ i), (5170)

where the subscript indicates nominal values, arfdy = P,C is the nominal loop gain. Th
numbersx;, a,, B, and B, are scaling factors such tht — go| < &; with &; = «18;, and
|6 — 6| < &, with &, = a3 8,. The interconnection matrikl has a dyadic structure. Applicatic
of the result of Summar$.6.6shows that its structured singular value with respecamplex
perturbations in the parameters is

1
. Y 140263 |C(Jw)|
GO = T ) (“”3‘ ? +“2ﬂ2w)

€1 ‘/kz + a)sz2 + 82&)3‘/ 1+ w2T02
[x0(jw)] ’

with xo(s) = 6o Tos* + (6 + To)s> + s> + goTus + gok the nominal closed-loop characteris
polynomial.

Inspection shows that the right-hand side of this exprassiddentical to that of .89 in
Example5.4.7 which was obtained by a singular value analysis based dmapscaling. In
view of the statement in Summaby6.7q1) this is no coincidence.

Figure5.29repeats the plots of of Fig.160f the structured singular value for the two ca:
of Example5.4.7. For case (a) the peak value of the structured singular \algeeater thar
1 so that robust stability is not guaranteed. Only in casedbjst stability is certain. Sinc
the perturbation analysis is based on dynamic rather theamper perturbations the results ¢

(5.171)

conservative. 0
2
H(H(jw))

1 @
(b)

0 2 0 2 3

- -1 1
10 10 10 10 , 10 10

Figure 5.29: Structured singular values for the two-patamgant for two
cases

5.7. Combined performance and stability robustness

In the preceding section we introduced the structured $émgalue to study the stability robus
ness of the basic perturbation model. We continue in thisseby consideringperformance



Figure 5.30: Control system

Figure 5.31: Two-degree-of-freedom feedback controlesyist

and its robustness. FiguBe30represents a control system wikternalinput w, such as dis-
turbances, measurement noise, and reference signalgxterdaloutputz. The output signal
z represents aerror signal,and ideally should be zero. The transfer matkxis the transfer
matrix from the external inpub to the error signat.

Example 5.7.1 (Two-degree-of-freedom feedback system). To illustrate this model, conside
the two-degree-of-freedom feedback configuration of Bi§l P is the plant,C the compen-
sator, andF a precompensator. The signals the reference signal, the disturbances: the
measurement noise,the plant input, ang the control system output. It is easy to find that

y = (I+PC)'PCFr+(I+ PC)y'v—(U+PC)'PCm
= TFr+Sv—Tm, (5.172)

where S is the sensitivity matrix of the feedback loop afidthe complementary sensitivit
matrix. The tracking error = y — r is given by

z=y—r=(TF—-10r+ Sv—Tm. (5.173)
Considering the combined signal

.
w=|v (5.174)
m

as the external input, it follows that the transfer matritte control system is
H=[TF-1 § -T]. (5.175)

O

The performance of the control system of Fig30is ideal if H = 0, or, equivalently,
|H|loo = 0. Ideals cannot always be obtained, so we settle for the Hidiih., to be “small,”
rather than zero. By introducing suitable frequency depansicaling functions (that is, by mo
ifying H to WHYV) we may arrange that “satisfactory” performance is obtifi@nd only if

| H oo < 1. (5.176)
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Figure 5.32: Magnitude plot &Sspec

Example 5.7.2 (Performance specification). To demonstrate how performance may be sy
ified this way, again consider the two-degree-of-freedaedback system of Figh.31 For sim-
plicity we assume that it is a SISO system, and that the nefersignal and measurement no
are absent. It follows from Example7.1that the control system transfer function reduces to
sensitivity functionS of the feedback loop:

1
H = =S
1+ PC

Performance is deemed to be adequate if the sensitivittibmsatisfies the requirement

(5.177)

IS(w)| < |Sspedj®)], w €R, (5.178)

with Sspeca specified rational function, such as

S2

Sspeds) = ———..
spet( ) S2 + 2;(1)0.5‘ + wOZ

(5.179)
The parametew, determines the minimal bandwidth, while the relative darmgpioefficients
specifies the allowable amount of peaking. A doubly logaritimagnitude plot ofSspec is
shown in Fig5.32for wy = 1 and{ = 1.

The inequality $.178 is equivalent toS(jo)V(jw)| < 1 forw € R, with V' = 1/Sspec
Redefiningd asH = SV this reduces to

|Hlloo < 1. (5.180)

O

By suitable scaling we thus may arrange that the performahtee system of Fig5.30is
considered satisfactory if

[Hloo < 1. (5.181)

In what follows we exploit the observation that by (1) of Suarn5.4.4this specification is
equivalent to the requirement that the artificially peradisystem of Fig5.33remains stable
under all stable perturbation$, such that] A¢||eo < 1.



Figure 5.33: Artificially perturbed system

5.7.1. Performance robustness

Performance is said to ebustif || H||« remains less than 1 under perturbations. To make
statement more specific we consider the configuration of3=Bf{a). The perturbatiomd may

be structured, and is scaled such that|,, < 1. We describe the system by the interconnect
equations

z w H11 H12 w
=H = . 5.182
M M [Hzl sz} [p} (5182
Hi, is the nominal control system transfer matrix. We definegrenince to be robust if

1. the perturbed system remains stable under all pertorigtand

2. theoo-norm of the transfer matrix of the perturbed system remkgiss than 1 under al

perturbations.
1 Dy &
w z W —> —
p ) q P r—= - q
A — A
@ (b)

Figure 5.34: (a) Perturbed control system. (b) Doubly pbed system

Necessary and sufficient for robust performance is that ¢hen rof the perturbed transfer matr
from w to z in the perturbation model of Fi§.34a) is less than 1 for every perturbatidnwith
norm less than or equal to 1. This, in turn, is equivalent ® ¢bndition that the augmente
perturbation model of Figh.34b) is stable for every “full” perturbatior, and every structures
perturbationA, both with norm less than or equal to 1. Necessary and suffifoe this is that

<1, (5.183)

with u the structured singular value &f with respect to the perturbation structure defined b

Ay O
[0" A] (5.184)



Summary 5.7.3 (Robust performance and stability). Robust performance of the system
Fig.5.34a) is achieved if and only if

<1, (5.185)

whereu g is the structured singular value é&f under perturbations of the form

[AO" ﬂ (5.186)
Ay is a “full” perturbation, andA structured as specified. O
w
+
u +
ﬁ)% C =P %&% z @
w
q p
Wo 1 %
r + +
u y
?—) cC > P " ; Wl —> Z (b)

Figure 5.35: SISO feedback system. (a) Nominal. (b) Peetlirb

5.7.2. SISO design for robust stability and performance

We describe an elementary application of robust performanalysis using the structured si
gular value (compareDoyle et al, 1992). Consider the feedback control system configura
of Fig. 5.35a). A SISO plantP is connected in feedback with a compensé&ior

¢ Performanceis measured by the closed-loop transfer famftttm the disturbance to the
control system output, that is, by the sensitivity functiof = 1/(1 + PC). Performance
is considered satisfactory if

[S(jo)W(jw)| < 1, w € R, (5.187)
with W a suitable weighting function.
e Plant uncertainty is modeled by the scaled uncertainty inode
P — P(1+45pW), (5.188)

with W, a stable function representing the maximal uncertaintgl, &&na scaled stabl
perturbation such thd®p |l < 1.



The block diagram of Fig5.35b) includes the weighting filtel; and the plant perturbatio
model. By inspection we obtain the signal balance equatienw + p — PCy, so that

y=7 —i—lPC (w + p). (5.189)
By further inspection of the block diagram it follows that
z = Wy = WiS(w+ p), (5.190)
g = —WPCy = -WT(w+ p). (5.191)
Here
1 PC

(5.192)

= T:
s 1+ PC’ 1+ PC

are the sensitivity function and the complementary seuitsitiunction of the feedback systen
respectively. Thus, the transfer matéikin the configuration of Fig5.34b) follows from

qg| _|=WT -WT||p
H
H has the dyadic structure
_ VT
H_[W]S}[ o). (5.194)

With the result of Summar$.6.6we obtain the structured singular value of the intercorioac
matrix H as

H sup w(H(jw)) = sup ((W1(je)S(jo)| + [Wa(jo) T (jw)|) (5.195)

[IWiS]+ AT ||oo- (5.196)
By Summarys.7.3 robust performance and stability are achieved if and dnlyi < 1.

Example 5.7.4 (Robust performance of SISO feedback system) . We consider the SISC
feedback system we studied in Exampl@.1 (p. 184 and on several other occasions, w
nominal plant and compensator transfer functions

g0 k+sTy

Py(s) = 2 C(s) = T+sTy (5.197)

respectively. We use the design values of Exarbe2(p. 185). In Fig.5.36magnitude plots are
given of the nominal sensitivity and complementary sevigjtfunctions of this feedback systen
The nominal sensitivity function is completely acceptablewe impose as design specificati
that under perturbation

‘ S(jw)
So(jw)

with S, the nominal sensitivity function and the positive numbartolerance. This comes dow
to choosing the weighting functioi; in (5.187 as

1
T (14¢e)Sy

<1+s¢, w € R, (5.198)

W (5.199)



10 10
1 / 1 \
1 IS 1 ITl
.01 01 \
.001 / .001
01 1 100 01 1 100
w w

Figure 5.36: Nominal sensitivity and complementary sérigitfunctions
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Figure 5.37: The bound and its effect Sn

We consider how to select the weighting functiBf, which specifies the allowable perturb
tions. With W; chosen as in5.199 the robust performance criterigny < 1 according to
(5.199 reducesto

1 . .
— + [WMa(jo) To(jo)| < 1,

w eR, (5.200)
1+¢
with 7}, the nominal complementary sensitivity function. This isieglent to
_&
Wh(jw)| < —+—, weR. (5.201)
| To(jo)]

Figure5.37@a) shows a plot of the right-hand side 6201 for ¢ = 0.25. This right-hand side i
a frequency dependent bound for the maximally allowablkedgqzerturbatiod . The plot shows
that for low frequencies the admissible proportional utaiaty is limited toe/(1 + ¢) = 0.2,
but that the system is much more robust with respect to highaency perturbations. In tf
crossover frequency region the allowable perturbationéndess than 0.2.



Suppose, as we did before, that the plant is perturbed to
g

P(s) = ——. 5.202
)= Z0+50) (5.202)
The corresponding proportional plant perturbation is
P _Pp g£—80 __ 5O
Ap(s) = 2O =P _ Ta . (5.203)

Py(s) 1+s6

At low frequencies the perturbation has approximate mageitg — go|/go. For performance
robustness this number definitely needs to be less than thienonin of the bound on the right
hand side of%.20]), which is about- 0.75.

If ¢ = 0.25 then the latter number is about 0.15. Figbr874a) includes a magnitude plot c
Ap for|g — gol/go = 0.1 (thatis,g = 0.9 org = 1.1) andf = 0.1. For this perturbation the
performance robustness test is just satisfied.if made smaller than 0.9 or larger than 1.90
is increased beyon@l 1 then the perturbation fails the test.

Figure5.37b) shows the magnitude plot of the sensitivity functi¥for g = 1.1 andf = 0.1.
Comparison with the bounidl + ¢)Sy| shows that performance is robust, as expected. o

5.8. Appendix: Proofs

In this Appendix to Chaptes the proofs of certain results in are sketched.

Proof of Biatas’ test.We split the proof into two parts. In tHest part we show a technical resu
that says that the Hurwitz matriéf, of a polynomialp is nonsingular ifp is stable, and that/,
is singular if p has imaginary zeros. This we use in the second part to prataBiest.

Part 1. We show thatf, is singular if and only ifp(s) and p(—s) have zeros in common. i
particular this implies what we need in the second part, mathat H, is nonsingular for strictly
Hurwitz p and thatH, is singular forp with imaginary zeros (as these zeros come in conju
pairss = jw ands = —jw.)

First we establish that

p(s) and p(—s) have zeros in common.
—
There is a nonzero polynomialof degree at most d¢g) — 1 such thatp is odd.

This is readily checked:p is odd means(s) p(s) = sk(s?) so the zeros afp are then symmet
ric with respect to the imaginary axis. H(s) and p(—s) have no zeros in common then ob
ously suchr (of degree at most d¢g) — 1) do not exist. If, on the other hangd(s) andp(—s) do
have zeros in common, then a polynomias readily found: Ifp(0) = 0 thenr(s) := p(—s)/s
will do. If p(s) and p(—s) have a common zero at # 0, thenr(s) := sp(—s)/(s*> — o) will
do.

The condition thatp is odd is the same as saying that the even|pati.en = 0, and that is a
linear equation in the coefficients of To see this more clearly we definelepending om and
p ast := rp and we writer = rp out in terms of its coefficients

po pr p2 p3 e e 0
I T .
[ro ry e r,,,l] 0 0 Po pP1 o e 0 :[Zo ty .- lznfl]. (5204)

0O 0 0 0 po - pu



Here the coefficients are indexed asrify) = ros"! + ris"2 4+ --- andz(s) = fs¥" ! +
t15>"72 4+ ..., and the coefficients op are denoted by;. [rplevenis zero iff the odd-indexet
coefficientsty, 73, t5, - - - are all zero. That is, iff removal of thest, 3™, 51 etcetera columns ©
(5.209 results in the zero vector,

Pt D3
po p2 e e

[”0 rpooee- rn_]] 0 p1 e e :[0 0 --- ()].
0

The big matrix in the middle may be recognized as the » Hurwitz matrix H, of p, and,
therefore, there exist nonzero polynomialsf degree at most dég) — 1 such thafrpleven= 0
iff the Hurwitz matrix of p is singular. That is what we intended to prove.

Part 2. We examine the stability properties of the convex combamesti

P =Ap+(1=2A)q

of two polynomialsp andg. Now if p is stable but for somé < [0, 1] the polynomialAp +
(1 — X)q is not stable, then by continuity of the zeros of polynomitiiere exists a. € [0, 1]
for which 1. p + (1 — A4)q has imaginary zeros. By linearity the corresponding Hurwiatrix
H,,, equals

H,, = hH, + (1= A H,.

Note thatH, is nonsingular ifp is stable. Therefore, in that cagg, may also be written as

1—1
H,, = [l + —=H; ' H,).

The value of(1 — A)/X ranges over all nonnegative valuesiagnges over all € [0, 1]. and this
shows thatt),, is nonsingular for all such iff all real valuedeigenvalues of7,"' H, are strictly
positive. -

Proof of Lemm&.3.1 Introducing internal inputs and outputs as in Fsg3(b), we obtain the
signal balance equations

w; = v + Ag(vy + le), wy = Uy + H(U] + A[-ﬂl)]). (5205)
Rearrangement yields
I - AHH)U)] = v + Agvy, ([ — HAH)U)Q = Hvy + v,. (5206)

For internal stability we need the transfer matrices franu, to w;, w, to exist and be stable
These transfer matrices are

w, = (I—AgH) 'vi+ U —AgH) 'Agvs,

wy; = (I — HAH)ilel + (I — HAH)ilvz.
By assumption botli/ and Ay are stable. Hence the above transfer matrices exist antbdte

precisely if(l — HAy)~' and(/ — Ay H)™! exist and are stable. Now dét- HAy) = det(/ —
Ay H) so existence and stability 6f — HAy)™! is equivalent to that of/ — Ay H)™. n



5.8.1. Small gain theorem
We prove Summar$.4.1

Proof of Theoren®.4.1(sketch).If ||L| < 1thenL is stable. Hence the closed loop is interna
stable iff(/ — L)~! exists and is stable. The claim is that

I-L)y'=I+L+L*+L°+---
and that the right-hand side converges becduge< 1. Define

N
On =) L*
k=0
Then(I-L)Qy = Z,}LO(I—L)L" =(U—-L)+(L—L*) 4+ (LN =LVt = [ LN+,
Now by the submultiplicative property of induced norms weéthat||L<|| = |L - L---L| <

IL|l - IL|l---|L|| = ||L||¥. This allows to show tha® y is bounded (independent &f),

L—[lL ! 1
=
=L =L

N
ION I < IH+L4- LV < [T+ L]+ LIV =D L] =
k=0

and that
lim |I—(I+L = lim |[I—-(—=L"tH| = lim LY < lim LT =0
Jim 7= +L)Qy] = lim |1~ = lim LY+ < fim L]

Itis standard result in functional analysis that the setmfrizled operators form a Banach spa

which for our case means th@, := limy_,., Oy exists and is a bounded operator frbfiio
U. [

Proof of Theorend.4.4 By the small gain theorem the BPM is guaranteed to be intigrsble
if | HAp]loo < 1. Both conditionsl and2 imply |HAg |l < 1. Indeed, by the submultiplica
tive property Conditiorl implies

[H A |loo = SUps (H(jo) A (jw)) = sups (H(jw))o(An(jw)) <1

and Conditior? implies
[HAklloo = [HlloollAtilloo < 1.
|
Proof of Theorend.4.5 We only provel and only fory = 1 (the case is similar, and ify # 1 a
simple scaling will make it equal th). We know that| Ay |lec < 1 and|| H| e < 1 imply internal

stability. To prove the converse, suppose thHt|., > 1. Then there is aw, € R U {co} for
whicha (H (jws)) > 1. Now defineA to be the constant uncertainty

1 L
= SCGone 1

_ 1
A= S H oy

and it is destabilizing, because

det(/ — AH (jwy)) = det( — (H(jwx))* H(jws)) = 0.

0(H(jws))?



5.8.2. Structured singular value of a dyadic matrix

We prove Summar$.6.6 In fact we prove the generalization that for rank 1 matrices

ai
M = a [b] bz ], a,-,bje(C (5207)

and perturbation structure
A 0 ..
A=|0 A, -], A eC (5.208)

there holds thate (M) = ", |a; ;.

Proof of structured singular value of dyadic matris&iven M as the product of a column ar
row vectorM = ab we have

det(/ — MA) = del(] —abA) = det(l —bAa) =1 aib; A;. (5.209)

This gives a lower bound for the real part of det- M A),
det/ — MA) = 1= a;ib; A = 1= |asb| max|A;| = 1= |aib;[5(A). (5.210)
For def/ — M A) to be zero we need at least that the lower bound is not positieg is, that
o(A) > 1/, |aibi|. Now takeA equal to
sgna;by) 0

A= ﬁ 0 sgn(azby) -+ | (5.211)

Theng(A) =1/}, |a;b;| and it is such that

sgna;b;
det(l — MA) = 1= Y aybyd; = 1= Y ajby oot — (5.212)
J J

I aibi|

Hence a smallestt (in norm) that makeg — M A singular has norm/ Y, |a;b;|. Therefore

wM) = 3, |aiby].
It may be shown that thé-scaling upper bound for rank 1 matrices equal(g/) in this
case. [

5.9. Exercises

5.1 Stability margins.The stability of the feedback system of Exampl@.4is quite robust
with respect to variations in the parametéi@ndg. Inspect the Nyquist plot of the nomin
loop gain to determine the various stability marging§ @f4.2and Exercisd..4.9b) of the
closed-loop system.



5.2 Application of Biatas’ testTest the stability of the system on the remaining three edge
given by 6.46).

5.3 Parametric uncertaintyConsider the family of polynomials
2 2 3
Xa($) =B+ a)+ 2+ a)s + (44 30)s” + 3

with ¢ € R an uncertain constant in the interyall, 1].
a) Is each member of this family of polynomials strictly Hilz® (You may want to
use MATLAB.)
b) What can be deduced from Kharitonov’s theorem?
¢) What can be deduced from the edge theorem?

1 X
s
+
+
A =
+
A =
p g

Figure 5.38: Uncertainty of the state space system

5.4 Stability radius, Hinrichsen and Pritchard1986. Investigate what uncertainties of tt
matrix A make the system described by the state differential equatio

X(t) = Ax(2), t eR, (5.213)
unstable. Assume that the nominal systé¢n) = Ax () is stable. The number

r(A) = 5(4) (5.214)

inf
A + A has at least one eigenvalue
in the closed right-half plane

is called thestability radiusof the matrix4. The matrix norm used is the spectral nor
If only real-valued uncertaintied are considered then(A4) is thereal stability radius,
denotedrr (A). If the elements ofA may also assume complex values théd) is the
complex stability radiusjenoted-c (A).

a) Prove that
1
rR(A) = re(4) =2 ——, (5.215)
£ oo

with F the rational matrix given by (s) = (s — 4)~'. Hint: Represent the systel
by the block diagram of Fig>.38



b) A more structured uncertainty model results by assuntiag is perturbed as
A — A+ BAC, (5.216)

with B and C matrices of suitable dimensions, andthe uncertainty. Adapt th
block diagram of Fig5.38 and prove that the associated complex stability ra
rc(A, B, C) satisfiesc (A4, B,C) > 1/||H| oo, With H(s) = C(sI — A)"'B.

Hinrichsen and Pritchar@1986 prove thatrc(4) = 1/||F|leo andrc(4,B,C) =
1/||Hl|loo- Thus, explicit formulas are available for the complex 8igbradius. The
real stability radius is more difficult to determin®@i( et al, 1995.

5.5 Consider the unit feedback loop of Fig9and suppose the loop galnequals

1
L(s) =€ % ——,
(5) p—
for some uncertain delay> 0. Nominally the loop gain has no delay € 0).
a) Model the uncertainty as an additive uncertainty and thesnInequality %.70 to
determine (numerically?) the largest delay below which the loop is internall
stable.

b) Model the uncertainty as a proportional (multiplicajivencertainty and then us
Inequality 6.70 to determine (numerically?) the largest delaybelow which the
loop is internally stable.

5.6 Prove thak defined in .93 indeed satisfies5(90.
5.7 Structured singular valueFill in the details of the calculation of Summasy6.5

5.8 A MIMO feedback systenConsider the MIMO system with thzx 2 loop gain transfel
matrix

T o120
L(s) = [ks/(s +2) 0} :

The loop gain depends on a paraméter R.

a) Find theco-norm of L (the norm still depends ah).

b) For which values ok does the small-gain theorem guarantee that the closed fo
Fig.5.25(page214) is internally stable?

c) Determine alk for which the closed loop of Figh.25is internally stable.
d) Computeu(L(jw)) with respect to structure

_|4n An N
A_[Azl Azj, Ai; € C.

5.9 Numerator-denominator plant perturbatiofable5.1lists several perturbation models.

a) Verify the result for perturbed plaft + VAp W
b) Verify the result for perturbed plagf + VA W)~' P
c) Verify the result for perturbed plaD + VAp W) {(N + VAy W)



5.10 Alternative characterization of the structured singulaiwe. Prove Doyle, 1982 that if
all uncertainties are complex then

M) = MA), 5.217
w(M) Aepnj%)ﬂ p(MA) ( )

with p denoting the spectral radius — that is, the magnitude ofahgebkt eigenvalue (i
magnitude). Show that if on the other hand some of the urioéiga are real then

M) = MA). 5.218
w(M) AGD”??ZZE] pR(MA) ( )

Hlerepr(A) is largest of the magnitudes of the real eigenvalues of thepbex matrixA.
If 4 has no real eigenvalues thpp(4) = 0.

5.11 Proof of the principal properties of the structured singwalue Fill in the details of the
proof of Summary.6.5

5.12 Computation of structured singular values WiWnTLAB . Reproduce the plots of Fi§.29
using the appropriate numerical routines from th&oolbox or the Robust Control Tool
box for the computation of structured singular values.

5.13 Structured singular values.et M be the2 x 2-matrix
0 1
w-[0 )]
a) Determiner (M)

b) Determineuw (M) with respect to the structure

I8 0
A—[O 82:|, 8],826@.

c) Determine
igf o(DMD™)
where the minimization is with respect to the diagonal ncasD of the form

[d 0
D—[O 1j|, d1>0.

5.14 Multiple uncertain parameters in a state space descriptiBumppose that = Ax but that
A € R™" is uncertain,

A= AO +51A1 +52A2 +"'+8mAma

with 4; known and$; € [—1, 1] unknown. The systemi = Ax is Robustly stabléf it
is stable for every; € [—1, 1]. Rewrite this robust stability problem into the problem
internal stability of a BPM.

5.15 p-analysis.Consider the feedback loop of Fi§.1and assume the plant is uncertain,

No+ >, 8niN;
Do+ >/, épi D;

whereN; and D; are given polynomials, antly;, §p; uncertain real parametersfinl, 1].

P(s) =



a) Given a controlle€, determine

i. an interconnection matri®,
ii. an uncertaintyA (expressed in terms of ti¥g;;, 6p;)

such that the loop of Fig. 6.1 is internally stable for allgibesy;, 5p; € (—1, 1) iff
sup, w(H(jw)) < 1.
b) What is the rank of the interconnection matfixas determined above?

5.16 Bound on performance robustnes$s.Example5.7.4we used the performance specific
tion (in the form of W) to find bounds on the maximally allowable scaled uncerigsr
dp. Conversely, we may use the uncertainty specification @folhm of W5) to estimate
the largest possible performance variations.

a) Suppose that varies between 0.5 and 1.5 afidbetween 0 and 0.2. Determine
function W, that tightly bounds the uncertaintyp of (5.203.

b) Use 6.20) to determine the smallest value offor which robust performance |
guaranteed.

¢) Compute the sensitivity functio$i for a number of values of the parametgrand
6 within the uncertainty region. Check how tight the bound enfgrmance is tha
follows from the value of obtained in $.161.






6. Hoo-Optimization and -Synthesis

Overview— Design byH -optimization involves the minimization of
the peak magnitude of a suitable closed-loop system fumclios very
well suited to frequency response shaping. Moreover, rtolksgs against
plant uncertainty may be handled more directly than vidthoptimiza-
tion.

Design byu-synthesis aims at reducing the peak value of the struc
tured singular value. It accomplishes joint robustnessartbrmance
optimization.

6.1. Introduction

In this chapter we introduce what is known7ds,-optimization as a design tool for linear mt
tivariable control systemsH .-optimization amounts to the minimization of the-norm of a
relevant frequency response function. The name derives fne fact that mathematically tt
problem may be set in the spakig, (hamed after the British mathematician G. H. Hardy), wt
consists of all bounded functions that are analytic in tghtrhalf complex plane. We do not ¢
to this length, however.

H~o-Optimization resembled{,-optimization, where the criterion is the 2-norm. Becal
the 2- andoo-norms have different properties the results naturallyraxiequite the same. Al
important aspect of{., optimization is that it allows to include robustness coaistis explicitly
in the criterion.

In § 6.2 (p. 240 we discuss thenixed sensitivity problemThis special{,, problem is an
important design tool. We show how this problem may be usedideve the frequency respon
shaping targets enumeratedif.5 (p. 27).

In § 6.3 (p. 248 we introduce thestandard problenof H-optimization, which is the mos
general version. The mixed sensitivity problem is a spexaak. Several other special case:
the standard problem are exhibited.

The next section is devoted soboptimabkolutions of the standafl »,-optimization problem
An example demonstrates the difficulties that can occurlaegitiustrate the type of assumptio
needed for the solution of tHe.-optimization problem.

In § 6.5 (p. 253 we review state space formulae for the suboptimal solstemd establish |
lower bound for thexo-norm. Two algebraic Riccati equations are needed for thaisa.

In§ 6.6(p. 255 we discuss optimal (as opposedstdoptimal) solutions and highlight some
their peculiarities. SectioB.7 (p. 258 explains how integral control and high-frequency roff-



may be handled.

Section6.8(p. 266) is devoted to an introductory expositionofsynthesis. This approximat
technique for joint robustness and performance optinoratsesH, optimization to reduce the
peak value of the structured singular value. Seddi®{p.270) is given over to a rather elabora
description of an application gf-synthesis.

¥

Figure 6.1: Feedback loop

6.2. The mixed sensitivity problem

In § 5.5.5(p. 211) we studied the stability robustness of the feedback cordtgn of Fig.6.1
We considered fractional perturbations of the type

L=ND"'"— (I+VSyW))ND~ (I + Vs, W)~ L. (6.1)
The frequency dependent matricés W;, and W, are so chosen that the scaled perturba
8, = [-6p bn] satisfies|dp| < 1. Stability robustness is guaranteed if

[Hlloo < 1, (6.2)
where

H= [_@fTVV] . 6.3)

S = (I+L) 'andT = L(I+L)™" are the sensitivity matrix and the complementary sensiti
matrix of the closed-loop system, respectively, witlthe loop gainL = PC.

Given a feedback system with controll€rand corresponding loop gaibh = PC that does
not satisfy the inequalityd;2) one may look for a different controller that does achieesjumlity.
An effective way of doing this is to consider the problenmuihimizing|| H ||, With respect to
all controllersC that stabilize the system. If the minimal valuyef || H |« is greater than 1 thel
no controller exists that stabilizes the systems for altuyrbations such thal§p || < 1. In this
case, stability robustness is only obtained for pertudpatsatisfyind|dp|eo < 1/y.

The problem of minimizing

(K 69

(Kwakernaak 1983 1985 is a version of what is known as thmixed sensitivity problen
(Verma and Jonckheer#984. The name derives from the fact that the optimization inesl
both the sensitivity and the complementary sensitivitycfion.

In what follows we explain that the mixed sensitivity pratleannot only be used to verif
stability robustness for a class of perturbations, but tdsachieve a number of other importa
design targetsor the one-degree-of-freedom feedback configuration gf =i



Before starting on this, however, we introduce a useful fication of the problem. We ma
write WoaTV = WoL(I + L)™'V = Wo,PC(I + L)™'V = W, PUV, where

U=C+ PC)"! (6.5)

is the input sensitivity matrix introduced §1.5 (p. 27) . For a fixed plant we may absorb tl
plant transfer matrixP (and the minus sign) into the weighting matfi%,, and consider the
modified problem of minimizing

WSV
v o

with respect to all stabilizing controllers. We redefine greblem of minimizing 6.6) as the
mixed sensitivity problem.

We mainly consider the SISO mixed sensitivity problem. Ttitedon (6.6) then reduces t
the square root of the scalar quantity

Sung(lWl (j0)S(@)V(jo)* + [Wa(io)U(jw) V(o)) . (6.7)

Many of the conclusions also hold for the MIMO case, althotlgr application may be mor
involved.
6.2.1. Frequency response shaping

The mixed sensitivity problem may be used for simultangosisaping the sensitivity and inp!
sensitivity functions. The reason is that the solution efithixed sensitivity sensitivity probler
often has theequalizing property(see§ 6.6, p. 255. This property implies that the frequen
dependent function

[Wi(j@)S(j)V(iw)]* + [Wa(jo)U(jo)V(jo) . (6.8)

whose peak value is minimized, actually i€@nstant(Kwakernaak1985. If we denote the
constant ag?, with y nonnegative, then it immediately follows from

[Wi(i)S (o) V(o) + [Wa(io)U(jw) V(o) = y* (6.9)
that for the optimal solution

Wi(jo)S(o)V(o)> =y>. ek,

(6.10)
(Wa(jo)U(jw)V(jw)|* < y?, o eR.
Hence,
: y
___r_ R 6.11
S0l = v R (611
U(jo)| r ® €R. 6.12)

< TY1r /: ~v1r/: ~10
 M(jo)V(jo)]

By choosing the function®/,, W,, andV correctly the functions’ andU may be made sma
in appropriate frequency regions. This is also true if th&énogl solution does not have tt
equalizing property.



If the weighting functions are suitably chosen (in part&uith W, V large at low frequencie
andW,V large at high frequencies), then often the solution of theshisensitivity problem ha
the property that the first term of the criterion dominatekat frequencies and the second
high frequencies:

Wi(jo)S(o)V(io)l*  +  [Wa(jo)U(o)V(e)|’ = y>. (6.13)
dominates at low frequenciesdominates at high frequencies
As aresult,
; Y
S(jw _ for @ small 6.14
A S (644
; Y
U(jw _ for w large 6.15
I~ e vie) . (619

This result allows quite effective control over the shapehef sensitivity and input sensitivit
functions, and, hence, over the performance of the feedbgstkem.

Because theo-norm involves the supremum frequency response shapiregllmasminimiza-
tion of theco-norm is more direct than for tHe, optimization methods df 4.5 (p. 155).

Note, however, that the limits of performance discussedlir® (p. 40) can never be violatec
Hence, the weighting functions must be chosen with the tghee to these limits.

6.2.2. Type k control and high-frequency roll-off
In (6.14-6.19, equality may often be achievedymptotically.

Type k control.  Suppose thdi; (jo) V(jw)| behaves as/w* asw — 0, with k a nonnegative
integer. This is the case ¥, (s)V(s) includes a factos” in the denominator. The[S(jw)]
behaves a&* asw — 0, which implies a typek control system, with excellent low-frequen
disturbance attenuationif > 1. If £ = 1 then the system has integrating action.

High-frequency roll-off. Likewise, suppose thaW,(jw)V (jw)| behaves a®™ asw — oo.
This is the case i##,V is nonproper, that is, if the degree of the numeratdie¥ exceeds tha
of the denominator (by:). Then|U (jw)| behaves a®& ™" asw — oo. FromU = C/(1 + PC)
it follows thatC = U /(1 + UP). Hence, if P is strictly proper and» > 0 then alsaC behaves
aso™™,andT = PC/(1 + PC) behaves ap~"*, with e the pole excessof P.

Hence, by choosing: we pre-assign théigh-frequency roll-offof the controller transfe
function, and the roll-offs of the complementary and inmnistivity functions. This is importar
for robustness against high-frequency unstructured plarttirbations.

Similar techniques to obtain type control and high-frequency roll-off are used §.5.4
(p- 158 and§ 4.5.5(p. 160) , respectively, fofH, optimization.

6.2.3. Partial pole placement

There is a further important property of the solution of thized sensitivity problem that neec
to be discussed before considering an example. This ins@vaole cancellation phenomen
that is sometimes misunderstood. The equalizing prop&€gy®.1(p. 241) implies that

Wi(s)Wi(=5)S(5)S(=5)V(s)V(=5) + Wa(s) Wa(=s)U(s)U(=s)V(5)V(=s) = y* (6.16)

1The pole excess of a rational transfer functiBris the difference between the number of poles and the nunfbe
zeros. This number is also known as thiative degreef P




for all s in the complex plane. We write the transfer functiBrand the weighting functiond/,
W,, andV in rational form as

N A A M
P = 70 W] = _]7 W2 = _25 V = (617)
D B B, E

with all numerators and denominators polynomials. If als® ¢ontroller transfer function i
represented in rational form as

C=< (6.18)

then it easily follows that

S = bx U= bY (6.19)
DX+ NY’ DX+ NY’ '
The denominator
Dy =DX + NY (6.20)

is the closed-loop characteristic polynomial of the feedbsystem. Substituting andU as

given by 6.19 into (6.16 we easily obtain
D™D -M~M - (AT A\BY B,X~X + Ay 4, By BiY™~Y)
E~E- BB, - By B, D Dg -

(6.21)

If A is any rational or polynomial function thet™ is defined byd™(s) = A(—s).

Since the right-hand side 0621 is a constant, all polynomial factors in the numerator ef
rational function on the left cancel against corresponéhiatprs in the denominator. In particul:
the factorD™ D cancels. If there are no cancellations betw&enD and E~ EB]” B| BS” B, then
the closed-loop characteristic polynomid}; (which by stability has left-half plane roots onl
necessarily has among its roots those root®dahat lie in the left-half plane, and the mirr
images with respect to the imaginary axis of those root8 tfiat lie in the right-half plane. Thi
means that the open-loop poles (the rootd9)f possibly after having been mirrored into t
left-half plane reappearas closed-loop poles.

This phenomenon, which is not propitious for good feedbgskesn design, may be prevent
by choosing the denominator polynomi&l of V' equal to the plant denominator polynom
D, so thatV = M/D. With this special choice of the denominator16f the polynomialE
cancels againsb in the left-hand side ofg.21), so that the open-loop poles dot reappear a:
closed-loop poles.

Further inspection of@.21) shows that if there are no cancellations betwaénr M and
E~EBT B BY B>, and we assume without loss of generality théthas left-half plane root
only, then the polynomial/ cancels against a corresponding factobDig. If we takeV proper
(which ensured/(jw) to be finite at high frequencies) then the polynomiél has the sam
degree ad, and, hence, has the same number of root8 as

All this means that by letting

= 22
V=7 (6.22)

where the polynomial/ has the same degree as the denominator polyndinddlthe plant, the
open-loop poles (the roots @f) are reassigned to the locations of the rootdbf By suitably



choosing the remaining weighting functiol§ and W, these roots may often be arranged to
thedominantpoles.

This technique, known apartial pole placemen{Kwakernaak 1986 Postlethwaite et al.
1990 allows further control over the design. It is very usefuliesigning for a specified banc
width and good time response properties.

In the design examples in this chapter it is illustrated hiogvitleas of partial pole placeme
and frequency shaping are combined.

A discussion of the root loci properties of the mixed sewigjtiproblem may be found ir
Choi and Johnso(19969.

6.2.4. Example: Double integrator

We apply the mixed sensitivity problem to the same examplie §4.6.2(p. 161), whereH,
optimization is illustratetl Consider a SISO plant with nominal transfer function

Py(s) = sl_z (6.23)

The actual, perturbed plant has the transfer function

g

PO = G050y

(6.24)
whereg is nominally 1 and the nonnegative parasitic time congidgatnominally O.

Perturbation analysis. ~ We start with a preliminary robustness analysis. The vianatin the
parasitic time constartt mainly cause high-frequency perturbations, while the fogguency
perturbations are primarily the effect of the variationghie gaing. Accordingly, we model
the effect of the parasitic time constant aswameratorperturbation, and the gain variations
denominatoiperturbations, and write

NG T
= D0 = oo (6.25)

i

P(s)

Correspondingly, the relative perturbations of the dematur and the numerator are

D(s) — Do(s) l B N(s) — No(s)  —s0
T D g No(s) 1456 ©29

The relative perturbation of the denominator is constast all frequencies, also in the crosso
region. Because the plant is minimum-phase trouble-fressaver may be achieved (that
without undue peaking of the sensitivity and complemensanysitivity functions). Hence, wi
expect that—in the absence of other perturbations—valfi€ls’g — 1| up to almost 1 may be
tolerated.

The size of the relative perturbation of the numerator is &n 1 for frequencies belo
1/6, and equal to 1 for high frequencies. To prevent destaliizat is advisable to make
the complementary sensitivity small for frequencies gretttan1 /6. As the complementan
sensitivity starts to decrease at the closed-loop bantwidé largest possible value édictates

2Much of the text of this subsection has been taken fkomakernaak(1993.



the bandwidth. Assuming that performance requirementsifgpihe system to have a close
loop bandwidth of 1, we expect that — in the absence of othgupgmations — values of th
parasitic time constarét up to 1 do not destabilize the system.

Thus, both for robustness and for performance, we aim atsedioop bandwidth of 1 witl
small sensitivity at low frequencies and a sufficiently fastrease of the complementary ser
tivity at high frequencies with a smooth transition in thessover region.

10
uml
1
1
01

.001

.0001

01 1 1 10 100

Figure 6.2: Bode magnitude plot &f 1/

Choice of the weighting functions. To accomplish this with a mixed sensitivity design, \
successively consider the choice of the functibns: M/ D (that is, of the polynomiaM), W,
andW,.

To obtain a good time response corresponding to the bankljdvhich does not suffer fror
sluggishness or excessive overshoot, we assign two dotyiokes to the Iocation%ﬁ(—l +j).
This is achieved by choosing the polynomidl as

M(s) =[s — %«/5(—1 +)]ls — %\/5(—1 —Dl=s>+5vV24+1, (6.27)
so that
V(s) = SZJ”S# (6.28)

We tentatively choose the weighting functiéii equal to 1. Then if the first of the two terms
the mixed sensitivity criterion dominates at low freque&sdrom we have fromg(14) that

r _, (jo)?
[V(jw)] (j©)? +jov2 +1

Figure 6.2 shows the magnitude plot of the factbf V. The plot implies a very good low
frequency behavior of the sensitivity function. Owing te thresence of the double open-lo
pole at the origin the feedback system is of type 2. There isawal to correct this low frequend
behavior by choosingy; different from 1.

Next contemplate the high-frequency behavior. For highdencies/ is constant and equi
to 1. Consider choosing; as

[S(jw)| ~ at low frequencies. (6.29

Wa(s) = c(1 + rs), (6.30)



with ¢ andr nonnegative constants such that 0. Then for high frequencies the magnitude
W, (jw) asymptotically behaves adf r = 0, and asrw if r # 0.

Hence, ifr = 0 then the high-frequency roll-off of the input sensitivityrfctionU and the
controller transfer functioq is 0 and that of the complementary sensitivitys 2 decades/decac
(40 dB/decade).

If » # 0thenU andC roll off at 1 decade/decade (20 dB/decade) &ndolls off at 3
decades/decade (60 dB/decade).

complementary

sensitivity |9 sensitivity |T|
10 10
1 =10 1 c=1/100

1 .
i 1

c=1/10

.01 c=1/10 01 =1

001 c=1/100 001 c=10

.01 A 1 10 100 .01 1 1 10 100

Figure 6.3: Bode magnitude plots §fand7 forr = 0

Solution of the mixed sensitivity problem. We first study the case = 0, which results in a
proper but not strictly proper controller transfer funati@, and a high-frequency roll-off of’
of 2 decades/decade. Figui@shows the optimal sensitivity functios’ and the correspondin
complementary sensitivity functidfi for¢c = 1/100,¢ = 1/10,¢ = 1, andec = 10. Inspection
shows that as increases|T’ | decreases and| increases, which conforms to expectation. T
smallerc is, the closer the shape [f| is to that of the plot of Fig6.2

We chooser = 1/10. This makes the sensitivity small with little peaking at th&-off
frequency. The corresponding optimal controller has thesfer function

4 0.61967
C(s) = 1.2586 15 +

T el 6.31
+ 0.15563s ( )

and results in the closed-loop polies/f(—l 4 j) and—5.0114. The two former poles dominat
the latter pole, as planned. The minimatnormis|| H s = 1.2861.

Robustness against high-frequency perturbations may f@irad by making the complemel
tary sensitivity functionl” decrease faster at high frequencies. This is accomplispheaking
the constant nonzero. Inspection o, as given by §.30 shows that by choosing = 1 the
resulting extra roll-off ofU, C, andT sets in at the frequency 1. For= 1/10 the break point
is shifted to the frequency 10. FiguBe4 shows the resulting magnitude plots. Foe 1/10 the
sensitivity function has little extra peaking while stagiat the frequency 10 the complement:

3The actual computation of the controller is discussed imipla6.6.1(p. 256).
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Figure 6.4: Bode magnitude plots 8fand7 forc = 1/10

sensitivity function rolls off at a rate of 3 decades/decade corresponding optimal controll
transfer function is

0.5987
Sl (6.32)

C(s) = 1.2107 ,
) 1+ 0.203555 + 0.0126752

which results in the closed-loop polés/i(—l + j) and—7.3281 £ j1.8765. Again the former
two poles dominate the latter. The minimaknorm is|| H||oo = 1.3833.

Inspection of the two controller§(31) and €.32 shows that both basically are lead controll
with high-frequency roll-off.

)

Figure 6.5: Stability region

Robustness analysis. ~ We conclude this example with a brief analysis to check wérettur
expectations about robustness have come true. Given theotenC = Y /X the closed-
loop characteristic polynomial of the perturbed plantig(s) = D(s)X(s) + N(s)Y(s) =

(14 50)s>X(s) + gY(s). By straightforward computation, which involves fixing aofethe two
parameterg andf and varying the other, the stability region of F&5 may be established fc
the controller 6.31). That for the other controller is similar. The diagram skdhat ford = 0

the closed-loop system is stable for glt> 0, that is, for all—-1 < é — 1 < oo. This stability



interval is larger than predicted. Fgr= 1 the system is stable for< 6 < 1.179, which also is
a somewhat larger interval than expected.

The controller 6.31) is similar to the modified PD controller that is obtained kabnple5.2.2
(p-189 by root locus design. Likewise, the stability region of F8gbis similar to that of Fig5.5.

Figure 6.6: The standafd., problem configuration

6.3. The standard H., problem

The mixed sensitivity problem is a special case of the stedatandardH ., problem (Doyle,
1984). This standard problem is defined by the configuration of &i§ The “plant” is a given
system with two sets of inputs and two sets of outputs. Itisrofeferred to as thgeneralized
plant. The signalw is anexternal inputand represents driving signals that generate disturlsal
measurement noise, and reference inputs. The sigisahecontrol input. The outputz has the
meaning otontrol error, and ideally should be zero. The outpuyfinally, is theobserved output
and is available for feedback. The plant has an open-loogfeamatrixG such that

z w Gu Gun||w
=G = . 6.33
[J’} [”} [GZI GZJ [”} (6:39)
By connecting the feedback controller

u= Ky (6.34)

we obtain fromy = G»;w + G u the closed-loop signal balance equatijos Goyw + G2 Ky,
sothaty = (I — G K)~'Gyw. Fromz = Gjyw + Gou = G x + G12 Ky we then have

z = [G11 + GpK(I — GzzK)ilel]w. (6.35)
H

Hence, the closed-loop transfer matfikis
H =G +GuK(U —GnK) Gy (6.36)

The standard{-optimal regulation problem is the problem of determiningoatroller with
transfer matrixk that

1. internally stabilizes the closed-loop system (as defin€d..3.2(p. 12)), and
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Figure 6.7: The mixed sensitivity problem

2. minimizes thesco-norm || H ||« Of the closed-loop transfer matrik from the external
input w to the control erroe.

To explain why the mixed sensitivity problem is a specialecaéthe standard problem w
consider the block diagram of Fi§.7, where the controller transfer function now is denoféc
rather thanC. In this diagram, the external signal generates the disturbaneefter passing
through a shaping filter with transfer matiiik The “control error’z has two components; and
z,. The first component; is the control system output after passing through a weigHtiter
with transfer matrixi¥;. The second component is the plant input: after passing through
weighting filter with transfer matriyV;.

Itis easy to verify that for the closed-loop system

_ Z1 _ W]SV
[ [ ] 637
N e’
H

so that minimization of theo-norm of the closed-loop transfer matik amounts to minimiza.
tion of

WSV
el 6

In the block diagram of Fig6.7 we denote the input to the controller asas in the standar
problem of Fig.6.6. We read off from the block diagram that

z1 = WiVw + W;Pu,
Z; = Whu, (6.39)
y = —Vw - Pu.

Hence, the open-loop transfer matéixfor the standard problem is

WiV | Wi P
G=| 0 | W (6.40)
V| =P

Other well-known special cases of the standard protitemproblem are thdiltering problem
and theminimum sensitivity probleifsee Exercise8.6and6.3).

The Hso-optimal regulation problem is treated in detail Byeen and Limebegi1999 and
Zhou et al.(1996.
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Figure 6.8: Feedback arrangement for the standard problem
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Figure 6.9: A filtering problem

6.4. Suboptimal solutions and and example

Determining the optimal controllek” of the standard{,, problem is not an easy task. To ge!
feel for the problems that can arise and for the assumptratsatre required—assumptions al
required by software—we examine in this section a probleshitheasy enough to allow for a
explicit solution.

Consider the configuration of Fi§.9. It is a special case of the standdid, control config-
uration of Fig.6.6 (see Exercisé.6) but it is not a control problem as there is no feedback
depicts diltering problem The idea being that the systekh(called filter in this respect) shoul
try to filter the information of the ‘message! out of the limited information of . Ideally, then,
the output ofK equalsn, rendering: = 0, but generally this is not possible. It then makes se
to chooseX so as to minimize in some norm, for instance using thé- or He-norm.

In this section we develop optimal and suboptimal solutioithe filteringH .-problem for
the case that

s—2
s+2
Since bothG|; and G, are stable it will be clear that the loop of Fig.9 is internally stable if

Gu(s) =1, Gy =



and only if K is stable. The transfer functiaif from w to z whoseoo-norm we aim to minimize
is

H(s) = Gui(s) = Gar(5)K(s) = 1 — %K@).

As we do not yet know whak (s) is we also do not know what (s) is, except at = 2 because

for that value ofs the term% K(s) reduces to zero. Indeed&(s) is not allowed to have a pol

ats = 2 becauseK needs to be stable. So, whatever stablee take, we always have that
H(2) =1.

At this point we recall a useful result, a result which is asEgquence of the classiddlaximum
Modulus Principlefrom complex functions theory; our special version, thougtay also be
proved using the small gain theorem (§é&10and also Summalty7.4:

Lemma 6.4.1. If H(s) is a stable rational function thenH || > |H(zp)| for any zy in the
right-half complex plane. O

For our example this implies
[Hloo =1

for any stableX. But, this norm can be achieved: simply taKe= 0. It results in the constar
H = 1 which has norm| H||« = 1.

Next we derive so-calleduboptimalsolution. Suboptimal solutions are stabilizikg that
achieve

[ H oo < v (6.41)

with y a given nonnegative number. The reason for determiningpirbal solutions is tha
optimal solutions in most cases cannot be found directlyceOsuboptimal solutions may t
obtained, optimal solutions may be approximated by seagobin the numbey.

We first need the following result. Recall tha# ||« is finite if and only if H is proper and
stable and that then

[H oo = 1 Hll 2o := sup o (H(jw)). (6.42)
we

Summary 6.4.2 (Inequality for L..-norm). Lety be a nhonnegative number atifl a rational
transfer matrix. Thefj H|| ., < y is equivalent to either of the following statements:

1. H~H < y’I on the imaginary axis;

2. HH~ < y?I on the imaginary axis.
mi

Here H~ is defined byH™~(s) = H'(—s). H™ is called theadjointof H. If 4 andB are two
complex-valued matrices theh < B means thaBB — 4 is a nonnegative-definite matrix. “O
the imaginary axis” means for all= jo, ® € R. The proof of Summarg.4.2may be found in
§6.10(p. 281).

For our filtering problem we have as optimal value the bound

)/opt = 1.



So suboptimal solutions exist iff > 1. Application of Summarng.4.2to our problem gives

|Hllzoo < v <= (1—ﬁK)~(1——2K)<y
= (1—‘+2K)(1— K)<)/
2 +
<~

"l E[E)=e

Interestingly the matrix in the middle of the last inequatian also be written as

s+2
[3_ =l S]we

+

l\)

with

W) wae]_ [ S
W(S)_|:W21(S) sz(s)j|_|: (1_1‘“) y] (6.43)

Note thatWW(s) is well defined fory > yopt = 1. So we have

~ ~[1 0 K
|H|zoo <v < [K~ 1|W [0 _]}W[I}SO.

If we chooseK as

K=__2
Wi

then by constructiom’ | X | if of the form[ § ] so that

[K~ 1w~ [(1) _01] w [ﬂ =[0 4~] [(1) _01} [2] =-A~4 0.

This implies that| H || ., < y. With theWV of (6.43 the so constructe® = —w—f; equals

s+2  (yP—-D(s+2)
+L2 (P Dstyie2

K(s) = (6.44)

This filter K has a pole at = —Zzzflz
suboptimalH., problem with bound,. (There is a theory that shows that stability/fis not a
coincidence, but we do not need to bother about these dbtaits) Asy approacheggp = 1
from above the pole oK goes to minus infinity, and gt = 1 the pole disappears leaving tf
optimal filter K = 0.

This example illustrates a number of points, most of whicdoaccur in more complicate
problems.

¢ In this example it turned out to be possible to come up withgligt formula for the
optimalsolution K. This generally is very complicated if not impossible.

e What is easier in the general case is to solveghmptimal problem, i.e. the probler
whether or not there exists a stabilizidgthat achieve| H ||« < y for some given bounc
y > 0.



¢ Aline search iny then can bring us as close as we want to the optimal contr&ller

e Some coefficients of suboptimal controllers approach zeran{inity) asy approache:
Yopt. Only at y = yopt do these coefficients disappear: jat= yopt @ cancellation o
common factors occurs leaving an optimal controller of Ioeeder. This is a commaol
situation.

Itis unfortunate that software usually does not perfornttgcellation for us, even thoug
it can be done. We have to do it manually and we can not distdridieed, as the examp
shows the controller may have a pole that approaches mifingyras y approachegqp.
For y close to the optimal value the controller hence has a vetynfiasle. This is to be
avoided.

o Ifin this exampleG, would have had imaginary zeros th&h which equalsk = G‘&;H,

would normally have had imaginary poles (not allowed). Tddse complicates the sta
dard theory and is typically ruled out by software.

e Similarly, if Gi, would have been strictly proper theth = G‘G‘—l_z” would normally have

been non-proper. Also this case complicates the standaatyttand it is ruled out b
software. This situation is an indication that the problemat well formulated. Indeed, |
the optimalK tends to be nonproper then it may be wise to minimize|ddt| ., but, for
instance,||[W§’,<]||oo for some appropriate weight, that ensures that (sub)optimé&ls

to have sufficient high-frequency roll-off.

For the last two reasons one usually assumedihain the filtering example has no zeros on't
imaginary axis, including infinity.

6.5. State space solution of the standard  H, problem

Among the various solutions of the suboptimal standafd, problem, the one base
on state space realizations is the most popul@oyle etal, 1989 Stoorvogel 1992
Trentelman and Stoorvogdl993. In these approaches it is assumed that the generalizet
G is proper. Hence it has a realization of the form

i = Ax+ Biw+ B, (6.45)
z = Cix+ Djpw+ Du, (6.46)
y = x4+ Dyw+ Dypu. (647)

Inthe u-TooLs MATLAB toolbox (Balas et al.1991) and the ®BUST CONTROL TOOLBOX
(Chiang and Safong\1992 a solution of the correspondirig., problem based on Riccati equ
tions is implemented that requires the following conditiom be satisfied:

1. (4, B,) is stabilizable andC,, A) is detectable.

2 [A —ja)I Bz

has full column rank for allo € R (hence,D, is tall*).
G Dy,

3. [A—jwl Bl

has full row rank for allw € R (hence,D;, is wide).
G Dy,

4. Dy, andD,; have full rank.

4A matrix is tall if it has at least as many rows as columns. Wide if it has at least as many columns as rows.



The first assumption is natural for otherwise the system cabastabilized. The other assum
tions ensure thal,, andG,, have full column rank and full row rank respectively on thegni
nary axis, including infinity. With these assumptions therfalae for suboptimal controllers at
rather technical but for a special case they are manageable:

Theorem 6.5.1 (The solution of the standard ~ Ho problem). Consider the configuratio
of Fig. 6.6 and assume the above four assumptions are satisfied, andhfdicgty, that also

HESH RIS B 6.8

Then there exists a stabilizing controller for whitH | ., < y iff the following three condi-
tions hold.

1. AQ+ 04" + Q(#CITC] — CJG)Q + By B[ = 0 has a stabilizing solutio® > 0,
2. PA+ ATP + P(;; BiB] — BB]) P + C[Ci = 0 has a stabilizing solutio® > 0
3. All eigenvalues of2 P have magnitude less thas.

If these three conditions are satisfied then one contralter K y that stabilizes and achiev
|H|lso < y is the controller with realization

(A +[5B1B] = B:B]IP)§ + (I - 50P) ' QCJ (y — o)
—BJ%

(6.49)

e
N
([

The formulae forK are rather cumbersome if the assumptidhgd® do not hold, computa:
tionally it makes no difference. The solution, as we sealires two algebraic Riccati equatior
whose solutions define an obsereemstate feedback law. The full solution is documented |
paper byGlover and Doyl€1988. More extensive treatments may be found in a celebrateeky
by Doyle et al.(1989 and inGlover and Doyl€1989. Stoorvoge(1992) discusses a humber (
further refinements of the problem. The problem can also edasing linear matrix inequal
ities (LMIs). LMIs are convex programs; an important topid bne that is not covered in thi

course.
6.5.1. Characteristics of the state space solution
We list a few properties of the state space solution.

1. For the two Riccati equations to have a solution it is regpithat the associated Hamilts
nian matrices

A B\ B] A BBl — B} B,
—%ClTCl +CJG, —-AT | —clc _qT

have no imaginary eigenvalues ($e¢7.4. Stated differently, if, is thelargestvalue of

y for which one or both of the above two Hamiltonian matrices &a imaginary eigen

value, then

Yopt = Yo-



2. The controller§.49 is stabilizing iff
0>=0. P=>0. AnadQP) <y’ (6.50)

whereAnax denotes the largest eigenvalue. This is a convenient wastahether stabi
lizing controllers exist.

3. The controller§.49 is of the same order as the generalized plém%-6.47).

4. The transfer matrix of the controlle8.@9 is strictly proper.

6.6. Optimal solutions to the  H., problem

Finding optimal controllers as opposed to suboptimal adletrs involves a search over the p
rametery. As the search advances the optimal controller is apprahicioze and more closel
There are two possibilities for the optimal solution:

Type A solution. The suboptimal controllers(49 is stabilizing for ally > y,, with y, the
lower bound discussed #5.1 In this case, the optimal solution is obtained fo& yy.

Type B solution. Asy varies, the central controller becomes destabilizing decreases beloy
some numbepopt With yopt > 0.

In type B solutions a somewhat disconcerting phenomenounrsccln the example of 6.4
about filtering several of the coefficients of central colherg(filter) grow without bound ay
approachegopt = 1. In the state space solution the phenomenon is manifestdteligct that as
y approachegqp either of the two following eventualities occuiGlpver and Doyle1989:

(B1.) The matrix/ — #QP becomes singular.

(B2.) The solutionsP and/orQ grow without bound, and at = y,pt they do not exist.

In both cases large coefficients occur in the equations #fatelthe central controller.

As illustrated in the example df 6.4, however, the controller transfer matrix approache
well-defined limit asy | yop, corresponding to theptimal controller. The type B optima
controller is of lower order than the suboptimal centraltecolter. Also this is generally true
It is possible to characterize and compatkoptimal solutions of type B Glover et al, 1997,
Kwakernaak1997).

An important characteristic of optimal solutions of type Bthat the largest singular valt
o (H(jw)) of the optimal closed-loop frequency response makfixs constantas a function of
the frequencw € R. This is known as thequalizing propertyf optimal solutions.

Straightforward implementation of the two-Riccati eqoatalgorithm leads to numerical di
ficulties for type B problems. As the solution approacheshtémum several or all of the coe
ficients of the controller become very large. Because eatlytthe numbers become too lar
the optimum cannot be approached too closely. This is santgtte have to keep in mind whe
we compute such controllers.

6.6.1. Numerical examples

We present the numerical solution of two examples of thedstethproblem.



Example 6.6.1 (Mixed sensitivity problem for the double int  egrator). We consider the
mixed sensitivity problem discussed §r6.2.4(p. 244). With P, V, W, and W, as in6.3, by
(6.39 the standard plant transfer matrix is

M(s)
e 3
G(s) = 0 |c(l+rs) | (6.51)
M(s) ‘ 1

52 52

whereM (s) = s + s+/2 + 1. We consider the cage= 0 andc = 0.1. Itis easy to check tha
for r = 0 a state space representation of the plant is

. 0 0 1 1
X = |:1 O}x + [ﬁ:| w + [0} u, (6.52)
N’ —— ———
A By B>
0 1 1 0
0 e [ e [ 659
—— —— ——
C Dy Di>
y=[0 —1]x+ [-1] w. (6.54)
~———— ——
G D)

Note that we constructed a joint minimal realization of thecks P and V' in the diagram of
Fig.6.7. This is necessary to satisfy the stabilizability condhitad § 6.5 (p. 253.

A numerical solution may be obtained with the help of theTooLs MATLAB toolbox
(Balas et al. 1997). The search procedure f6{, State space problems implementeduin
TooLsterminates ay = 1.2861 (for a specified tolerance in the-search ofl0~%). The state
space representation of the corresponding controller is

X —0.3422 x 10° —1.7147 x 107 .. —0.3015
v [ 1 —1.4142 } [—0.4264} > (6-59)
u=[-1.1348 x 10° —5.6871 x 10°] %. (6.56)
Numerical computation of the transfer function of the colr results in
2.7671 x 10° 1.7147 x 10°
K(s) = X 10 + X (6.57)

524 0.3422 x 10% + 2.1986 x 109"

The solution is of type B as indicated by the large coefficgeRy discarding the terny in the
denominator we may reduce the controller to

s +0.6197

it (6.58)
1+ 0.1556s

K(s) = 1.2586
which is the result stated i6(31)(p. 246). It may be checked that the optimal controller p«
sesses the equalizing property: the mixed sensitivitgiidh does not depend on frequency.

The case # 0 is dealt with in Exercisé.10(p. 284). O
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Figure 6.10: Feedforward configuration

Example 6.6.2 (Disturbance feedforward). Hagander and Bernhardss¢t992 discuss the
example of Fig6.10 A disturbancew acts on a plant with transfer functidr/(s + 1). The
plantis controlled by an input through an actuator that also has the transfer fundtign+ 1).
The disturbancev may be measured directly, and it is desired to control thatmatput by
feedforward control from the disturbance. Thus, the ob=gputputy is w. The “control error”
has as components the weighted control system outpst x,/p, with p a positive coefficient
and the control input, = u. The latter is included to prevent overly large inputs.
In state space form the standard plant is given by

. [-1 o0 [0 1
X = |: | _l}x+ 1j| w + O:| u, (6.59)
A By B,
z= 0 %x—i— 0] w + 0] (6.60)
1o o 0 1 '
J J
C D Dy,
y=[0 0]x+ [1] w. (6.61)
— ——
G Dy,

The lower bound 0§ 6.5.1(p. 254 may be found to be given by
1
Y= ——.
V14 p?

Define the number

[3+1
e = f; = 1.270. (6.63)

Hagander and Bernhardsson prove this (see Exetcise

(6.62)

1. Forp > pc the optimal solution is of type A.

2. Forp < pc the optimal solution is of type B.



For p = 2, for instance, numerical computation usingrools with a tolerancé0=3 results in

1
=y = — = 04472, 6.64
Yopt = Y0 \/g ( )
with the central controller
;. [—-1.6229 —0.4056] . 0
x= [ I 1 }x * [0.7071} y (6.65)
u =[-0.8809 —0.5736] %. (6.66)

The coefficients of the state representation of the cometralie of the order of unity, and th
controller transfer function is

—0.40565 — 0.4056s

K(s) = . 6.67
) = 57762205 + 2.0285 (6.67)
There is no question of order reduction. The optimal sofuigoof type A.
For p = 1 numerical computation leads to

Yopt = 0.7167 > y = 0.7071, (6.68)
with the central controller

. _ 7 _ 7

i [ 6.95714 x 10 4.98521 x 10 }x L m ’ (6.69)

u=[-6.9574x 10" —4.9862x10"] . (6.70)
The controller transfer function is

—4.9862 x 107s — 4.9862 x 10’
K(s) = 7 x (6.71)

52 4+ 0.6957 x 1085 + 1.1944 x 108"
By discarding the terns? in the denominator this reduces to the first-order controlle

s+ 1

K(s) = —0.7167———.
s+ 1.7167

(6.72)

The optimal solution now is of type B. O

6.7. Integral control and high-frequency roll-off

In this section we discuss the applicatiorf, optimization, in particular the mixed sensitivi
problem, to achieve two specific design targets: integratrob and high-frequency roll-off
Integral control is dealt with ii§ 6.7.1 In § 6.7.2we explain how to design for high-frequen
roll-off. Subsectior6.7.3is devoted to an example.

The methods to obtain integral control and high frequendyaft discussed in this sectior
for Hs design may also be used witll, optimization. This is illustrated for SISO systems
§4.5.4(p. 158 and§ 4.5.5(p. 160).



Figure 6.11: One-degree-of-freedom feedback system

6.7.1. Integral control

In § 2.3 (p. 64) it is explained that integral control is a powerful and impat technique. By
making sure that the control loop contains “integratingaactrobust rejection of constant di:
turbances may be obtained, as well as excellent low-fregyudisturbance attenuation and col
mand signal tracking. 1§6.2.2(p. 242) itis claimed that the mixed sensitivity problem allows
design for integrating action. Consider the SISO mixedisigitg problem for the one-degree-o
freedom configuration of Figs.11 The mixed sensitivity problem amounts to the minimizat
of the peak value of the function

[V(io)Wi(j)S(io)]* + |V(io)Wa(io)U(o)’, o eR. (6.73)
S andU are the sensitivity function and input sensitivity functio

1 C

=— =—, 6.74
S=1vpC U=1%pc (6.74)

respectively, and’, W, and W, suitable frequency dependent weighting functions.

If the plant P has “natural” integrating action, that i has a pole at 0, then no spec
provisions are needed. In the absence of natural integratition we may introduce integratir
action by letting the produdt W; have a pole at 0. This forces the sensitivity functéto have
a zero at 0, because otherwige?3 is unbounded ab = 0.

There are two ways to introduce such a pole intd/,:

1. LetV have a pole at 0, that is, take

V(s) = : (6.75)

with V4(0) # 0. We call this theconstant disturbance modeiethod.
2. LetW, have a pole at 0, that is, take

W) = Hol), (6.76)

with W, (0) # 0. This is theconstant error suppressianethod.

We discuss these two possibilities.

Constant disturbance model. We first consider letting” have a pole at 0. Although W,
needs to have a pole at 0, the weighting functioW, cannot have such a pole. WW, has a
pole at 0 therl/ would be forced to be zero at & andU cannot vanish simultaneously at
Hence, ifV has a pole at 0 theW, should have a zero at 0.

This makes sense. Including a pole at OVinmeans thal’ contains a model for consta
disturbances. Constant disturbances can only be rejegtedrtstant inputs to the plant. Henc



zero frequency inputs should not be penalized®y Therefore, ifV is of the form 6.75 then
we need

Wa(s) = sWa(s), (6.77)

with W5, (0) # oo.

Figure 6.12a) defines the interconnection matrix for the resulting standard probler
Inspection shows that owing to the pole at 0 in the bldgks)/s outside the feedback loo
this standard problem does not satisfy the stabilizabslitydition of§ 6.5 (p. 253).

The first step towards resolving this difficulty is to modifhetdiagram to that of Figh.12b),
where the plant transfer matrix has been changed{@)/s. The idea is to construct a simult:
neous minimal state realization of the blodkgs)/s ands P (s)/s. This brings the unstable pol
at 0 “inside the loop.”

The difficulty now is, of course, that owing to the cancetiatin s P(s)/s there is no minimal
realization that is controllable from the plant input. Henwe remove the factor from the
numerator ofs P(s)/s by modifying the diagram to that of Figg.12c). By a minimal joint
realization of the blockd/(s)/s and P(s)/s the interconnection system may now be mzc
stabilizable. This is illustrated in the example§d.7.3

The block diagram of Figs.12c) defines a modified mixed sensitivity problem. Suppose
the controllerK, solves this modified problem. Then the original problem Isebby controller
Ko(s)
—

K(s) = (6.78)

Constant error suppression. We next consider choosing;(s) = Wi,(s)/s. This corre-
sponds to penalizing constant errors in the output with itgfweight. Figures.13a) shows the
corresponding block diagram. Again straightforward mzstlon results in violation of the stab
lizability condition of§ 6.5(p. 253). The offending factot /s may be pulled inside the loop ¢
in Fig. 6.13b). Further block diagram substitution yields the arranget of Fig.6.13c).

Integrator in the loop method. Contemplation of the block diagrams of Figs12c) and
6.13c) shows that both the constant disturbance model methaddh@nconstant error rejectio
method may be reduced to tidegrator in the loopmethod. This method amounts to connect
an integratot /s in series with the planP as in Fig.6.14a), and doing a mixed sensitivity desi
for this augmented system.

After a controllerK, has been obtained for the augmented plant the actual clenttioht is
implemented consists of the series connectkoz) = Ky(s)/s of the controllerK, and the
integrator as in Fig6.14b). To prevent the pole at O of the integrator from reappegin the
closed-loop system it is necessary tollehave a pole at 0. Replacifdg(s) with V,(s)/s in the
diagram of Fig.6.14a) produces the block diagrams of Figsl2Ac) and6.13c).

6.7.2. High-frequency roll-off

As explained ir§ 6.2.2(p. 242), high-frequency roll-off in the controller transfer fufen K and
the input sensitivity functio/ may be pre-assigned by suitably choosing the high-frequ
behavior of the weighting functioi,. If W,(s)V(s) is of orders™ ass approacheso then K
andU have a high-frequency roll-off of: decades/decade. Normallyis chosen bipropéisuch

5That is, bothl” and1/ V are proper. This means thk{oo) is finite and nonzero.
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thatV(oco) = 1. Hence, to achieve a roll-off of decades/decade it is necessary thabehaves
ass™ for larges.

If the desired roll-offn is greater than 0 then the weighting functida needs to be nonprope
The resulting interconnection matrix

(6.79)

is also nonproper and, hence, cannot be realized as a sst¢ensyf the form needed for the ste
space solution of the{,,-problem.

The makeshift solution usually seen in the literature isubadf the roll-on at high frequency
Suppose by way of example that the desired fornafis W5 (s) = ¢(1 + rs), with ¢ andr
positive constants. Thel, may be made proper by modifying it to

Wa(s) = ——— 2, (6.80)

with T < r a small positive time constant.

This contrivance may be avoided by the block diagram swlistit of Fig.6.15(Krause 1992.
If W5 is nonproper then, in the SISO ca$®; ! is necessarily proper, and there is no difficulty
finding a state realization of the equivalent mixed sengjtiproblem defined by Fig6.15with
the modified plant?y = W' P.

Suppose that the modified problem is solved by the contréllerThen the original problen
is solved by

K = KW, . (6.81)

Inspection suggests that the optimal controkehas the zeros oY, as its poles. Because th
is in fact not the case the extra poles introduced Kitoancel against corresponding zeros. T
increase in complexity is the price of using the state spaltgisn.

The example o§ 6.7.3illustrates the procedure.
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Figure 6.15: Block diagram substitution for nonpropiér

6.7.3. Example

We present a simple example to illustrate the mechanics§dimg for integrating action ani
high-frequency roll-off. Consider the first-order plant

P(s) = - fp, (6.82)

with p = 0.1. These are the design specifications:
1. Constant disturbance rejection.
2. A closed-loop bandwidth of 1.
3. A suitable time response to step disturbances without@stliggishness or overshoot.
4. High-frequency roll-off of the controller and input séivity at 1 decade/decade.

We use the integrator in the loop methodi@.7.1to design for integrating action. According!
the plant is modified to

Pyls) = —L—. (6.83)

V(s) = ————. (6.84)
The choicer = +/2 andb = 1 places two closed-loop poles at the roots

%«/5(—1 + i) (6.85)

of the numerator of’. We plan these to be the dominant closed-loop poles in oocdechiieve a
satisfactory time response and the required bandwidth.
To satisfy the high-frequency roll-off specification we let

Was) = (1 + rs), (6.86)

with the positive constanisandr to be selectel It does not look as if anything needs to |
accomplished with¥; so we simply letV; (s) = 1.
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Figure 6.16 shows the block diagram of the mixed sensitivity problemstdefined. It is
obtained from Fig6.14a) with the substitution of Fig6.15
We can now see why in the eventual design the contrdldras no pole at the zerol /r of
the weighting facto#¥,. The diagram of Fig6.16defines a standard mixed sensitivity probls
with
4

P(s) = m (6.87)
s*+as+b (S+,l,)(s2+aS+b)
s6+p) s+ D+ p)

and W, (s) = Wa(s) = 1.

If V is in the form of the rightmost side 06(88 then its numerator has a zero-at/r. By
the partial pole assignment argumeng§ &£2.3(p. 242) this zero reappears as a closed-loop p
Because this zero is also an open-loop pole it is necessaziyo of the controllek, that solves
the mixed sensitivity problem of Fig.16 This zero, in turn, cancels in the transfer functi&n
of (6.81).

The system within the larger shaded block of FidL6has the transfer matrix representatic

Z = [s2 +as+b p ] I:Z):| . (6.89)

V(is) =

(6.88)

s(s+p) sts+p)

This system has the minimal state realization

R A e
a =0 ﬂﬁj+w' (6.91)

The block

1

u= muo (6.92)

6See also Exercise.9 (p. 283.



may be represented in state form as

1 1
Lt i 6:93)
r C

1
u o= i (6.94)
.

X3

Combining the state differential equatiossq0 and 6.93 and arranging the output equations
obtain the equations for the interconnection system thielethe standard problem as follow

X1 0 0 £ X1 b 0
X2 = 1 —p 0 xa|l+|la—p|lw+ | 0] u, (6.95)
X3 0 0 —1|xs 0 L
—_—
A B B,
X1
0 1 0 1 0
z = |:0 0 0j| X2 | + I:Oj| w + |:1j| Uuo (6.96)
—_——— X3 —— ———
C Dy, Dy
X1
y = [0 =1 0]|x2|+ (1) w. (6.97)
g X3
G Ds,

Letc = 1 andr = 0.1. Numerical computation of the optimal controller yield® ttype B
solution

1.377 x 10'%52 + 14.055 x 10'%s + 2.820 x 10'°
§3 4 0.1142 x 101952 + 1.3207 x 10'%s + 1.9195 x 1010

Ko(s) = (6.98)

Neglecting the term? in the denominator results in

1.377s% + 14.055s + 2.820
K — 6.99
o(s) 0.1142s2 + 1.3207s + 1.91195 (6.99)

(s + 10)(s + 0.2047)

= 12.056 . 6.100
(s + 9.8552)(s + 1.7049) ( )
Hence, the optimal controller for the original problem is
K s + 10)(s 4+ 0.2047 10

K(s) 00) _ 15 g5 S 1D+ ) . (6.101)

sWa(s) (s +9.8552)(s 4 1.7049) s(s + 10)

120.56 0.2047

- (s + ) (6.102)

(s + 9.8552)(s + 1.7049)

The pole at-10 cancels, as expected, and the controller has integrattiapaas planned. The
controller has a high-frequency roll-off of 2 decades/dieca

6.8. u-Synthesis

In § 5.7 (p. 223 the use of the structured singular value for the analysiaifility and perfor-
mance robustness is explained. We briefly review the coiteias



In Fig. 6.17a), the interconnection block represents a control system, with structured |
turbations represented by the blodk The signalw is the external input to the control syste
andz the control error. The input and output signals of the pégtion block are denotegd
andg, respectively. The perturbations are assumed to have loadgdssuch that all possib
structured perturbations are bounded|bM| . < 1.

Let H# denote the transfer function from to z (under perturbatiom). Again, the transfe!
function is assumed to have been scaled in such a way thabtiietsystem performance
deemed satisfactory jfH||oo < 1.

The central result established§®.7is that the control system

1. is robustly stable, that is, is stable under all structyrerturbations such that| Aj| .o <
1, and

2. has robust performance, that j&/4|| < 1 under all structured perturbations such
that|Alle <1,

if and only if
na < L. (6.103)

The quantityuy, defined in §.155, is the structured singular value &f with respect to pertur
bations as in Fig6.11b), with A structured and\, unstructured.

Suppose that the control system performance and stahiliystness may be modified |
feedback through a controller with transfer matkix as in Fig.6.18a). The controller feeds th
measured output back to the control input. Denote byuy, the structured singular value
the closed-loop transfer matrif{x of the system of Fig6.18b) with respect to structured pe
turbationsA and unstructured perturbations. Thenu-synthesiss any procedure to constru
a controllerX (if any exists) that stabilizes the nominal feedback sysaechmakes

HHy < 1. (6104)
@ (b) N
A A
q p q p
w H AR H z

Figure 6.17:;u-Analysis for robust stability and performance.

6.8.1. Approximate w-synthesis for SISO robust performance

In § 5.7the SISO single-degree-of-freedom configuration of Bi¢9is considered. We analyz
its robustness with respect to proportional plant pertiimba of the form

P —> P(1+68,Wy) (6.105)
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Figure 6.19: Single-degree- of-freedom configuration

with ||8p]|eo < 1. The system is deemed to have satisfactory performancstrudss if
[WiS]loo =1 (6.106)

for all perturbations, withS the sensitivity function of the closed-loop syste#r; and W, are
suitable frequency dependent functions.

By determining the structured singular value it follows§if.7 that the closed-loop system
robustly stable and has robust performance if and only if

Krg = SUBQ(IWI (j0)S(w)| + W2(jo) T (jw)]) < 1. (6.107)

T is the complementary sensitivity function of the closedgsystem. Hence, the robust perf
mance and stability problem consists of determining a faekiioontrollerk (if any exists) that
stabilizes the nominal system and satisfiggs < 1.

One way of doing this is teninimizeuy, with respect to all stabilizing controllels. Un-
fortunately, this is not a standaft..-optimal control problem. The problem cannot be sol\
by the techniques available for the standafg, problem. In fact, no solution is known to th
problem.

By the well-known inequalitya + b)> < 2(a®> + b?) for any two real numbers andb it
follows that

(IWiS| 4+ |WAT|)* < 2(WiS|” + [WAT|). (6.108)
Hence,

SUBQ(IWl (j0)S(o)]* + [Wa(j) T (jw)|*) < § (6.109)



impliespuy, < 1. Therefore, if we can find a controlléf such that
. . . . W,
sup(Wi(0)S()* + Wa(o) T = || M3 < 1v2 (6.110)
weR w, T 0o

then this controller achieves robust performance andlgtabSuch a controller, if any exists
may be obtained by minimizing

wi S
wLT

which is nothing but a mixed sensitivity problem.
Thus, the robust design problem has been reduced to a mirediggéy problem. This re-
duction is not necessarily successful in solving the rodesign problem — see Exerci6el3

(p-284).

, (6.111)

‘ [e.]

6.8.2. Approximate solution of the  u-synthesis problem

More complicated robust design problems than the simpl©3i®blem we discussed cann
be reduced to a tractable problem so easily. Various apmiabei solution methods to the
synthesis problem have been suggested. The best knownsef (beyle, 1989 relies on the
property (see Summagy.6.52-3)

w(M) <&[DM D], (6.112)
with D and D suitable diagonal matrices. The problem of minimizing
i = SUP j(Hi (o)) (6.113)
we

is now replaced with the problem of minimizing the bound

sup G[D(jw) Hx (i) D™ (jo)] = || DHg D™ ||oo, (6.114)

where for each frequeneythe diagonal matriceB® (jw) and D (jw) are chosen so that the bou
is the tightest possible. Minimizing (114 with respect taX is a standar@{, problem, providec
D and D are rational stable matrix functions.

Doyle’s method is based ab-K iteration:

Summary 6.8.1 ( D-K iteration).

1. Choose an initial controlleK that stabilizes the closed-loop system, and compute
corresponding nominal closed-loop transfer mafiix.

One way of finding an initial controller is to minimiZH? ||« with respect to all stabiliz:
ing K, whereH} is the closed-loop transfer matrix of the configuration af.®i.18from
wtozwith A=Ay =0.

2. Evaluate the upper bound

min  6[D(jw)Hx (jo) D™ (jw)], (6.115)
D(j). D(jo)

with D and D diagonal matrices as in Summay6.5c), for a number of values @ on
a suitable frequency grid. The maximum of this upper bouret the frequency grid is a
estimate ofu .

If wm, is small enough then stop. Otherwise, continue.



3. On the frequency grid, fit stable minimum-phase rationatfions to the diagonal entrie
of D and D. Because of the scaling property it is sufficient to fit theagnitudesnly.
The resulting extra freedom (in the phase) is used to imptiowdit. Replace the origina
matrix functionsD and D with their rational approximations.

4. Given the rational approximatiod and D, minimize || DHx D~'||« with respect to all
stabilizing controllersK. Denote the minimizing controller a& and the correspondin
closed-loop transfer matrix d@8x. Return to2.

]

Any algorithm that solves the standaktl,-problem exactly or approximately may be us
in step (d). The procedure is continued until a satisfacsotytion is obtained. Convergence
not guaranteed. The method may be implemented with routireesded in thew-Tools toolbox
(Balas et al.1991). A lengthy example is discussed§6.9.

The method is essentially restricted to “complex” perttidoes, that is, perturbations corrt
sponding to dynamic uncertainties. “Real” perturbatiaasised by uncertain parameters, ne
to be overbounded by dynamic uncertainties.

6.9. An application of p-synthesis

To illustrate the application gf-synthesis we consider the by now familiar SISO plant of Ex:
ple5.2.1(p. 184 with transfer function

Ps)= —2 (6.116)
Nominally,g = go = 1 andfd = 0, so that the nominal plant transfer function is
Po(s) = f—;’. (6.117)

In Example5.2.2(p. 185) root locus techniques are used to design a modified PD diamtvath
transfer function

_k+STd

C(s) = , k=1, T, = V2 = 1.414, Ty = 0.1. 6.118
(s) TsT 0 ( )

The corresponding closed-loop poles af®7652 4+ j 0.7715 and—8.4679.
In this section we explore hoW—K iteration may be used to obtain an improved design
achieves robust performance.

6.9.1. Performance specification

In Example5.7.4(p. 228 the robustness of the feedback system is studied with cespehe
performance specification

. 1

The functionV is chosen as

% = (1 +¢)S,. (6.120)
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Figure 6.20: Magnitude plot &§ for different parameter value combinations
and the bound/V

Sy is the sensitivity function of the nominal closed-loop gystand is given by
(6.121)

with xo(s) = Tos® + s% + goTyus + gok the nominal closed-loop characteristic polynomial. |
numbere is a tolerance.

In Example5.7.4it is found that robust performance is guaranteed with aaolees = 0.25
for parameter perturbations that satisfy

09<g<11, 0<6<O0.l. (6.122)

The robustness test used in this example is based on a po@bfoop perturbation model.
In the present example we wish to redesign the system sutlpéhimrmance robustness
achieved for a modified range of parameter perturbatiomsehefor

05<g<15  0<6<0.05. (6.123)

For the purposes of this example we moreover change therpefae specification mode
Instead of relating performance to the nominal performarieemore or less arbitrary design v
choose the weighting functiori such that

2

LI (6.124)

S
V(s) s2 + 28wys + a)g'
Again, ¢ is a tolerance. The constang specifies the minimum bandwidth afdletermines the
maximally allowable peaking. Numerically we choase: 0.25, wy = 1, and¢ = %

The design §.118 doesnot meet the specificatior6(119 with V' given by 6.129 for the
range of perturbation$(123. Figure6.20shows plots of the bount/|V| together with plots
of the perturbed sensitivity functiorts for the four extreme combinations of parameter valt
In particular, the bound is violated when the value of thengadlrops to too small values.

6.9.2. Setting up the problem

To set up theu-synthesis problem we first define the perturbation modelseen in Example
5.7.4the loop gain has proportional perturbations

P(s)— Po(s) 52— b

Ar(s) = = T 1150

(6.125)
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Figure 6.22: Perturbation and performance model

We bound the perturbations B8 (jw)| < |W,(jw)| for all w € R, with

Wols) = ——— 0 (6.126)

The numbew, witha < 1,isaboundg—go|/go < « for the relative perturbations i, and6, is
the largest possible value for the parasitic time congtabtumerically we letx = 0.5 andf, =
0.05. Figure6.21shows plots of the perturbatidéy| for various combinations of values of tt
uncertain parameters together with a magnitude plé¥pfFigure6.22shows the correspondin
scaled perturbation model. It also includes the scalingtion V' used to normalize performanc
The next step in preparing fdp—K iteration is to compute the interconnection matéas in
Fig. 6.18from the interconnection equations

p q
z|=G|w (6.127)
y u
Inspection of the block diagram of Fi§.22shows that
p = Wu,
z = Vw+ Py(g +u), (6.128)

y = —Vw-— Py(g+u,



so that

p 0o 0 W [q
z = P() W] P() w . (6129)
y -Py Wi —Py||u

G

To apply the state space algorithm for the solution of g problem we need a state spa
representation ofr. For the output we have from the block diagram of Fi§.22

1 5?4 2lwos + o g0
== uy. 6.130
l+e 52 W 52 10 ( )

z=Vw+ Pyuy =

This transfer function representation may be realized bywo-dimensional state space syst
2
X1 0 1][x; lg-i(i)g 0 w
)272 - 0 0 X2 + (05 Uo ’
&0 (6.131)
X1 1
=(1 0 —
=0 o]+ e

The weighting filterl, may be realized as

. 1 +a—1
X3 = ——Xx
3 % 3 %

p = u-+x;. (6.132)

Using the interconnection equatieg = ¢ + » we obtain from 6.131-6.132 the overall state
differential and output equations

u,

0 1 0 0 22 o .

0 0 —o o o el|L¥

- % z (6.133)
» "0 0 1 o 0 17r,
z{=|1 0 0|x+|0 w5 O||w
y __1 0 0 0 _ 1 0 u

1+e¢

To initialize the D—K iteration we select the controller that was obtained in Exans.2.2
(p. 185 with transfer function

k +sT,
Ko(s) = 7 +STZ. (6.134)

This controller has the state space representation

Lo,
X = —=x ,
7. T
T, T,

u = (k—Lx+ 2y (6.135)



6.9.3. D-K iteration

The D—K iteration procedure is initialized by defining a frequenxigacalculating the frequenc
response of the initial closed-loop systé#y on this axis, and computing and plotting the low
and upper bounds of the structured singular valu&pbn this frequency axis The calculation
of the upper bound also yields th®*scales.”

14

1.2

0.8

10° °

1

10 10 10 10 10

angular frequency [rad/s]
Figure 6.23: The structured singular value of the initisdiga

The plot of Fig.6.23shows that the structured singular value peaks to a valubaitel .3.
Note that the computed lower and upper bounds coincide t@xtent that they are indistin
guishable in the plot. Since the peak value exceeds 1, tleeditmop system does not ha
robust performance, as we already know.

The next step is to fit rational functions to thiz-scales. A quite good-looking fit may b
obtained on the first diagonal entry Bfwith a transfer function of order 2. The second diago
entry is normalized to be equal to 1, and, hence, does nottodeel fitted. Figures.24shows
the calculated and fitted scales for the first diagonal efBecause we have x 1 perturbation
blocks only, the left and right scales are equal.

The following step in theu-synthesis procedure is to perform &fy, optimization on the
scaled systent’; = DGD™!. The result is a sub-optimal solution corresponding to tbieniol
y1 = 1.01.

In the search procedure for th&,,-optimal solution the search is terminated when the opti
value of the search paramejehas been reached within a prespecified tolerance. Thistate!

“The calculations were done with theAviLAB .-tools toolbox. The manuaBélas et al. 1997) offers a step-by-stef
explanation of the iterative process.
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Figure 6.24: Calculated and fittdol-scales



should be chosen with care. Taking it too small not only pmgkthe computation but — mo
importantly — results in a solution that is close to but nat&do the actuet ., optimal solution.
As seen ir§ 6.6 (p. 205), solutions that are close to optimal often have large atieffts. These
large coefficients make the subsequent calculations, iicpkar that of the frequency respon
of the optimal closed-loop system, ill-conditioned, angilyalead to erroneous results. TF
difficulty is a weak point of algorithms for the solution of thfe H, problem that do not provid
the actual optimal solution.

14

initial solution

12

first iteration

second iteration

2 1 0 1 2 3

10 10 10 10 10 10

angular frequency [rad/s]

Figure 6.25: Structured singular values for the three sigiee designs

Figure6.25shows the structured singular value of the closed-looegyshat corresponds
the controller that has been obtained after the first itematiThe peak value of the structur:
singular value is about 0.97. This means that the desigreeefirobust stability.

To increase the robustness margin anotbe iteration may be performed. Again the-
scale may be fitted with a second-order rational functione T, optimization results in
suboptimal solution with level, = 0.91.

Figure6.25shows the structured singular value plots of the three desige now have. Fo
the third design the structured value has a peak value oft@@uwvell below the critical value 1

The plot for the structured singular value for the final desgyquite flat. This appears to t
typical for minimumyu designsin et al,, 1993.

6.9.4. Assessment of the solution

The controllerk, achieves a peak structured singular value of 0.9. It theedfas robust perfor
mance with a good margin. The margin may be improved by furiheX iterations. We paus
to analyze the solution that has been obtained.

Figure6.26shows plots of the sensitivity function of the closed-loggtem with the controlle
K, for the four extreme combinations of the values of the umdenarameterg andf. The
plots confirm that the system has robust performance.

Figure6.27gives plots of the nominal system functiofi&ndlU . The input sensitivity functiot
U increases to quite a large value, and has no high-frequetiayff, at least not in the frequenc
region shown. The plot shows that robust performance isroddaat the cost of a large controll
gain-bandwidth product. The reason for this is that thegiggiocedure has no explicit or implic
provision that restrains the bandwidth.
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Figure 6.27: Nominal sensitivit§ and input sensitivity/ for the controller
K,

6.9.5. Bandwidth limitation

We revise the problem formulation to limit the bandwidth koifly. One way of doing this is to
impose bounds on the high-frequency behavior of the inmaiteity functionU. This, in turn,
may be done by bounding the high-frequency behavior of thighted input sensitivityU V.
Figure6.28shows a magnitude plot &f V' for the controllerK,. We wish to modify the desigr
so thatU V is bounded as

1
U(jo)V(o)| = . @ €R, (6.136)
[Wa(jo)
'_|100
m
S
0 50 W,
k]
2
=
2 uv
£
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Figure 6.28: Magnitude plots @& V' and the bound/ W,



Figure 6.29: Modified block diagram for extra performancecification

where

1 B
WQ(S)_S+Q)].

(6.137)

Numerically, we tentatively chooge= 100 andw; = 1. Figure6.28includes the correspondir
boundl/|W,| on|U|.

To include this extra performance specification we modify bhock diagram of Fig6.22
to that of Fig.6.29 The diagram includes an additional outputwhile z has been rename
to z;. The closed-loop transfer function fromto z, is —W,U V. To handle the performanc
specificationd SV | < 1and||W,UV |« < 1jointly we impose the performance specificati

WSV
[lwev]l = €59

whereW, = 1. This is the familiar performance specification of the migedsitivity problem.

By inspection of Fig6.29we see that the structured perturbation model used to désig
robust performance now is

P
q | _ 51) 0 0
AEGERIE 139
—_— 2
A

with §p, §; andg, independent scalar complex perturbations such|thdt, < 1.

Becausd¥, is a nonproper rational function we modify the diagram toghaivalent diagran
of Fig. 6.30(compare§ 6.7, p. 258. The controllerk and the filteri¥, are combined to a ne
controllerK = K W,, and any nonproper transfer functions now have been elietndt is easy



1

Figure 6.30: Revised modified block diagram

to check that the open-loop interconnection system acegitdi Fig.6.30may be represented &

01 0 0 0 X2
0 0 o q
X = 1 f—ol x4 |50 T 0 w |,
0 0 % 6 0 0 0 | u
000 e 00 F (6.140)
_ 0o 0 0 '
» 0 0 1 1 1 -
al_| 1 0o o |0 m 01
| |0 0 0 0 0 0 Lz
y ~1 0 0 0 | .
- 0 - 0

To let the structured perturbatiahhave square diagonal blocks we rename the external inp
to w; and expand the interconnection system with a void additiextarnal inputw,:

2¢wq

0 1 0 0 2 0 0
0 0 b I
g K
Y = . WO] X+ g 1 000 zl ,

00 —7 % 0 0 0 0 ﬁz
00 0 -w
L 1 0 0 0 B (6.141)
_ 0 0 00

D 0 0 1 1 . q

2l |1 000 4 0 /= 0 0f]uw

SlTlo o000l o o o 1||w
_1 7

The perturbation model now is

[Z)] B [55 Aoo} [p] ' (6.142)

with 6, a scalar block and\, a full 2 x 2 block.
To obtain an initial design we do &fi..-optimal design on the system wighand p removed,
that is, on the nominal, unperturbed system. This amourtteetgolution of a mixed sensitivity



problem. Nine iterations are needed to find a suboptimatisoliaccording to the level, =
0.97. The latter number is less than 1, which means that nominédimeance is achieved. Th
peak value of the structured singular value turns out to B8, however, so that we do not ha
robust performance.

One D-K iteration leads to a design with a reduced peak value of thetsired singular valu
of 1.32 (see Fig6.31). Further reduction does not seem possible. This meangihatandwidth
constraint is too severe.

To relax the bandwidth constraint we change the valug of the boundl/ W, as given by
(6.137 from 100 to 1000. Starting with{.-optimal initial design one- K iteration leads to
design with a peak structured singular value of 1.1. Agahust performance is not feasible.

Finally, after choosingg = 10000 the same procedure results after ddek iteration in a
controller with a peak structured singular value of 1.02isTdontroller very nearly has robu
performance with the required bandwidth.

Figure6.31shows the structured singular value plots for the threerotiets that are succe:
sively obtained fo8 = 100, 8 = 1000 andS = 10000.

14 B =100
U
12 B =1000
1
B =10000
058
0.6
10? 10" 10° 10 10° 10°

angular frequency [rad/s]

Figure 6.31: Structured singular value plots for three sasive designs

6.9.6. Order reduction of the final design

The limited bandwidth robust controller has order 9. Thimber may be explained as follow
The generalized plan6(141) has order 4. In the (singld)—-K iteration that yields the controlle
the “D-scale” is fitted by a rational function of order 2. Premuitipg the plant byD and
postmultiplying by its inverse increases the plant ordet to 2 + 2 = 8. Central suboptima
controllersk for this plant hence also have order 8. This means that thiesmonding controller
K = I%Wz_1 for the configuration of Fig6.29have order 9.

It is typical for the D- K algorithm that controllers of high order are obtained. Tihisaused
by the process of fitting rational scales. Often the ordehefdontroller may considerably t
decreased without affecting performance or robustness.

Figure6.3a) shows the Bode magnitude and phase plots of the limitedveidth robust
controller. The controller is minimum-phase and has poleesg 2. Its Bode plot has bre:
points near the frequencies 1, 60 and 1000 rad/s. We constrsimplified controller in two
steps:

1. The break point at 1000 rad/s is caused by a large pole. ivevethis pole by omitting
the leading termy® from the denominator of the controller. This large pole esponds tc
a pole atco of the Hoo-optimal controller. Figur&.32b) is the Bode plot of the resultin
simplified controller.
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Figure 6.32: Exact (a) and approximate (b, c) frequencyaesgs of the
controller

2. The Bode plot that is now found shows that the controllerfae excess 1. It has bre:
points at 1 rad/s (corresponding to a single zero) and atd® (eorresponding to a doub
pole). We therefore attempt to approximate the controtemdfer function by a ratione
function with a single zero and two poles. A suitable nunarioutine from MATLAB
yields the approximation

s + 0.6234
(s +22.43)% + 45312

K(s) = 6420 (6.143)

Figure6.32c) shows that the approximation is quite good.

Figure6.33gives the magnitudes of the perturbed sensitivity funaioorresponding to th
four extreme combinations of parameter values that aréradatdor this reduced-order controlle
The plots confirm that performance is very nearly robust.

Figure6.34displays the nominal performance. Comparison of the plth@input sensitivity
U with that of Fig.6.27confirms that the bandwidth has been reduced.
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Figure 6.33: Perturbed sensitivity functions of the redbioeder limited-
bandwidth design
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Figure 6.34: Nominal sensitivity and input sensitivityy of the reduced-
order limited- bandwidth design

6.9.7. Conclusion

The example illustrates thatsynthesis makes it possible to design for robust perfoomarhile
explicitly and quantitatively accounting for plant un@nty. The method cannot be used naiv
though, and considerable insight is needed.

A severe shortcoming is that the design method inhereralydeo controllers of high orde
often unnecessarily high. At this time ordyl hocmethods are available to decrease the or
The usual approach is to apply an order reduction algoriththé controller.

6.10. Appendix: Proofs

Proof of Lemmd.4.1 By contradiction: if|| H||eo < |H(z0)| then| H(s)/H (z)]lco < 1 hence
by the small gain theorertd — H(s)/H(zy))~" is stable, butl — H(s)/H(z,) has a zero a
s =z980(I — H(s)/H(z))~! is not stable. Contradiction, hent&/ ||, > | H(zo)|. n

Proof of Summarg.4.2 By the definition of thecxo-norm the inequality| H || < y is equiva-
lent to the condition thak (H™~ (jw) H(jw)) < y for € R, with & the largest singular value
This in turn is the same as the condition that¢/~ H) < y? on the imaginary axis for al,
with A; theith largest eigenvalue. This finally amounts to the conditat H~H < y*I on
the imaginary axis, which proves Summ#ry.2 |

6.11. Exercises
6.1 Closed-loop transfer matrixverify (6.37).

6.2 Minimum sensitivity problemA special case of the mixed sensitivity problem is the v
imization of the infinity norm|| WSV |« of the weighted sensitivity matri§ for the
closed-loop system of Fig.1 Show that this minimum sensitivity problem is a stand
problem with open-loop plant

WV WP
G=[_V _P] (6.144)

The SISO version of this problem historically is the fitét, optimization problem tha
was studied. It was solved in a famous papeZbhyneg1987).



6.3 The model matching problenT.he model matching problem consists of finding a sta
transfer matrixk that minimizes

1P = Kl zoo := SUPT(P(jw) — K(jo)) (6.145)

with P a given (unstable) transfer matrix. Is this a standdrd problem? (The problen
is known as the (generalizeNghariproblem).

r— F C P

Figure 6.35: Two-degree- of-freedom feedback configunatio

6.4 Two-degree-of-freedom feedback systéma further application consider the two-degre
of-freedom configuration of Fig.35 In Fig.6.36the diagram is expanded with a shapi
filter V; that generates the disturbanctom the driving signalv;, a shaping filte#, that
generates the measurement neise= V,w, from the driving signakw,, a shaping filter
V, that generates the reference signélom the driving signals, a weighting filteriv;
that produces the weighted tracking ertpr= W, (zo — r), and a weighting filte#¥, that
produces the weighted plant input= W,u. Moreover, the controlle€ and the prefilter
F are combined into a single blodk. Define the “control error? with components; and

Z Wl
! !
W,

Y2

Y1

Figure 6.36: Block diagram for a standard problem

z,, the observed output with componentsg, and y, as indicated in the block diagran



the external inputv with componentsv;, w,, andws;, and the control input. Determine
the open-loop generalized plant transfer ma€fiand the closed-loop transfer matik.

6.5 Mixed sensitivity problemShow that for the mixed sensitivity problem “stability ofetl
loop aroundG,,” is equivalent to stability of the feedback loop. Discussatvadditional
requirements are needed to ensure that the entire clospdsystem be stable.

6.6 Filtering problem. Show that the filtering problem discussedsi6.4 is a standard
problem.

6.7 Mixed sensitivity problemConsider the unstable plant with transfer function

p B 1—%s
) = T 7052

a) We aim for a closed loop bandwidth of about 1, and we w&W0) = 0 for con-
stant disturbance rejection. Further we want sufficienh ilgguency roll-off of the
controller, and thaltS| and|7T| do not peak much.

Use the mixed sensitivity approach 6.2 to design a suitable controller (see a
§ 6.7). Explain your choices o#¥; and W, and M and plot|S| and|T| and step
response for the more successful choices.

b) S or T designed above peak a bit. Is this inherent to the problemlioritation of
the mixed sensitivity design method? (Explain.)

6.8 Disturbance feedforward.

a) Verify that the lower boung, is given by 6.62).
b) Prove thap. as given by §.63 separates the solutions of type A and type B.

c) Prove that ifp < pc then the minimabo-norm yq is the positive solution of th
equationy* + 2y3 = 1/p? (Hagander and Bernhardssdi992.

d) Check the frequency dependence of the largest singulae whthe closed-loop fre
quency response matrix for the two types of solutions.

e) What do you have to say about the optimal solutiorpfer pc?

\Y

u +
?—vc = ez

Figure 6.37: One-degree-of- freedom system with disturban

6.9 Completion of the desigiComplete the design of this example.

(a) For the controllerg.102, compute and plot the sensitivity functid, the input
sensitivity functionl/, and the complementary sensitivity functién



(b) Check whether these functions behave satisfactanmilyarticular, ifS and7" do not
peak too much. See if these functions may be improved by ¢hgige values oé
andr by trial and error.

(c) The roll-off of 2 decades/decade is more than called yahle design specification:
The desired roll-off of 1 decade/decade may be obtainedtivititonstant weighting
function W,(s) = ¢. Recompute the optimal controller for this weighting fuant
with ¢ = 1.

(d) Repeat (a) and (b) for the design of (c).

(e) Compute and plot the time responses of the outand the plant input to a unit
step disturbance in the configuration of Fig6.37for the designs selected in (b) ar
(d). Discuss the results.

6.10 Roll-off in the double integrator examplien Example6.6.1(p. 256) the numerical solutior
of the double integrator example 6.2.4(p. 244) is presented for = 0. Extend this to
the case # 0, and verify 6.32.

6.11 Proof of inequalityln § 6.8.1we needed the inequality + 5)? < 2(a> + b?) for any two
real numberg andb. Prove this.

6.12 Minimization of upper boundshow that the upper bound on the right-hand side&sdf@§
may also be obtained from Summarg.52) (p. 220).

6.13 Reduction to mixed sensitivity problern § 6.8.1(p. 267) it is argued that robust pel
formance such thafSV | < 1 under proportional plant perturbations bounded
|Aplloo < [[Wolleo is achieved iff

sup(|S(jo)V(jw)| + IT (jo)Wo(jw)]) < 1. (6.146)

weR

A sufficient condition for this is that

sup(|S(jo) V(jo)* + | T (jo) Wy(jo)*) < 1v2. (6.147)

weR

To see whether the latter condition may be satisfied we cengige mixed sensitivity
problem consisting of the minimization ¢# || oo, With

N4
H= [_TWJ . (6.148)

(a) Show that the mixed sensitivity problem at hand may beesbhs a standart
problem with generalized plant

14 Py
G=| 0 |WV'P |, (6.149)
V| -P

(b) Find a (minimal) state representation@f (Hint: Compare §.131) and 6.132.)
Check that Assumptiod of § 6.5 (p. 253 needed for the state space solution of
Hoo problem is not satisfied. To remedy this, modify the problgnatding a third
component; = pu to the error signat, with p small.



u(t) (1)

htb 0 1

(c) Solve theH .-optimization problem for a small value of say,p = 10~° or even
smaller. Use the numerical values introduced earligr= 1, ¢ = 0.25, wy = 1,
¢ =0.5,a=0.5andf, = 0.05. Check thaf] H ||, cannot be made less than ab
0.8, and, hence, the conditiod.{47 cannot be met.

(d) Verify that the solution of the mixed sensitivity probiledoes not satisfy§(.146.
Also check that the solution does not achieve robust pedona for the real paran
eter variations§.123.

The fact that a robust design cannot be obtained this way doemean that a robu:
design does not exist.

6.14 State space representatioerive or prove the state space representatiéris3() and
(6.132.

6.15 Peak in the structured singular value pldtigure6.31shows that the singular value pl
for the limited-bandwidth design has a small peak of magisitslightly greater than .
near the frequency 1 rad/s. Inspection of FEg33 however, reveals no violation of tt
performance specification dhnear this frequency. What is the explanation for this pe

6.16 Comparison with other design$he controller 6.143 is not very different from the con
trollers found in Exampl&.2.2(p. 185 by the root locus method, b, optimization in
§ 4.6.2(p. 161). and by solution of a mixed sensitivity problem§is.2.4(p. 244).

a) Compare the four designs by computing their closed-ladggand plotting the ser
sitivity and complementary sensitivity functions in onah.

b) Compute the stability regions for the four designs and fflem in one graph as i
Fig.6.5

c) Discuss the comparative robustness and performance édtin designs.

6.17 p-synthesis for an infinite dimensional systéife are given a metal beam of one metel
which we can control the temperaturet the left end, and of which we can measure
temperaturey at the right end (see the figure below). Assuming perfecatgm, it may
be shown that the transfer function framo y is

1 1
B cosh(+/s/a) 14 %(s/a) + %(s/a)2 + é(s/a)3 4.

wherea > 0 is the diffusion constant of the metal. It is a stable syst&wor coppera
equalsa = 1.16 - 10~ so the time constarit/a is large, and heating hence may tak
long time.

P(s)

a) Make the Bode magnitude plot of this (nonratiornal)



b) The problem is to bring the temperatureof the right end of the beam to a give
desired constant temperatfgsiregby choice ofu.
Formulate this problem asa-synthesis problem(You do not need to solve it wit
Matlab). Your solution method should at least address the following.

e How to model the nonrationa® as a perturbation of an appropriate ‘nomin
rational Py;

e How to ensure convergence ofr) to Tyesired and that the convergence is “re
sonably” fast;

e What are the perturbation$, A, and generalized plart as in Fig. 6.18 (page
270);

e What to do if D-K iteration does not resulting := sup, u(H(jw)) < 1?



A. Matrices

This appendix lists several matrix definitions, formulae a@sults that are used in the lectt
notes.

In what follows capital letters denote matrices, lower datters denote column or row vectc
or scalars. The element in tié row and;th column of a matrix4 is denoted by4;;. Whenever
sumsA4 + B and productsA B etcetera are used then it is assumed that the dimensions |
matrices are compatible.

A.1. Basic matrix results

Eigenvalues and eigenvectors

A column vector € C” is aneigenvectoof a square matrid € C”" if v £ 0 andAv = Av
forsomel € C. Inthat case. is referred to as aeigenvaluef 4. Ofteni; (A4) is used to denot
theith eigenvalue of4 (which assumes an ordering of the eigenvalues, an orddraighould
be clear from the context in which it is used). The eigenvahre the zeros of theharacteristic
polynomial

XA()‘) = de‘()\ln - A), ()‘ € Cv)

wherel, denotes the x n identitymatrix orunit matrix.
An eigenvalue decompositiari a square matrix¥ is a decomposition oft of the form

A=VDV!, whereV and D are square and) is diagonal.

In this case the diagonal entries Df are the eigenvalues of and the columns o¥ are the
corresponding eigenvectors. Not every square matritas an eigenvalue decomposition.
The eigenvalues of a squatteand of TAT ! are the same for any nonsingufr In particular

XA = XTAT!-

Rank, trace, determinant, singular and nonsingular matric es

Thetrace,tr(A) of a square matrit € C"*" is defined as {t4) = Y /_, 4;;. It may be showr
that

n
tr(4) =) Ai(A).
i=1

Therank of a (possibly nonsquare) matrix is the maximal number of linearly independe
rows (or, equivalently, columns) id. It also equals the rank of the square maix4 which in
turn equals the number of nonzero eigenvalued bd .

Thedeterminantf a square matrixd € C"*" is usually defined (but not calculated) recursiv
by

_ | Yo (=)t Ay de AT if n > 1
de“)_{A T ifa=1



HereA;T]‘.inor is the(n — 1) x (n — 1)-matrix obtained from4 by removing itsith row andth
column. The determinant of a matrix equals the product @igenvalues, deft) = [/_, A; (A).

A square matrix isingularif det(4) = 0 and isregular or nonsingularif det(4) # 0. For
square matriced and B of the same dimension we have

det(A B) = det(A4) det(B).

Symmetric, Hermitian and positive definite matrices, the tr anspose and unitary matrices

A matrix A € R™" is (real) symmetridf AT = 4. Here A" is thetransposeof A4 is defined
elementwise agA");; = A;;, (i,j =1,...,n).

A matrix 4 € C"™" is Hermitianif 4" = A. Here 4" is thecomplex conjugate transposé
A defined ag4™);; = 4;; (i,j = 1,...,n). Overbarsc + jy of a complex numbex + jy
denote the complex conjugate+ jy = x —jy.

Every real-symmetric and Hermitian matrixhas an eigenvalue decompositién= VDV ~!
and they have the special property that the mattfixnay be chosennitary which is that the
columns ofV have unit length and are mutually orthogonél'v = 1.

A symmetric or Hermitian matrix is said to benonnegative definiter positive semi-definite
if x"Ax > 0 for all column vectors:. We denote this by

A=0.

A symmetric or Hermitian matrix is said to bepositive definitéf x" 4x > 0 for all nonzero
column vectorsc. We denote this by

A > 0.

For Hermitian matricesgl and B the inequality4d > B is defined to mean that — B > 0.
Lemma A.1.1 (Nonnegative definite matrices). Let 4 € C™" be a Hermitian matrix. Then
1. All eigenvalues of4 are real valued,
22420 < rA)=0 (Mi=1,...,n),
33.4>0 <= M(A) >0 (Vi=1,...,n),

4. If T is nonsingular thes > 0 if and onlyTHAT > 0.

]
A.2. Three matrix lemmas
Lemma A.2.1 (Eigenvalues of matrix products). Supposed and B" are matrices of the sam
dimensiom x m. Then for anyA € C there holds

detAl, — AB) = A" " det(Al,, — BA). (A1)

Proof. One the one hand we have

M, Bl[Ln —3iB|_[Mn 0
A Ljflo I, || A I,—14B



and on the other hand
A, B I, 0| |[Al,—BA B
A L||-4 I,| 0 I,|"

Taking determinants of both of these equations shows that

A, B

m 1
A" det(], — XAB) = det[ A1,

} = dei(Al,, — BA).

So thenonzeroeigenvalues of4 B and BA are the same. This gives the two very use
identities:

1. detl, — AB) = det(l,, — BA),
2. t(AB) =), Ai(AB) = 3_; 1;(BA) = tr(BA).
Lemma A.2.2 (Sherman-Morrison-Woodburry & rank-one updat e).
A+UVHY T =AU +VvHAT VAT

This formula is used mostly it/ = u andV = v are column vectors. Thebi V" = yH
has rank one, and it shows that a rank-one updaté¢ oérresponds to a rank-one update of
inverse,

A+ w1t =471 ! u(Aflu)(vHAfl).

14 HA!

rank-one

Lemma A.2.3 (Schur complement).  Suppose a Hermitian matrit is partitioned as

_| P @
=l &
with P and R square. Then

A >0 <= Pisinvertible,P >0andR - Q0"P7'Q > 0.

The matrixR — Q" P! Q is referred to as th8chur complemerf P (in A). O






B. Norms of signals and systems

For a SISO system with transfer functidhthe interpretation ofH (jw)| as a “gain” from input
to output is clear, but how may we define “gain” for a MIMO systwith a transfematrix H?
One way to do this is to use norm&/ (jw)|| instead of absolute values. There are many diffe
norms and in this appendix we review the most common normsdibr signals and systems. T
theory of norms leads to a re-assessment of stability.

B.1. Norms of vector-valued signals

We consider continuous-time signalslefined on the time axiR. These signals may be scalz
valued (with values iR or C) or vector-valued (with values iR” or C"). They may be adde
and multiplied by real or complex numbers and, hence, amei¢s of what is known aswector
space.

Given such a signal, its normis a mathematically well-defined notion that is a measure
the “size” of the signal.

Definition B.1.1 (Norms).  Let X be a vector space over the real or complex numbers. Tt
function

-1: X—-R (B.1)
that mapsX into the real numberR is anormif it satisfies the following properties:
1. ||x|| = 0 forall x € X (nonnegativity,

2. ||x|l = 0if and only if x = 0 (positive-definitene¥s

w

. |Ax]| = |A] - ||x]| for every scalai and allx € X (homogeneity with respect to scaling

4. ||x 4+ y|l < |Ix|| + |ly]|| forall x € X andy € X (triangle inequality.

The pair(X, || - ||) is called anormedvector space. If it is clear which norm is uséd by itself
is often called a normed vector space. O

A well-known norm is thep-norm of vectors irC”.
Example B.1.2 (Norms of vectors in C”"). Suppose thak = (x,x,,--+,X,) IS ann-
dimensional complex-valued vector, that is,js an element ofC”. Then forl < p <
the p-normof x is defined as

") forl < < 00,
”x”p _{ (Zl_ll | ) =r (B.2)

Mmax=i2..,|x:| forp = oo.

Well-known special cases are the norms

n n 1/2
_ . — 12 — .
Ixlh =Y 1kl lxle = (Z |xi | ) Il =, _max il (B.3)

i=1 i=l1

| x |2 is the familiarEuclidean norm O



B.2. Singular values of vectors and matrices

We review the notion of singular values of a matri 4 is ann xm complex-valued matrix the
the matricest" 4 and4 A" are both nonnegative-definite Hermitian. As a result, tgemialues
of both A" 4 and 4 4" are all real and nonnegative. The ritn) largest eigenvalues

LA A),  xA4™, i=1,2, ..., min(n,m), (B.4)

of A"4 and 44", respectively, ordered in decreasing magnitude, are edliaé remaining
eigenvalues, if any, are zero. The square roots of thes@:mir) eigenvalues are called tt
singular value®f the matrix4, and are denoted

o (A) = \)2(AR4) = A2 (44", i=1,2, ..., min(@mm). (B.5)

Obviously, they are nonnegative real numbers. The numhesrfercsingular values equals th
rank of A.

Summary B.2.1 (Singular value decomposition). Givenn xm matrix 4 let X be the diagona
nxm matrix whose diagonal elements ar€A),i =1, 2,..., min(n, m). Then there exist squar
unitary matriced/ andV such that

A=UxVvH (B.6)

A (complex-valued) matri}U is unitary if UHU = UU" = I, with I a unit matrix of correct
dimensions. The representatid@h) is known as thaingular value decomposition (SVDBfthe
matrix A.

The largest and smallest singular valugA) and oming.,m)(A) respectively are commonl
denoted by an overbar and an underbar

0(A) = 01(A), 0(A) = Ominm)(4).
Moreover, the largest singular valagA) is a norm of4. It is known as thespectral norm g

There exist numerically reliable methods to compute theioesU and V' and the singular
values. These methods are numerically more stable thanwaitatzle for the computation o
eigenvalues.

Example B.2.2 (Singular value decomposition). The singular value decomposition of tt
3 x 1 matrix 4 given by

0
A=]3 (B.7)
4

isA=UXVH, where

0 —-06 038
U=|[06 064 —048], Y =
0.8 —0.48 0.36

V=1 (B.8)

S O W

The matrixA4 has a single nonzero singular value (because it has rangu3] &0 5. Hence, the
spectral norm o4 iso(4) = 5. O

1see for instance Section 10.8M6ble (1969.



B.3. Norms of signals

The p-norm for constant vectors may easily be generalized toovaetiued signals.

Definition B.3.1 ( £,-norm of a signal). ~ For anyl < p < oo the p-normor L,-norm||z| ¢,
of a continuous-time scalar-valued signals defined by

00 1/p
oo 2P dt for 1 < p < o0,
Izlle, = { Y ) (B.9)
SURer |2(2)] for p = oc.
If z(¢) is vector-valued with values iR" or C", this definition is generalized to
00 1/p
oo 127 dt for 1 < p < o0,
Izlle, = { Y ) (B.10)
SUper Iz for p = oo,
where|| - || is any norm on the-dimensional spacR” or C". O
The signal norms that we mostly need are fhenorm, defined as
[e’¢) 1/2
Iotey = ([ 1 ar) ©11)
and theL ,-norm, defined as
2]l oo = SUP [[2(2)lco- (B.12)

teR

The square}|z||252 of the £,-norm is often called thenergyof the signalz, and theL,-norm
Izl o its amplitudeor peak value

Example B.3.2 ( £; and Lx-norm). Consider the signal with two entries

| e'1()
20) = [2e‘3’]1(z)} :
Here 1(¢) denotes the unit step, sdr) is zero for negative time. From = 0 onwards both
entries ofz(¢) decay to zero asincreases. Therefore

Iz)l o, = Sup maxe™,2e7) = 2.
t=0

The square of th&,-norm follows as

00 efh ef6t =00 1 4 7
2 —2t —6t
= e 4e ' dr = 4 =_4+_-_ ==
=, /0 + oY E, T2 6
The energy of equals’/6, its £,-norm is/7/6. O

B.4. Norms of linear operators and systems

On the basis of normed signal spaces we may define norms dadtopethat act on these signa



Definition B.4.1 (Induced norm of a linear operator). Suppose thap is a linear mapyp :
U — Y from a normed spad¢ with norm|| - ||, to @ normed spac® with norm|| - ||3. Then
the norm of the operataf induced by the normis- ||, and|| - ||y is defined by

pully

luluzo Nullee

el =

(B.13)

O

Constant matrices represent linear maps, so B4t3 may be used to define norms of m
trices. For instance the spectral notmA/) is the norm induced by the-norm (see Exer-
ciseB.2(B.23)).

Lemma B.4.2 (The spectral norm is an induced norm). Let M € C™" Then

M
(M) = sup | X||2.
xecr, x#0  |I1X[l2

B.4.1. Norms of linear systems

We next turn to a discussion of the norm of a system. Considgstem as in FigB.1, which
maps the input signal into an output signa). Given an input:, we denote the output of th
system ay = ¢u. If ¢ is a linear operator the system is said to be linear. The néthesystem
is now defined as the norm of this operator.

U — ¢ —= )

Figure B.1: Input-output mapping system
We establish formulas for the norms of a linear time-invarigystem induced by thé,- and

Lso-norms of the input and output signals.

Summary B.4.3 (Norms of linear time-invariant systems). Consider a MIMO convolutior
system with impulse response mathix

y(@) = /00 h(t)u(t — 1) dr, t eR. (B.14)

o0

Moreover letH denote the transfer matrix, i.d4 is the Laplace transform df.

1. Loo-induced normThe norm of the system induced by thg,-norm B.11) is given by
0o k
max / > @) dt. (B.15)
m —00

i=12,,
Jj=1

whereh;; is the(i, j) entry of them x k impulse response matrix



2. L-induced normSupposeH is a rational matrix. The norm of the system induced by
L,-norm exists if and only iff is proper and has no poles in the closed right-half plane
that case th&,-induced normB.13) equals thé{..-normof the transfer matrix define
as

1H e = sup 0(H(jw)). (B.16)
O

A sketch of the proof is found if B.6. For SISO systems the expressions for the two no
obtained in SummarR.4.3simplify considerably.

Summary B.4.4 (Norms for SISO systems).  The norms of a SISO system with (scalar) i
pulse responsg and transfer functiorf/ induced by theC,- and £,-norms are successive
given byactionof the impulse response

o0
lhlle, = [ 1ho de. (B.17)
and the peak value on the Bode plo{ has no unstable poles
| H [+ = SUp|H (jw)|. (B.18)
w€R
If H has unstable poles then the induced norms do not exist. O

Example B.4.5 (Norms of a simple system). As a simple example, consider a SISO first-or
system with transfer function

H(s) =

) B.19
1+ 56 ( )

with 8 a positive constant. The corresponding impulse response is

ho) se'/% for 1 >0, (B.20)
{] = .
0 for t < 0.

It is easily found that the norm of the system induced bydhgnorm is
1
Al = / —e%dr =1. (B.21)
o 0

The norm induced by th&,-norm follows as

H =sUp——F— = SUp——==1. B.22
1l = ST j0b] = S TTr o0 (8:22)
For this example the two system norms are equal. Usuallyahewyot. O

Remark. In the robust control literature tHe,-norm of a transfer matrix{ is commonly
denoted byl| H |« and not by|| /||, as we have done here.



Summary B.4.6 (State-space computation of common system no rms). Suppose a syster
has proper transfer matriéd and letH (s) = C(sI, — A)~' B + D be a minimal realization o
H. Then

1. || H|#, is finite if and only if D = 0 and 4 is astability matrix¥. In that case

|H|l2, = Vir BTYB = Vtr CXCT
whereX andY are the solutions of the linear equations
AX + XA"=-BB", A'Y +Y4=-C"C.

The solutionsX and Y are unique and are respectively known as toatrollability
gramianandobservability gramian

2. The Hankel nornf| H || is finite only if 4 is a stability matrix. In that case

”H”H =V )\max(XY)

whereX andY are the controllability gramian and observability grami@he matrixX' Y’
has real nonnegative eigenvalues only, apgi( X Y) denotes the largest of them.

3. TheHoo-norm|| H ||, is finite if and only if 4 is a stability matrix. Thery € R is an
upper bound

IH oo <¥

if and only if 6 (D) < y and the2n x 2n matrix

A 0 —B _
[—CTC —AT1| — [ TD} (y’I-D'D)"'[D"C BT] (B.23)
has no imaginary eigenvalues. This result shows that coatipatof theH,-norm can
be done witj iteration (ory) and computation of eigenvalues. There are various o
approaches.

O

Proofs are listed in Appendiz.6.

B.5. BIBO and internal stability

Norms shed a new light on the notions of stability and intestability. Consider the MIMO
input-output mapping system of Fi§.1 with linear input-output mag. In § 1.3.2we defined
the system to be BIBO stable if any bounded inpugsults in a bounded output= ¢u. Now
bounded means having finite norm, and so different norms riedg glifferent versions of BIBO
stability. Normally theL .- or £,-norms ofu andy are used.

We review a few fairly obvious facts.

Summary B.5.1 (BIBO stability).

1. If ||¢| is finite, with || - || the norm induced by the norms of the input and output sigr
then the system is said to be BIBO stable (with respect the

2A constant matrix4 is astability matrixif it is square and all its eigenvalues have negative redl par



2. Suppose that the system is linear time-invariant wittonat transfer matrixt/. Then the
system is BIBO stable (both when tifg,- and thel,-norms ofu andy are used) if anc
only if H is proper and has all its poles in the open left-half complax.

O

Given the above it will be no surprise that we say that a temsfatrix isstableif it is proper
and has all its poles in the open left-half complex plan&. 1r8.2we already defined the notic
of internal stabilityfor MIMO interconnected systems: An interconnected systeimternally
stable if the system obtained by adding external input artdutisignals in every exposed inte
connection is BIBO stable. Here we specialize this for th&@Isystem of FigB.2.

e K u P Y

Figure B.2: Multivariable feedback structure

¢ K u P Y

Figure B.3: Inputs, w and outputg, u defining internal stability

Assume that feedback system shown in B is multivariablei.e., u or y have more thar
one entry. The closed loop of FiB.2 is by definitioninternally stableif in the extended close
loop of Fig.B.3the maps fronfw, r) to (e, u) are BIBO stable. In terms of the transfer matric
these maps are

[Z} N [—IK ﬂ] [ZJ (B.24)

_ [I-PU+KP)'K —PUI+KP)"[r
N [ (I + KP)"'K (I+KP)™! } [w}

Necessary for internal stability is that

det(Z + P(c0)K(c0)) % 0.

(B.25)

Feedback systems that satisfy this nonsingularity camditare said to bewell-posed
Hsu and Cheif1968. The following is a variation of Eqn1(44).

Lemma B.5.2 (Internal stability). = SupposeP and K are proper, having minimal realizatiol
(Ap, Bp,Cp, Dp) and (A, Bk, Ck, Dx). Then the feedback system of Fig.2 is internally
stable if and only if dgt/ + Dp D) # 0 and the polynomial

det(/ + P(s)K(s))del(sI — Ap)det(s] — Ak)



has all its zeros in the open left-half plane. O

If the n, x n, SystemP is not square, then the dimensionx n, of I + PK and dimensior
n, x n, of I + KP differ. The fact that déf + PK) = det(/ + KP) allows to evaluate the
stability of the system at the loop location having the lovgisiension.

Example B.5.3 (Internal stability of closed-loop system). Consider the loop gain

NN
L(s) = |:S+l S:'] )
0 5q

The unity feedback arounH gives as closed-loop characteristic polynomial:

2
det(/ + L(s))dei(s] — A;) = (%) s+D*s—1D)=(+2*s—1. (B.26)

The closed loop system hence is not internally stable. Et@l of the sensitivity matrix

0 s+1

s+l s+l
I+ Ly~ =502
s+2

shows that this transfer matrix in the closed-loop systestable, but the complementary sen
tivity matrix

| 1 5242543
- S ¢ 3 2
(I + L(s))" L(s) = 362 (rl)iﬂ)
s+2
is unstable, confirming that the closed-loop system indeedi internally stable. O

Example B.5.4 (Internal stability and pole-zero cancellat  ion). Consider

1 1 1 25
o[ 1] e[ 2]
s 0 -5

The unstable pole = 1 of the controller does not appear in the prodBét,
L)
s+1 s+1

This may suggest as in the SISO case that the map froéonu will be unstable. Indeed thi
lower-left entry of this map is unstable,

* *
K(I + PK)™' = 42 :
Te-De+DeFy  t
Instability may also be verified using Lemra5.2 it is readily verified that

det(/ + P(s)K(s))det(s] — Ap)det(s] — Axk)

= det[i é:| S+ D=1 =s(s— D+ D(s+3)
s+1 s+1

and this has a zero at= 1. O



B.6. Appendix: Proofs

Proof of Summar.4.6

1. If D is not zero then the impulse response makiix) = Ce* B1(t) + §(t)D contains
Dirac delta functions and as a result tHe-norm can not be finite. S® = 0 and

h(t) = Ce' B1(z).

If A is not a stability matrix therk(¢) is unbounded, hence thé,-norm is infinite. So
D = 0 andA is a stability matrix. Then

IH |3, tr /_ " hOTh() dt

(o]

o0
tr/ BTe!'CTCe' B dt
0

o0
= tr(BT/ e"'cTCeM dr B).
0

Y
The so defined matriX satisfies
o
ATY +Y4 = / ATet ' cTeet et CTeet Adr = ' CTCeM 20 = —CTC.
0

(B.27)

That is,Y satisfies the Lyapunov equatioff Y + YA = —CTC, and as4 is a stability
matrix the solutiont” of (B.27) is well known to be unique.

2. Let X andY be the controllability and observability gramians. By thegerty of state
the outputy for positive time is a function of the statg atr = 0. Then

o0 o0
/ YO y(t)dt = / xgeAT’CTCeA’xo dt = xJ Yxo.
0 0

If X satisfiesdX + XAT = —BBT then its inverseZ := X! satisfiesZA + ATZ =
—ZBB"Z. By completion of the square we may write

ZxTZx = 2x'Zx=2x"(ZAx 4+ ZBu) = x"(ZA+ A" Z)x + 2x" ZBu
= X" (—ZBB"Z)x" +2x"ZBu
= u'u—(w—B"Zx)"(u— B"Zx).

Therefore, assuming(—oc) = 0,
0
/ lu@I3 = llu@) = B"Zx 13 dt = x" () Zx ()| 2, = X Zxo = x] X',
—0o0

From this expression it follows that the smallegtn norm) that steers from x (—o0) = 0
to x(0) = xg isu(t) = BT Zx(t) (verify this). This then shows that
" f%oo yT(t)y(t) dt _ :JYXO .
w [P ouT(Ou()dt  XgX'xo




Now this supremum is less then somefor somex, if and only if
xXq¥xo < p?-xi X xo.

There exist suchx, iff ¥ < y2X~!, which in turn is equivalent to that;(YX) =
L (X172YX1/%) < 2. This proves the result.

3. ||H|l#., < y holds if and only if H is stable and/?I — H™~ H is positive definite on
jR U oco. This is the case iff it is positive definite at infinity (i.&(D) < y, i.e.y?I —
D™D > 0) and nowhere on the imaginary axt$/ — H~ H is singular. We will show
thaty?I — H™~ H has imaginary zeros iff§.23) has imaginary eigenvalues. It is readi
verified that a realization of>] — H~H is

A—sI 0 —B
—C'C —-A"—s1I Cc™D
D'C BT |y I-D'D

By the Schur complement results applied to this matrix welsae

A—sl 0 ~
det[—cTc AT 1} -de(y*] — H~ H) = de(y*] — D" D) - de(Anam— s1).

whereApanis the Hamiltonian matrixg.23). As 4 has no imaginary eigenvalues we hg
thaty?7 — H™~ H has no zeros on the imaginary axisAffamhas no imaginary eigenvalue
|

Proof of Norms of linear time-invariant systemé/e indicate how the formulas for the syste
norms as given in Summam.4.3are obtained.

1. Loo-induced normin terms of explicit sums, thah componeny; of the outputy = Axu
of the convolution system may be bounded as

pol = |[Choue-odi = [~ S i@l e -oldr
T T
< / Dh,-j(rndr)-nuncm, (eR, (B.28)
P
so that
17l 0 < Max / S @) de | -l ca.. (8.29)
i —o0 &
J
This shows that
o0
Il = max [ 3" ;0] . (B.30)
P

The proof that the inequality may be replaced by equalitiofed by showing that there
exists an input: such thatB.29) is achieved wittequality.



2. L>-induced normBYy Parseval's theorem (see elyvakernaak and Sivafi991) we have
that

Iz, _ [y @r@adt
lullZ, I ub@yu(r) de
1 o0 AH/: ~ e
=[S (o) P (o) do
T L i (w)ae) do (B.31)
o M) HR (jo) H(jo)i (jo) do (B.32)
- 22 M (jw)i (o) do '

—oo U

wherej is the Laplace transform gf and# that ofu. For any fixed frequency we have
that

(o) o) Ho)iGo) _
T Wwagey 0 e

Therefore

2
sup% < supc?(H(jw)). (B.33)
u u Ly 1)

The right hand side of this inequality is by definiti¢ﬂ||§1w. The proofthat the inequalit
may be replaced by equality follows by showing that therestexan input: for which
(B.33) is achieved with equality within an arbitrarily small ptdg¢ margins.

B.7. Problems

B.1 Singular value decompositiohet A = U X' V" be the singular value decomposition of t
n x m matrix 4, with singular values;,i = 1, 2,---, min(n, m). Denote the columns C
then x n unitary matrixU asu;,i =1, 2,---, n, and those of the: x m unitary matrixV’
asv;,i =1, 2,---, m. Prove the following statements:

a) Fori =1, 2,---, min(n, m) the column vector; is an eigenvector oft A™ corre-
sponding to the eigenvalue. Any remaining columns are eigenvectors correspc
ing to the eigenvalue 0.

b) Similarly, fori = 1, 2,---, min(z, m) the column vectow; is an eigenvector o
AH A corresponding to the eigenvaltg. Any remaining columns are eigenvect
corresponding to the eigenvalue 0.

c) Fori =1, 2,---, min(rn, m) the vectors:; andv; satisfy
AU,‘ = 0o;u;, AHu,- = 0;V;. (B34)

B.2 SingularvaluesGiven is a square xn matrix A. Prove the following properties (compa
p. R-5 of Chiang and Safono{d989):

llAx]l>
lIxfl>

a) 0(A) = MaXecr, x£0



b) 0(4) = minvecr. 0 i

c) o(A) < |Ai(A)| £T(A), with A;(A) theith eigenvalue of4.
d) If A~! exists the (A4) = 1/5(A") ando(4) = 1/a(A7").
e) o(aAd) = |a|a(A4), with @ any complex number.
f) 5(4+ B) <o(4)+0(B).
9) 5(AB) <G5(A)o(B).
h) a(4) —o(B) < a(A + B) = a(A4) + 7 (B).
i) max@(A).5(B)) <a(A B]) < v2maxG(A4),5(B)).
j) max ;|Ai;| <o(A) <nmax;|A;;|, with 4;; the (i, j) element of4.
K) Y7, 02(A) = tr(4A" 4).
B.3 Induced norms of linear operator$he space of linear operators from a vector sgate
a vector spacg is itself a vector space.

a) Show that the induced norjn || as defined byH.13) is indeed a norm on this spac
satisfying the properties of Definitids.1.1

Prove that this norm has the following additional propeattie

b) If y = u, then||ylly = ¢l - [lulle foranyu € U.

¢) Submultiplicative propertylet¢, : U — V andg¢, : V — Y be two linear
operators, witti/, V and) normed spaces. Thdid,¢1 || < [Pzl - l|¢11], with all the
norms induced.

B.4 Matrix norms induced by vector normSonsider then x k& complex-valued matrid/ as
a linear mapC¥ — C™ defined byy = Mu. Then depending on the norms defined

C* andC™ we obtain different matrix norms.

a) Matrix norm induced by the 1-nornProve that the norm of the matri% induced
by the 1-norm (both fot/ and)’) is themaximum absolute column sum

|M]] = max} M1, (B.35)

with M;; the(i, j) entry of M.
b) Matrix norm induced by theo-norm Prove that the norm of the matri¥ induced
by theco-norm (both for/ and))) is themaximum absolute row sum

| M| = max | My]. (B.36)
7

with M;; the(i, j) entry of M.
Prove these statements.

B.5 H,-norm and Hankel norm of MIMO systen®&wvo further norms of linear time-invariar
systems are commonly encountered. Consider a stable MIM@rsywith transfer matri
H and impulse response mat¥ix



a) H,-norm. Show that thé{,-norm defined as

| H ey = \/tr ( [ iz i df) - \/tr ( [ irana dr)

(B.37)
is a norm. The notation tr indicates the trace of a matrix.
b) Hankel norm.The impulse response matrixdefines an operator
0
y(@) = / h(t — t)u(r) dr, t>0. (B.38)
(e 9)

which maps continuous-time signals defined on the time axig—oo,0] to

continuous-time signalg defined on the time axig, co). The Hankel normj| H ||y

of the system with impulse response matfriis defined as the norm of the map giv
by (B.38) induced by theC,-norms ofu : (—oo,0] — R™ andy : [0,00) — R™.

Prove that this is indeed a norm.

¢) Compute thé4,-norm and the Hankel norm of the SISO system of Exangueb
Hint: To compute the Hankel norm first show thayigatisfies B.38) and’ is given

by (B.20) then||y |2 = 2 (/°.. €/%u(x) dv)>. From this, prove that H ||y = 1.

B.6 Proof. Consider Summar.5.1

a) Prove the statementsand?2.

b) Show by a counterexample that the conversé @ not true, that is, for certai

systems and norms the system may be BIBO stable in the sedeérzed while||¢ ||
is not necessarily finite.

c) In the literature the following better though more coroated definition of BIBO
stability is found: The system is BIBO stable if for every ftive real constantV
there exists a positive real constadt such that|u| < N implies|y| < M. With
this definition the system is BIBO stable if and only|if|| < co. Prove this.
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