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Preface

Part of these notes were developed for a course of the Dutch Network on Systems and Control
with the title “Robust control andH1 optimization,” which was taught in the Spring of 1991.
These first notes were adapted and much expanded for a course with the title “Design Methods
for Control Systems,” first taught in the Spring of 1994. Theywere thoroughly revised for the
Winter 1995–1996 course. For the Winter 1996–1997 course Chapter 4 was extensively revised
and expanded, and a number of corrections and small additions were made to the other chapters.
In the Winter 1997–1998 edition some material was added to Chapter 4 but otherwise there were
minor changes only. The changes in the 1999–2000 version were limited to a number of minor
corrections. In the 2000–2001 version an index and an appendix were added and Chapter 4 was
revised. A couple of mistakes were corrected in the 2001–2002, 2002-2003 and 2003-2004 issue.
H1 theory was updated in 2004-2005 and the main modification in 2005-2006 was that chapters
3 and 4 were interchanged.

The aim of the course is to present a mature overview of several important design techniques
for linear control systems, varying from classical to “post-modern.” The emphasis is on ideas,
methodology, results, and strong and weak points, not on proof techniques.

All the numerical examples were prepared using MATLAB . For many examples and exercises
the Control Toolbox is needed. For Chapter 6 the Robust Control Toolbox or the�-Tools toolbox
is indispensable.
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1. Introduction to Feedback Control
Theory

Overview– Feedback is an essential element of automatic control sys-
tems. The primary requirements for feedback control systems are stabil-
ity, performance and robustness.

The design targets for linear time-invariant feedback systems may be
phrased in terms of frequency response design goals and loopshaping.
The design targets need to be consistent with the limits of performance
imposed by physical realizability.

Extra degrees of freedom in the feedback system configuration intro-
duce more flexibility.

1.1. Introduction

Designing a control system is a creative process involving anumber of choices and decisions.
These choices depend on the properties of the system that is to be controlled and on the re-
quirements that are to be satisfied by the controlled system.The decisions imply compromises
between conflicting requirements. The design of a control system involves the following steps:

1. Characterize the system boundary, that is, specify the scope of the control problem and of
the system to be controlled.

2. Establish the type and the placement of actuators in the system, and thus specify the inputs
that control the system.

3. Formulate a model for the dynamic behavior of the system, possibly including a descrip-
tion of its uncertainty.

4. Decide on the type and the placement of sensors in the system, and thus specify the vari-
ables that are available for feedforward or feedback.

5. Formulate a model for the disturbances and noise signals that affect the system.

6. Specify or choose the class of command signals that are to be followed by certain outputs.

7. Decide upon the functional structure and the character ofthe controller, also in dependence
on its technical implementation.

1



1. Introduction to Feedback Control Theory

8. Specify the desirable or required properties and qualities of the control system.

In several of these steps it is crucial to derive useful mathematical models of systems, signals and
performance requirements. For the success of a control system design the depth of understanding
of the dynamical properties of the system and the signals often is more important than thea priori
qualifications of the particular design method.

The models of systems we consider are in general linear and time-invariant. Sometimes they
are the result of physical modelling obtained by application of first principles and basic laws.
On other occasions they follow from experimental or empirical modelling involving experimen-
tation on a real plant or process, data gathering, and fittingmodels using methods for system
identification.

Some of the steps may need to be performed repeatedly. The reason is that they involve de-
sign decisions whose consequences only become clear at later steps. It may then be necessary
or useful to revise an earlier decision. Design thus is a process of gaining experience and devel-
oping understanding and expertise that leads to a proper balance between conflicting targets and
requirements.

The functional specifications for control systems depend onthe application. We distinguish
different types of control systems:

Regulator systems. The primary function of a regulator system is to keep a designated output
within tolerances at a predetermined value despite the effects of load changes and other
disturbances.

Servo or positioning systems. In a servo system or positioning control system the system is
designed to change the value of an output as commanded by a reference input signal, and
in addition is required to act as a regulator system.

Tracking systems. In this case the reference signal is not predetermined but presents itself as a
measured or observed signal to be tracked by an output.

Feedback is an essential element of automatic control. Thisis why~ 1.2presents an elementary
survey of a number of basic issues in feedback control theory. These includerobustness, linearity
andbandwidth improvement,anddisturbance reduction.

Stability is a primary requirement for automatic control systems. After recalling in~ 1.3various
definitions of stability we review several well known ways ofdetermining stability, including the
Nyquist criterion.

In view of the importance of stability we elaborate in~ 1.4on the notion of stability robustness.
First we recall several classical and more recent notions ofstability margin. More refined results
follow by using the Nyquist criterion to establish conditions for robust stability with respect to
loop gain perturbations and inverse loop gain perturbations.

For single-input single-output feedback systems realizing the most important design targets
may be viewed as a process of loop shaping of a one-degree-of-freedom feedback loop. The
targets include

targets

8

<

:

� closed-loop stability,
� disturbance attenuation,
� stability robustness,

within the limitations set by

limitations

�

� plant capacity,
� corruption by measurement noise.

2



1.2. Basic feedback theory

Further design targets, which may require a two-degree-of-freedom configuration, are

further targets

�

� satisfactory closed-loop response,
� robustness of the closed-loop response.

Loop shaping and prefilter design are discussed in~ 1.5. This section introduces various impor-
tant closed-loop system functions such as the sensitivity function, the complementary sensitivity
function, and the input sensitivity function.

Certain properties of the plant, in particular its pole-zero pattern, impose inherent restrictions
on the closed-loop performance. In~ 1.7 the limitations that right-half plane poles and zeros
imply are reviewed. Ignoring these limitations may well lead to unrealistic design specifications.
These results deserve more attention than they generally receive.

1 1
2

and 2-degree-of-freedom feedback systems, designed for positioning and tracking, are dis-
cussed in Section1.8.

1.2. Basic feedback theory

1.2.1. Introduction

In this section feedback theory is introduced at a low conceptual level1. It is shown how the
simple idea of feedback has far-reaching technical implications.

Example 1.2.1 (Cruise control system). Figure1.1shows a block diagram of an automobile
cruise control system, which is used to maintain the speed ofa vehicle automatically at a constant
level. The speedv of the car depends on the throttle openingu. The throttle opening is controlled
by the cruise controller in such a way that the throttle opening isincreasedif the differencevr �v
between the reference speedvr and the actual speed is positive, anddecreasedif the difference
is negative.

This feedback mechanism is meant to correct automatically any deviations of the actual vehicle
speed from the desired cruise speed.

vr vr � v u

throttle
opening

reference
speed

vcruise
controller

car

Figure 1.1: Block diagram of the cruise control system

For later use we set up a simple model of the cruising vehicle that accounts for the major
physical effects. By Newton’s law

m Pv.t/ D Ftotal.t/; t � 0; (1.1)

wherem is the mass of the car, the derivativePv of the speedv its acceleration, andFtotal the total
force exerted on the car in forward direction. The total force may be expressed as

Ftotal.t/ D cu.t/ � �v2.t/: (1.2)

1This section has been adapted from Section 11.2 ofKwakernaak and Sivan(1991).

3



1. Introduction to Feedback Control Theory

The first termcu.t/ represents the propulsion force of the engine, and is proportional to the
throttle openingu.t/, with proportionality constantc. The throttle opening varies between 0
(shut) and 1 (fully open). The second term�v2.t/ is caused by air resistance. The friction force
is proportional to the square of the speed of the car, with� the friction coefficient. Substitution
of Ftotal into Newton’s law results in

m Pv.t/ D cu.t/ � �v2.t/; t � 0: (1.3)

If u.t/ D 1, t � 0, then the speed has a corresponding steady-state valuevmax, which satisfies
0 D c � �v2

max. Hence,vmax D
p

c=�. Defining

w D v

vmax
(1.4)

as the speed expressed as a fraction of the top speed, the differential equation reduces to

T Pw.t/ D u.t/ �w2.t/; t � 0; (1.5)

whereT D m=
p
�c. A typical practical value forT is T D 10 Œs�.

We linearize the differential equation (1.5). To a constant throttle settingu0 corresponds a
steady-state cruise speedw0 such that0 D u0 � w2

0 . Let u D u0 C Qu andw D w0 C Qw, with
j Qwj � w0. Substitution into (1.5) while neglecting second-order terms yields

T PQw.t/ D Qu.t/ � 2w0 Qw.t/: (1.6)

Omitting the circumflexes we thus have the first-order lineardifferential equation

Pw D � 1

�
w C 1

T
u; t � 0; (1.7)

with

� D T

2w0

: (1.8)

The time constant� strongly depends on the operating conditions. If the cruisespeed increases
from 25% to 75% of the top speed then� decreases from 20 [s] to 6.7 [s]. �

Exercise 1.2.2 (Acceleration curve). Show that the solution of the scaled differential equation
(1.5) for a constant maximal throttle position

u.t/ D 1; t � 0; (1.9)

and initial conditionw.0/ D 0 is given by

w.t/ D tanh.
t

T
/; t � 0: (1.10)

Plot the scaled speedw as a function oft for T D 10 [s]. Is this a powerful car? �

1.2.2. Feedback configurations

To understand and analyze feedback we first consider the configuration of Fig.1.2(a). The signalr
is an external control input. The “plant” is a given system, whose output is to be controlled. Often

4



1.2. Basic feedback theory

r

r

e

e

u

u

forward
compensator

forward
compensator

return
compensator

y

y
plant

plant

(a)

(b)

Figure 1.2: Feedback configurations: (a) General. (b) Unit feedback

r re e
�

 




plant

y

(a) (b)
return compensator

Figure 1.3: (a) Feedback configuration with input-output maps. (b) Equiva-
lent unit feedback configuration

the function of this part of the feedback system is to providepower, and its dynamical properties
are not always favorable. The outputy of the plant is fed back via thereturn compensatorand
subtracted from the external inputr . The differencee is called theerror signaland is fed to the
plant via theforward compensator.

The system of Fig.1.2(b), in which the return compensator is a unit gain, is said tohaveunit
feedback.

Example 1.2.3 (Unit feedback system). The cruise control system of Fig.1.1 is a unit feed-
back system. �

For the purposes of this subsection we reduce the configuration of Fig. 1.2(a) to that of
Fig. 1.3(a), where the forward compensator has been absorbed into the plant. The plant is repre-
sented as an input-output-mapping system with input-output (IO) map�, while the return com-
pensator has the IO map . The control inputr , the error signale and the output signaly usually
all are time signals. Correspondingly,� and are IO maps of dynamical systems, mapping time
signals to time signals.

The feedback system is represented by the equations

y D �.e/; e D r �  .y/: (1.11)

These equations may or may not have a solutione andy for any given control inputr . If a

5



1. Introduction to Feedback Control Theory

solution exists, the error signale satisfies the equatione = r �  .�.e//, or

e C 
 .e/ D r: (1.12)

Here
 D  ı �, with ı denoting map composition, is the IO map of the series connection of the
plant followed by the return compensator, and is called theloop IO map. Equation (1.12) reduces
the feedback system to a unit feedback system as in Fig.1.3(b). Note that because
 maps time
functions into time functions, (1.12) is a functionalequation for the time signale. We refer to it
as thefeedback equation.

1.2.3. High-gain feedback

Feedback is most effective if the loop IO map
 has “large gain.” We shall see that one of
the important consequences of this is that the map from the external inputr to the outputy is
approximately the inverse �1 of the IO map of the return compensator. Hence, the IO map
from the control inputr to the control system outputy is almost independent of the plant IO map.

Suppose that for a given class of external input signalsr the feedback equation

e C 
 .e/ D r (1.13)

has a solutione. Suppose also that for this class of signals the “gain” of themap
 is large, that
is,

k
 .e/k � kek; (1.14)

with k � k some norm on the signal space in whiche is defined. This class of signals generally
consists of signals that are limited in bandwidth and in amplitude. Then in (1.13) we may neglect
the first term on the left, so that


 .e/ � r: (1.15)

Since by assumptionkek � k
 .e/k this implies that

kek � krk: (1.16)

In words: If the gain is large then the errore is small compared with the control inputr . Going
back to the configuration of Fig.1.3(a), we see that this implies that .y/ � r , or

y �  �1.r/; (1.17)

where �1 is theinverseof the map (assuming that it exists).
Note that it is assumed that the feedback equation has a bounded solution2 e for every bounded

r . This is not necessarily always the case. Ife is bounded for every boundedr then the closed-
loop system by definition is BIBO stable3. Hence, the existence of solutions to the feedback
equation is equivalent to the (BIBO) stability of the closed-loop system.

Note also that generally the gain may only be expected to be large for aclassof error signals,
denotedE . The class usually consists of band- and amplitude-limitedsignals, and depends on the
“capacity” of the plant.

2A signal is bounded if its norm is finite. Norms of signals are discussed in AppendixB. See also~ 1.3.
3A system is BIBO (bounded-input bounded-output) stable if every bounded input results in a bounded output (see

~ 1.3).

6



1.2. Basic feedback theory

Example 1.2.4 (Proportional control of the cruise control s ystem). A simple form of feed-
back that works reasonably well but not more than that for thecruise control system of Exam-
ple 1.2.1is proportional feedback. This means that the throttle opening is controlled according
to

u.t/ � u0 D gŒr.t/ � w.t/�; (1.18)

with the gain g a constant andu0 a nominal throttle setting. Denotew0 as the steady-state
cruising speed corresponding to the nominal throttle setting u0, and writew.t/ D w0 C Qw.t/ as
in Example1.2.1. SettingQr.t/ D r.t/ � w0 we have

Qu.t/ D gŒQr.t/ � Qw.t/�: (1.19)

Substituting this into the linearized equation (1.7) (once again omitting the circumflexes) we have

Pw D � 1

�
w C g

T
.r �w/; (1.20)

that is,

Pw D �
�

1

�
C g

T

�

w C g

T
r: (1.21)

Stability is ensured as long as

1

�
C g

T
> 0: (1.22)

After Laplace transformation of (1.21) and solving for the Laplace transform ofw we identify
the closed-loop transfer functionHcl from

w D
g

T

s C 1
�

C g

T
„ ƒ‚ …

Hcl.s/

r: (1.23)

We follow the custom of operational calculus not to distinguish between a time signal and its
Laplace transform.

Figure1.4gives Bode magnitude plots of the closed-loop frequency responseHcl.j!/, ! 2 R,
for different values of the gaing. If the gaing is large thenHcl.j!/ � 1 for low frequencies.
The larger the gain, the larger the frequency region is over which this holds. �

1.2.4. Robustness of feedback systems

The approximate identityy �  �1.r/ (1.17) remainsvalid as long as the feedback equation has
a bounded solutione for everyr and the gain is large. The IO map of the return compensator
may often be implemented with good accuracy. This results ina matching accuracy for the IO
map of the feedback system as long as the gain is large, even ifthe IO map of the plant is poorly
defined or has unfavorable properties. The fact that

y �  �1.r/ (1.24)

in spite of uncertainty about the plant dynamics is calledrobustnessof the feedback system with
respect to plant uncertainty.

7



1. Introduction to Feedback Control Theory

jHclj
(log scale)

1

g1

g2

g3

! (log scale)
1
�

C g

T

Figure 1.4: Magnitude plots of the closed-loop frequency response function
for three values of the gain withg1 < g2 < g3

Example 1.2.5 (Cruise control system). The proportional cruise feedback control system of
Example1.2.4is a first-order system, like the open-loop system. The closed-loop time constant
�cl follows by inspection of (1.23) as

1

�cl
D 1

�
C g

T
: (1.25)

As long asg � T
�

the closed-loop time constant�cl approximately equalsT
g

. Hence,�cl does
not depend much on the open-loop time constant� , which is quite variable with the speed of the
vehicle. Forg � T

�
we have

Hcl.j!/ �
g

T

j! C g

T

� 1 for j!j � g

T
: (1.26)

Hence, up to the frequencyg
T

the closed-loop frequency response is very nearly equal to the unit
gain. The frequency response of the open-loop system is

H.j!/ D
1
T

j! C 1
�

� �

T
for j!j < 1

�
: (1.27)

The open-loop frequency response function obviously is much more sensitive to variations in the
time constant� than the closed-loop frequency response. �

1.2.5. Linearity and bandwidth improvement by feedback

Besides robustness, several other favorable effects may beachieved by feedback. They include
linearity improvement, bandwidth improvement, and disturbance reduction.

Linearity improvementis a consequence of the fact that if the loop gain is large enough, the
IO map of the feedback system approximately equals the inverse �1 of the IO map of the
return compensator. If this IO map is linear, so is the IO map of the feedback system, with good
approximation, no matter how nonlinear the plant IO map� is.

Also bandwidthimprovement is a result of the high gain property. If the return compensator is
a unit gain, the IO map of the feedback system is close to unityover those frequencies for which
the feedback gain is large. This increases the bandwidth.

8



1.2. Basic feedback theory

r e z z
�

 

ı

d

dy

disturbance

plant

return compenator (a) (b)

Figure 1.5: (a) Feedback system with disturbance. (b) Equivalent unit feed-
back configuration in the absence of the control inputr

Example 1.2.6 (Bandwidth improvement of the cruise control system). In Example1.2.5
the time constant of the closed-loop proportional cruise control system is

�cl D �

1 C g�

T

: (1.28)

For positive gaing the closed-loop time constant is smaller than the open-looptime constant�
and, hence, the closed-loop bandwidth is greater than the open-loop bandwidth. �

Exercise 1.2.7 (Steady-state linearity improvement of the proportional cruise control sys-
tem). The dynamics of the vehicle are given by

T Pw D u �w2: (1.29)

For a given steady-state solution.u0; w0/, with w0 D p
u0, consider the proportional feedback

scheme

u � u0 D g.r � w/: (1.30)

Calculate the steady-state dependence ofw � w0 on r � w0 (assuming thatr is constant). Plot
this dependence forw0 D 0:5 andg D 10.

To assess the linearity improvement by feedback compare this plot with a plot ofw�w0 versus
u � u0 for the open-loop system. Comment on the two plots. �

1.2.6. Disturbance reduction

A further useful property of feedback is that the effect of (external)disturbancesis reduced. It
frequently happens that in the configuration of Fig.1.2(a) external disturbances affect the output
y. These disturbances are usually caused by environmental effects.

The effect of disturbances may often be modeled by adding adisturbance signald at the output
of the plant as in Fig.1.5(a). For simplicity we study the effect of the disturbance inthe absence
of any external control input, that is, we assumer = 0. The feedback system then is described
by the equationsz D d C y, y D �.e/, ande D � .z/. Eliminating the outputy and the error
signale we havez = d C �.e/ = d C �.� .z//, or

z D d � ı.z/; (1.31)

9



1. Introduction to Feedback Control Theory

whereı D .��/ ı .� /. The mapı is also called aloop IO map,but it is obtained by “breaking
the loop” at a different point compared with when constructing the loop IO map
 D  ı �.

The equation (1.31) is a feedback equation for the configuration of Fig.1.5(b). By analogy
with the configuration of Fig.1.3(b) it follows that if the gain islarge in the sense thatkı.z/k �
kzk then we have

kzk � kdk: (1.32)

This means that the outputz of the feedback system is small compared with the disturbanced , so
that the effect of the disturbance is much reduced. All this holds provided the feedback equation
(1.31) has at all a bounded solutionz for any boundedd , that is, provided the closed-loop system
is BIBO stable.

Example 1.2.8 (Disturbance reduction in the proportional c ruise control system). The
progress of the cruising vehicle of Example1.2.1may be affected by head or tail winds and
up- or downhill grades. These effects may be represented by modifying the dynamical equation
(1.3) to m Pv D cu � �v2 C d , with d the disturbing force. After scaling and linearization as in
Example1.2.1this leads to the modification

Pw D � 1

�
w � 1

T
u C d (1.33)

of (1.7). Under the effect of the proportional feedback scheme (1.18) this results in the modifi-
cation

Pw D �
�

1

�
C g

T

�

w C g

T
r C d (1.34)

of (1.21). Laplace transformation and solution forw (while settingr D 0) shows that the effect
of the disturbance on the closed-loop system is representedby

wcl D 1

s C 1
�cl

d: (1.35)

From (1.33) we see that in the open-loop system the effect of the disturbance on the output is

wol D 1

s C 1
�

d: (1.36)

This signalwol actually is the “equivalent disturbance at the output” of Fig. 1.5(a). Comparison
of (1.34) and (1.35) shows that

wcl D
s C 1

�

s C 1
�cl

„ ƒ‚ …

S.s/

wol: (1.37)

S is known as thesensitivity functionof the closed-loop system. Figure1.6 shows the Bode
magnitude plot of the frequency response functionS.j!/. The plot shows that the open-loop
disturbances are attenuated by a factor

�cl

�
D 1

1 C g�

T

(1.38)
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1.3. Closed-loop stability

until the angular frequency1=� . After a gradual rise of the magnitude there is no attenuation or
amplification of the disturbances for frequencies over1=�cl.

The disturbance attenuation is not satisfactory at very lowfrequencies. In particular, con-
stant disturbances (that is, zero-frequency disturbances) are not completely eliminated because
S.0/ ¤ 0. This means that a steady head wind or a long uphill grade slowthe car down. In~ 2.3
it is explained how this effect may be overcome by applyingintegral control. �

1.2.7. Pitfalls of feedback

As we have shown in this section, feedback may achieve very useful effects. It also has pitfalls:

1. Naı̈vely making the gain of the system large may easily result in an unstablefeedback
system. If the feedback system is unstable then the feedbackequation has no bounded
solutions and the beneficial effects of feedback are nonexistent.

2. Even if the feedback system is stable then high gain may result in overly large inputs to the
plant, which the plant cannot absorb. The result is reduction of the gain and an associated
loss of performance.

3. Feedback implies measuring the output by means of an output sensor. The associated
measurement errorsandmeasurement noisemay cause loss of accuracy.

We return to these points in~ 1.5.

1.3. Closed-loop stability

1.3.1. Introduction

In the remainder of this chapter we elaborate some of the ideas of Section1.2 for linear time-
invariant feedback systems. Most of the results are stated for single-input single-output (SISO)
systems but from time to time also multi-input multi-output(MIMO) results are discussed.

We consider thetwo-degree-of-freedomconfiguration of Fig.1.7. A MIMO or SISO plant with
transfer matrixP is connected in feedback with a forward compensator with transfer matrixC .
The function of the feedback loop is to provide stability, robustness, and disturbance attenuation.
The feedback loop is connected in series with a prefilter withtransfer matrixF . The function of
the prefilter is to improve the closed-loop response to command inputs.

The configuration of Fig.1.7is said to have two degrees of freedom because both the compen-
satorC and the prefilterF are free to be chosen by the designer. When the prefilter is replaced

jS.j!/j
(log scale)

1

1=� 1=�cl

�cl=�

! (log scale)

Figure 1.6: Magnitude plot of the sensitivity function of the proportional
cruise control system
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prefilter
F

compensator
C

plant
P

reference
input

plant
input

error
signal

output
r zue

Figure 1.7: Two-degree-of-freedom feedback system configuration

(a) (b)

rr zz uue

C

C PP

Figure 1.8: Single-degree-of-freedom feedback system configurations

with the unit system as in Fig.1.8(a) the system is called asingle-degree-of-freedomfeedback
system. Also the configuration of Fig.1.8(b), with a return compensator instead of a forward
compensator, is called a single-degree-of-freedom system.

In ~ 1.8we consider alternative two-degree-of-freedom configurations, and study which is the
most effective configuration.

1.3.2. Stability

In the rest of this section we discuss the stability of the closed-loop control system of Fig.1.7.
We assume that the overall system, including the plant, the compensator and the prefilter, has a
state representation

Px.t/ D Ax.t/C Br.t/; (1.39)

2

4

z.t/

u.t/

e.t/

3

5 D Cx.t/C Dr.t/: (1.40)

The command signalr is the external input to the overall system, while the control system output
z, the plant inputu and the error signale jointly form the output. The signalx is the state of the
overall system.A, B, C , andD are constant matrices of appropriate dimensions.

The state representation of the overall system is formed by combining the state space represen-
tations of the component systems. We assume that these statespace representations include all
the important dynamic aspects of the systems. They may be uncontrollable or unobservable. Be-
sides the reference inputr the external input to the overall system may include other exogenous
signals such as disturbances and measurement noise.

Definition 1.3.1 (Stability of a closed-loop system). The feedback system of Fig.1.7(or any
other control system) isstableif the state representation (1.39–1.40) is asymptotically stable,that
is, if for a zero input and any initial state the state of the system asymptotically approaches the
zero state as time increases. �

12



1.3. Closed-loop stability

Given the state representation (1.39–1.40), the overall system is asymptotically stable if and
only if all the eigenvalues of the matrixA have strictly negative real part.

There is another important form of stability.

Definition 1.3.2 (BIBO stability). The system of Fig.1.7is calledBIBO stable(bounded-input-
bounded-output stable) if every bounded inputr results in bounded outputsz, u, ande for any
initial condition on the state. �

To know what “bounded” means we need a norm for the input and output signals. A signal is
said to be bounded if its norm is finite. We discuss the notion of the norm of a signal at some
length in AppendixB. For the time being we say that a (vector-valued) signalv.t/ is bounded if
there exists a constantM such thatjvi .t/j � M for all t and for each componentvi of v.

Exercise 1.3.3 (Stability and BIBO stability).

1. Prove that if the closed-loop system is stable in the senseof Definition1.3.1then it is also
BIBO stable.

2. Conversely, prove that if the system is BIBO stable and hasno unstable unobservable
modes4 then it is stable in the sense of Definition1.3.1.

3. Often BIBO stability is defined so that bounded input signals are required to result in
bounded output signals forzeroinitial conditions of the state. With this definition, Part (1)
of this exercise obviously still holds. Conversely, prove that if the system is BIBO stable
in this sense and has no unstable unobservable and uncontrollable modes5 then it is stable
in the sense of Definition1.3.1.

�

We introduce a further form of stability. It deals with the stability of interconnected systems, of
which the various one- and two-degree-of-freedom feedbacksystems we encountered are exam-
ples. Stability in the sense of Definition1.3.1is independent of the presence or absence of inputs
and outputs. BIBO stability, on the other hand, is strongly related to the presence and choice
of input and output signals.Internal stability is BIBO stability but decoupled from a particu-
lar choice of inputs and outputs. We define the notion of internal stability of an interconnected
systems in the following manner.

Definition 1.3.4 (Internal stability of an interconnected s ystem). In each “exposed intercon-
nection” of the interconnected system, inject an “internal” input signalvi (with i an index), and
define an additional “internal” output signalwi just after the injection point. Then the system is
said to beinternally stableif the system whose input consists of the joint (external andinternal)
inputs and whose output is formed by the joint (external and internal) outputs is BIBO stable.�

To illustrate the definition of internal stability we consider the two-degree-of-freedom feed-
back configuration of Fig.1.9. The system has the external inputr , and the external outputz.
Identifying five exposed interconnections, we include five internal input-output signal pairs as
shown in Fig.1.10. The system is internally stable if the system with input (r , v1, v2, v3, v4, v5)
and output (z,w1,w2, w3, w4,w5) is BIBO stable.

Exercise 1.3.5 (Stability and internal stability).

4A state systemPx D Ax C Bu, y D Cx C Du has an unobservable mode if the homogeneous equationPx D Ax has
a nontrivial solutionx such thatCx D 0. The mode is unstable if this solutionx.t/ does not approach 0 ast ! 1.

5The state systemPx D Ax C Bu, y D Cx C Du has an uncontrollable mode if the state differential equation
Px D Ax C Bu has a solutionx that is independent ofu.

13
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r z
C PF

Figure 1.9: Two-degree-of-freedom feedback system

r z
C PF

v1
w1

v2
w2

v3
w3

v4
w4

v5

w5

Figure 1.10: Two-degree-of-freedomsystem with internal inputs and outputs
added

1. Prove that if the system of Fig.1.9is stable then it is internally stable.

2. Conversely, prove that if the system is internally stableand none of the component sys-
tems has any unstable unobservable modes then the system is stable in the sense of Defi-
nition 1.3.1. Hint: This follows from Exercise1.3.3(b).

�

When using input-output descriptions, such as transfer functions, then internal stability is
usually easier to check than stability in the sense of Definition 1.3.1. If no unstable unobservable
and uncontrollable modes are present then internal stability is equivalent to stability in the sense
of Definition1.3.1.

We say that a controllerstabilizesa loop, or,is stabilizing, if the closed loop with that controller
is stable or internally stable.

1.3.3. Closed-loop characteristic polynomial

For later use we discuss the relation between the state and transfer functions representations of
the closed-loop configuration of Fig.1.9.

The characteristic polynomial� of a system with state space representation

Px.t/ D Ax.t/C Bu.t/; (1.41)

y.t/ D Cx.t/C Du.t/; (1.42)

is the characteristic polynomial of itssystem matrixA,

�.s/ D det.sI � A/: (1.43)

The roots of the characteristic polynomial� are the eigenvalues of the system. The system is
stable if and only if the eigenvalues all have strictly negative real parts, that is, all lie in the open
left-half complex plane.

14



1.3. Closed-loop stability

The configuration of Fig.1.9 consists of the series connection of the prefilterF with the
feedback loop of Fig.1.11(a).

Exercise 1.3.6 (Stability of a series connection). Consider two systems, one with statex and
one with statez and let�1 and�2 denote their respective characteristic polynomials. Prove that
the characteristic polynomial of the series connection of the two systems with state

�
x
z

�

is �1�2.
From this it follows that the eigenvalues of the series connection consist of the eigenvalues of the
first system together with the eigenvalues of the second system. �

C P
e u y

(a)

L

(b)

Figure 1.11: MIMO or SISO feedback systems

We conclude that the configuration of Fig.1.9 is stable if and only if both the prefilter and
the feedback loop are stable. To study the stability of the MIMO or SISO feedback loop of
Fig.1.11(a) represent it as in Fig.1.11(b). L D PC is the transfer matrix of the series connection
of the compensator and the plant.L is called theloop transfer matrix. We assume thatL is proper,
that is,L.1/ exists.

Suppose that the series connectionL has the characteristic polynomial�. We call� theopen-
loop characteristic polynomial. It is proved in~ 1.10that the characteristic polynomial of the
closed-loop system of Fig.1.11is

�cl.s/ D �.s/
detŒI C L.s/�

detŒI C L.1/�
: (1.44)

We call�cl theclosed-loop characteristic polynomial.
In the SISO case we may write the loop transfer function as

L.s/ D R.s/

Q.s/
; (1.45)

with R andQ polynomials, whereQ D � is the open-loop characteristic polynomial. Note that
we allownocancellation between the numerator polynomial and the characteristic polynomial in
the denominator. It follows from (1.44) that within the constant factor1 C L.1/ the closed-loop
characteristic polynomial is

�.s/.1 C L.s// D Q.s/Œ1 C R.s/

Q.s/
� D Q.s/C R.s/: (1.46)

We return to the configuration of Fig.1.11(a) and write the transfer functions of the plant and the
compensator as

P .s/ D N.s/

D.s/
; C.s/ D Y .s/

X.s/
: (1.47)

D and X are the open-loop characteristic polynomials of the plant and the compensator, re-
spectively. N and Y are their numerator polynomials. Again we allow no cancellation be-
tween the numerator polynomials and the characteristic polynomials in the denominators. Since
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1. Introduction to Feedback Control Theory

R.s/ D N.s/Y .s/ and Q.s/ D D.s/X.s/ we obtain from (1.46) the well-known result
that within a constant factor the closed-loop characteristic polynomial of the configuration of
Fig. 1.11(a) is

D.s/X.s/C N.s/Y .s/: (1.48)

With a slight abuse of terminology this polynomial is often referred to as the closed-loop char-
acteristic polynomial. The actual characteristic polynomial is obtained by dividing (1.48) by its
leading coefficient6.

Exercise 1.3.7 (Hidden modes). Suppose that the polynomialsN andD have a common poly-
nomial factor. This factor corresponds to one or several unobservable or uncontrollable modes of
the plant. Show that the closed-loop characteristic polynomial also contains this factor. Hence,
the eigenvalues corresponding to unobservable or uncontrollable modes cannot be changed by
feedback. In particular, any unstable uncontrollable or unobservable modes cannot be stabilized.

The same observation holds for any unobservable and uncontrollable poles of the compensator.
�

The stability of a feedback system may be tested by calculating the roots of its characteristic
polynomial. The system is stable if and only if each root has strictly negative real part. The
Routh-Hurwitz stability criterion,which is reviewed in Section5.2, allows to test for stability
without explicitly computing the roots. Anecessarybut not sufficient condition for stability is
that all the coefficients of the characteristic polynomial have the same sign. This condition is
known asDescartes’ rule of signs.

1.3.4. Pole assignment

The relation

� D DX C N Y (1.49)

for the characteristic polynomial (possibly within a constant) may be used for what is known as
pole assignmentor pole placement. If the plant numerator and denominator polynomialsN and
D are known, and� is specified, then (1.49) may be considered as an equation in the unknown
polynomialsX andY . This equation is known as theBézoutequation. If the polynomialsN
andD have a common nontrivial polynomial factor that is not a factor of � then obviously no
solution exists. Otherwise, a solution always exists.

The Bézout equation (1.49) may be solved by expanding the various polynomials as powers
of the undeterminate variable and equate coefficients of like powers. This leads to a set of linear
equations in the coefficients of the unknown polynomialsX andY , which may easily be solved.
The equations are known as theSylvesterequations (Kailath, 1980).

To set up the Sylvester equations we need to know the degrees of the polynomialsX andY .
Suppose thatP D N=D is strictly proper7, with degD D n and degN < n given. We try to
find a strictly proper compensatorC D Y=X with degrees degX D m and degY D m � 1

to be determined. The degree of� D DX C N Y is n C m, so that by equating coefficients of
like powers we obtainn C m C 1 equations. Setting this number equal to the number2m C 1

of unknown coefficients of the polynomialsY andX it follows thatm D n. Thus, we expect to
solve the pole assignment problem with a compensator of the same order as the plant.

6That is, the coefficient of the highest-order term.
7A rational function or matrixP is strictly proper if lim jsj!1 P .s/ D 0. A rational functionP is strictly proper if

and only if the degree of its numerator is less than the degreeof its denominator.
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1.3. Closed-loop stability

Example 1.3.8 (Pole assignment). Consider a second-order plant with transfer function

P .s/ D 1

s2
: (1.50)

Because the compensator is expected to have order two we needto assign four closed-loop poles.
We aim at a dominant pole pair at1

2

p
2.�1 ˙ j/ to obtain a closed-loop bandwidth of 1 [rad/s],

and place a non-dominant pair at5
p

2.�1 ˙ j/. Hence,

�.s/ D .s2 C s
p

2 C 1/.s2 C 10
p

2s C 100/

D s4 C 11
p

2s3 C 121s2 C 110
p

2s C 100: (1.51)

Write X.s/ D x2s2 C x1s C x0 andY .s/ D y1s C y0. Then

D.s/X.s/C N.s/Y .s/ D s2.x2s
2 C x1s C x0/C .y1s C y0/

D x2s
4 C x1s

3 C x0s2 C y1s C y0: (1.52)

Comparing (1.51) and (1.52) the unknown coefficients follow by inspection, and we see that

X.s/ D s2 C 11
p

2s C 121; (1.53)

Y .s/ D 110
p

2s C 100: (1.54)

�

Exercise 1.3.9 (Sylvester equations). More generally, suppose that

P .s/ D bn�1s
n�1 C bn�2s

n�2 C � � � C b0

ansn C an�1sn�1 C � � � C a0

; (1.55)

C.s/ D yn�1s
n�1 C yn�2s

n�2 C � � � C y0

xnsn C xn�1sn�1 C � � � C x0

; (1.56)

�.s/ D �2ns2n C �2n�1s2n�1 C � � � C �0: (1.57)

Show that the equation� D DX C N Y may be arranged as
2

6
6
6
6
6
6
6
6
6
6
6
6
4

an 0 � � � � � � 0

an�1 an 0 � � � 0

� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
a0 a1 � � � � � � an

0 a0 a1 � � � an�1

� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
0 � � � � � � 0 a0

3

7
7
7
7
7
7
7
7
7
7
7
7
5

„ ƒ‚ …

A

2

6
6
6
6
6
6
6
6
4

xn

xn�1

� � �
� � �
� � �
� � �
x0

3

7
7
7
7
7
7
7
7
5

„ ƒ‚ …

x

C

2

6
6
6
6
6
6
6
6
6
6
6
6
4

0 � � � � � � � � � 0

0 � � � � � � � � � 0

bn�1 0 0 � � � 0

bn�2 bn�1 0 � � � 0

� � � � � � � � � � � � � � �
b0 b1 � � � � � � bn�1

0 b0 b1 � � � bn�2

� � � � � � � � � � � � � � �
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3

7
7
7
7
7
7
7
7
7
7
7
7
5

„ ƒ‚ …

B

2

6
6
6
6
6
6
6
6
4

yn�1
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� � �
� � �
� � �
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y0

3

7
7
7
7
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3
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(1.58)
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Figure 1.12: Nyquist plot of the loop gain transfer functionL.s/ = k=.1 C
s�/

This in turn may be represented as

�

A B
�
�

x
y

�

D c (1.59)

and solved forx andy. If the polynomialsD andN are coprime8 then the square matrix
�

A B
�

is nonsingular. �

1.3.5. Nyquist criterion

In classical control theory closed-loop stability is oftenstudied with the help of theNyquist
stability criterion,which is a well-known graphical test. Consider the simple MIMO feedback
loop of Fig.1.11. The block marked “L” is the series connection of the compensatorC and the
plantP . The transfer matrixL D PK is called theloop gain matrix— or loop gain,for short
— of the feedback loop.

For a SISO system,L is a scalar function. Define theNyquist plot9 of the scalar loop gainL
as the curve traced in the complex plane by

L.j!/; ! 2 R: (1.60)

Because for finite-dimensional systemsL is a rational function with real coefficients, the Nyquist
plot is symmetric with respect to the real axis. Associated with increasing! we may define a
positive direction along the locus. IfL is proper10 and has no poles on the imaginary axis then
the locus is a closed curve. By way of example, Fig.1.12shows the Nyquist plot of the loop gain
transfer function

L.s/ D k

1 C s�
; (1.61)

with k and� positive constants. This is the loop gain of the cruise control system of Exam-
ple1.2.5with k D g�=T .

We first state the best known version of the Nyquist criterion.

Summary 1.3.10 (Nyquist stability criterion for SISO open- loop stable systems). Assume
that in the feedback configuration of Fig.1.11 the SISO systemL is open-loop stable. Then

8That is, they have no nontrivial common factors.
9The Nyquist plot is discussed at more length in~ 2.4.3.

10A rational matrix functionL is proper if lim jsj!1 L.s/ exists. For a rational functionL this means that the degree
of its numerator is not greater than that of its denominator.
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1.3. Closed-loop stability

the closed-loop system is stable if and only if the Nyquist plot of L does not encircle the point
�1. �

It follows immediately from the Nyquist criterion and Fig.1.12that if L.s/ = k=.1 C s�/ and
the block “L” is stable then the closed-loop system is stable for all positive k and� .

Exercise 1.3.11 (Nyquist plot). Verify the Nyquist plot of Fig.1.12. �

Exercise 1.3.12 (Stability of compensated feedback system ). Consider a SISO single-
degree-of-freedom system as in Fig.1.8(a) or (b), and define the loop gainL D PC . Prove
that if both the compensator and the plant are stable andL satisfies the Nyquist criterion then the
feedback system is stable. �

The result of Summary1.3.10is a special case of thegeneralized Nyquist criterion. The
generalized Nyquist principle applies to a MIMO unit feedback system of the form of Fig.1.11,
and may be phrased as follows:

Summary 1.3.13 (Generalized Nyquist criterion). Suppose that the loop gain transfer func-
tion L of the MIMO feedback system of Fig.1.11is proper such thatI C L.j1/ is nonsingular
(this guarantees the feedback system to be well-defined) andhas no poles on the imaginary axis.
Assume also that the Nyquist plot of det.I C L/ does not pass through the origin. Then

the number of unstable closed-loop poles
=

the number of times the Nyquist plot of det.I C L/ encircles the origin clockwise11

C
the number of unstable open-loop poles.

It follows that the closed-loop system is stable if and only if the number of encirclements of
det.I C L/ equals the negative of the number of unstable open-loop poles. �

Similarly, the “unstable open-loop poles” are the right-half plane eigenvalues of the system
matrix of the state space representation of the open-loop system. This includes any uncontrollable
or unobservable eigenvalues. The “unstable closed-loop poles” similarly are the right-half plane
eigenvalues of the system matrix of the closed-loop system.

In particular, it follows from the generalized Nyquist criterion that if the open-loop system is
stable then the closed-loop system is stable if and only if the number of encirclements is zero
(i.e., the Nyquist plot of det.I C L/ doesnot encircle the origin).

For SISO systems the loop gainL is scalar, so that the number of times the Nyquist plot of
det.I C L/ D 1 C L encircles the origin equals the number of times the Nyquist plot of L

encircles the point�1.
The condition that det.I CL/ has no poles on the imaginary axis and does not pass through the

origin may be relaxed, at the expense of making the analysis more complicated (see for instance
Dorf (1992)).

The proof of the Nyquist criterion is given in~ 1.10. More about Nyquist plots may be found
in ~ 2.4.3.

11This means the number of clockwise encirclements minus the number of anticlockwise encirclements. I.e., this number
may be negative.
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1.3.6. Existence of a stable stabilizing compensator

A compensator that stabilizes the closed-loop system but byitself is unstable is difficult to handle
in start-up, open-loop, input saturating or testing situations. There are unstable plants for which
a stable stabilizing controller does not exist. The following result was formulated and proved by
Youla et al.(1974); see alsoAnderson and Jury(1976) andBlondel(1994).

Summary 1.3.14 (Existence of stable stabilizing controlle r). Consider the unit feedback
system of Fig.1.11(a) with plantP and compensatorC .

The plant possesses theparity interlacing propertyif it has an even number of poles (counted
according to multiplicity) between each pair of zeros on thepositive real axis (including zeros at
infinity.)

There exists a stable compensatorC that makes the closed-loop stable if and only if the plant
P has the parity interlacing property. �

If the denominator of the plant transfer functionP has degreen and its numerator degreem
then the plant hasn poles andm (finite) zeros. Ifm < n then the plant is said to haven�m zeros
at infinity.

Exercise 1.3.15 (Parity interlacing property). Check that the plant

P .s/ D s

.s � 1/2
(1.62)

possesses the parity interlacing property while

P .s/ D .s � 1/.s � 3/

s.s � 2/
(1.63)

does not. Find a stabilizing compensator for each of these two plants (which for the first plant is
itself stable.) �

1.4. Stability robustness

1.4.1. Introduction

In this section we consider SISO feedback systems with the configuration of Fig.1.13. We discuss
their stability robustness,that is, the property that the closed-loop system remains stable under
changes of the plant and the compensator. This discussion focusses on theloop gainL D PC ,
with P the plant transfer function, andC the compensator transfer function. For simplicity we
assume that the system isopen-loop stable,that is, bothP andC represent the transfer function
of a stable system.

We also assume the existence of anominalfeedback loop with loop gainL0, which is the loop
gain that is supposed to be valid under nominal circumstances.

1.4.2. Stability margins

The closed-loop system of Fig.1.13remains stable under perturbations of the loop gainL as
long as the Nyquist plot of the perturbed loop gain does not encircle the point�1. Intuitively,
this may be accomplished by “keeping the Nyquist plot of the nominal feedback system away
from the point�1.”

The classicgain marginand phase marginare well-known indicators for how closely the
Nyquist plot approaches the point�1.
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e u y
C P

Figure 1.13: Feedback system configuration

Gain margin The gain margin is the smallest positive numberkm by which the Nyquist plot
must be multiplied so that it passes through the point�1. We have

km D 1

jL.j!r /j
; (1.64)

where!r is the angular frequency for which the Nyquist plot intersects the negative real
axis furthest from the origin (see Fig.1.14).

Phase margin The phase margin is the extra phase�m that must be added to make the Nyquist
plot pass through the point�1. The phase margin�m is the angle between the negative
real axis andL.j!m/, where!m is the angular frequency where the Nyquist plot intersects
the unit circle closest to the point�1 (see again Fig.1.14).

�1 1

L

!

Im

Re

reciprocal of the
gain margin

modulus margin

phase margin

Figure 1.14: Robustness margins

In classical feedback system design, robustness is often specified by establishing minimum values
for the gain and phase margin. Practical requirements arekm > 2 for the gain margin and
30ı < �m < 60ı for the phase margin.

The gain and phase margin do not necessarily adequately characterize the robustness. Fig-
ure1.15shows an example of a Nyquist plot with excellent gain and phase margins but where a
relatively smalljoint perturbation of gain and phase suffices to destabilize the system. For this
reasonLandau et al.(1993) introduced two more margins.

Modulus margin 12 The modulus marginsm is the radius of the smallest circle with center�1

that is tangent to the Nyquist plot. Figure1.14illustrates this. The modulus margin very
directly expresses how far the Nyquist plot stays away from�1.

12French:marge de module.
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Figure 1.15: This Nyquist plot has good gain and phase margins but a small
simultaneous perturbation of gain and phase destabilizes the
system

Delay margin 13 The delay margin�m is the smallest extra delay that may be introduced in the
loop that destabilizes the system. The delay margin is linked to the phase margin�m by
the relation

�m D min
!�

��
!�
: (1.65)

Here!� ranges over all nonnegative frequencies at which the Nyquist plot intersects the
unit circle, and�� denotes the corresponding phase�� D argL.j!�/. In particular�m �
�m

!m
.

A practical specification for the modulus margin issm > 0:5. The delay margin should be at least
of the order of 1

2B
, whereB is the bandwidth (in terms of angular frequency) of the closed-loop

system.
Adequate margins of these types are not only needed for robustness, but also to achieve a

satisfactory time response of the closed-loop system. If the margins are small, the Nyquist plot
approaches the point�1 closely. This means that the stability boundary is approached closely,
manifesting itself by closed-loop poles that are very near to the imaginary axis. These closed-
loop poles may cause an oscillatory response (called “ringing” if the resonance frequency is high
and the damping small.)

Exercise 1.4.1 (Relation between robustness margins). Prove that the gain marginkm and
the phase margin�m are related to the modulus marginsm by the inequalities

km � 1

1 � sm

; �m � 2 arcsin
sm

2
: (1.66)

This means that ifsm � 1
2

thenkm � 2 and�m � 2 arcsin1
4

� 28:96ı (Landau et al., 1993). The
converse is not true in general. �

1.4.3. Robustness for loop gain perturbations

The robustness specifications discussed so far are all rather qualitative. They break down when
the system is not open-loop stable, and, even more spectacularly, for MIMO systems. We intro-
duce a more refined measure of stability robustness by considering the effect of plant perturba-
tions on the Nyquist plot more in detail. For the time being the assumptions that the feedback
system is SISO and open-loop stable are upheld. Both are relaxed later.
13French:marge de retard.
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Figure 1.16: Nominal and perturbed Nyquist plots

Naturally, we suppose the nominal feedback system to be well-designed so that it is closed-
loop stable. We investigate whether the feedback systemremainsstable when the loop gain is
perturbed from the nominal loop gainL0 to the actual loop gainL.

By the Nyquist criterion, the Nyquist plot of the nominal loop gainL0 does not encircle the
point�1, as shown in Fig.1.16. The actual closed-loop system is stable if also the Nyquistplot
of the actual loop gainL does not encircle�1.

It is easy to see by inspection of Fig.1.16that the Nyquist plot ofL definitely does not encircle
the point�1 if for all ! 2 R the distancejL.j!/ � L0.j!/j between any pointL.j!/ and the
corresponding pointL0.j!/ is lessthan the distancejL0.j!/ C 1j of the pointL0.j!/ and the
point�1, that is, if

jL.j!/ � L0.j!/j < jL0.j!/C 1j for all ! 2 R: (1.67)

This is equivalent to

jL.j!/ � L0.j!/j
jL0.j!/j

� jL0.j!/j
jL0.j!/C 1j < 1 for all ! 2 R: (1.68)

Define thecomplementary sensitivity functionT0 of the nominal closed-loop system as

T0 D L0

1 C L0

: (1.69)

T0 bears its name because its complement

1 � T0 D 1

1 C L0

D S0 (1.70)

is thesensitivity function. The sensitivity function plays an important role in assessing the effect
of disturbances on the feedback system, and is discussed in Section1.5.

GivenT0, it follows from (1.68) that if

jL.j!/ � L0.j!/j
jL0.j!/j

� jT0.j!/j < 1 for all ! 2 R (1.71)

then the perturbed closed-loop system is stable.
The factorjL.j!/�L0.j!/j=jL0.j!/j in this expression is therelativesize of the perturbation

of the loop gainL from its nominal valueL0. The relation (1.71) shows that the closed-loop
system is guaranteed to be stable as long as the relative perturbations satisfy

jL.j!/ � L0.j!/j
jL0.j!/j

<
1

jT0.j!/j
for all ! 2 R: (1.72)
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The larger the magnitude of the complementary sensitivity function is, the smaller is the allowable
perturbation.

This result is discussed more extensively in Section5.5, where also its MIMO version is de-
scribed. It originates fromDoyle (1979). The stability robustness condition has been obtained
under the assumption that the open-loop system is stable. Infact, it also holds for open-loop
unstable systems,providedthe number of right-half plane poles remains invariant under pertur-
bation.

Summary 1.4.2 (Doyle’s stability robustness criterion). Suppose that the closed-loop system
of Fig. 1.13is nominally stable. Then it remains stable under perturbations that do not affect the
number of open-loop unstable poles if

jL.j!/ � L0.j!/j
jL0.j!/j

<
1

jT0.j!/j
for all ! 2 R; (1.73)

with T0 the nominal complementary sensitivity function of the closed-loop system. �

Exercise 1.4.3 (No poles may cross the imaginary axis). Use the general form of the Nyquist
stability criterion of Summary1.3.13to prove the result of Summary1.4.2. �

Doyle’s stability robustness condition is asufficientcondition. This means that there may well
exist perturbations that do not satisfy (1.73) but nevertheless do not destabilize the closed-loop
system. This limits the applicability of the result. With a suitable modification the condition is
also necessary, however. Suppose that the relative perturbations are known to bounded in the
form

jL.j!/ � L0.j!/j
jL0.j!/j

� jW .j!/j for all ! 2 R; (1.74)

with W a given function. Then the condition (1.73) is implied by the inequality

jT0.j!/j <
1

jW .j!/j for all ! 2 R: (1.75)

Thus, if the latter condition holds, robust stability is guaranteed for all perturbations satisfying
(1.74). Moreover, (1.75) is not only sufficient but alsonecessaryto guarantee stability forall per-
turbations satisfying (1.74) (Vidysagar, 1985). Such perturbations are said to “fill the uncertainty
envelope.”

Summary 1.4.4 (Stability robustness). Suppose that the closed-loop system of Fig.1.13 is
nominally stable. It remains stable under all perturbations that do not affect the number of open-
loop unstable poles satisfying the bound

jL.j!/ � L0.j!/j
jL0.j!/j

� jW .j!/j for all ! 2 R; (1.76)

with W a given function, if and only if

jT0.j!/j <
1

jW .j!/j for all ! 2 R: (1.77)

�

Again, the MIMO version is presented in Section5.5. The result is further discussed in~ 1.5.
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1.4. Stability robustness

1.4.4. Inverse loop gain perturbations

According to the Nyquist criterion, the closed-loop systemremains stable under perturbation
as long as under perturbation the Nyquist plot of the loop gain does not cross the point�1.
Equivalently, the closed-loop system remains stable underperturbation as long as theinverse
1=L of the loop gain does not cross the point�1. Thus, the sufficient condition (1.67) may be
replaced with the sufficient condition

ˇ
ˇ
ˇ
ˇ

1

L.j!/
� 1

L0.j!/

ˇ
ˇ
ˇ
ˇ
<

ˇ
ˇ
ˇ
ˇ

1

L0.j!/
C 1

ˇ
ˇ
ˇ
ˇ

for all ! 2 R: (1.78)

Dividing by the inverse1=L0 of the nominal loop gain we find that a sufficient condition for
robust stability is that

ˇ
ˇ
ˇ
ˇ
ˇ

1
L.j!/ � 1

L0.j!/
1

L0.j!/

ˇ
ˇ
ˇ
ˇ
ˇ
<

ˇ
ˇ
ˇ
ˇ
ˇ

1
L0.j!/

C 1

1
L0.j!/

ˇ
ˇ
ˇ
ˇ
ˇ

D j1 C L0.j!/j D 1

jS0.j!/j
(1.79)

for all ! 2 R. This in turn leads to the following conclusions.

Summary 1.4.5 (Inverse loop gain stability robustness crit erion). Suppose that the closed-
loop system of Fig.1.13is nominally stable. It remains stable under perturbationsthat do not
affect the number of open-loop right-half plane zeros of theloop gain if

ˇ
ˇ
ˇ
ˇ
ˇ

1
L.j!/ � 1

L0.j!/
1

L0.j!/

ˇ
ˇ
ˇ
ˇ
ˇ
<

1

jS0.j!/j
for all ! 2 R; (1.80)

with S0 the nominal sensitivity function of the closed-loop system. �

Exercise 1.4.6 (Reversal of the role of the right half plane p oles and the right-half plane
zeros). Note that the role of the right-half plane poles has been taken by the right-half plane
zeros. Explain this by deriving a stability condition basedon theinverseNyquist plot, that is, the
polar plot of1=L. �

Again the result may be generalized to a sufficient and necessary condition.

Summary 1.4.7 (Stability robustness under inverse perturb ation). Suppose that the closed-
loop system of Fig.1.13is nominally stable. It remains stable under all perturbations that do not
affect the number of right-half plane zeros satisfying the bound

ˇ
ˇ
ˇ
ˇ
ˇ

1
L.j!/ � 1

L0.j!/
1

L0.j!/

ˇ
ˇ
ˇ
ˇ
ˇ

� jW .j!/j for all ! 2 R; (1.81)

with W a given function, if and only if

jS0.j!/j <
1

jW .j!/j for all ! 2 R: (1.82)

�

Thus, for robustnessboththe sensitivity functionS and its complementT are important. Later
it is seen that for practical feedback design the complementary functionsS andT need to be
made small in complementary frequency regions (for low frequencies and for high frequencies,
respectively).

We illustrate these results by an example.
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1. Introduction to Feedback Control Theory

Example 1.4.8 (Frequency dependent robustness bounds). Consider a SISO feedback loop
with loop gain

L.s/ D k

1 C s�
; (1.83)

with k and� positive constants. The nominal sensitivity and complementary sensitivity functions
S0 andT0 are

S0.s/ D 1

1 C L0.s/
D 1 C s�0

1 C k0 C s�0

; (1.84)

T0.s/ D L0.s/

1 C L0.s/
D k0

1 C k0 C s�0

: (1.85)

with k0 and�0 the nominal values ofk and� , respectively. Figure1.17displays doubly logarith-
mic magnitude plots of1=S0 and1=T0.

! (log scale)

! (log scale)
1Ck0

�0

1Ck0

�0

1Ck0

k0

1 C k0

1

1

1
�0

1

jT0j
(log scale)

1

jS0j
(log scale)

Figure 1.17: Magnitude plots of1=T0 and1=S0

By the result of Summary1.4.4we conclude from the magnitude plot of1=T0 that for low
frequencies (up to the bandwidth.k0 C1/=�0) relative perturbations of the loop gainL of relative
size up to 1 and slightly larger are permitted while for higher frequencies increasingly larger
perturbations are allowed without danger of destabilization of the closed-loop system.

By the result of Summary1.4.7, on the other hand, we conclude from the magnitude plot of
1=S0, that for low frequencies (up to the frequency1=�0) relative perturbations of the loop gain
up to 1 C k0 are permitted. For high frequencies (greater than the bandwidth) the allowable
relative size of the perturbations drops to the value 1. �

Exercise 1.4.9 (Landau’s modulus margin and the sensitivit y function).

1. In Subsection1.4.2the modulus marginsm is defined as the distance from the point�1 to
the Nyquist plot of the loop gainL:

sm D inf
!2R

j1 C L.j!/j: (1.86)

Prove that1=sm is the peak value of the magnitude of the sensitivity function S .

26



1.5. Frequency response design goals

2. If the Nyquist plot of the loop gainL approaches the point�1 closely then so does that of
the inverse loop gain1=L. Therefore, the number

rm D inf
!2R

ˇ
ˇ
ˇ
ˇ
1 C 1

L.j!/

ˇ
ˇ
ˇ
ˇ

(1.87)

may also be viewed as a robustness margin. Prove that1=rm is the peak value of the
magnitude of the complementary sensitivity functionT .

�

r e u z
PCF

Figure 1.18: Two-degree-of-freedom feedback system

1.5. Frequency response design goals

1.5.1. Introduction

In this section we translate the design targets for a linear time-invariant two-degree-of-freedom
feedback system as in Fig.1.18 into requirements on various closed-loop frequency response
functions. The design goals are

� closed-loop stability,

� disturbance attenuation,

� satisfactory closed-loop command response,

� stability robustness, and

� robustness of the closed-loop response,

within the limitations set by

� plant capacity, and

� corruption by measurement noise.

We discuss these aspects one by one for single-input-single-output feedback systems.

1.5.2. Closed-loop stability

Suppose that the feedback system of Fig.1.13 is open-loop stable. By the Nyquist stability
criterion, for closed-loop stability the loop gain should be shaped such that the Nyquist plot ofL

does not encircle the point�1.
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Figure 1.19: Feedback loop with disturbance

1.5.3. Disturbance attenuation and bandwidth — the sensitivity function

To study disturbance attenuation, consider the block diagram of Fig.1.19, wherev represents
the equivalent disturbance at the output of the plant. In terms of Laplace transforms, the signal
balance equation may be written asz D v � Lz. Solution forz results in

z D 1

1 C L
„ƒ‚…

S

v D Sv; (1.88)

whereS is the sensitivity function of the closed-loop system. The smallerjS.j!/j is, with! 2 R,
the more the disturbances are attenuated at the angular frequency!. jS j is small if the magnitude
of the loop gainL is large. Hence, for disturbance attenuation it is necessary to shape the loop
gain such that it is large over those frequencies where disturbance attenuation is needed.

Making the loop gainL large over a large frequency band easily results in error signalse and
resulting plant inputsu that are larger than the plant can absorb. Therefore,L can only be made
large over a limited frequency band. This is usually a low-pass band, that is, a band that ranges
from frequency zero up to a maximal frequencyB. The numberB is called thebandwidthof the
feedback loop. Effective disturbance attenuation is only achieved up to the frequencyB.

The larger the “capacity” of the plant is, that is, the largerthe inputs are the plant can handle
before it saturates or otherwise fails, the larger the maximally achievable bandwidth usually
is. For plants whose transfer functions have zeros with nonnegative real parts, however, the
maximally achievable bandwidth is limited by the location of the right-half plane zero closest to
the origin. This is discussed in Section1.7.

Figure1.20(a) shows an “ideal” shape of the magnitude of the sensitivity function. It is small
for low frequencies and approaches the value 1 at high frequencies. Values greater than 1 and
peaking are to be avoided. Peaking easily happens near the point where the curve crosses over
the level 1 (the 0 dB line).

The desired shape for the sensitivity functionS implies a matching shape for the magnitude of
the complementary sensitivity functionT D 1 � S . Figure1.20(b) shows a possible shape14 for
the complementary sensitivityT corresponding to the sensivity function of Fig.1.20(a). When
S is as shown in Fig.1.20(a) thenT is close to 1 at low frequencies and decreases to 0 at high
frequencies.

It may be necessary to impose further requirements on the shape of the sensitivity function
if the disturbances have a distinct frequency profile. Consider for instance the situation that the
actual disturbances enter the plant internally, or even at the plant input, and that the plant is
highly oscillatory. Then the equivalent disturbance at theoutput is also oscillatory. To attenuate
these disturbances effectively the sensitivity function should be small at and near the resonance

14Note thatS andT are complementary, notjS j andjT j.
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Figure 1.20: (a) “Ideal” sensitivity function. (b) A corresponding comple-
mentary sensitivity function

frequency. For this reason it sometimes is useful to replacethe requirement thatS be small with
the requirement that

jS.j!/V .j!/j (1.89)

be small over a suitable low frequency range. The shape of theweighting functionV reflects the
frequency contents of the disturbances. If the actual disturbances enter the system at the plant
input then a possible choice is to letV D P .

Exercise 1.5.1 (Plant input disturbance for oscillatory pl ant). Consider an oscillatory
second-order plant with transfer function

P .s/ D !2
0

s2 C 2�0!0s C !2
0

: (1.90)

Choose the compensator

C.s/ D k

!2
0

s2 C 2�0!0s C !2
0

s.s C ˛/
: (1.91)

Show that the sensitivity functionS of the closed-loop system is independent of the resonance
frequency!0 and the relative damping�0. Selectk and˛ such that a well-behaved high-pass
sensitivity function is obtained.

Next, select the resonance frequency!0 well within the closed-loop bandwidth and take the
relative damping�0 small so that the plant is quite oscillatory. Demonstrate bysimulation that
the closed-loop response to disturbances at the plant inputreflects this oscillatory nature even
though the closed-loop sensitivity function is quite well behaved. Show that this oscillatory
behavior also appears in the response of the closed-loop system to a nonzero initial condition of
the plant. �
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1.5.4. Command response — the complementary sensitivity function

The response of the two-degree-of-freedom configuration ofFig. 1.21to the command signalr
follows from the signal balance equationz D PC.�z C Fr/. Solution forz results in

z D PC

1 C PC
F

„ ƒ‚ …

H

r: (1.92)

Theclosed-loop transfer functionH may be expressed as

H D L

1 C L
„ƒ‚…

T

F D TF; (1.93)

with L D PC the loop gain andT the complementary sensitivity function.
Adequate loop shaping ideally results in a complementary sensitivity functionT that is close

to 1 up to the bandwidth, and transits smoothly to zero above this frequency. Thus, without a
prefilterF (that is, withF = 1), the closed-loop transfer functionH ideally is low-pass with the
same bandwidth as the frequency band for disturbance attenuation.

Like for the sensitivity function, the plant dynamics impose limitations on the shape thatT

may assume. In particular, right-half plane plant poles constrain the frequency above whichT
may be made to roll off. This is discussed in Section1.5.

If the shape and bandwidth ofT are satisfactory then no prefilterF is needed. If the closed-
loop bandwidth isgreaterthan necessary for adequate command signal response then the prefilter
F may be used to reduce the bandwidth of the closed-loop transfer functionH to prevent overly
large plant inputs. If the bandwidth islessthan required for good command signal response the
prefilter may be used to compensate for this. A better solution may be to increase the closed-loop
bandwidth. If this is not possible then probably the plant capacity is too small.

1.5.5. Plant capacity — the input sensitivity function

Any physical plant has limited “capacity,” that is, can absorb inputs of limited magnitude only.
The configuration of Fig.1.21includes both the disturbancesv and the measurement noisem. In
terms of Laplace transforms we have the signal balanceu D C.Fr � m � v� Pu/. This may be
solved foru as

u D C

I C CP
„ ƒ‚ …

M

.Fr � m � v/: (1.94)

The functionM determines the sensitivity of the plant input to disturbances and the command
signal. It is sometimes known as theinput sensitivity function.

If the loop gainL D CP is large then the input sensitivityM approximately equals the
inverse1=P of the plant transfer function. If the open-loop plant has zeros in the right-half
complex plane then1=P is unstable. For this reason the right-half plane open-loopplant zeros
limit the closed-loop bandwidth. The input sensitivity function M may only be made equal to
1=P up to the frequency which equals the magnitude of the right-half plane plant zero with the
smallest magnitude.
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Figure 1.21: Two-degree-of-freedomsystem with disturbances and measure-
ment noise

The input sensitivity functionM is connected to the complementary sensitivity functionT by
the relation

T D MP: (1.95)

By this connection, for a fixed plant transfer functionP design requirements on the input sen-
sitivity function M may be translated into corresponding requirements on the complementary
sensitivityT , and vice-versa.

To prevent overly large inputs, generallyM should not be too large. At low frequencies a high
loop gain and correspondingly large values ofM are prerequisites for low sensitivity. If these
large values are not acceptable, the plant capacity is inadequate, and either the plant needs to be
replaced with a more powerful one, or the specifications needto be relaxed. At high frequencies
— that is, at frequencies above the bandwidth —M should decrease as fast as possible. This is
consistent with the robustness requirement thatT decrease fast.

Except by Horowitz (Horowitz, 1963) the term “plant capacity” does not appear to be used
widely in the control literature. Nevertheless it is an important notion. The maximum bandwidth
determined by the plant capacity may roughly be estimated asfollows. Consider the response of
the plant to the step inputa1.t/, t 2 R, with a the largest amplitude the plant can handle before
it saturates or otherwise fails, and1 the unit step function. Let� be half the time needed until the
output either reaches

1. 85% of its steady-state value, or

2. 85% of the largest feasible output amplitude,

whichever is less. Then the angular frequency1=� may be taken as an indication of the largest
possible bandwidth of the system.

This rule of thumb is based on the observation that the first-order step response1 � e�t=� ,
t � 0, reaches the value 0.865 at time2� .

Exercise 1.5.2 (Input sensitivity function for oscillator y plant). Consider a stabilizing feed-
back compensator of the form (1.91) for the plant (1.90), with k and˛ selected as suggested
in Exercise1.5.1. Compute and plot the resulting input sensitivity functionM and discuss its
behavior. �

1.5.6. Measurement noise

To study the effect of measurement noise on the closed-loop output we again consider the con-
figuration of Fig.1.21. By solving the signal balancez D vC PC.Fr � m � z/ for the outputz
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we find

z D 1

1 C PC
„ ƒ‚ …

S

v C PC

1 C PC
„ ƒ‚ …

T

Fr � PC

1 C PC
„ ƒ‚ …

T

m: (1.96)

This shows that the influence of the measurement noisem on the control system output is de-
termined by the complementary sensitivity functionT . For low frequencies, where by the other
design requirementsT is close to 1, the measurement noise fully affects the output. This empha-
sizes the need for good, low-noise sensors.

1.5.7. Stability robustness

In Section1.4it is seen that for stability robustness it is necessary to keep the Nyquist plot “away
from the point�1.” The target is to achieve satisfactory gain, phase, and modulus margins.

Alternatively, as also seen in Section1.4, robustness for loop gain perturbations requires the
complementary sensitivity functionT to be small. For robustness for inverse loop gain perturba-
tions, on the other hand, the sensitivity functionS needs to be small.

By complementarityT andS cannot be simultaneously small, at least notvery small. The
solution is to makeT andS small in different frequency ranges. It is consistent with the other
design targets to have the sensitivityS small in thelow frequencyrange, andT small in the
complementary high frequency range.

The fasterT decreases with frequency — this is calledroll-off — the more protection the
closed-loop system has against high-frequency loop perturbations. This is important because
owing to neglected dynamics — also known asparasitic effects— high frequency uncertainty is
ever-present.

Small values of the sensitivity function for low frequencies, which are required for adequate
disturbance attenuation, ensure protection against perturbations of the inverse loop gain at low
frequencies. Such perturbations are often caused by load variations and environmental changes.

In thecrossover regionneitherS nor T can be small. The crossover region is the frequency
region where the loop gainL crosses the value 1 (the zero dB line.) It is the region that ismost
critical for robustness. Peaking ofS andT in this frequency region is to be avoided. Good gain,
phase and modulus margins help to ensure this.

1.5.8. Performance robustness

Feedback system performance is determined by the sensitivity functionS , the complementary
sensitivity functionT , the input sensitivity functionM , and the closed-loop transfer functionH ,
successively given by

S D 1

1 C L
; T D L

1 C L
; (1.97)

M D C

1 C L
D SC; H D L

1 C L
F D TF: (1.98)

We consider the extent to which each of these functions is affected by plant variations. For sim-
plicity we suppose that the system environment is sufficiently controlled so that the compensator
transfer functionC and the prefilter transfer functionF are not subject to perturbation. Inspection
of (1.97–1.98) shows that under this assumption we only need to study the effect of perturbations
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1.5. Frequency response design goals

on S andT : The variations inM are proportional to those inS , and the variations inH are
proportional to those inT .

Denote byL0 thenominalloop gain, that is, the loop gain that is believed to be representative
and is used in the design calculations. Correspondingly,S0 andT0 are the nominal sensitivity
function and complementary sensitivity function.

It is not difficult to establish that when the loop gain changes from its nominal valueL0 to its
actual valueL the correspondingrelative changeof the reciprocal of the sensitivity functionS
may be expressed as

1
S

� 1
S0

1
S0

D S0 � S

S
D T0

L � L0

L0

: (1.99)

Similarly, the relative change of the reciprocal of the complementary sensitivity function may be
written as

1
T

� 1
T0

1
T0

D T0 � T

T
D S0

L0 � L

L
D S0

1
L

� 1
L0

1
L0

: (1.100)

These relations show that for the sensitivity functionS to be robust with respect to changes in the
loop gain we desire the nominal complementary sensitivity functionT0 to be small. On the other
hand, for the complementary sensitivity functionT to be robust we wish the nominal sensitivity
functionS0 to be small. These requirements are conflicting, becauseS0 andT0 add up to 1 and
therefore cannot simultaneously be small.

The solution is again to have each small in a different frequency range. As seen before, normal
control system design specifications requireS0 to be small at low frequencies (below the band-
width). This causesT to be robust at low frequencies, which is precisely the region where its
values are significant. Complementarily,T0 is required to be small at high frequencies, causing
S to be robust in the high frequency range.

Exercise 1.5.3 (Formulas for relative changes). Prove (1.99–1.100). �

Exercise 1.5.4 (MIMO systems). Suppose that the configuration of Fig.1.21 represents a
MIMO rather than a SISO feedback system. Show that the various closed-loop system func-
tions encountered in this section generalize to the following matrix system functions:

� thesensitivity matrixS D .I CL/�1, with L D PC theloop gain matrixandI an identity
matrix of suitable dimensions;

� thecomplementary sensitivity matrixT D I � S D L.I C L/�1 D .I C L/�1L;

� the input sensitivity matrixM D .I C CP /�1C D C.I C PC /�1;

� theclosed-loop transfer matrixH D .I C L/�1LF D TF .
�

1.5.9. Review of the design requirements

We summarize the conclusions of this section as follows:

� The sensitivityS should be small at low frequencies to achieve

– disturbance attenuation,
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1. Introduction to Feedback Control Theory

– good command response, and

– robustness at low frequencies.

� The complementary sensitivityT should be small at high frequencies to prevent

– exceeding the plant capacity,

– adverse effects of measurement noise, and

– loss of robustness at high frequencies.

� In the intermediate (crossover) frequency region peaking of both S and T should be
avoided to prevent

– overly large sensitivity to disturbances,

– excessive influence of the measurement noise, and

– loss of robustness.

1.6. Loop shaping

1.6.1. Introduction

The design of a feedback control system may be viewed as a process ofloop shaping. The
problem is to determine the feedback compensatorC as in Fig.1.18 such that the loop gain
frequency response functionL.j!/, ! 2 R, has a suitable shape. The design goals of the
previous section may be summarized as follows.

Low frequencies. At low frequencies we needS small andT close to 1. Inspection of

S D 1

1 C L
; T D L

1 C L
(1.101)

shows that these targets may be achieved simultaneously by making the loop gainL large,
that is, by makingjL.j!/j � 1 in the low-frequency region.

High frequencies. At high frequencies we needT small andS close to 1. This may be ac-
complished by making the loop gainL small, that is, by makingjL.j!/j � 1 in the
high-frequency region.

Figure1.22shows how specifications on the magnitude ofS in the low-frequency region and that
of T in the high-frequency region result in bounds on the loop gain L.

Crossover region. In the crossover region we havejL.j!/j � 1. In this frequency region it
is not sufficient to consider the behavior of the magnitude ofL alone. The behavior of
the magnitude and phase ofL in this frequency region together determine how closely the
Nyquist plot approaches the critical point�1.

The more closely the Nyquist plot ofL approaches the point�1 the more

S D 1

1 C L
(1.102)
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1.6. Loop shaping
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Figure 1.22: Robustness bounds onL in the Bode magnitude plot

peaks. If the Nyquist plot ofL comes very near the point�1, so does the inverse Nyquist
plot, that is, the Nyquist plot of1=L. Hence, the more closely the Nyquist plot ofL

approaches�1 the more

T D L

1 C L
D 1

1 C 1
L

(1.103)

peaks.

Gain and phase of the loop gain are not independent. This is clarified in the next subsection.

1.6.2. Relations between phase and gain

A well-known and classical result ofBode(1940) is that the magnitudejL.j!/j, ! 2 R, and the
phase argL.j!/, ! 2 R, of a minimum phase15 linear time-invariant system with real-rational16

transfer functionL are uniquely related. If on a log-log scale the plot of the magnitudejL.j!/j
versus! has an approximately constant slopen [decade/decade] then

argL.j!/ � n � �

2
: (1.104)

Thus, if jL.j!/j behaves like1=! then we have a phase of approximately��=2 [rad] D �90ı,
while if jL.j!/j behaves like1=!2 then the phase is approximately�� [rad] D �180ı.

Exercise 1.6.1 (Bode’s gain-phase relationship). Why (1.104) holds may be understood
from the way asymptotic Bode magnitude and phase plots are constructed (see~ 2.4.2). Make it
plausible that between any two break points of the Bode plot the loop gain behaves as

L.j!/ � c.j!/n; (1.105)

with c a real constant. Show thatn follows from the numbers of poles and zeros ofL whose
magnitude is less than the frequency corresponding to the lower break point. What isc? �

More precisely Bode’s gain-phase relationship may be phrased as follows (Bode, 1945).

15A rational transfer function is minimum phase if all its poles and zeros have strictly negative real parts (see Exer-
cise1.6.3).

16That is,L.s/ is a rational function ins with real coefficients.
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1. Introduction to Feedback Control Theory

Summary 1.6.2 (Bode’s gain-phase relationship). Let L be a minimum phase real-rational
proper transfer function. Then magnitude and phase of the corresponding frequency response
function are related by

argL.j!0/ D 1

�

Z 1

�1

d log jL!0.ju/j
du

W .u/ du; !0 2 R; (1.106)

with log denoting the natural logarithm. The intermediate variableu is defined by

u D log
!

!0

: (1.107)

W is the function

W .u/ D log coth
juj
2

D log

ˇ
ˇ
ˇ
ˇ
ˇ

!
!0

C 1

!
!0

� 1

ˇ
ˇ
ˇ
ˇ
ˇ
: (1.108)

L!0 , finally, is given by

L!0.ju/ D L.j!/; u D log
!

!0

: (1.109)

L!0 is the frequency response functionL defined on the logaritmically transformed and scaled
frequency axisu D log!=!0. �

In (1.106) the first factor under the integral sign is the slope of the magnitude Bode plot (in
[decades/decade]) as previously expressed by the variablen. W is a weighting function of the
form shown in Fig.1.23. W has most of it weight near0, so that argL.j!0/ is determined by

u

W

4

2

0
0�1

1

1

1=e !=!0 e

Figure 1.23: Weighting functionW in Bode’s gain-phase relationship

the behavior ofL!0 near 0, that is, by the behavior ofL near!0. If log jL!0 j would have a
constant slope then (1.104) would be recovered exactly, and argL.j!0/ would be determined by
n alone. If the slope of logjLj varies then the behavior ofjLj in neighboring frequency regions
also affects argL.j!0/.

The Bode gain-phase relationship leads to the following observation. Suppose that the general
behavior of the Nyquist plot of the loop gainL is as in Fig.1.14, that is, the loop gain is greater
than 1 for low frequencies, and enters the unit disk once (at the frequencẏ !m) without leaving
it again. The frequency!m at which the Nyquist plot of the loop gainL crosses the unit circle
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1.6. Loop shaping

is at the center of the crossover region. For stability the phase of the loop gainL at this point
should be between�180ı and180ı. To achieve a phase margin of at least60ı the phase should be
between�120ı and120ı. Figure1.24(Freudenberg and Looze, 1988) illustrates the bounds on
the phase in the crossover region. SincejLj decreases at the point of intersection argL generally
may be expected to be negative in the crossover region.

(log
scale)

!
(log scale)

!
(log scale)

L.j!/

0 dB

180ı

�180ı
argL.j!/

allowable
phase functions

0ı

upper bound for
high frequencies

lower bound for
low frequencies

Figure 1.24: Allowable regions for gain and phase of the loopgainL

If at crossover the phase ofL is, say,�90ı then by Bode’s gain-phase relationshipjLj de-
creases at a rate of about 1 [decade/decade]. To avoid instability the rate of decrease cannot be
greater than 2 [decades/decade]. Hence, for robust stability in the crossover region the mag-
nitude jLj of the loop gain cannot decreases faster than at a rate somewhere between1 and2

[decade/decade]. This bound on the rate of decrease ofjLj in turn implies that the crossover
region cannot be arbitrarily narrow.

Bode’s gain-phase relationship holds for minimum phase systems. For non-minimum phase
systems the trade-off between gain attenuation and phase lag is even more troublesome. LetL

be non-minimum phase but stable17. ThenL D Lm � Lz , whereLm is minimum phase andLz is
an all-pass function18 such thatjLz.j!/j D 1 for all !. It follows thatjL.j!/j D jLm.j!/j and

argL.j!/ D argLm.j!/C argLz.j!/ � argLm.j!/: (1.110)

As Lz only introduces phase lag, the trade-off between gain attenuation and limited phase lag

17That is,L has right-half plane zeros but no right-half plane poles.
18That is,jLz.j!/j is constant for all! 2 R.
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1. Introduction to Feedback Control Theory

is further handicapped. Non-minimum phase behavior generally leads to reduction of the open-
loop gains — compared with the corresponding minimum phase system with loop gainLm — or
reduced crossover frequencies. The effect of right-half plane zeros — and also that of right-half
plane poles — is discussed at greater length in Section1.7.

Exercise 1.6.3 (Minimum phase). Let

L.s/ D k
.s � z1/.s � z2/ � � � .s � zm/

.s � p1/.s � p2/ � � � .s � pn/
(1.111)

be a rational transfer function with all its polesp1, p2, � � � , pn in the left-half complex plane.
Then there exists a well-defined corresponding frequency response functionL.j!/, ! 2 R.

Changing the sign of the real part of thei th zerozi of L leaves the behavior of the magnitude
jL.j!/j, ! 2 R, of L unaffected, but modifies the behavior of the phase argL.j!/, ! 2 R.
Similarly, changing the sign of the gaink does not affect the magnitude. Prove that under such
changes the phase argL.j!/, ! 2 R, is minimal for all frequencies if all zeroszi lie in the
left-half complex plane andk is a positive gain.

This is why transfer functions whose poles and zeros are all in the left-half plane and have
positive gain are calledminimum phasetransfer functions. �

1.6.3. Bode’s sensitivity integral

Another well-known result of Bode’s pioneering work is known asBode’s sensitivity integral

Summary 1.6.4 (Bode’s sensitivity integral). Suppose that the loop gainL has no poles in the
open right-half plane19. Then ifL has at least two more poles than zeros the sensitivity function

S D 1

1 C L
(1.112)

satisfies
Z 1

0

log jS.j!/j d! D 0: (1.113)

�

The assumption thatL is rational may be relaxed (see for instanceEngell(1988)). The state-
ment thatL should have at least two more poles than zeros is sometimes phrased as “the pole-zero
excess ofL is at least two20.” If the pole-zero excess is one, the integral on the left-hand side of
(1.113) is finite but has a nonzero value. IfL has right-half plane poles then (1.113) needs to be
modified to

Z 1

0

log jS.j!/j d! D �
X

i

Re pi : (1.114)

The right-hand side is formed from the open right-half planepolespi of L, included according
to their multiplicity. The proof of (1.114) may be found in~ 1.10.

We discuss some of the implications of Bode’s sensitivity integral. Suppose for the time being
that L has no open right-half plane poles, so that the sensitivity integral vanishes. Then the

19That is, no poles with strictly positive real part.
20In adaptive control the expression is “L has relative degree greater than or equal to 2.”
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1.6. Loop shaping

1

0

jS j

B

! (log scale)

Figure 1.25: Low frequency disturbance attenuation may only be achieved at
the cost of high frequency disturbance amplification

integral over all frequencies of logjS j is zero. This means that logjS j both assumes negative
and positive values, or, equivalently, thatjS j both assumes values less than 1 and values greater
than 1.

For the feedback system to be useful,jS j needs to be less than 1 over an effective low-frequency
band. Bode’s sensitivity integral implies thatif, this can be achieved at all then it is at the cost
of disturbanceamplification(rather than attenuation) at high frequencies. Figure1.25illustrates
this. If the open-loop system has right-half plane poles this statement still holds. If the pole-zero
excess of the plant is zero or one then disturbance attenuation is possible over all frequencies.

Exercise 1.6.5 (Bode integral).

1. Suppose that the loop gain isL.s/ D k=.1 C s�/, with k and� positive constants. Calcu-
late the sensitivity functionS and plot its magnitude. Does Bode’s theorem apply?

2. Repeat this for the loop gainL.s/ D k=.1 C s�/2. First check that the closed-loop system
is stable for all positivek and� .

�

Freudenberg and Looze(1988) use Bode’s sensitivity integral to derive a lower bound on the
peak value of the sensitivity function in the presence of constraints on the low-frequency behavior
of S and the high-frequency behavior ofL. Suppose thatL is real-rational, minimum phase and
has a pole-zero excess of two or more. Let!L and!H be two frequencies such that0 < !L < !H .
Assume thatS andL are bounded by

jS.j!/j � ˛ < 1; 0 � ! � !L; (1.115)

and

jL.j!/j � "
�!H

!

�kC1

; ! � !H ; (1.116)

with 0 < " < 0:5 andk � 0. Then the peak value of the sensitivity function is bounded by

sup
!l �!�!H

jS.j!/j � 1

!H � !L

�

!L log
1

˛
� 3"!H

2k

�

: (1.117)

The proof is given in~ 1.10.
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1. Introduction to Feedback Control Theory

This result is an example of the more general phenomenon thatbounds on the loop gain in
different frequency regions interact with each other. Control system design therefore involves
trade-offs between phenomena that occur in different frequency regions. The interaction becomes
more severe as the bounds become tighter. If˛ or " decrease or if!L or k increase then the lower
bound for the peak value of the sensitivity function increases. Also if the frequencies!L and!H

are required to be closely together, that is, the crossover region is required to be small, then this
is paid for by a high peak value ofS in the crossover region.

The bounds (1.115) and (1.116) are examples of the bounds indicated in Fig.1.24. The in-
equality (1.117) demonstrates that stiff bounds in the low- and high-frequency regions may cause
serious stability robustness problems in the crossover frequency range.

The natural limitations on stability, performance and robustness as discussed in this section
are aggravated by the presence of right-half plane plant poles and zeros. This is the subject of
Section1.7.

Exercise 1.6.6 (Bode’s integral for the complementary sens itivity). Let T be the comple-
mentary sensitivity function of a stable feedback system that has integrating action of at least
order two21. Prove that

Z 1

0

log

ˇ
ˇ
ˇ
ˇ
T
� 1

j!

�
ˇ
ˇ
ˇ
ˇ

d! D �
Y

i

Re
1

zi

; (1.118)

with thezi the right-half plane zeros of the loop gainL (Middleton, 1991; Kwakernaak, 1995).
What does this equality imply for the behavior ofT ? �

1.7. Limits of performance

1.7.1. Introduction

In this section22 we present a brief review of several inherent limitations ofthe behavior of the
sensitivity functionS and its complementT which result from the pole-zero pattern of the plant.

In particular, right-half plane zeros and poles play an important role. The reason is that if the
the plant has right-half plane poles, it is unstable, which imposes extra requirements on the loop
gain. If the plant has right-half plane zeros, its inverse isunstable, which imposes limitations on
the way the dynamics of the plant may be compensated.

More extensive discussions on limits of performance may be found inEngell (1988) for the
SISO case andFreudenberg and Looze(1988) for both the SISO and the MIMO case.

1.7.2. Freudenberg-Looze equality

A central result is theFreudenberg-Looze equality, which is based on the Poisson inte-
gral formula from complex function theory. The result that follows was originally obtained
by Freudenberg and Looze(1985) andFreudenberg and Looze(1988).

Summary 1.7.1 (Freudenberg-Looze equality). Suppose that the closed-loop system of
Fig. 1.26is stable, and that the loop gain has a right-half plane zeroz D x C jy with x > 0.
Then the sensitivity functionS D 1=.1 C L/ must satisfy

Z 1

�1
log.jS.j!/j/ x

x2 C .y � !/2 d! D � log jB�1
poles.z/j: (1.119)

21This means that1=L.s/ behaves asO.s2/ for s ! 0, (see~ 2.3).
22The title has been taken fromEngell(1988) andBoyd and Barratt(1991).
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1.7. Limits of performance

C P
e u y

Figure 1.26: SISO feedback system

Bpoles is theBlaschke product

Bpoles.s/ D
Y

i

pi � s

Npi C s
; (1.120)

formed from the open right-half plane polespi of the loop gainL D PC . The overbar denotes
the complex conjugate. �

The proof is given in~ 1.10. It relies on the Poisson integral formula from complex function
theory.

1.7.3. Trade-offs for the sensitivity function

We discuss the consequences of the Freudenberg-Looze relation (1.119), which holds at any
right-half plane zeroz D x C jy of the loop gain, and, hence, at any right-half plane zero of
the plant. The presentation followsFreudenberg and Looze(1988) andEngell (1988). We first
rewrite the equality in the form

Z 1

0

log.jS.j!/j/ wz.!/ d! D log jB�1
poles.z/j; (1.121)

with wz the function

wz.!/ D 1

�

�
x

x2 C .! � y/2
C x

x2 C .! C y/2

�

: (1.122)

We arrange (1.121) in turn as
Z 1

0

log.jS.j!/j/ dWz.!/ D log jB�1
poles.z/j; (1.123)

with Wz the function

Wz.!/ D
Z !

0

wz.�/ d� D 1

�
arctan

! � y

x
C 1

�
arctan

! C y

x
: (1.124)

The functionWz is plotted in Fig.1.27for different values of the ratioy=x of the imaginary part
to the real part. The plot shows thatWz increases monotonically from0 to 1. Its steepest increase
is about the frequency! D jzj.
Exercise 1.7.2 (Weight function). Show that the weight functionWz represents the extra phase
lag contributed to the phase of the plant by the fact that the zeroz is in the right-half plane, that
is, Wz.!/ is the phase of

z C j!

z � j!
: (1.125)

�
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Figure 1.27: The functionWz for values of argz increasing from (a) 0 to (b)
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Figure 1.28: Bounds onjS j

Exercise 1.7.3 (Positivity of right-hand side of the Freude nberg-Looze equality). Prove
that logjB�1

poles.z/j is positive for anyz whose real part is positive. �

The comments that follow hold for plants that have at least one right-half plane zero.
The functionwz is positive and also logjB�1

poles.z/j is positive. Hence, (1.121) implies that if
log jS j is negative over some frequency range so that, equivalently, jS j is less than 1, then nec-
essarilyjS j is greater than 1 over a complementary frequency range. Thiswe already concluded
from Bode’s sensitivity integral.

The Freudenberg-Looze equality strengthens the Bode integral because of the weighting func-
tion wz included in the integrand. The quantitydWz.j!/ D wz.j!/d! may be viewed as a
weighted length of the frequency interval. The weighted length equals the extra phase added by
the right-half plane zeroz over the frequency interval. The larger the weighted lengthis, the more
the interval contributes to the right-hand side of (1.123). The weighting function determines to
what extent small values ofjS j at low frequencies need to be compensated by large values at high
frequencies. We argue that ifjS j is required to be small in a certain frequency band—in partic-
ular, a low-frequency band—it necessarily peaks in anotherband. Suppose that we wishjS.j!/j
to be less than a given small number" in the frequency bandŒ0; !1�, with !1 given. We should
like to know something about the peak value� of jS j in the complementary frequency range.
Figure1.28shows the numbers" and� and the desired behavior ofjS j. Define the bounding
function

b.!/ D
(

" for j!j � !1;

� for j!j > !1:
(1.126)

ThenjS.j!/j � b.!/ for ! 2 R and the Freudenberg-Looze equality together imply thatb needs
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to satisfy
Z 1

0

log.b.!// dWz.!/ � log jB�1
poles.z/j: (1.127)

Evaluation of the left-hand side leads to

Wz.!1/ log"C .1 � Wz.!1// log� � log jB�1
poles.z/j: (1.128)

Resolution of (1.128) results in the inequality

� � .
1

"
/

Wz .!1/

1�Wz .!1/ �
ˇ
ˇ
ˇB�1

poles.z/
ˇ
ˇ
ˇ

1
1�Wz .!1/

: (1.129)

We note this:

� For a fixed zeroz D x C jy and fixed!1 > 0 the exponents in this expression are positive.
By 1.7.3we havejB�1

poles.z/j � 1. Hence, for" < 1 the peak value� is greater than
1. Moreover, the smaller" is, the larger is the peak value. Thus, small sensitivity at low
frequencies is paid for by a large peak value at high frequencies.

� For fixed", the two exponents increase monotonically with!1, and approach1 as!1

goes to1. The first exponent (that of1=") crosses the value 1 at! D
p

x2 C y2 D jzj.
Hence, if the width of the band over which sensitivity is required to be small is greater than
the magnitude of the right-half plane zeroz, the peak value assumes excessive values.

The Freudenberg-Looze equality holds forany right-half plane zero, in particular the one with
smallest magnitude. Therefore, if excessive peak values are to be avoided, the width of the
band over which sensitivity may be made small cannot be extended beyond the magnitude of the
smallestright-half plane zero.

The number

jB�1
poles.z/j D

Y

i

ˇ
ˇ
ˇ
ˇ

Npi C z

pi � z

ˇ
ˇ
ˇ
ˇ

(1.130)

is replaced with 1 if there are no right-half plane poles. Otherwise, it is greater than 1. Hence,
right-half plane poles make the plant more difficult to control.

The number (1.130) is large if the right-half plane zeroz is close to any of the right-half plane
polespi . If this situation occurs, the peak values ofjS j are correspondingly large, and, as a result,
the plant is difficult to control. The Freudenberg-Looze equality holds for any right-half plane
zero. Therefore, plants with a right-half plane zero close to a right-half plane pole are difficult
to control. The situation is worst when a right-half plane zero coincides with a right-half plane
pole—then the plant has either an uncontrollable or an unobservable unstable mode.

We summarize the qualitative effects of right-half plane zeros of the plant on the shape of the
sensitivity functionS (Engell, 1988).

Summary 1.7.4 (Effect of right-half plane open-loop zeros) .

1. The upper limit of the band over which effective disturbance attenuation is possible is
constrained from above by the magnitude of the smallest right-half plane zero.

2. If the plant has unstable poles, the achievable disturbance attenuation is further impaired.
This effect is especially pronounced when one or several right-half plane pole-zero pairs
are close.
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3. If the plant has no right-half plane zeros the maximally achievable bandwidth is solely
constrained by the plant capacity. As seen in the next subsection the right-half plane pole
with largest magnitude constrains thesmallestbandwidth that is required.

The trade-off between disturbance attenuation and amplification is subject to Bode’s sen-
sitivity integral.

�

We consider an example.

u

�

Figure 1.29: Double inverted pendulum system

Example 1.7.5 (Double inverted pendulum). To illustrate these results we consider the double
inverted pendulum system of Fig.1.29. Two pendulums are mounted on top of each other. The
input to the system is the horizontal positionu of the pivot of the lower pendulum. The measured
output is the angle� that the lower pendulum makes with the vertical. The pendulums have equal
lengthsL, equal massesm and equal moments of inertiaJ (taken with respect to the center of
gravity).

The transfer functionP from the inputu to the angle�may be found (Kwakernaak and Westdijk,
1985) to be given by

P .s/ D 1

L

s2.�.3K C 1/s2 C 3/

.K2 C 6K C 1/s4 � 4.K C 2/s2 C 3
; (1.131)

with K the ratioK D J=.mL2/. For a pendulum whose mass is homogeneously distributed
along its lengthK is 1

3
. If we furthermore letL D 1 then

P .s/ D s2.�2s2 C 3/
28
9

s4 � 28
3

s2 C 3
: (1.132)

This plant transfer function has zeros at 0, 0, and˙1:22474, and poles aṫ 0:60507 and
˙1:62293. The plant has two right-half plane poles and one right-halfplane zero.

By techniques that are explained in Chapter6 we may calculate the transfer functionC of the
compensator that makes the transfer matricesS andT stable and at the same time minimizes
thepeak valueof sup!2R jS.j!/j of the sensitivity functionS of the closed-loop system. This
compensator transfer function is

C.s/ D 1:6292
.s C 1:6229/.s C 0:6051/.s � 0:8018/

.s C 1:2247/s2
: (1.133)
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Figure 1.30 shows the magnitude plot (a) of the corresponding sensitivity function S . This
magnitude does not depend on the frequency! and has the constant value 21.1178. Note that
the compensator has a double pole at 0, which in the closed loop cancels against the double zero
at 0 of the plant. The corresponding double closed-loop poleat 0 actually makes the closed-loop
system unstable. It causes the plant inputu to drift.

100
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1

10�4 10�2 100 102 104 106

40 dB

20 dB

0 dB

(a)

(b)
(c)

(d)

!

jS j

Figure 1.30: Sensitivity functions for the double pendulumsystem

The peak value 21.1178 for the magnitude of the sensitivity function is quite large (as com-
pared with 1). No compensator exists with a smaller peak value. To reduce the sensitivity of
the feedback system to low frequency disturbances it is desirable to makejS j smaller at low
frequencies. This is achieved, for instance, by the compensator with transfer function

C.s/ D 1:6202
.s C 1:6229/.s C 0:6051/.s � 0:8273/

.s C 1:2247/.s C 0:017390/.s � 0:025715/
: (1.134)

Figure1.30shows the magnitude (b) of the corresponding sensitivity function. This compensator
no longer cancels the double zero at 0. As a result, the sensitivity S at zero frequency is 1, which
means that constant disturbances are not attenuated. The reason is structural: Because the plant
transfer functionP equals zero at frequency 0, the plant is unable to compensatefor constant
disturbances. Actually, the zeros at 0 play the role of right-half plane zeros, except that they
bound the frequencies whereS may be made small frombelowrather than from above.

The plot of Fig.1.30also shows that compared with the compensator (1.133) the compen-
sator (1.134) reduces the sensitivity to disturbances up to a frequency of about 0.01. By further
modifying the compensator this frequency may be pushed up, at the price of an increase in the
peak value of the magnitude ofS . Figure1.30shows two more magnitude plots (c) and (d). The
closer the magnitude 1.2247 of the right-half plane plant zero is approached the more the peak
value increases.

There exist compensators that achieve magnitudes less than1 for the sensitivity in the fre-
quency range, say, between 0.01 and 0.1. The cost is a furtherincrease of the peak value.

The compensators considered so far all result in sensitivity functions that do not approach the
value 1 as frequency increases to1. The reason is that the loop gain does not approach 0. This
undesirable phenomenon, which results in large plant inputamplitudes and high sensitivity to
measurement noise, is removed in Example1.7.9. �

Exercise 1.7.6 (Interlacing property). Check that the double inverted pendulum does not have
the parity interlacing property of~ 1.3.6(p. 20). Hence, no stabilizing compensator exists that
by itself is stable. �

Exercise 1.7.7 (Lower bound for the peak value of S ).
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1. DefinekSk1 as the peak value ofjS j, that is,kSk1 D sup!2R jS.j!/j. Use (1.129) to
prove that if the closed-loop system is stable then

kSk1 �
ˇ
ˇ
ˇB�1

poles.z/
ˇ
ˇ
ˇ ; (1.135)

whereBpoles is the Blaschke product formed from the right-half plane poles of the plant,
andz any right-half plane zero of the plant.

2. Check that the compensator (1.133) actually achieves this lower bound.
�

1.7.4. Trade-offs for the complementary sensitivity function

Symmetrically to the results for the sensitivity function well-defined trade-offs hold for the com-
plementary sensitivity function. The role of the right-half plane zeros is now taken by the right-
half plant open-looppoles,and vice-versa. This is seen by writing the complementary sensitivity
function as

T D L

1 C L
D 1

1 C 1
L

: (1.136)

Comparison with Freudenberg-Looze equality of1.7.1leads to the conclusion that for any right-
half plane open-loop polep D x C jy we have (Freudenberg and Looze, 1988)

Z 1

�1
log.jT .j!/j/ x

x2 C .y � !/2
d! D � log jB�1

zeros.p/j; (1.137)

with Bzerosthe Blaschke product

Bzeros.s/ D
Y

i

zi � s

Nzi C s
(1.138)

formed from the open right-half planezeroszi of L.
We consider the implications of the equality (1.137) on the shape ofT . Whereas the sensitivity

S is required to be small atlow frequencies,T needs to be small athigh frequencies. By an
argument that is almost dual to that for the sensitivity function it follows that if excessive peaking
of the complementary sensitivity function at low and intermediate frequencies is to be avoided,
jT j may only be made small at frequencies thatexceedthe magnitude of the open-loop right-half
planepole with largestmagnitude. Again, close right-half plane pole-zero pairs make things
worse.

We summarize the qualitative effects of right-half plane zeros of the plant on the shape achiev-
able for the complementary sensitivity functionT (Engell, 1988).

Summary 1.7.8 (Effect of right-half plane open-loop poles) .

1. The lower limit of the band over which the complementary sensitivity function may be
made small is constrained from below by the magnitude of the largest right-half plane
open-loop pole. Practically, the achievable bandwidth is always greater than this magni-
tude.

2. If the plant has right-half plane zeros, the achievable reduction ofT is further impaired.
This effect is especially pronounced when one or several right-half plane pole-zero pairs
are very close.
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Figure 1.31: Right-half plane zeros and poles constrainS andT

�

Figure1.31summarizes the difficulties caused by right-half plane zeros and poles of the plant
transfer functionP . S can only be small up to the magnitude of the smallest right-half plane
zero.T can only start to roll off to zero at frequencies greater thanthe magnitude of the largest
right-half plane pole. The crossover region, whereS andT assume their peak values, extends
over the intermediate frequency range.

Example 1.7.9 (Double inverted pendulum). We return to the double inverted pendulum of
Example1.7.5. For robustness to plant uncertainty and reduction of the susceptibility to mea-
surement noise it is necessary that the loop gain decreases to zero at high frequencies. Corre-
spondingly, the complementary sensitivity function also decreases to zero while the sensitivity
function approaches 1. The compensator

C.s/ D � 1:5136.s C 1:6229/.s C 0:60507/.s � 0:82453/

.s C 1:2247/.s C 0:017226/.s � 0:025394/.1 C 0:00061682s/
; (1.139)

whose transfer function is strictly proper, accomplishes this. Figure1.32 shows that for low
frequencies the magnitude plot (e) of the corresponding sensitivity function closely follows the
magnitude plot (c) of Fig.1.30, which is repeated in Fig.1.32. At high frequencies the magnitude
of S drops off to 1, however, starting at a frequency of about 100.

The lowest frequency at whichjS j may start to drop off to 1 coincides with the lowest fre-
quency at which the complementary sensitivity may be made tostart decreasing to zero. This, in
turn, is determined by the magnitude 1.6229 of the right-half plane plant pole with largest mag-
nitude. The magnitude plot (f) in Fig.1.32shows that makingjS j drop off at a lower frequency
than in (e) causes the peak value to increase. �

1.8. Two-degrees-of-freedom feedback systems

In ~ 1.3 we introduced the two-degrees-of-freedom configuration ofFig. 1.33. The function of
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Figure 1.32: More sensitivity functions for the double pendulum system

F C P
r z

Figure 1.33: Two-degrees-of-freedom feedback system configuration

the precompensatorF is to improve the closed-loop response to command inputsr .
Figure1.34shows two other two-degrees-of-freedom configurations. Inthis section we study

whether it makes a difference which configuration is chosen.We restrict the discussion to SISO
systems.

In the configuration of Fig.1.33we write the plant and compensator transfer functions in the
polynomial fraction form

P D N

D
; C D Y

X
: (1.140)

The feedback loop is stable if and only if the roots of the closed-loop characteristic polynomial
Dcl D DX C N Y are all in the open left-half complex plane.

In this same configuration, the closed-loop transfer functionH from the command signalr to
the control system outputz is

H D PC

1 C PC
F D N Y

Dcl
F: (1.141)

The prefilter transfer functionF is available to compensate for any deficiencies of the uncom-
pensated closed-loop transfer function

H0 D N Y

Dcl
: (1.142)

Right-half plane zeros of this uncompensated transfer function are a handicap for the compensa-
tion. Right-half plane roots ofN (that is, open-loop right-half plane zeros) and right-halfplane
roots ofY may well be present. Such zeros cannot be canceled by corresponding poles ofF
because this would make the precompensator, and, hence, thewhole control system, unstable.

Next consider the two-degrees-of-freedom configuration ofFig. 1.34(a). We now have for the
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Figure 1.34: Further two-degrees-of-freedom feedback system configura-
tions

closed-loop transfer function

H D P

1 C PC
F D NX

Dcl
„ƒ‚…

H0

F: (1.143)

Inspection shows that the open-loop plant zeros re-occur inthe uncompensated closed-loop trans-
fer functionH0 but that instead of the roots ofY (the compensator zeros) now the roots ofX (the
compensator poles) appear as zeros. Hence, the precompensator design problem for this config-
uration is different from that for the configuration of Fig.1.33. In fact, if the compensator has
right-half plane poles or zeros, or both, it is impossible toachieve identical overall closed-loop
transfer functions for the two configurations.

Comparison of (1.142) and (1.143) suggests that there may exist a configuration such that the
numerator of the uncompensated closed-loop transfer function is independent of the compensator.
To investigate this, consider the configuration of Fig.1.34(b). C1 andC2 have the polynomial
fractional representations

C1 D Y1

X1

; C2 D Y2

X2

: (1.144)

To match the closed-loop characteristics of the configurations of Figs.1.33and1.34(a) we need
C D C1C2. This implies thatX1X2 D X andY1Y2 D Y . The closed-loop transfer function now
is

H D PC1

1 C PC
D NX2Y1

Dcl
: (1.145)

Inspection shows that the numerator ofH is independent of the compensator if we letX2Y1 D 1,
so that

C1 D Y1

X1

D 1

X1X2

D 1

X
; C2 D Y2

X2

D Y1Y2 D Y: (1.146)
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Figure 1.35:1 1
2
-degrees-of-freedom control system

The closed-loop transfer function now is

H D N

Dcl
: (1.147)

The corresponding configuration of Fig.1.34(b) has two disadvantages:

1. The configuration appears to require the implementation of a block with the purely poly-
nomial transfer functionC2.s/ D Y .s/, which is physically impossible (unlessY is of
degree zero).

2. The configuration actually has only one degree of freedom.The reason is that one de-
gree of freedom has been used to make the numerator of the closed-loop transfer function
independent of the compensator.

The first difficulty may be remedied by noticing that from the block diagram we have

u D C1r � C1C2z D 1

X
r C Y

X
e: (1.148)

This implies

Xu D r C Ye: (1.149)

This input-output relation — withr ande as inputs andu as output — may be implemented by
a state realization of order equal to the degree of the polynomial X .

The second disadvantange may be overcome by modifying (1.149) to

Xu D Fr C Ye; (1.150)

with F a polynomial of degree less than or equal to that ofX . This still allows implementation
by a state realization of order equal to the degree ofX (see Exercise1.8.1). The compensator
is represented in the block diagram of Fig.1.35. The combined blockC0 is jointly realized as a
single input-output-state system. The closed-loop transfer function is

H D NF

Dcl
: (1.151)
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Figure 1.36:2 1
2
-degrees-of-freedom configuration

The design of the prefilter amounts to choosing the polynomial F . This might be called a1 1
2
-

degrees-of-freedomcontrol system23. By application of a further prefilterF0 as in Fig.1.36the
closed-loop transfer function becomes

H D NF

Dcl
F0: (1.152)

This results in a2 1
2
-degrees-of-freedom control system.

An application is described in Example2.9.5in ~ 2.9.5.

Exercise 1.8.1 (Realization of the 1 1
2
-degrees-of-freedom compensator). Represent the

polynomialsX , F andY as

X.s/ D sn C an�1s
n�1 C an�2s

n�2 C � � � C a0; (1.153)

F.s/ D bnsn C bn�1s
n�1 C bn�2s

n�2 C � � � C b0; (1.154)

Y .s/ D cnsn C cn�1s
n�1 C cn�2s

n�2 C � � � C c0: (1.155)

1. Show that the1 1
2
-degrees-of-freedom compensatorXu D Fr C Ye may be realized as in

Fig. 1.37.

2. Find a state representation for the compensator.

3. Prove that the feedback system of Fig.1.35, with the dashed block realized as in Fig.1.37,
has the closed-loop characteristic polynomialDX C N Y .

�

1.9. Conclusions

It is interesting to observe a number of “symmetries” or “dualities” in the results reviewed in
this chapter (Kwakernaak, 1995). For good performance and robustness the loop gainL of a
well-designed linear feedback system should be

� large at low frequencies and

23Half degrees of freedom were introduced in control engineering terminology byGrimble(1994), though with a differ-
ent connotation than the one used here.
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Figure 1.37: Realization of the1 1
2
-degrees-of-freedom compensatorXu D

Fr C Ye

� small at high frequencies.

As the result, the sensitivity functionS is

� small at low frequencies and

� approximately equal to 1 at high frequencies.

The complementary sensitivity functionT is

� approximately equal to 1 at low frequencies and

� small at high frequencies.

Such well-designed feedback systems are

� robust with respect to perturbations of the inverse loop gain at low frequencies, and

� robust with respect to perturbations of the loop gain at highfrequencies.

Furthermore,

� right-half plane open-loop zeros limit the frequency up to which S may be made small at
low frequencies, and

� right-half plane open-loop poles limit the frequency from which T may be made small at
high frequencies.

Note that to a large extent performance and robustness go hand in hand, that is, the requirements
for good performance imply good robustness, and vice-versa. This is also true for the critical
crossover region, where peaking of bothS andT is to be avoided, both for performance and
robustness.

1.10. Appendix: Proofs

In this section we collect a number of proofs for Chapter1.
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1.10.1. Closed-loop characteristic polynomial

We first prove (1.44) in Subsection1.3.3.

Proof 1.10.1 (Closed-loop characteristic polynomial). Let

Px D Ax C Bu; y D Cx C Du; (1.156)

be a state realization of the blockL in the closed-loop system of Fig.1.11. It follows thatL.s/ D C.sI �
A/�1 C D. From u D �y we obtain with the output equation thatu D �Cx � Du, so thatu D
�.I C D/�1Cx. Since by assumptionI C D D I C L.j1/ is nonsingular the closed-loop system is well-
defined. Substitution ofu into the state differential equation shows that the closed-loop system is described
by the state differential equation

Px D ŒA � B.I C D/�1C �x: (1.157)

The characteristic polynomial�cl of the closed-loop system hence is given by

�cl.s/ D detŒsI � A C B.I C D/�1C �

D det.sI � A/ � detŒI C .sI � A/�1B.I C D/�1C �: (1.158)

Using the well-known determinant equality det.I C MN / D det.I C NM / it follows that

�cl.s/ D det.sI � A/ � detŒI C .I C D/�1C.sI � A/�1B�

D det.sI � A/ � detŒ.I C D/�1 � � detŒI C D C C.sI � A/�1B�

D det.sI � A/ � detŒ.I C D/�1 � � detŒI C L.s/�: (1.159)

Denoting the open-loop characteristic polynomial as det.sI � A/ D �.s/ we thus have

�cl.s/

�.s/
D detŒI C L.s/�

detŒI C L.j1/�
: (1.160)

1.10.2. The Nyquist criterion

The proof of the generalized Nyquist criterion of Summary1.3.13in Subsection1.3.5relies on theprinciple
of the argumentof complex function theory24.

Summary 1.10.2. Principle of the argument LetR be a rational function, andC a closed contour in the
complex plane as in Fig.1.38. As the complex numbers traverses the contourC in clockwise direction, its
imageR.s/ underR traverses a closed contour that is denoted asR.C/, also shown in Fig.1.38. Then ass
traverses the contourC exactly once in clockwise direction,

(the number of timesR.s/ encircles the origin in clockwise direction ass traversesC)
=

(the number of zeros ofR insideC) � (the number of poles ofR insideC).

We prove the generalized Nyquist criterion of Summary1.3.13.

Proof of the generalized Nyquist criterion.We apply the principle of the argument to (1.160), where we
choose the contourC to be the so-calledNyquist contouror D-contour indicated in Fig.1.39. The radius�
of the semicircle is chosen so large that the contour encloses all the right-half plane roots of both�cl and�ol.
Then by the principle of the argument the number of times thatthe image of det.I C L/ encircles the origin
equals the number of right-half plane roots of�cl (i.e., the number of unstable closed-loop poles) minus the
number of right-half plane roots of�ol (i.e., the number of unstable open-loop poles). The Nyquistcriterion
follows by letting the radius� of the semicircle approach1. Note that as� approaches1 the image of the
semicircle under det.I C L/ shrinks to the single point det.I C L.j1//.

24See Henrici (1974). The generalized form in which we state the principle may befound in
Postlethwaite and MacFarlane(1979).
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Figure 1.38: Principle of the argument. Left: a closed contour C in the com-
plex plane. Right: the imageR.C/ of C under a rational func-
tion R
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Figure 1.39: Nyquist contour

1.10.3. Bode’s sensitivity integral

The proof of Bode’s sensitivity integral is postponed untilthe next subsection. Accepting it as true we use
it to derive the inequality (1.117) of Subsection1.6.3.

Proof 1.10.3 (Lower bound for peak value of sensitivity). If the open-loop system is stable then we
have according to Bode’s sensitivity integral

Z 1

0
log jS.j!/j d! D 0: (1.161)

From the assumption thatjS.j!/j � ˛ < 1 for 0 � ! � !L it follows that if 0 < !L < !H < 1 then

0 D
Z 1

0
log jS.j!/j d!

D
Z !L

0
log jS.j!/j d! C

Z !H

!L

log jS.j!/j d! C
Z 1

!H

log jS.j!/j d!

� !L log˛ C .!H � !L/ sup
!L�!�!H

log jS.j!/j C
Z 1

!H

log jS.j!/j d!: (1.162)

As a result,

.!H � !L/ sup
!L�!�!H

log jS.j!/j � !L log
1

˛
�
Z 1

!H

log jS.j!/j d!: (1.163)
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Next consider the following sequence of (in)equalities on the tail part of the sensitivity integral
ˇ
ˇ
ˇ
ˇ

Z 1

!H

log jS.j!/j d!

ˇ
ˇ
ˇ
ˇ

�
Z 1

!H

j log jS.j!/jj d!

�
Z 1

!H

j logS.j!/j d! D
Z 1

!H

j logŒ1 C L.j!/�j d!: (1.164)

From the inequalities (4.1.38) and (4.1.35) ofAbramowitz and Stegun(1965) we have for any complex
numberz such that0 � jzj � 0:5828

j log.1 C z/j � � log.1 � jzj/ � j log.1 � jzj/j � 3jzj
2
: (1.165)

The assumption that

jL.j!/j � "
�!H

!

�kC1
for ! > !H (1.166)

with 0 < " < 0:5, implies thatjL.j!/j � " < 0:5 for ! > !H . With this it follows from (1.164) and
(1.165) that

ˇ
ˇ
ˇ
ˇ

Z 1

!H

log jS.j!/jd!
ˇ
ˇ
ˇ
ˇ

�
Z 1

!H

3

2
jL.j!/j d! �

Z 1

!H

3"

2

�!H

!

�kC1
d! D 3"

2

!H

k
: (1.167)

The final step of of the proof is to conclude from (1.163) that

sup
!L�!�!H

log jS.j!/j � 1

!H � !L

�

!L log
1

˛
� 3"!H

2k

�

: (1.168)

This is what we set out to prove.

1.10.4. Limits of performance

The proof of the Freudenberg-Looze equality of Summary1.7.1relies on Poisson’s integral formula from
complex function theory.

Summary 1.10.4 (Poisson’s integral formula). Let F be a functionC ! C that is analytic in the closed
right-half plane25 and is such that

lim
R!1

jF.Rej� /j
R

D 0 (1.169)

for all � 2 Œ��
2 ; ��

2 �. Then the value ofF.s/ at any points D x C jy in the open right-half plane26 can
be recovered from the values ofF.j!/; ! 2 R, by the integral relation

F.s/ D 1

�

Z 1

�1
F.j!/

x

x2 C .y � !/2
d!: (1.170)

A sketch of the proof of Poisson’s integral formula follows.

Proof of Poisson’s integral formula.We present a brief proof of Poisson’s integral formula basedon ele-
mentary properties of the Laplace and Fourier transforms (see for instanceKwakernaak and Sivan(1991)).
Since by assumption the functionF is analytic in the closed right-half plane, its inverse Laplace transform
f is zero on.�1; 0/. Hence, fors D x C jy we may write

F.s/ D
Z 1

�1
f .t/e�.xCjy/t dt D

Z 1

�1
f .t/e�xjt j e�jyt dt: (1.171)

25For rationalF this means thatF has no poles in Re.s/ � 0.
26That is, for Re.s/ > 0.
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Forx > 0 the function e�xjt j, t 2 R, is the inverse Fourier transform of the frequency function

1

x � j!
C 1

x C j!
D 2x

x2 C !2
; ! 2 R: (1.172)

Thus, we have

F.s/ D
Z 1

�1
f .t/e�jyt

Z 1

�1

2x

x2 C !2
ej! t d!

2�
dt

D 1

�

Z 1

�1

x

x2 C !2

Z 1

�1
f .t/e�j.y�!/t dt

„ ƒ‚ …

F.j.y � !//

d! (1.173)

By replacing the integration variable! with y � ! we obtain the desired result

F.s/ D 1

�

Z 1

�1
F.j!/

x

x2 C .y � !/2
d!: (1.174)

We next consider the Freudenberg-Looze equality of Summary1.7.1.

Proof 1.10.5 (Freudenberg-Looze equality). The proof of the Freudenberg-Looze equality of Sum-
mary 1.7.1follows that of Freudenberg and Looze (1988). We first writeL asL D N=D, with N and
D coprime polynomials27. Then

S D D

D C N
: (1.175)

Since by assumption the closed-loop system is stable, the denominatorD C N has all its roots in the open
left-half plane. Hence,S is analytic in the closed right-half plane. Moreover, any right-half plane polez of
L is a root ofD and, hence, a zero ofS .

We should like to apply Poisson’s formula to the logarithm ofthe sensitivity function. Because of the
right-half plane rootspi of D, however, logS is not analytic in the right-half plane, and Poisson’s formula
cannot be used. To remedy this wecancelthe right-half plane zeros ofS by considering

QS D B�1
polesS: (1.176)

Application of Poisson’s formula to logQS yields

log QS.s/ D 1

�

Z 1

�1
log. QS.j!// x

x2 C .y � !/2
d! (1.177)

for any open right-half plane points D x C jy. Taking the real parts of the left- and right-hand sides we
have

log j QS.s/j D 1

�

Z 1

�1
log.j QS.j!/j/ x

x2 C .y � !/2
d! (1.178)

Now replaces with a right-half plane zeroz D x C jy of L, that is, a right-half plane zero ofN . Then

S.z/ D 1

1 C L.z/
D 1; (1.179)

so that QS.z/ D B�1
poles.z/. Furthermore,jBpoles.j!/j D 1 for ! 2 R, so thatj QS.j!/j D jS.j!/j for ! 2 R.

Thus, after settings D z we may reduce (1.178) to

log jB�1
poles.z/j D 1

�

Z 1

�1
log.jS.j!/j/ x

x2 C .y � !/2 d!; (1.180)

which is what we set out to prove.

27That is,N andD have no common factors.

56



1.10. Appendix: Proofs

Bode’s sensitivity integral (1.114) follows from Proof1.10.5.

Proof 1.10.6 (Bode’s sensitivity integral). The starting point for the proof of Bode’s sensitivity integral
(1.114) is (1.178). Settingy D 0, replacing QS with B�1

polesS , and multiplying on the left and the right by
�x we obtain (exploiting the fact thatjBpolesj D 1 on the imaginary axis)

Z 1

�1
log.jS.j!/j/ x2

x2 C !2
d! D �x log jS.x/j C �x log jB�1

poles.x/j: (1.181)

Letting x approach1, the left-hand side of this expression approaches the Bode integral, while under the
assumption thatL has pole excess two the quantityx log jS.x/j approaches 0. Finally,

lim
x!1

x log jB�1
poles.x/j D lim

x!1
x log

Y

i

ˇ
ˇ
ˇ
ˇ

Npi C x

pi � x

ˇ
ˇ
ˇ
ˇ

D lim
x!1

Re
X

i

x log
1 C Npi

x

1 � pi

x

D 2
X

i

Re pi : (1.182)

This completes the proof.
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2. Classical Control System Design

Overview– Classical criteria for the performance of feedback control
systems are the error constants and notions such as bandwidth and peak-
ing of the closed-loop frequency response, and rise time, settling time
and overshoot of the step response.

The graphical tools Bode, Nyquist, Nichols plots, andM -, N - and
root loci belong to the basic techniques of classical and modern control.

Important classical control system design methods consistof loop
shaping by lag compensation (including integral control),lead compen-
sation and lag-lead compensation. Quantitative feedback design (QFT)
allows to satisfy quantitative bounds on the performance robustness.

2.1. Introduction

In this chapter we review methods for the design of control systems that are known under the
name ofclassical control theory. The main results in classical control theory emerged in the
period 1930–1950, the initial period of development of the field of feedback and control engi-
neering. The methods obtained a degree of maturity during the fifties and continue to be of great
importance for the practical design of control systems, especially for the case of single-input,
single-output linear control systems. Much of what now is called modern robust control theory
has its roots in these classical results.

The historical development of the “classical” field startedwith H. Nyquist’s stability criterion
(Nyquist, 1932), H. S. Black’s analysis of the feedback amplifier (Black, 1934), H. W. Bode’s
frequency domain analysis (Bode, 1940), and W. R. Evans’ root locus method (Evans, 1948).
To an extent these methods are of aheuristicnature, which both accounts for their success and
for their limitations. With these techniques a designer attempts to synthesize a compensation
network or controller that makes the closed-loop system perform as required. The terminology in
use in that era (with expressions such as “synthesize,” “compensation,” and “network”) is from
the field of amplifier circuit design (Boyd and Barratt, 1991).

In this chapter an impression is given of some of the classical highlights of control. The pre-
sentation is far from comprehensive. More extensive introductions may be found in classical
and modern textbooks, together with an abundance of additional material. Well-known sources
are for instanceBode(1945), James et al.(1947), Evans(1954), Truxal (1955), Savant(1958),
Horowitz (1963), Ogata (1970), Thaler (1973), Franklin et al. (1986), D’Azzo and Houpis
(1988), Van de Vegte(1990), Franklin et al.(1991), andDorf (1992).
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2. Classical Control System Design

In ~ 2.2(p. 60) we discuss the steady-state error properties of feedback control systems. This
naturally leads to review of the notion of integral control in ~ 2.3(p. 64).

The main emphasis in classical control theory is on frequency domain methods. In~ 2.4
(p. 69) we review various important classical graphic representations of frequency responses:
Bode, Nyquist and Nichols plots.

The design goals and criteria of classical control theory are considered in~ 2.5(p.80). In ~ 2.6
(p.82) the basic classical techniques of lead, lag and lag-lead compensation are discussed. A brief
survey of root locus theory as a method for parameter selection of compensators is presented in
~ 2.7(p.88). The historically interesting Guillemin-Truxal design procedure is considered in~ 2.8
(p. 90). In the 1970squantitative feedback theory(QFT) was initiated byHorowitz (1982). This
powerful extension of the classical frequency domain feedback design methodology is explained
in ~ 2.9(p. 93).

All the design methods aremodel-based.They rely on an underlying and explicit model of
the plant that needs to be controlled. The experimental Ziegler-Nichols rules for tuning a PID-
controller mentioned in~ 2.3(p. 64) form an exception.

2.2. Steady state error behavior

2.2.1. Steady-state behavior

One of the fundamental reasons for adding feedback control to a system is thatsteady-state errors
are reduced by the action of the control system. Consider thetypical single-loop control system
of Fig. 2.1. We analyze the steady-state behavior of this system, that is, the asymptotic behavior
in the time domain fort ! 1 when the reference inputr is a polynomial time function of degree
n. Thus,

r.t/ D tn

n!
1.t/; t � 0; (2.1)

where1 is theunit stepfunction,1.t/ D 1 for t � 0 and1.t/ D 0 for t < 0. Forn D 0 we have a
step of unit amplitude, forn D 1 the input is a ramp with unit slope and forn D 2 it is a parabola
with unit second derivative.

The Laplace transform of the reference input isOr .s/ D 1=snC1. The control error is the signal
" defined by

".t/ D r.t/ � z.t/; t � 0: (2.2)

The steady-state error,if it exists,is

"1 D lim
t!1

".t/: (2.3)

r z
C PF

Figure 2.1: Single-loop control system configuration
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2.2. Steady state error behavior

The Laplace transform of the control error is

O".s/ D Or.s/ � Oy.s/ D 1

snC1
� H.s/

snC1
D 1 � H.s/

snC1
: (2.4)

The function

H D PCF

1 C PC
D L

1 C L
F (2.5)

is the closed-loop transfer function.L D PC is the loop gain.
Assuming that the closed-loop system is stable, so that all the poles ofH are in the left-half

plane, we may apply the final value theorem of Laplace transform theory. It follows that the
steady-state error,if it exists, is given by

"
.n/
1 D lim

s#0
s O".s/ D lim

s#0

1 � H.s/

sn
; (2.6)

with n the order of the polynomial reference input. Assume for the moment that no prefilter is
installed, that is, ifF.s/ D 1. Then

1 � H.s/ D 1

1 C L.s/
; (2.7)

and the steady-state error is

"
.n/
1 D lim

s#0

1

snŒ1 C L.s/�
: (2.8)

This equation allows to compute the steady-state error of the response of the closed-loop system
to the polynomial reference input (2.1).

2.2.2. Type k systems

A closed-loop system with loop gainL is of typek if for some integerk the limit lims#0 skL.s/

exists and is nonzero. The system is of typek if and only if the loop gainL has exactlyk poles
in the origin. If the system is of typek then

lim
s#0

snL.s/

8

<

:

D 1 for 0 � n < k;

¤ 0 for n D k;

D 0 for n > k:

(2.9)

Consequently, from (2.8) we have for a typek system without prefilter (that is, ifF.s/ D 1)

lim
s#0

"
.n/
1

8

<

:

D 0 for 0 � n < k;

¤ 0 for n D k;

D 1 for n > k:

(2.10)

Hence, if the system is of typek and stable then it has a zero steady-state error for polynomial
reference inputs of order less thank, a nonzero finite steady-state error for an input of orderk,
and an infinite steady-state error for inputs of order greater thank.

A type 0 system has a nonzero but finite steady-state error fora step reference input, and an
infinite steady-state error for ramp and higher-order inputs.
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2. Classical Control System Design

0 10 20 30
0

0.5

1

0 10 20 30
0

0.5

1

0 5 10 15 20
0

10

20

0 5 10 15 20
0

10

20

0 5 10
0

50

100

0 5 10
0

50

100

Nonzero position error Zero position error

Nonzero velocity error Zero velocity error

Nonzero acceleration error Zero acceleration error
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type 2
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timetime

Figure 2.2: System type and steady-state errors

A type 1 system has zero steady-state error for a step input, afinite steady-state error for a
ramp input, and infinite steady-state error for inputs of order two or higher.

A type 2 system has zero steady-state error for step and ramp inputs, a finite steady-state error
for a second-order input, and infinite steady-state error for inputs of order three or higher.

Figure2.2 illustrates the relation between system type and steady-state errors.

Exercise 2.2.1 (Type k systems with prefilter). The results of this subsection have been
proved if no prefilter is used, that is,F.s/ D 1. What condition needs to be imposed onF

in case a prefilter is used? �

2.2.3. Error constants

If the system is of type0 then the steady-state error for step inputs is

"
.0/
1 D 1

1 C L.0/
D 1

1 C Kp

: (2.11)

The numberKp D L.0/ is theposition error constant.
For a type 1 system the steady-state error for a ramp input is

"
.1/
1 D lim

s#0

1

sŒ1 C L.s/�
D lim

s#0

1

sL.s/
D 1

Kv

: (2.12)

The numberKv D lims#0 sL.s/ is thevelocity constant.
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2.2. Steady state error behavior

Table 2.1: Steady-state errors

Input

System step ramp parabola

type 0 1
1 C Kp

1 1

type 1 0 1
Kv

1

type 2 0 0 1
Ka

The steady-state error of a type 2 system to a second-order input is

"
.2/
1 D lim

s#0

1

s2L.s/
D 1

Ka

: (2.13)

The numberKa D lims#0 s2L.s/ is theacceleration constant.
Table2.1summarizes the various steady-state errors. In each case, the larger the error constant

is the smaller is the corresponding steady-state error.
The position, velocity and acceleration error provide basic requirements that must be satisfied

by servomechanism systems depending upon their functionalrole.
The steady-state error results are robust in the sense that if the coefficients of the transfer

function of the system vary then the error constants also vary but the zero steady-state error
properties are preserved — as long as the system does not change its type. Thus, for a type 1
system the velocity error constant may vary due to parametric uncertainty in the system. As long
as the type 1 property is not destroyed the system preserves its zero steady-state position error.

Exercise 2.2.2 (Steady-state response to polynomial distu rbance inputs). Consider the
feedback loop with disturbance input of Fig.2.3. Suppose that the closed-loop system is stable,
and that the disturbance is polynomial of the form

v.t/ D tn

n!
1.t/; t � 0: (2.14)

Show that the steady-state response of the output is given by

zn
1 D lim

t!1
z.t/ D lim

s#0

1

snŒ1 C L.s/�
: (2.15)

This formula is identical to the expression (2.8) for the steady-state error of the response to a
polynomial reference input.

It follows that a typek system has a zero steady-state response to polynomial disturbances of
order less thank, a nonzero finite steady-state response for polynomial disturbances of orderk,
and an infinite steady-state response for polynomial disturbances of order greater thank. �

Exercise 2.2.3 (Steady-state errors and closed-loop poles and zeros). Suppose that the
closed-loop transfer functionGcl of (2.5) is expanded in factored form as

Gcl.s/ D k
.s C z1/.s C z2/ � � � .s C zm/

.s C p1/.s C p2/ � � � .s C pn/
: (2.16)
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2. Classical Control System Design

1. Prove that the position error constant may be expressed as

Kp D
k
Qm

j D1 zj
Qn

j D1 pj � k
Qm

j D1 zj

: (2.17)

2. Suppose thatKp D 1, that is, the system has zero position error. Prove that the velocity
and acceleration error constants may be expressed as

1

Kv

D
n
X

j D1

1

pj

�
m
X

j D1

1

zj

(2.18)

and

1

Ka

D 1

2

0

@

m
X

j D1

1

z2
j

�
n
X

j D1

1

p2
j

� 1

K2
v

1

A ; (2.19)

respectively.Hint: Prove that1=Kv D �G0
cl.0/ and1=Ka D �G00

cl.0/=2, with the prime
denoting the derivative. Next differentiate lnGcl.s/ twice with respect tos at s D 0, with
Gcl given by (2.16).

These results originate fromTruxal (1955).
The relations (2.18) and (2.19) represent the connection between the error constants and the

system response characteristics. We observe that the further the closed-loop poles are from the
origin, the larger the velocity constantKv is. The velocity constant may also be increased by
having closed-loop zeros close to the origin. �

2.3. Integral control

Integral control is a remarkably effective classical technique to achieve low-frequency disturbance
attenuation. It moreover has a useful robustness property.

Disturbance attenuation is achieved by making the loop gainlarge. The loop gain may be made
large at low frequencies, and indeed infinite at zero frequency, by including a factor1=s in the
loop gainL.s/ D P .s/C.s/. If P .s/ has no “natural” factor1=s then this is accomplished by
including the factor in the compensator transfer functionC by choosing

C.s/ D C0.s/

s
: (2.20)

The rational functionC0 remains to be selected. The compensatorC.s/ may be considered as
the series connection of a system with transfer functionC0.s/ and another with transfer function
1=s. Because a system with transfer function1=s is an integrator, a compensator of this type is
said to haveintegrating action.

If the loop gainL.s/ has a factor1=s then in the terminology of~ 2.2(p. 60) the system is of
type 1. Its response to a step reference input has a zero steady-state error.

Obviously, ifL0.s/ contains no factors then the loop gain

L.s/ D L0.s/

s
(2.21)
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2.3. Integral control

is infinite at zero frequency and very large at low frequencies. As a result, the sensitivity function
S , which is given by

S.s/ D 1

1 C L.s/
D 1

1 C L0.s/

s

D s

s C L0.s/
; (2.22)

is zero at zero frequency and, by continuity, small at low frequencies. The fact thatS is zero
at zero frequency implies that zero frequency disturbances, that is, constant disturbances, are
completely eliminated. This is calledconstant disturbance rejection.

e

v

z
L

Figure 2.3: Feedback loop

Exercise 2.3.1 (Rejection of constant disturbances). Make the last statement clearer by
proving that if the closed-loop system of Fig.2.3 has integrating action and is stable, then its
responsez (from any initial condition) to a constant disturbancev.t/ D 1, t � 0, has the
property

lim
t!1

z.t/ D 0: (2.23)

Hint: Use Laplace transforms and the final value property. �

The constant disturbance rejection property isrobustwith respect to plant and compensator
perturbations as long as the perturbations are such that

� the loop gain still contains the factor1=s, and

� the closed-loop system remains stable.

In a feedback system with integrating action, the transfer function of the series connection of the
plant and compensator contains a factor1=s. A system with transfer function1=s is capable of
generating a constant output with zero input. Hence, the series connection may be thought of as
containing amodelof the mechanism that generates constant disturbances, which are precisely
the disturbances that the feedback system rejects. This notion has been generalized (Wonham,
1979) to what is known as theinternal model principle. This principle states that if a feedback
system is to reject certain disturbances then it should contain a model of the mechanism that
generates the disturbances.

Exercise 2.3.2 (Type k control). The loop gain of a typek system contains a factor1=sk , with
k a positive integer. Prove that if a typek closed-loop system as in Fig.2.3is stable then it rejects
disturbances of the form

v.t/ D tn

n!
; t � 0; (2.24)

with n any nonnegative integer such thatn � k � 1. “Rejects” means that for such disturbances
lim t!1 z.t/ = 0. �
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2. Classical Control System Design

Compensators with integrating action are easy to build. Their effectiveness in achieving low
frequency disturbance attenuation and the robustness of this property make “integral control” a
popular tool in practical control system design. The following variants are used:

� Pure integral control,with compensator transfer function

C.s/ D 1

sTi

: (2.25)

The single design parameterTi (called thereset time) does not always allow achieving
closed-loop stability or sufficient bandwidth.

� Proportional and integral control,also known asPI control, with compensator transfer
function

C.s/ D g

�

1 C 1

sTi

�

; (2.26)

gives considerably more flexibility.

� PID (proportional-integral-derivative)control, finally, is based on a compensator transfer
function of the type

C.s/ D g

�

sTd C 1 C 1

sTi

�

: (2.27)

Td is thederivative time. The derivative action may help to speed up response but tends to
make the closed-loop system less robust for high frequency perturbations.

Derivative action technically cannot be realized. In any case it would be undesirable be-
cause it greatly amplifies noise at high frequencies. Therefore the derivative termsTd in
(2.27) in practice is replaced with a “tame” differentiator

sTd

1 C sT
; (2.28)

with T a small time constant.

Standard PID controllers are commercially widely available. In practice they are often tuned
experimentally with the help of the rules developed by Ziegler and Nichols (see for instance
Franklin et al.(1991)). The Ziegler-Nichols rules (Ziegler and Nichols, 1942) were developed
under the assumption that the plant transfer function is of awell-damped low-pass type. When
tuning a P-, PI- or PID-controller according to the Ziegler-Nichols rules first a P-controller is
connected to the plant. The controller gaing is increased until undamped oscillations occur. The
corresponding gain is denoted asg0 and the period of oscillation asT0. Then the parameters of
the PID-controller are given by

P-controller: g D 0:5g0, Ti D 1, Td D 0,

PI-controller: g D 0:45g0, Ti D 0:85T0, Td D 0,

PID-controller: g D 0:6g0, Ti D 0:5T0, Td D 0:125T0.

The corresponding closed-loop system has a relative damping of about 0.25, and its closed-loop
step response to disturbances has a peak value of about 0.4. Normally experimental fine tuning
is needed to obtain the best results.
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2.3. Integral control

e u

v

zPID-
controller

nonlinear
plant

Figure 2.4: Nonlinear plant with integral control

Integral control also works for nonlinear plants. Assume that the plant in the block diagram
of Fig. 2.4has the reasonable property that for every constant inputu0 there is a unique constant
steady-state outputw0, and that the plant may maintain any constant outputw0. The “integral
controller” (of type I, PI or PID) has the property that it maintains a constant outputu0 if and
only if its input e is zero. Hence, if the disturbance is a constant signalv0 then the closed-loop
system is in steady-state if and only if the error signale is zero. Therefore, if the closed-loop
system is stable then it rejects constant disturbances.

Example 2.3.3 (Integral control of the cruise control syste m). The linearized cruise control
system of Example1.2.1(p. 3) has the linearized plant transfer function

P .s/ D
1
T

s C 1
�

: (2.29)

If the system is controlled with pure integral control

C.s/ D 1

sTi

(2.30)

then the loop gain and sensitivity functions are

L.s/ D P .s/C.s/ D
1

T Ti

s.s C 1
�
/
; S.s/ D 1

1 C L.s/
D

s.s C 1
�
/

s2 C 1
�
s C 1

T Ti

: (2.31)

The roots of the denominator polynomial

s2 C 1

�
s C 1

T Ti

(2.32)

are the closed-loop poles. Since� , T andTi are all positive these roots have negative real parts,
so that the closed-loop system is stable. Figure2.5 shows the loci of the roots asTi varies
from 1 to 0 (see also~ 2.7 (p. 88)). Write the closed-loop denominator polynomial (2.32) as
s2 C2�0!0s C!2

0 , with !0 the resonance frequency and�0 the relative damping. It easily follows
that

!0 D 1p
T Ti

; �0 D 1=�

2!0

D
p

T Ti

2�
: (2.33)

The best time response is obtained for�0 D 1
2

p
2, or

Ti D 2�2

T
: (2.34)
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2. Classical Control System Design

0

Ti # 0
Im

Re� 1
�

�1
2�

Figure 2.5: Root loci for the cruise control system. The�s mark the open-
loop poles

If T D � D 10 [s] (corresponding to a cruising speed of 50% of the top speed) thenTi D 20 [s].
It follows that!0 D 1=

p
200 � 0:07 [rad/s]. Figure2.6shows the Bode magnitude plot of the

resulting sensitivity function. The plot indicates that constant disturbance rejection is obtained as
well as low-frequency disturbance attenuation, but that the closed-loop bandwidth is not greater
than the bandwidth of about 0.1 [rad/s] of the open-loop system.

IncreasingTi decreases the bandwidth. DecreasingTi beyond2�2=T does not increase the
bandwidth but makes the sensitivity functionS peak. This adversely affects robustness. Band-
width improvement without peaking may be achieved by introducing proportional gain. (See
Exercise2.6.2, p.85.) �

101

100

10�1

10�2

10�3 10�2 10�1 100

20 dB

20 dB

-20 dB

-40 dB

jS j

angular frequency [rad/s]

Figure 2.6: Magnitude plot of the sensitivity function of the cruise control
system with integrating action

Exercise 2.3.4 (PI control of the cruise control system). Show that by PI control constant
disturbance rejection and low-frequency disturbance attenuation may be achieved for the cruise
control system with satisfactory gain and phase margins forany closed-loop bandwidth allowed
by the plant capacity. �

Exercise 2.3.5 (Integral control of a MIMO plant). Suppose that Fig.2.3 (p. 65) represents a
stable MIMO feedback loop with rational loop gain matrixL such that alsoL�1 is a well-defined
rational matrix function. Prove that the feedback loop rejects every constant disturbance if and
only if L�1.0/ D 0. �

Exercise 2.3.6 (Integral control and constant input distur bances). Not infrequently distur-
bances enter the plant at the input, as schematically indicated in Fig.2.7. In this case the transfer
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disturbance
v

C P
y

Figure 2.7: Plant with input disturbance

function from the disturbancesv to the control system outputz is

R D P

1 C PC
: (2.35)

Suppose that the system has integrating action, that is, theloop gainL D PC has a pole at 0.
Prove that constant disturbances at the input are rejected if and only if the integrating action is
localized in the compensator. �

2.4. Frequency response plots

2.4.1. Introduction

In classical as in modern control engineering the graphicalrepresentation of frequency responses
is an important tool in understanding and studying the dynamics of control systems. In this section
we review three well-known ways of presenting frequency responses: Bode plots, Nyquist plots,
and Nichols plots.

Consider a stable linear time-invariant system with inputu, outputy and transfer function
L. A sinusoidal inputu.t/ D Ou sin.!t/, t � 0, results in the steady-state sinusoidal output
y.t/ D Oy sin.!t C �/, t � 0. The amplitudeOy and phase� of the output are given by

Oy D jL.j!/j Ou; � D argL.j!/: (2.36)

The magnitudejL.j!/j of the frequency response functionL.j!/ is thegainat the frequency!.
Its argument argL.j!/ is thephase shift.

Write

L.s/ D k
.s � z1/.s � z2/ � � � .s � zm/

.s � p1/.s � p2/ � � � .z � pn/
; (2.37)

with k a constant,z1, z2, � � � , zm the zeros, andp1, p2, � � � , pn the poles of the system. Then
for any s D j! the magnitude and phase ofL.j!/ may be determined by measuring the vec-
tor lengths and angles from the pole-zero pattern as in Fig.2.8. The magnitude ofL follows
by appropriately multiplying and dividing the lengths. Thephase ofL follows by adding and
subtracting the angles.

A pole pi that is close to the imaginary axis leads to a short vector length s � pi at values of
! in the neighborhood of Impi . This results in large magnitudejL.j!/j at this frequency, and
explains why a pole that is close to the imaginary axis leads to a resonance peak in the frequency
response.
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Figure 2.8: Frequency response determined from the pole-zero pattern

2.4.2. Bode plots

A frequency response functionL.j!/, ! 2 R, may be plotted in two separate graphs, magnitude
as a function of frequency, and phase as a function of frequency. When the frequency and mag-
nitude scales are logarithmic the combined set of the two graphs is called theBode diagramof
L. Individually, the graphs are referred to as theBode magnitude plotand theBode phase plot.
Figure2.9shows the Bode diagrams of a second-order frequency response function for different
values of the relative damping.
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Figure 2.9: Bode diagram of the transfer function!2
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The construction of Bode diagrams for rational transfer functions follows simple steps. Write
the frequency response function in the factored form

L.j!/ D k
.j! � z1/.j! � z2/ � � � .j! � zm/

.j! � p1/.j! � p2/ � � � .j! � pn/
: (2.38)
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It follows for the logarithm of the amplitude and for the phase

log jL.j!/j D log jkj C
m
X

iD1

log jj! � zi j �
n
X

iD1

log jj! � pi j; (2.39)

argL.j!/ D argk C
m
X

iD1

arg.j! � zi / �
n
X

iD1

arg.j! � pi /: (2.40)

The asymptotes of the individual terms of (2.39) and (2.40) may be drawn without computation.
For a first-order factors C !0 we have

log jj! C !0j �
�

log j!0j for 0 � ! � j!0j;
log! for ! � j!0j; (2.41)

arg.j! C !0/ �
�

arg.!0/ for 0 � ! � j!0j;
90ı for ! � j!0j: (2.42)

The asymptotes for the doubly logarithmic amplitude plot are straight lines. The low frequency
asymptote is a constant. The high frequency asymptote has slope 1 decade/decade. If the ampli-
tude is plotted in decibels then the slope is 20 dB/decade. The amplitude asymptotes intersect
at the frequencyj!0j. The phase moves from arg.!0/ (0ı if !0 is positive) at low frequencies to
90ı (�=2 rad) at high frequencies. Figure2.10shows the amplitude and phase curves for the first
order factor and their asymptotes (for!0 positive).
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Figure 2.10: Bode amplitude and phase plots for the factors C !0. Dashed:
low- and high-frequency asymptotes

Factors corresponding to complex conjugate pairs of poles or zeros are best combined to a
second-order factor of the form

s2 C 2�0!0s C !2
0 : (2.43)
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Asymptotically,

log j.j!/2 C 2�0!0.j!/C !2
0 j �

�

2 log j!0j for 0 � ! � j!0j;
2 log! for ! � j!0j; (2.44)

arg..j!/2 C 2�0!0.j!/C !2
0/ �

�

0 for 0 � ! � j!0j;
180ı for ! � j!0j: (2.45)

The low frequency amplitude asymptote is again a constant. In the Bode magnitude plot the high
frequency amplitude asymptote is a straight line with slope2 decades/decade (40 dB/decade).
The asymptotes intersect at the frequencyj!0j. The phase goes from0ı at low frequencies to
180ı at high frequencies. Figure2.11shows amplitude and phase plots for different values of the
relative damping�0 (with !0 positive).

Bode plots of high-order transfer functions, in particularasymptotic Bode plots, are obtained
by adding log magnitude and phase contributions from first- and second-order factors.

The “asymptotic Bode plots” of first- and second-order factors follow by replacing the low fre-
quency values of magnitude and phase by the low frequency asymptotes at frequencies below the
break frequency, and similarly using the high-frequency asymptotes above the break frequency.
High-order asymptotic Bode plots follow by adding and subtracting the asymptotic plots of the
first- and second-order factors that make up the transfer function.

As shown in Fig.2.12 the gain and phase margins of a stable feedback loop may easily be
identified from the Bode diagram of the loop gain frequency response function.

Exercise 2.4.1 (Complex conjugate pole pair). Consider the factors2 C 2�0!0s C !2
0 . The

positive number!0 is the characteristic frequency and�0 the relative damping.

1. Prove that forj�0j < 1 the roots of the factor are the complex conjugate pair

!0

�

��0 ˙ j
q

1 � �2
0

�

: (2.46)
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Figure 2.12: Gain and phase margins from the Bode plot of the loop gain

For j�0j � 1 the roots are real.

2. Prove that in the diagram of Fig.2.13the distance of the complex conjugate pole pair to
the origin is!0, and that the angle� equals arccos�0.

3. Assume that0 < �0 < 1. At which frequency has the amplitude plot of the factor.j!/2 C
2�0!0.j!/C !2

0 , ! 2 R, its minimum (and, hence, has the amplitude plot of its reciprocal
its maximum)? Note that this frequency is not precisely!0.

�

0

j!0

p

1 � �2

��!0

�

Re

Im

Figure 2.13: Complex conjugate root pair of the factors2 C 2�0!0 C !2
0

Exercise 2.4.2 (Transfer function and Bode plot). Consider the loop gainL whose Bode
diagram is given in Fig.2.14.

1. Use Bode’s gain-phase relationship (~ 1.6, p. 34) to conclude from the Bode plot that the
loop gain is (probably) minimum-phase, and, hence, stable.Next argue that the corre-
sponding closed-loop system is stable.

2. Fit the Bode diagram as best as possible by a rational pole-zero representation.
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Figure 2.14: Bode diagram of a loop gainL

The conclusion of (a) is correct as long as outside the frequency range considered the frequency
response behaves in agreement with the low- and high-frequency asymptotes inferred from the
plot. This is especially important for the low-frequency behavior. Slow dynamics that change
the number of encirclements of the Nyquist plot invalidate the result. �

2.4.3. Nyquist plots

In ~ 1.3 (p. 11) we already encountered theNyquist plot,which is a polar plot of the frequency
response function with the frequency! as parameter. If frequency is not plotted along the locus
— a service that some packages fail to provide — then the Nyquist plot is less informative than
the Bode diagram. Figure2.15shows the Nyquist plots of the second-order frequency response
functions of Fig.2.9.

Normally the Nyquist plot is only sketched for0 � ! < 1. The plot for negative frequencies
follows by mirroring with respect to the real axis.

If L is strictly proper then for! ! 1 the Nyquist plot approaches the origin. WriteL in
terms of its poles and zeros as in (2.37). Then asymptotically

L.j!/ � k

.j!/n�m
for ! ! 1: (2.47)

If k is positive then the Nyquist plot approaches the origin at anangle�.n � m/ � 90ı. The
numbern � m is called thepole-zero excessor relative degreeof the system.

In control systems of typek the loop gainL has a pole of orderk at the origin. Hence, at low
frequencies the loop frequency response asymptotically behaves as

L.j!/ � c

.j!/k
for ! # 0; (2.48)
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with c a real constant. Ifk D 0 then for! # 0 the Nyquist plot ofL approaches a point on the
real axis. Ifk > 0 andc is positive then the Nyquist plot goes to infinity at an angle�k � 90ı.
Figure2.16illustrates this.

Exercise 2.4.3 (Nyquist plots). Prove the following observations.

1. The shape of the Nyquist plot ofL.s/ D 1=.1 C sT / is a circle whose center and radius
are independent ofT .

2. The shape of the Nyquist plot ofL.s/ D 1=.1 C sT1/.1 C sT2/ only depends on the ratio
T1=T2. The shape is the same forT1=T2 D ˛ andT2=T1 D ˛.

3. The shape of the Nyquist plot ofL.s/ D !2
0=.!

2
0 C 2�!0s C s2/ is independent of!0.

�

2.4.4. M - and N -circles

Consider a simple unit feedback loop with loop gainL as in Fig.2.17. The closed-loop transfer
function of the system equals the complementary sensitivity function

H D T D L

1 C L
: (2.49)

M - andN -circlesare a graphical tool — typical for the classical control era —to determine the
closed-loop frequency response function from the Nyquist plot of the loop gainL.
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An M -circle is the locus of pointsz in the complex plane where the magnitude of the complex
number

z

1 C z
(2.50)

is constant and equal toM . An M -circle has center and radius

center

�
M 2

1 � M 2
; 0

�

; radius

ˇ
ˇ
ˇ
ˇ

M

1 � M 2

ˇ
ˇ
ˇ
ˇ
: (2.51)

An N -circle is the locus of points in the complex plane where the argument of the number (2.50)
is constant and equal to arctanN . An N -circle has center and radius

center

�

�1

2
;

1

2N

�

; radius
1

2

r

1 C 1

N 2
: (2.52)

Figure2.18shows the arrangement ofM - andN -circles in the complex plane.
The magnitude of the closed-loop frequency response and complementary sensitivity function

T may be found from the points of intersection of the Nyquist plot of the loop gainL with the
M -circles. Likewise, the phase ofT follows from the intersections with theN -circles.

Figure2.18includes a typical Nyquist plot of the loop gainL. These are some of the features of
the closed-loop response that are obtained by inspection ofthe intersections with theM -circles:

� The height of the resonance peak is the maximum value ofM encountered along the
Nyquist plot.

� The resonance frequency!m is the frequency where this maximum occurs.

� The bandwidth is the frequency at which the Nyquist plot intersects the 0.707 circle (the
�3 dB circle).
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2. Classical Control System Design

These and other observations provide useful indications how to modify and shape the loop fre-
quency response to improve the closed-loop properties. TheM - and N -loci are more often
included in Nichols plots (see the next subsection) than in Nyquist plots.

Exercise 2.4.4 ( M - and N -circles). Verify the formulas (2.51) and (2.52) for the centers and
radii of theM - andN -circles. �

2.4.5. Nichols plots

The linear scales of the Nyquist plot sometimes obscure the large range of values over which
the magnitude of the loop gain varies. Also, the effect of changing the compensator frequency
response functionC or the plant frequency response functionP on the Nyquist plot of the loop
gainL D PC cannot always easily be predicted.

Both difficulties may be overcome by plotting the loop gain inthe form of aNichols plot
(James et al., 1947). A Nichols plot is obtained by plotting the log magnitude ofthe loop gain
frequency response function versus its phase. In these coordinates, theM - enN -circles transform
toM - andN - loci. The phase–log magnitude plane together with a set ofM - andN -loci is called
a Nichols chart. In Fig. 2.19Nichols plots are given of the second-order frequency response
functions whose Bode diagrams and Nyquist plots are shown inFigs.2.9(p.70) and2.15(p.75),
respectively.

In a Nichols diagram, gain change corresponds to a vertical shift and phase change to a hor-
izontal shift. This makes it easy to assess the effect of changes of the compensator frequency
response functionC or the plant frequency response functionP on the loop gainL D PC .

Exercise 2.4.5 (Gain and phase margins in the Nichols plot). Explain how the gain margin
and phase margin of a stable feedback loop may be identified from the Nichols plot. �

Exercise 2.4.6 (Lag-lead compensator). Consider a compensator with the second-order trans-
fer function

C.s/ D .1 C sT1/.1 C sT2/

.1 C sT1/.1 C sT2/C sT12

: (2.53)

T1, T2 andT12 are time constants. The corresponding frequency response function is

C.j!/ D .1 � !2T1T2/C j!.T1 C T2/

.1 � !2T1T2/C j!.T1 C T2 C T12/
; ! 2 R: (2.54)

By a proper choice of the time constants the network acts as a lag network (that is, subtracts
phase) in the lower frequency range and as a lead network (that is, adds phase) in the higher
frequency range.

Inspection of the frequency response function (2.54) shows that numerator and denominator
simultaneously become purely imaginary at the frequency! D 1=

p
T1T2. At this frequency

the frequency response function is real. This frequency is the point where the character of the
network changes from lag to lead, and where the magnitude of the frequency response is minimal.

1. Plot the Bode, Nyquist, and Nichols diagrams of this frequency response function.

2. Prove that the Nyquist plot ofC has the shape of a circle in the right half of the complex
plane with its center on the real axis. SinceC.0/ D C.j1/ D 1 the plot begins and ends
in the point 1.

�
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2.5. Classical control system design

2.5.1. Design goals and criteria

For SISO systems we have the following partial list of typical classical performance specifica-
tions. Consider the feedback loop of Fig.2.20. These are the basic requirements for a well-
designed control system:

1. The transient response is sufficiently fast.

2. The transient response shows satisfactory damping.

3. The transient response satisfies accuracy requirements,often expressed in terms of the
error constants of~ 2.2(p. 60).

4. The system is sufficiently insensitive to external disturbances and variations of internal
parameters.

These basic requirements may be further specified in terms ofboth a number offrequency-domain
specificationsand certaintime-domain specifications.

Figures2.12(p. 73) and2.21illustrate several important frequency-domain quantities:

0 dB

-3 dB

jH j

!r

M

frequencyB

Figure 2.21: Frequency-domain performance quantities

Gain margin. The gain margin — see~ 1.4 (p. 20) — measures relative stability. It is defined
as the reciprocal of the magnitude of the loop frequency responseL, evaluated at the
frequency!� at which the phase angle is�180 degrees. The frequency!� is called the
phase crossover frequency.

Phase margin. The phase margin — again see~ 1.4 — also measures relative stability. It is
defined as180ı plus the phase angle�1 of the loop frequency responseL at the frequency
!1 where the gain is unity. The frequency!1 is called thegain crossover frequency.

Bandwidth. The bandwidthB measures the speed of response in frequency-domain terms. It
is defined as the range of frequencies over which the closed-loop frequency responseH
has a magnitude that is at least within a factor1

2

p
2 D 0:707 (3 dB) of its value at zero

frequency.

Resonance peak. Relative stability may also be measured in terms of the peak valueM of the
magnitude of the closed-loop frequency responseH (in dB), occurring at theresonance
frequency!r .

Figure2.22shows five important time-domain quantities that may be usedfor performance spec-
ifications for the response of the control system output to a step in the reference input:
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Figure 2.22: Time-domain quantities

Delay time Td . delay time measures the total average delay between reference and output. It
may for instance be defined as time where the response is at 50%of the step amplitude.

Rise time Tr . The rise time expresses the “sharpness” of the leading edge of the response. Var-
ious definitions exist. One definesTR as the time needed to rise from 10% to 90% of the
final value.

Percentage overshoot PO. This quantity expresses the maximum difference (in % of the
steady-state value) between the transient and the steady-state response to a step input.

Settling time Ts . The settling time is often defined as time required for the response to a step
input to reach and remain within a specified percentage (typically 2 or 5%) of its final
value.

Final value of error FVE. The FVE is the steady-state position error.

This list is not exhaustive. It includes no specifications ofthedisturbance attenuating properties.
These specifications can not be easily expressed in general terms. They should be considered
individually for each application.

Horowitz (1963, pp. 190–194) lists a number of quasi-empirical relations between the time
domain parametersTd , Tr , Ts and the overshoot on the one hand and the frequency domain
parametersB, M and the phase at the frequencyB on the other. The author advises to use them
with caution.

Exercise 2.5.1. Cruise control system Evaluate the various time and frequency performance
indicators for the integral cruise control system design ofExample2.3.3(p. 67). �

2.5.2. Compensator design

In the classical control engineering era the design of feedback compensation to a great extent
relied on trial-and-error procedures. Experience and engineering sense were as important as a
thorough theoretical understanding of the tools that were employed.

In this section we consider the basic goals that may be pursued from a classical point of view.
In the classical view the following series of steps leads to asuccessful control system design:

� Determine the plant transfer functionP based on a (linearized) model of the plant.
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2. Classical Control System Design

� Investigate the shape of the frequency responseP .j!/,! 2 R, to understand the properties
of the system fully.

� Consider the desired steady-state error properties of the system (see~ 2.2, p. 60). Choose
a compensator structure — for instance by introducing integrating action or lag compen-
sation — that provides the required steady-state error characteristics of the compensated
system.

� Plot the Bode, Nyquist or Nichols diagram of the loop frequency response of the compen-
sated system. Adjust the gain to obtain a desired degree of stability of the system.M - and
N -circles are useful tools. The gain and phase margins are measures for the success of the
design.

� If the specifications are not met then determine the adjustment of the loop gain frequency
response function that is required. Use lag, lead, lag-leador other compensation to realize
the necessary modification of the loop frequency response function. The Bode gain-phase
relation sets the limits.

The graphic tools essential to go through these steps that were developed in former time now are
integrated in computer aided design environments.

The design sequence summarizes the main ideas of classical control theory developed in the
period 1940–1960. It is presented in terms ofshaping loop transfer functionsfor single-input,
single-output systems.

In ~ 2.6 (p. 82) we consider techniques for loop shaping using simple controller structures
— lead, lag, and lead-lag compensators. In~ 2.8 (p. 90) we discuss the Guillemin-Truxal de-
sign procedure. Section2.9 (p. 93) is devoted to Horowitz’s Quantitative Feedback Theory
(Horowitz and Sidi, 1972), which allows to impose and satisfy quantitative bounds onthe ro-
bustness of the feedback system.

2.6. Lead, lag, and lag-lead compensation

2.6.1. Introduction

In this section we discuss the classical techniques of lead,lag, and lag-lead compensation. An
extensive account of these techniques is given byDorf (1992).

2.6.2. Lead compensation

Making the loop gainL large at low frequencies — by introducing integrating action or making
the static gain large — may result in a Nyquist plot that showsunstable behavior. Even if the
closed-loop system is stable the gain and phase margins may be unacceptably small, resulting in
nearly unstable, oscillatory behavior.

Figure2.23shows an instance of this. To obtain satisfactory stabilitywe may reshape the loop
gain in such a way that its Nyquist plot remains outside anM -circle that guarantees sufficient
closed-loop damping. A minimal value ofM D 1:4 (3 dB) might be a useful choice.

The required phase advance in the resonance frequency region may be obtained by utilizing a
phase-advance network in series with the plant. The networkmay be of first order with frequency
response function

C.j!/ D ˛
1 C j!T

1 C j!˛T
: (2.55)
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Figure 2.23: Nyquist plot of uncompensated and compensatedplant

For 0 < ˛ < 1 we obtain a lead compensator and for˛ > 1 a lag compensator. In the first
case the compensator creates phase advance, in the second itcreates extra phase lag. Figure2.24
shows the Bode diagrams.

Over the frequency interval.1=T; 1=˛T / the phase advance compensator has the character
of a differentiating network. By making̨ sufficiently small the compensator may be given the
character of a differentiator over a large enough frequencyrange.

Phase lead compensation, also used in PD control, increasesthe bandwidth and, hence, makes
the closed-loop system faster. Keeping the Nyquist plot away from the critical point�1 has the
effect of improving the transient response.

Phase lead compensation results in an increase of the resonance frequency. If very small
values of̨ are used then the danger of undesired amplification of measurement noise in the loop
exists. The bandwidth increase associated with making˛ small may aggravate the effect of high
frequency parasitic dynamics in the loop.

The characteristics of phase-lead compensation are reviewed in Table2.2. An application of
lead compensation is described in Example2.6.3(p. 85).

Exercise 2.6.1 (Specifics of the first-order lead or lag compe nsator). Inspection of
Fig. 2.24shows that the maximum amount of phase lead or lag that may be obtained with the
compensator (2.55) is determined by̨ . Also the width of the frequency window over which
significant phase lead or lag is achieved depends on˛. Finally, the low frequency gain loss (for
lead compensation) or gain boost (for lag compensation) depend on̨ .

1. Prove that the peak phase lead or lag occurs at the normalized frequency

!peakT D 1=
p
˛; (2.56)

and that the peak phase lead or lag equals

�max D arctan
1

2

ˇ
ˇ
ˇ
ˇ

1p
˛

�
p
˛

ˇ
ˇ
ˇ
ˇ
: (2.57)
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Figure 2.24: Log magnitude and phase of lead and lag compensatorsC.s/ D
˛ 1CsT

1Cs˛T

2. Show that the width of the window over which phase lead or lag is effected is roughly
jlog10 ˛j decades.

3. Show that the low frequency gain loss or boost is20 jlog10 ˛j dB.

Figure2.25shows plots of the peak phase lead or lag, the window width, and the low-frequency
gain loss or boost. �

First-order phase advance compensation is not effective against resonant modes in the plant
corresponding to second order dynamics with low damping. The rapid change of phase from0
to �180 degrees caused by lightly damped second-order dynamics cannot adequately be coun-
tered. This requires compensation by a second order filter (called anotch filter) with zeros near
the lightly damped poles and stable poles on the real line at aconsiderable distance from the
imaginary axis.

2.6.3. Lag compensation

The loop gain may be increased at low frequencies by a lag compensator. If the time constantT

in

C.j!/ D ˛
1 C j!T

1 C j!˛T
(2.58)

is chosen such that1=T is much greater than the resonance frequency!R of the loop gain
then there is hardly any additional phase lag in the crossover region. In the limit˛ ! 1 the
compensator frequency response function becomes

C.j!/ D 1 C 1

j!T
: (2.59)
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Figure 2.25: Peak phase lead or lag

This is a compensator with proportional and integral action.
Increasing the low frequency gain by lag compensation reduces the steady-state errors. It also

has the effect of decreasing the bandwidth, and, hence, making the closed-loop system slower.
On the other hand, the effect of high frequency measurement noise is reduced. Table2.2reviews
and summarizes the characteristics of lead and lag compensation.

Lag compensation is fully compatible with phase-lead compensation as the two compensations
affect frequency regions that are widely apart.

Exercise 2.6.2 (Phase lag compensation). An example of phase lag compensation is the
integral compensation scheme for the cruise control systemof Example2.3.3(p. 67). The first-
order plant requires a large gain boost at low frequencies for good steady-state accuracy. This
gain is provided by integral control. As we also saw in Example2.3.3(p.67) pure integral control
limits the bandwidth. To speed up the response additional phase lead compensation is needed.

To accomplish this modify the pure integral compensation scheme to the PI compensator

C.s/ D k
1 C sTi

sTi

: (2.60)

This provides integrating action up to the frequency1=Ti . At higher frequencies the associated
90ı phase lag vanishes. A suitable choice for the frequency1=Ti is, say, half a decade below the
desired bandwidth.

Suppose that the desired bandwidth is 0.3 [rad/s]. SelectTi as recommended, and choose the
gaink such that the loop gain crossover frequency is 0.3 [rad/s]. Check whether the resulting
design is satisfactory. �

2.6.4. Lag-lead compensation

We illustrate the design of a lag-lead compensator by an example. Note the successive design
steps.
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2. Classical Control System Design

Table 2.2: Characteristics of lead and lag compensation design
Compensation Phase-lead Phase-lag

Method Addition of phase-lead angle near
the crossover frequency

Increase the gain at low frequencies

Purpose Improve the phase margin and the
transient response

Increase the error constants while
maintaining the phase margin and
transient response properties

Applications When a fast transient response is
desired

When error constants are specified

Results Increases the system bandwidth Decreases the system bandwidth
Advantages Yields desired response Suppresses high frequency noise

Speeds dynamic response Reduces the steady-state error
Disadvantages Increases the bandwidth and thus

the susceptibility to measurement
noise

Slows down the transient response

Not applicable If the phase decreases rapidly near
the crossover frequency

If no low frequency range exists
where the phase is equal to the
desired phase margin

Example 2.6.3 (Lag-lead compensator). Consider the simple second-order plant with transfer
function

P .s/ D !2
0

s2 C 2�0!0s C !2
0

; (2.61)

with !0 D 0:1 [rad/s] and�0 D 0:2. The system is poorly damped. The design specifications are

� Constant disturbance rejection by integral action.

� A closed-loop bandwidth of 1 [rad/s].

� Satisfactory gain and phase margins.

Step 1: Lag compensation. To achieve integral control we introduce lag compensation of the
form

C0.s/ D k0

1 C sTi

sTi

: (2.62)

The phase lag compensation may be extended to 1 decade below the desired bandwidth by
choosing1=Ti D 0:1 [rad/s], that is,Ti D 10 [s]. Lettingk0 D 98:6 makes sure that the
crossover frequency of the loop gain is 1 [rad/s]. Figure2.26shows the Bode diagram of
the resulting loop gain. Inspection reveals a negative phase margin, so that the closed-loop
system is unstable.

Step 2: Phase lead compensation. We stabilize the closed loop by lead compensation of the
form

C1.s/ D k1˛
1 C sT

1 C s˛T
: (2.63)
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Figure 2.26: Bode diagrams of the loop gain

Phase advance is needed in the frequency region between, say, 0.1 and 10 [rad/s]. In-
spection of Fig.2.24or 2.25and some experimenting leads to the choice˛ D 0:1 and
T D 3 [rad/s]. Settingk1 D 3:3 makes the crossover frequency equal to 1 [rad/s]. The
resulting Bode diagram of the loop gain is included in Fig.2.26. The closed-loop system is
stable with infinite gain margin (because the phase never goes below�180ı) and a phase
margin of more than50ı.

Figure2.27shows the Bode magnitude plot of the closed-loop frequency response function
and of the closed-loop step response. They are quite adequate.

Step 3. High-frequency roll-off. For measurement noise reduction and high-frequency robust-
ness we provide high-frequency roll-off of the compensatorby including additional lag
compensation of the form

C2.s/ D !2
1

s2 C 2�1!1s C !2
1

: (2.64)

Setting!1 D 10 [rad/s] and�1 D 0:5 makes the roll-off set in at 10 [rad/s] without unnec-
essary peaking and without appreciable effect in the crossover region. The corresponding
loop gain is shown in Fig.2.26. The gain margin is now about 17 dB and the phase mar-
gin about45ı. Figure2.27shows the extra roll-off of the closed-loop frequency response.
Enhancing high-frequency roll-off slightly increases theovershoot of the closed-loop step
response.

�
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Figure 2.27: Closed-loop frequency and step responses

2.7. The root locus approach to parameter selection

2.7.1. Introduction

The root locus technique was conceived byEvans(1950) — see alsoEvans(1954). It consists of
plotting the loci of the roots of the characteristic equation of the closed-loop system as a function
of a proportional gain factor in the loop transfer function.This graphical approach yields a clear
picture of the stability properties of the system as a function of the gain. It leads to a design
decision about the value of the gain.

The root locus method is not a complete design procedure. First the controller structure,
including its pole and zero locations, should be chosen. Theroot locus method then allows to
adjust the gain. Inspection of the loci often provides useful indications how to revise the choice
of the compensator poles and zeros.

2.7.2. Root loci rules

We review the basic construction rules for root loci. Let theloop transfer function of a feedback
system be given in the form

L.s/ D k
.s � z1/.s � z2/ � � � .s � zm/

.s � p1/.s � p2/ � � � .s � pn/
: (2.65)

For physically realizable systems the loop transfer function L is proper, that is,m � n. The
rootsz1; z2; � � � ; zm of the numerator polynomial are theopen-loop zerosof the system. The
rootsp1;p2; � � � ;pn of the denominator polynomial are theopen-loop poles. The constantk is
thegain.
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2.7. The root locus approach to parameter selection

The closed-loop poles are those values ofs for which1 C L.s/ D 0, or, equivalently,

.s � p1/.s � p2/ � � � .s � pn/C k.s � z1/.s � z2/ � � � .s � zm/ D 0: (2.66)

Under the assumption thatm � n there are preciselyn closed-loop poles. Theroot loci are the
loci of the closed-loop poles ask varies from 0 toC1.

Computer calculations based on subroutines for the calculation of the roots of a polynomial
are commonly used to provide accurate plots of the root loci.The graphical rules that follow
provide useful insight into the general properties of root loci.

Summary 2.7.1 (Basic construction rules for root loci).

1. Fork D 0 the closed-loop poles coincide with the open-loop polesp1, p2, � � � , pn.

2. If k ! 1 thenm of the closed-loop poles approach the (finite) open-loop zeros z1, z2,
� � � , zm. The remainingn � m closed-loop poles tend to infinity.

3. There are as many locus branches as there are open-loop poles. Each branch starts for
k D 0 at an open-loop pole location and ends fork D 1 at an open-loop zero (which thus
may be at infinity).

4. If m < n then n � m branches approach infinity along straight line asymptotes.The
directions of the asymptotes are given by the angles

˛i D 2i C 1

n � m
� [rad] i D 0; 1; � � � ; n � m � 1: (2.67)

Thus, forn � m D 1 we havę D �, for n � m D 2 we havę D ˙�=2, and so on. The
angles are evenly distributed overŒ0; 2��.

5. All asymptotes intersect the real axis at a single point ata distances0 from the origin, with

s0 D .sum of open-loop poles)� (sum of open-loop zeros)

n � m
: (2.68)

6. As we consider real-rational functions only the loci are symmetrical about the real axis.
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Figure 2.28: Examples of root loci:

(a)L.s/ D k
s.sC2/

, (b) L.s/ D k.sC2/

s.sC1/
, (c) L.s/ D k

s.sC1/.sC2/

7. Those sections of the real axis located to the left of an oddtotal number of open-loop poles
and zeros on this axis belong to a locus.
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2. Classical Control System Design

8. There may exist points where a locus breaks away from the real axis and points where
a locus arrives on the real axis. Breakaway points occur onlyif the part of the real axis
located between two open-loop poles belongs to a locus. Arrival points occur only if the
part of the real axis located between two open-loop zeros belongs to a locus.

�

Figure2.28illustrates several typical root loci plots.
The root locus method has received much attention in the literature subsequent to

Evans’ pioneering work. Its theoretical background has been studied byFöllinger (1958),
Berman and Stanton(1963), Krall (1961), Krall (1963), Krall (1970), and Krall and Fornaro
(1967). The application of the root locus method in control designis described in almost
any basic control engineering book — see for instanceDorf (1992), Franklin et al.(1986),
Franklin et al.(1991), andVan de Vegte(1990).

Exercise 2.7.2 (Root loci). Check for each of the root locus diagrams of Fig.2.28which of the
rules (a)–(h) of Summary2.7.1applies. �

2.8. The Guillemin-Truxal design procedure

2.8.1. Introduction

A network-theory oriented approach to the synthesis of feedback control systems was proposed by
Truxal(1955). The idea is simple. Instead of designing a compensator on the basis of an analysis
of the open-loop transfer function the closed-loop transfer functionH is directly chosen such that
it satisfies a number of favorable properties. Next, the compensator that realizes this behavior is
computed. Generally an approximation is necessary to arrive at a practical compensator of low
order.

r y
C P

Figure 2.29: Unit feedback system

2.8.2. Procedure

Let H be the chosen closed-loop transfer function. For unit feedback systems as in Fig.2.29with
plant and compensator transfer functionsP andC , respectively, we have

H D PC

1 C PC
: (2.69)

Solving for the compensator transfer functionC we obtain

C D 1

P

H

1 � H
: (2.70)

The determination of the desiredH is not simple. SometimesH may be selected on the basis of
a preliminary analysis of the behavior of a closed-loop system with a low-order compensator.
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2.8. The Guillemin-Truxal design procedure

A classical approach is to consider the steady-state errorsin selecting the closed-loop system.
Suppose that the closed-loop system is desired to be of typek (see~ 2.2, p. 60). Then the loop
gainL needs to be of the form

L.s/ D N.s/

skD.s/
; (2.71)

with N andD polynomials that have no roots at 0. It follows that

H.s/ D L.s/

1 C L.s/
D N.s/

skD.s/C N.s/
D amsm C � � � C aksk C bk�1s

k�1 C � � � C b0

cnsn C � � � C cksk C bk�1sk�1 C � � � C b0

:

(2.72)

Conversely, choosing the firstk coefficientsbj in the numerator polynomial equal to that of the
denominator polynomial ensures the system to be of typek.

This still leaves considerable freedom to achieve other goals. Suppose that we select the
closed-loop transfer function as

H.s/ D b0

sn C bn�1sn�1 C � � � C b0

; (2.73)

which implies a zero steady-state error for step inputsr.t/ D 1.t/.

Exercise 2.8.1 (Zero steady-state error). Prove this. �

One way to choose the coefficientsb0, b1, � � � , bn�1 is to place the closed-loop poles evenly dis-
tributed on the left half of a circle with center at the originand radius!0. This yields closed-loop
responses with a desired degree of damping. The resulting polynomials are known asButter-
worth polynomials. For the normalized case!0 D 1 the reference step responses are given in
Fig. 2.30(a). Table2.3shows the coefficients for increasing orders. For general!0 the polyno-
mials follow by substitutings WD s=!0.

Another popular choice is to choose the coefficients such that the integral of the time multiplied
absolute error

Z 1

0

t je.t/j dt (2.74)

is minimal, with e the error for a step input (Graham and Lathrop, 1953). The resulting step
responses and the corresponding so-calledITAE standard formsare shown in Fig.2.30(b) and
Table2.4, respectively. The ITAE step responses have a shorter rise time and less overshoot than
the corresponding Butterworth responses.

2.8.3. Example

We consider the Guillemin-Truxal design procedure for the cruise control system of Exam-
ple2.3.3(p. 67). The plant has the first-order transfer function

P .s/ D
1
T

s C 1
�

; (2.75)

with T D � D 10 [s]. We specify the desired closed-loop transfer function

H.s/ D !2
0

s2 C 1:4!0s C !2
0

: (2.76)
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Figure 2.30: Step responses for Butterworth (left) and ITAE(right) denomi-
nator polynomials

Table 2.3: Normalized denominator polynomials for Butterworth pole pat-
terns

Order Denominator

1 s C 1

2 s2 C 1:4s C 1

3 s3 C 2:0s2 C 2:0s C 1

4 s4 C 2:6s3 C 3:4s2 C 2:6s C 1

5 s5 C 3:24s4 C 5:24s3 C 5:24s2 C 3:24s C 1

6 s6 C 3:86s5 C 7:46s4 C 9:14s3 C 7:46s2 C 3:86s C 1

7 s7 C 4:49s6 C 10:1s5 C 14:6s4 C 14:6s3 C 10:1s2 C 4:49s C 1

8 s8 C 5:13s7 C 13:14s6 C 21:85s5 C 25:69s4 C 21:85s3 C 13:14s2 C 5:13s C 1

Table 2.4: Normalized denominator polynomials for ITAE criterion

Order Denominator

1 s C 1

2 s2 C 1:4s C 1

3 s3 C 1:75s2 C 2:15s C 1

4 s4 C 2:1s3 C 3:4s2 C 2:7s C 1

5 s5 C 2:8s4 C 5:0s3 C 5:5s2 C 3:4s C 1

6 s6 C 3:25s5 C 6:60s4 C 8:60s3 C 7:45s2 C 3:95s C 1

7 s7 C 4:475s6 C 10:42s5 C 15:08s4 C 15:54s3 C 10:64s2 C 4:58s C 1

8 s8 C 5:20s7 C 12:80s6 C 21:60s5 C 25:75s4 C 22:20s3 C 13:30s2 C 5:15s C 1
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The denominator is a second-order ITAE polynomial. The numerator has been chosen for a zero
position error, that is, type 1 control. It is easy to find thatthe required compensator transfer
function is

C.s/ D 1

P .s/

H.s/

1 � H.s/
D
!2

0 T .s C 1
�
/

s.s C 1:4s/
: (2.77)

The integrating action is patent. As seen in Example2.3.3(p.67) the largest obtainable bandwidth
with pure integral control is about1=

p
200 � 0:07 [rad/s]. For the Guillemin-Truxal design we

aim for a closed-loop bandwidth!0 D 1=
p

2 � 0:7 [rad/s].
Figure 2.31 shows the resulting sensitivity function and the closed-loop step response. It

confirms that the desired bandwidth has been obtained. Inspection of (2.75) and (2.77) shows
that in the closed loop the plant pole at�1=� is canceled by a compensator zero at the same
location. This does not bode well for the design, even thoughthe sensitivity function and the
closed-loop step response of Fig.2.31look quite attractive. The canceling pole at�1=� is also
a closed-loop pole. It causes a slow response (with the open-loop time constant�) to nonzero
initial conditions of the plant and slow transients (with the same time constant) in the plant input.

This cancelation phenomenon is typical for naı̈ve applications of the Guillemin-Truxal method.
Inspection of (2.70) shows that cancelation may be avoided by letting the closed-loop transfer
functionH have a zero at the location of the offending pole. This constrains the choice ofH , and
illustrates what is meant by the comment that the selection of the closed-loop transfer function is
not simple.
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Figure 2.31: Closed-loop transfer functionH and closed-loop step response
of a Guillemin-Truxal design for the cruise control system

2.9. Quantitative feedback theory (QFT)

2.9.1. Introduction

Quantitative feedback theory (QFT) is a term coined byHorowitz (1982) (see also
Horowitz and Sidi(1972)). A useful account is given byLunze(1989). The method is deeply
rooted in classical control. It aims at satisfying quantatitive bounds that are imposed on the
variations in the closed-loop transfer function as a resultof specified variations of the loop gain.
The design method relies on the graphical representation ofthe loop gain in the Nichols chart.

93

Pedro


Pedro




2. Classical Control System Design

2.9.2. Effect of parameter variations

Nichols plots may be used to study the effect of parameter variations and other uncertainties in
the plant transfer function on a closed-loop system.

In particular, it may be checked whether the closed-loop system remains stable. By the Nyquist
criterion, closed-loop stability is retained as long as theloop gain does not cross the point�1

under perturbation. In the Nichols chart, the critical point that is to be avoided is the point (�180ı,
0 dB), located at the heart of the chart.

The effect of the perturbations on the closed-loop transferfunction may be assessed by studying
the width of the track that is swept out by the perturbations among theM -loci.
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Figure 2.32: Nominal and perturbed complementary sensitivity functions
and step responses for the nominal design

Example 2.9.1 (Uncertain second-order system). As an example we consider the plant with
transfer function

P .s/ D g

s2.1 C s�/
: (2.78)

Nominally g D 1 and� D 0. Under perturbation the gaing varies between 0.5 and 2. The
parasitic time constant may independently vary from 0 to 0.2[s]. We assume that a preliminary
study has led to a tentative design in the form of a lead compensator with transfer function

C.s/ D k C Tds

1 C T0s
; (2.79)

with k D 1, Td D
p

2 [s] and T0 D 0:1 [s]. The nominal system has closed-loop poles
�0:7652 ˙ j0:7715 and�8:4697. The closed-loop bandwidth is 1 [rad/s]. Figure2.32shows
the nominal and perturbed complementary sensitivity function and closed-loop step response.
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Figure 2.33: Nominal Nichols plot and uncertainty regions.(Shaded: forbid-
den region)
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2. Classical Control System Design

Figure2.33shows the Nichols plot of the nominal loop gainL0 D P0C , with P0.s/ D 1=s2.
The figure also shows with the uncertainty regions caused by the parameter variations at a number
of fixed frequencies. These diagrams are constructed by calculating the loop gainL.j!/ with !
fixed as a function of the uncertain parametersg and� along the edges of the uncertainty regions.
The corners of the uncertainty regions, as marked in the plotfor ! D 5, correspond to extreme
values of the parameters as follows:

A: � D 0, g D 0:5

B: � D 0:2, g D 0:5,
C: � D 0:2, g D 2,
D: � D 0, g D 2.

Inspection shows that no perturbation makes the Nichols plot cross over the center of the chart.
This means that the closed-loop system remains stable underall perturbations. �

2.9.3. Stability and performance robustness

Robust stabilityof the closed-loop system is guaranteed if perturbations donot cause the Nichols
plot of the loop gain to cross over the center of the chart.

In the QFT approach, destabilization caused byunmodeled perturbationsis prevented by spec-
ifying a forbidden regionabout the origin for the loop gain as in Fig.2.33. The forbidden region
is a region enclosed by anM -locus, for instance the 6 dB locus. If the Nichols plot ofL never en-
ters the forbidden region, not even under perturbation, then the modulus margin is always greater
than 6 dB. Besides providing stability robustness, the guaranteed distance ofL from the critical
point prevents ringing.

In the QFT approach, in the simplest situationperformance robustnessis specified in the form
of bounds on the variation of the magnitude of the closed-loop frequency response functionH .
Typically, for each frequency! the maximally allowable variation�.!/ of jH.j!/j, called the
tolerance band,is specified. SinceH = TF , with T the complementary sensitivity function and
F the prefilter transfer function, it follows after taking logarithms that

log jH j D log jT j C log jF j: (2.80)

For simplicity we suppress the angular frequency!. Inspection of (2.80) shows that ifF is
not subject to uncertainty then robust performance is obtained if and only if for each frequency
log jT j varies by at most� on the uncertainty region. Whether this condition is satisfied may be
verified graphically by checking in the Nichols chart whether the uncertainty region fits between
two M -loci whose values differ by less than�.

In the next subsection we discuss how to design the feedback loop such thatT satisfies the
stability and performance robustness conditions.

Example 2.9.2 (Performance robustness of the design exampl e). Inspection of the plots
of Fig. 2.33reveals that the perturbations sweep out a very narrow band of variations ofjT j at
frequencies less than 0.2, a band with a width of about 5 dB at frequency 1, a band with a width
of about 10 dB between the frequencies 2 and 10, while the width of the band further increases
for higher frequencies. This is borne out by Fig.2.32. �

2.9.4. QFT design of robust feedback systems

A feedback system design may easily fail to satisfy the performance robustness specifications.
This often may be remedied by re-shaping the loop gainL.
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2.9. Quantitative feedback theory (QFT)

Changing the compensator frequency responseC.j!/ for some frequency! amounts toshift-
ing the loop gainL.j!/ at that same frequency in the Nichols plot. By visual inspection the shape
of the Nichols plot ofL may be adjusted by suitable shifts at the various frequencies so that the
plot fits the tolerance bounds onT .

Part of the technique is to preparetemplatesof the uncertainty regions at a number of fre-
quencies (usually not many more than five), and shifting these around in the Nichols chart. The
translations needed to shift the Nichols plot to make it fit the tolerance requirements are achieved
by a frequency dependent correction of the compensator frequency responseC . Note that chang-
ing the loop gain by changing the compensator frequency response function does not affect the
shapes of the templates.

The procedure is best explained by an example.

Example 2.9.3 (QFT design). We continue the second-order design problem of the previous
examples, and begin by specifying the tolerance band� for a number of critical frequencies as
in Table2.5. The desired bandwidth is 1 rad/s.

Table 2.5: Tolerance band specifications.
frequency tolerance band�

0.2 0.5 dB
1 2 dB
2 5 dB
5 10 dB
10 18 dB

Determination of the performance boundaries. The first step of the procedure is to trace for
each selected critical frequency the locus of thenominalpoints such that the tolerance band
is satisfied with the tightest fit. This locus is called theperformance boundary.Points on
the performance boundary may for instance be obtained by fixing the nominal point at a
certain phase, and shifting the template up or down until thelowestposition is found where
the tolerance band condition is satisfied.

Determination of the robustness boundaries. Next, by shifting the template around the for-
bidden region so that it touches it but does not enter it therobustness boundaryis traced
for each critical frequency.

A feedback design satisfies the performance bounds and robustness bounds if for each critical
frequency the corresponding value of the loop gain is on or above the performance boundary
and to the right of or on the robustness boundary. If it is on the boundaries then the bounds
are satisfied tightly. Figure2.34shows the performance boundaries thus obtained for the critical
frequencies 1, 2 and 5 rad/s to the right in the Nichols chart.The performance boundary for the
frequency .1 rad/s is above the portion that is shown and thatfor 10 rad/s below it. The robustness
boundaries are shown for all five critical frequencies to theright of the center of the chart.

Inspection shows that the nominal design satisfies the specifications for the critical frequencies
! = 2, 5 and 10 rad/s, but not for! D 1 rad/s, and also for! D 0:2 it may be shown that the
specifications are not satisfied.

Loop gain shaping. The crucial step in the design is to shape the loop gain such that

1. at each critical frequency! the corresponding loop gainL.j!/ is on or above the
corresponding performance boundary;
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Figure 2.34: Performance and robustness boundaries
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Figure 2.35: Redesign of the loop gain

2. at each critical frequency! the corresponding loop gainL.j!/ is to the right of the
corresponding stability robustness boundary.

This target should be achieved with a compensator transfer function of least complexity
and without overdesign (that is, the loop gain should beon the boundaries rather than
above or to the right). This stage of the design requires experience and intuition, and is the
least satisfactory from a methodical point of view.

In the problem at hand a design may be found in the following straightforward manner. The
vertical line (a) in Fig.2.35 is the Nichols plot of the nominal plant transfer functionP .s/ D
1=s2. Obviously phase lead is needed. This is provided with a compensator with transfer function

C.s/ D 1 C sT1: (2.81)

The curves markedT1 D 1, T1 D 3 andT1 D 9 represent the corresponding loop gainsL D PC .
The loop gains forT1 D 3 andT1 D 9 satisfy the requirements; the latter with wide margins.
We chooseT1 D 3.

To reduce the high-frequency compensator gain we modify itstransfer function to

C.s/ D 1 C sT1

1 C sT2

: (2.82)

The resulting loop gain forT2 D 0:02 is also included in Fig.2.35. It very nearly satisfies the
requirements1. Figure2.36gives plots of the resulting nominal and perturbed step responses and
complementary sensitivity functions. The robustness improvement is evident. �

1The requirements may be completely satisfied by adding a few dB to the loop gain.
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Figure 2.36: Nominal and perturbed complementary sensitivity functions
and step responses of the revised design

Exercise 2.9.4 (Performance and robustness boundaries). Traditional QFT relies on shift-
ing paper templates around on Nichols charts to determine the performance and robustness
bounds such as in Fig.2.34. Think of ways to do this using routines from the MATLAB Control
Toolbox. Practice these ideas by re-creating Fig.2.35. �

2.9.5. Prefilter design

Once the feedback compensaor has been selected the QFT design needs to be completed with the
design of the prefilter.

Example 2.9.5 (Prefilter design). We continue the design example, and complete it as a2 1
2
-

degree-of-freedom design as proposed in~ 1.8 (p. 47). Figure2.37shows the block diagram.
The choice of the numerator polynomialF provides half a degree of freedom and the rational
transfer functionF0 of the rational prefilter constitutes another degree of freedom. The closed-
loop transfer function (from the reference inputr to the controlled outputz) is

H D NF

Dcl
F0: (2.83)

P D N=D is the plant transfer function andDcl D DX C N Y the closed-loop characteristic
polynomial.

In the problem at handN.s/ D 1 andD.s/ D s2. The compensatorY .s/ D 3s C 1, X.s/ D
0:02sC1 constructed in Example2.9.3(p.97) results in the closed-loop characteristic polynomial

Dcl.s/ D 0:02s3 C s2 C 3s C 1: (2.84)

Its roots are�0:3815, �2:7995, and�46:8190. Completing the design amounts to choosing the
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Figure 2.37:2 1
2
-degree-of-freedom feedback system

correct polynomialF and transfer functionF0 to provide the necessary compensation in

H.s/ D F.s/

0:02.s C 0:3815/.s C 2:7995/.s C 46:8190/
F0.s/: (2.85)

The pole at�0:3815 slows the response down, so we cancel it by selecting the polynomialF
— whose degree can be at most 1 — asF.s/ D s=0:3815 C 1. To reduce the bandwidth to the
desired 1 rad/s and to obtain a critically damped closed-loop step response we let

F0.s/ D !2
0

s2 C 2�0!0s C !2
0

; (2.86)

with !0 D 1 rad/s and� D 1
2

p
2.

Figure2.38displays the ensuing nominal and perturbed step responses and closed-loop trans-
fer functions. Comparison with Fig.2.33makes it clear that the robustness has been drastically
improved. �

2.9.6. Concluding remark

The QFT method has been extended to open-loop unstable plants and non-minimum phase plants,
and also to MIMO and nonlinear plants.Horowitz (1982) provides references and a review.
Recently a MATLAB toolbox for QFT design has appeared2.

2.10. Concluding remarks

This chapter deals with approaches to classical compensator design. The focus is on compensa-
tion by shaping the open-loop frequency response.

The design goals in terms of shaping the loop gain are extensively considered in the classical
control literature. The classical design techniques cope with them in anad hocand qualitative
manner. It requires profound experience to handle the classical techniques, but if this experience
is available then for single-input single-output systems it is not easy to obtain the quality of
classical design results by the analytical control design methods that form the subject of the later
chapters of this book.

2Quantitative Feedback Theory Toolbox, The MathWorks Inc.,Natick, MA, USA, 1995 release.
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Figure 2.38: Nominal and perturbed step responses and closed-loop transfer
functions of the final QFT design

If the design problem has a much more complex structure, for instance with multi-input multi-
output plants or when complicated uncertainty descriptions and performance requirements apply,
then the analytical techniques are the only reliable tools.Even in this case a designer needs
considerable expertise and experience with classical techniques to appreciate and understand the
design issues involved.
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3. Multivariable Control System Design

Overview– Design of controllers for multivariable systems requiresan
assessment of structural properties of transfer matrices.The zeros and
gains in multivariable systems have directions.

With norms of multivariable signals and systems it is possible to obtain
bounds for gains, bandwidth and other system properties.

A possible approach to multivariable controller design is to reduce the
problem to a series of single loop controller design problems. Examples
are decentralized control and decoupling control.

The internal model principle applies to multivariable systems and, for
example, may be used to design for multivariable integral action.

3.1. Introduction

Many complex engineering systems are equipped with severalactuators that may influence their
static and dynamic behavior. Commonly, in cases where some form of automatic control is re-
quired over the system, also several sensors are available to provide measurement information
about important system variables that may be used for feedback control purposes. Systems with
more than one actuating control input and more than one sensor output may be considered as
multivariablesystems ormulti-input-multi-output (MIMO)systems. The control objective for
multivariable systems is to obtain a desirable behavior of several output variables by simultane-
ously manipulating several input channels.

3.1.1. Examples of multivariable feedback systems

The following two examples discuss various phenomena that specifically occur in MIMO feed-
back systems and not in SISO systems, such as interaction between loops and multivariable
non-minimum phase behavior.

Example 3.1.1 (Two-tank liquid flow process). Consider the flow process of Fig.3.1. The
incoming flow�1 and recycle flow�4 act as manipulable input variables to the system, and the
outgoing flow�3 acts as a disturbance. The control objective is to keep the liquid levelsh1 and
h2 between acceptable limits by applying feedback from measurements of these liquid levels,
while accommodating variations in the output flow�3. As derived in Appendix3.4, a dynamic
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Figure 3.1: Two-tank liquid flow process with recycle
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Figure 3.2: Two-loop feedback control of the two-tank liquid flow process

104



3.1. Introduction

model, linearized about a given steady state, is
� Ph1.t/

Ph2.t/

�

D
�

�1 0

1 0

� �

h1.t/

h2.t/

�

C
�

1 1

0 �1

� �

�1.t/

�4.t/

�

C
�

0

�1

�

�3.t/: (3.1)

Here thehi and�i denote the deviations from the steady state levels and flows.Laplace trans-
formation yields

�

H1.s/

H2.s/

�

D
�

s C 1 0

�1 s

��1 ��
1 1

0 �1

� �

˚1.s/

˚4.s/

�

C
�

0

�1

�

˚3.s/

�

;

which results in the transfer matrix relationship

�

H1.s/

H2.s/

�

D
"

1
sC1

1
sC1

1
s.sC1/

� 1
sC1

#�

˚1.s/

˚4.s/

�

C
�

0

� 1
s

�

˚3.s/: (3.2)

�

The example demonstrates the following typical MIMO systemphenomena:

� Each of the manipulable inputs�1 and�4 affects each of the outputs to be controlledh1

andh2, as a consequence the transfer matrix

P .s/ D
"

1
sC1

1
sC1

1
s.sC1/

� 1
sC1

#

(3.3)

has nonzero entries both at the diagonal and at the off-diagonal entries.

� Consequently, if we control the two output variablesh1 andh2 using two separate control
loops, it is not immediately clear which input to use to control h1, and which one to control
h2. This issue is called theinput/output pairingproblem.

� A possible feedback scheme using two separate loops is shownin Fig. 3.2. Note that in
this control scheme, there exists a coupling between both loops due to the non-diagonal
terms in the transfer matrix (3.3). As a result, the plant transfer function in the open upper
loop from�1 to h1, with the lower loop closed with proportional gaink2, depends onk2,

P11.s/
ˇ
ˇ
llc D 1

s C 1

�

1 � k2

s.s C 1 � k2/

�

: (3.4)

Herellc indicates that the lower loop is closed. Owing to the negative steady state gain in
the lower loop, negative values ofk2 stabilize the lower loop. The dynamics ofP11.s/

ˇ
ˇ
llc

changes withk2:

k2 D 0 W P11.s/
ˇ
ˇ
llc D 1

sC1
;

k2 D �1 W P11.s/
ˇ
ˇ
llc D sC1

s.sC2/
;

k2 D �1 W P11.s/
ˇ
ˇ
llc D 1

s
:

The phenomenon that the loop gain in one loop also depends on the loop gain in another
loop is calledinteraction. Themultiple loopcontrol structure used here does not explicitly
acknowledge interaction phenomena. A control structure using individual loops, such as
multiple loop control, is an example of adecentralizedcontrol structure, as opposed to a
centralizedcontrol structure where all measured information is available for feedback in
all feedback channels.

105



3. Multivariable Control System Design

h1;ref

h2;ref

h1

h2

k1

k2

P
�4

�1

Kpre

controllerK

Figure 3.3: Decoupling feedback control of two-tank liquidflow process

� A different approach to multivariable control is to try to compensate for the plant interac-
tion. In Example3.1.1a precompensatorKpre in series with the plant can be found which
removes the interaction completely. The precompensatorKpre is to be designed such that
the transfer matrixPKpre is diagonal. Figure3.3 shows the feedback structure. Suppose
that the precompensatorKpre is given the structure

Kpre.s/ D
�

1 K
pre
12 .s/

K
pre
21 .s/ 1

�

(3.5)

thenPKpre is diagonal by selecting

K
pre
12 .s/ D �1; K

pre
21 .s/ D 1

s
: (3.6)

The compensated plantPKpre for which a multi-loop feedback is to be designed as a next
step, reads

P .s/Kpre.s/ D
�

1
s

0

0 � 1
s

�

: (3.7)

Closing both loops with proportional gainsk1 > 0 andk2 < 0 leads to a stable system. In
doing so, a multivariable controllerK has been designed having transfer matrix

K.s/ D Kpre.s/

�

k1 0

0 k2

�

D
�

k1 �k2

k1=s k2

�

: (3.8)

This approach of removing interaction before actually closing multiple individual loops is
calleddecoupling control.

The next example shows that a multivariable system may show non-minimum phase behavior.

Example 3.1.2 (Multivariable non-minimum phase behavior) . Consider the two input, two
output linear system

�

y1.s/

y2.s/

�

D
�

1
sC1

2
sC3

1
sC1

1
sC1

� �

u1.s/

u2.s/

�

: (3.9)

If the lower loop is closed with constant gain,u2.s/ D �k2y2.s/, then for high gain values
(k2 ! 1) the lower feedback loop is stable but has a zero in the right-half plane,

y1.s/ D
�

1

s C 1
� 2

s C 3

�

u1.s/ D � s � 1

.s C 1/.s C 3/
u1.s/: (3.10)
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Thus under high gain feedback of the lower loop, the upper part of the system exhibits non-
minimum phase behavior. Conversely if the upper loop is closed under high gain feedback,
u1 D �k1 y1 with k1 ! 1, then

y2.s/ D � s � 1

.s C 1/.s C 3/
u2.s/: (3.11)

Apparently, the non-minimum phase behavior of the system isnot connected to one particular
input-output relation, but shows up in both relations. One loop can be closed with high gains
under stability of the loop, and the other loop is then restricted to have limited gain due to the
non-minimum phase behavior. Analysis of the transfer matrix

P .s/ D
�

1
sC1

2
sC3

1
sC1

1
sC1

�

D 1

.s C 1/.s C 3/

�

s C 3 2s C 2

s C 3 s C 3

�

(3.12)

shows that it loses rank ats D 1. In the next section it will be shown thats D 1 is an unstable
transmission zeroof the multivariable system and this limits the closed loop behavior irrespec-
tive of the controller used. Consider the method of decoupling precompensation. Express the
precompensator as

Kpre.s/ D
�

K11.s/ K12.s/

K21.s/ K22.s/

�

: (3.13)

Decoupling means thatPKpre is diagonal. Inserting the matrix (3.12) into PKpre, a solution for
a decouplingKpre is

K11.s/ D 1; K22.s/ D 1; K12.s/ D �2
s C 1

s C 3
; K21.s/ D �1: (3.14)

Then the compensated system is

P .s/Kpre.s/ D
�

1
sC1

2
sC3

1
sC1

1
sC1

� �

1 �2 sC1
sC3

�1 1

�

D
"

� s�1
.sC1/.sC3/

0

0 � s�1
.sC1/.sC3/

#

: (3.15)

The requirement of decoupling has introduced a right-half plane zero in each of the loops, so that
either loop now only can have a restricted gain in the feedback loop. �

The example suggests that the occurrence of non-minimum phase phenomena is a property of
the transfer matrix and exhibits itself in a matrix sense, not connected to a particular input-output
pair. It shows that a zero of a multivariable system has no relationship with the possible zeros of
individual entries of the transfer matrix.

In the example the input-output pairing has been the naturalone: outputi is connected by
a feedback loop to inputi . This is however quite an arbitrary choice, as it is the result of our
model formulation that determines which inputs and which outputs are ordered as one, two and
so on. Thus the selection of the most useful input-output pairs is anon-trivial issue inmultiloop
control or decentralized control, i.e. in control configurations where one has individual loops as
in the example. A classical approach towards dealing with multivariable systems is to bring a
multivariable system to a structure that is a collection of one input, one output control problems.
This approach ofdecoupling controlmay have some advantages in certain practical situations,
and was thought to lead to a simpler design approach. However, as the above example showed,
decoupling may introduce additional restrictions regarding the feedback properties of the system.
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3.1.2. Survey of developments in multivariable control

The first papers on multivariable control systems appeared in the fifties and considered aspects
of noninteracting control. In the sixties, the work ofRosenbrock(1970) considered matrix tech-
niques to study questions of rational and polynomial representation of multivariable systems.
The polynomial representation was also studied byWolovich (1974). The books byKailath
(1980) and Vardulakis(1991) provide a broad overview. The use of Nyquist techniques for
multivariable control design was developed byRosenbrock(1974a). The generalization of the
Nyquist criterion and of root locus techniques to the multivariable case can be found in the
work of Postlethwaite and MacFarlane(1979). The geometric approach to multivariable state-
space control design is contained in the classical book byWonham(1979) and in the book by
Basile and Marro(1992). A survey of classical design methods for multivariable control sys-
tems can be found inKorn and Wilfert (1982), Lunze (1988) and in the two books byTolle
(1983), 1985. Modern approaches to frequency domain methods can be foundin Raisch(1993),
Maciejowski(1989), andSkogestad and Postlethwaite(1995). Interaction phenomena in mul-
tivariable process control systems are discussed in terms of a process control formulation in
McAvoy (1983). A modern, process-control oriented approach to multivariable control is pre-
sented inMorari and Zafiriou(1989). The numerical properties of several computational algo-
rithms relevant to the area of multivariable control designare discussed inSvaricek(1995).

3.2. Poles and zeros of multivariable systems

In this section, a number of structural properties of multivariable systems are discussed. These
properties are important for the understanding of the behavior of the system under feedback. The
systems are analyzed both in the time domain and frequency domain.

3.2.1. Polynomial and rational matrices

Let P be a proper real-rational transfer matrix.Real-rationalmeans that every entryPij of P is
a ratio of two polynomials having real coefficients. Any rational matrixP may be written as a
fraction

P D 1

d
N

whereN is apolynomial matrix1 andd is the monic least common multiple of all denominator
polynomials of the entries ofP . Polynomial matrices will be studied first. Many results about
polynomial matrices may be found in, e.g., the books byMacDuffee(1956), Gohberg et al.(1982)
andKailath (1980).

In the scalar case a polynomial has no zeros if and only if it isa nonzero constant, or, to put
it differently, if and only if its inverse is polynomial as well. The matrix generalization is as
follows.

Definition 3.2.1 (Unimodular polynomial matrix). A polynomial matrix isunimodularif it
square and its inverse exists and is a polynomial matrix. �

It may be shown that a square polynomial matrixU is unimodular if and only if detU is a
nonzero constant. Unimodular matrices are considered having no zeros and, hence, multiplication
by unimodular matrices does not affect the zeros.

1That is, a matrix whose entries are polynomials.
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3.2. Poles and zeros of multivariable systems

Summary 3.2.2 (Smith form of a polynomial matrix). For every polynomial matrixN there
exist unimodularU andV such that

UN V D

2

6
6
6
6
6
6
4

"0
1 0 0 0 0 0

0 "0
2 0 0 0 0

0 0
: : : 0 0 0

0 0 0 "0
r 0 0

0 0 0 0 0 0

0 0 0 0 0 0

3

7
7
7
7
7
7
5

„ ƒ‚ …

S

(3.16)

where"0
i ; (i D 1; : : : ; r ) are monic polynomials with the property that"i="i�1 is polynomial.

The matrixS is known as theSmith formof N and the polynomials"0
i theinvariant polynomials

of N .
In this caser is thenormal rankof the polynomial matrixN , and thezerosof N are defined

as the zeros of one or more of its invariant polynomials. �

The Smith formS of N may be obtained by applying toN a sequence ofelementary row and
column operations, which are:

� multiply a row/column by a nonzero constant;

� interchange two rows or two columns;

� add a row/column multiplied by a polynomial to another row/column.

Example 3.2.3 (Elementary row/column operations). The following sequence of elementary
operations brings the polynomial matrix

N.s/ D
�

s C 1 s � 1

s C 2 s � 2

�

to diagonal Smith-form:

�

s C 1 s � 1

s C 2 s � 2

�
.1/
)

�

s C 1 s � 1

1 �1

�
.2/
)

�

s C 1 2s

1 0

�
.3/
)

�

0 2s

1 0

�
.4/
)

�

1 0

0 s

�

:

Here, in step (1) we subtracted row 1 from row 2; in step (2) we added the first column to the
second column; in step (3),s C 1 times the second row was subtracted from row 1. Finally, in
step (4), we interchanged the rows and then divided the (new)second row by a factor 2.

Elementaryrow operations correspond thepremultiplication by unimodular matrices, and el-
ementarycolumnoperations correspond thepostmultiplication by unimodular matrices. For the
above four elementary operations these are

(1) premultiply byUL1.s/ WD
�

1 0

�1 1

�

;

(2) postmultiply byVR2.s/ WD
�

1 1

0 1

�

;

(3) premultiply byUL3.s/ WD
�

1 �.s C 1/

0 1

�

;

109



3. Multivariable Control System Design

(4) premultiply byUL4.s/ WD
�

0 1

1=2 0

�

.

Instead of applying sequentially multiplication onN we may also first combine the sequence of
unimodular matrices into two unimodular matricesU D UL4UL3UL1 andV D VR2, and then
apply theU andV ,

�

�1 1

1 C s=2 �1=2 � s=2

�

„ ƒ‚ …

U.s/ D UL4.s/UL3.s/UL1.s/

�

s C 1 s � 1

s C 2 s � 2

�

„ ƒ‚ …

N.s/

�

1 1

0 1

�

„ ƒ‚ …

V .s/ D VR2.s/

D
�

1 0

0 s

�

„ ƒ‚ …

S.s/

:

This clearly shows thatS is the Smith-form ofN . The polynomial matrixN has rank2 and has
one zero ats D 0. �

Now consider a rational matrixP . We writeP as

P D 1

d
N (3.17)

whereN is a polynomial matrix andd a scalar polynomial. We immediately get a generalization
of the Smith form.

Summary 3.2.4 (Smith-McMillan form of a rational matrix). For every rational matrixP
there exist unimodular polynomial matricesU andV such that

UPV D

2

6
6
6
6
6
6
6
4

"1
 1

0 0 0 0 0

0 "2
 2

0 0 0 0

0 0
: : : 0 0 0

0 0 0 "r
 r

0 0

0 0 0 0 0 0

0 0 0 0 0 0

3

7
7
7
7
7
7
7
5

„ ƒ‚ …

M

(3.18)

where the"i and i are coprime such that

"i

 i

D "0
i

d
(3.19)

and the"0
i ; (i D 1; : : : ; r ) are the invariant polynomials ofN D dP . The matrixM is known as

theSmith-McMillan formof P .
In this caser is thenormal rankof the rational matrixP . The transmission zerosof P are

defined as the zeros of
Qr

iD1 "i and thepolesare the zeros of
Qr

iD1 i . �

Definitions for other notions of zeros may be found inRosenbrock(1970), Rosenbrock(1973)
andRosenbrock(1974b), and inSchrader and Sain(1989).

Example 3.2.5 (Smith-McMillan form). Consider the transfer matrix

P .s/ D
"

1
s

1
s.sC1/

1
sC1

1
sC1

#

D 1

s.s C 1/

�

s C 1 1

s s

�

D 1

d.s/
N.s/:
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3.2. Poles and zeros of multivariable systems

The Smith form ofN is obtained by the following sequence of elementary operations:
�

s C 1 1

s s

�

)
�

s C 1 1

�s2 0

�

)
�

1 s C 1

0 s2

�

)
�

1 0

0 s2

�

Division of each diagonal entry byd yields the Smith-McMillan form

� 1
s.sC1/

0

0 s
sC1

�

:

The set of transmission zeros isf0g, the set of poles isf�1;�1; 0g. This shows that transmission
zeros of a multivariable transfer matrix may coincide with poles without being canceled if they
occur in different diagonal entries of the Smith-McMillan form. In the determinant they do
cancel. Therefore from the determinant

detP .s/ D 1

.s C 1/2

we may not always uncoverall poles and transmission zeros ofP . (GenerallyP need not be
square so its determinant may not even exist.) �

An s0 2 C is apoleof P if and only if it is a pole of one or more entriesPij of P . An s0 2 C

that is not a pole ofP is a transmission zero ofP if and only if the rank ofP .s0/ is strictly
less than the normal rankr as defined by the Smith-McMillan form ofP . For square invertible
matricesP there further holds thats0 is a transmission zero ofP if and only it is pole ifP�1.
For example

P .s/ D
�

1 1=s

0 1

�

has a transmission zero ats D 0 — even though detP .s/ D 1 — becauseP�1.s/ D
�

1 �1=s
0 1

�

has a pole ats D 0.

3.2.2. Squaring down

If the normal rank of anny � nu plantP is r then at mostr entries of the outputy D Pu can
be given independent values by manipulating the inputu. This generally means thatr entries of
the output are enough for feedback control. LetK be anynu � ny controller transfer matrix, then
the sensitivity matrixS and complementary sensitivity matrixT as previously defined are for the
multivariable case (see Exercise1.5.4)

S D .I C PK/�1; T D .I C PK/�1PK: (3.20)

If r < ny , then theny �ny loop gainPK is singular, so thatS has one or more eigenvalues� D 1

for any s in the complex plane, in particular everywhere on the imaginary axis. In such cases
kS.j!/k in whatever norm does not converge to zero as! ! 0. This indicates an undesired
situation which is to be prevented by ascertaining the rank of P to equal the number of the be
controller outputs. This must be realized by proper selection and application of actuators and
sensors in the feedback control system.

Feedback around a nonsquareP can only occur in conjunction with a compensatorK which
makes the series connectionPK square, as required by unity feedback. Such controllersK are
said tosquare downthe plantP . We investigate down squaring.
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3. Multivariable Control System Design

Example 3.2.6 (Squaring down). Consider

P .s/ D
�

1
s

1
s2

�

:

Its Smith-McMillan form isM.s/ D
�

1=s2 0
�

. The plant has no transmission zeros and has a
double pole ats D 0. As pre-compensator we propose

K0.s/ D
�

1

a

�

:

This results in the squared-down system

P .s/K0.s/ D s C a

s2
:

Apparently squaring down may introduces transmission zeros. In this example the choicea >
0 creates a zero in the left-half plane, so that subsequent high gain feedback can be applied,
allowing a stable closed-loop system with high loop gain. �

In the example,P does not have transmission zeros. A general1�2 plantP .s/ D
�

a.s/ b.s/
�

has transmission zeros if and only ifa andb have common zeros. Ifa andb are in some sense
randomly chosen then it is very unlikely thata andb have common zeros. Generally it holds
that nonsquare plants have no transmission zeros assuming the entries ofPij are in some sense
uncorrelated with other entries. However, many physical systems bear structure in the entries
of their transfer matrix, so that these cannot be consideredas belonging to the class of generic
systems. Many physically existing nonsquare systems actually turn out to possess transmission
zeros.

The theory of transmission zero placement by squaring down is presently not complete,
although a number of results are available in the literature. Sain and Schrader(1990) de-
scribe the general problem area, and results regarding the squaring problem are described
in Horowitz and Gera(1979), Karcanias and Giannakopoulos(1989), Le and Safonov(1992),
Sebakhy et al.(1986), Stoorvogel and Ludlage(1994), andShaked(1976).

Example 3.2.7 (Squaring down). Consider the transfer matrixP and its Smith-McMillan form

P .s/ D

2

4

1
s

1
s.s2�1/

1 1
s2�1

0 s
s2�1

3

5 D 1

s.s2 � 1/

2

4

s2 � 1 1

s.s2 � 1/ s

0 s2

3

5 (3.21)

D

2

4

1 0 0

s 0 1

s2 �1 0

3

5

„ ƒ‚ …

U �1.s/

2

4

1
s.s2�1/

0

0 s

0 0

3

5

„ ƒ‚ …

M.s/

�

s2 � 1 1

1 0

�

„ ƒ‚ …

V �1.s/

: (3.22)

There is one transmission zerof0g and the set of poles isf�1; 1; 0g. The postcompensatorK0 is
now2 � 3, which we parameterize as

K0 D
�

a b c

d e f

�

:

We obtain the newly formed set of transmission zeros as the set of zeros of

det

�

a b c

d e f

�
2

4

1 0

s 0

s2 �1

3

5 D .cd � af /C .ce � bf /s;
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3.2. Poles and zeros of multivariable systems

where the second matrix in this expression are the first two columns ofU �1. Thus one single
transmission zero can be assigned to a desired location. Choose this zero ats D �1. This leads
for example to the choicea D 0; b D 0; c D 1; d D 1; e D 1; f D 0,

K0.s/ WD
�

0 0 1

1 1 0

�

and the squared-down system

K0.s/P .s/ D
�

0 s
s2�1

sC1
s

1
s.s�1/

�

D 1

s.s2 � 1/

�

0 s2

.s C 1/.s2 � 1/ s C 1

�

:

This squared-down matrix may be shown to have Smith-McMillan form

� 1
s.s2�1/

0

0 s.s C 1/

�

and consequently the set of transmission zeros isf0;�1g, the set of poles remain unchanged as
f�1; 1; 0g. These values are as expected, i.e., the zero ats D 0 has been retained, and the new
zero at�1 has been formed. Note thats D 0 is both a zero and a pole. �

3.2.3. Transmission zeros of state-space realizations

Any properny � nu rational matrixP has astate-space realization

P .s/ D C.sIn � A/�1B C D; A 2 R
n�n; B 2 R

n�nu ; C 2 R
ny �n; D 2 R

ny�nu :

Realizations are commonly denoted as a quadruple.A;B;C;D/. There are many realizations
.A;B;C;D/ that define the same transfer matrixP . For one, theorder n is not fixed, A realiza-
tion of ordern of P is minimalif no realization ofP exists that has a lower order. Realizations are
minimal if and only if the ordern equals the degree of the polynomial 1 2 : : :  r formed from
the denominator polynomials in (3.18), seeRosenbrock(1970). The poles ofP then equal the
eigenvalues ofA, which, incidentally, shows that computation of poles is a standard eigenvalue
problem. Numerical computation of the transmission zeros may be more difficult. In some spe-
cial cases, computation can be done by standard operations,in other cases specialized numerical
algorithms have to be used.

Lemma 3.2.8 (Transmission zeros of a minimal state-space sy stem). Let (A;B;C;D) be
a minimal state-space realization of ordern of a proper real-rationalny � nu transfer matrixP
of rankr . Then the transmission zeross0 2 C of P as defined in Summary3.2.4are the zeross0

of the polynomial matrix
�

A � s0I B

C D

�

: (3.23)

That is,s0 is transmission zero if and only if rank
�

A�s0I B
C D

�

< n C r . �

The proof of this result may be found in Appendix3.4. Several further properties may be
derived from this result.

Summary 3.2.9 (Invariance of transmission zeros). The zeross0 of (3.23) are invariant under
the following operations:
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� nonsingularinput spacetransformations.T2/ andoutput spacetransformations.T3/:
�

A � sI B

C D

�

)
�

A � sI BT2

T3C T3DT2

�

� nonsingularstate spacetransformations.T1/:
�

A � sI B

C D

�

)
�

T1AT �1
1 � sI T1B

C T �1
1 D

�

� Static output feedbackoperations, i.e. for the systemPx D Ax C Bu, y D Cx C Du,
we apply the feedback lawu D �Ky C v wherev acts as new input. Assuming that
det.I C DK/ ¤ 0, this involves the transformation:

�

A � sI B

C D

�

)
�

A � BK.I C DK/�1C � sI B.I C KD/�1

.I C DK/�1C .I C DK/�1D

�

� State feedback.F/ andoutput injection.L/ operations,
�

A � sI B

C D

�

)
�

A � BF � sI B

C � DF D

�

)
�

A � BF � LC C LDF � sI B � LD

C � DF D

�

�

The transmission zeros have a clear interpretation as that of blockingcertain exponential in-
puts,Desoer and Schulman(1974), MacFarlane and Karcanias(1976). Under constant high gain
output feedbacku D Ky the finite closed loop poles generally approach the transmission ze-
ros of the transfer matrixP . In this respect the transmission zeros of a MIMO system playa
similar role in determining performance limitations as do the zeros in the SISO case. See e.g.
Francis and Wonham(1975). If P is square and invertible, then the transmission zeros are the
zeros of the polynomial

det

�

A � sI B

C D

�

(3.24)

If in additionD is invertible, then

det

�

A � sI B

C D

� �

I 0

�D�1C I

�

D det

�

.A � BD�1C / � sI B

0 D

�

: (3.25)

So then the transmission zeros are the eigenvalues ofA � BD�1C . If D is not invertible then
computation of transmission zeros is less straightforward. We may have to resort to computation
of the Smith-McMillan form, but preferably we use methods based on state-space realizations.

Example 3.2.10 (Transmission zeros of the liquid flow system ). Consider the Exam-
ple3.1.1with plant transfer matrix

P .s/ D
"

1
sC1

1
sC1

1
s.sC1/

� 1
sC1

#

D 1

s.s C 1/

�

s s

1 �s

�

:

Elementary row and column operations successively appliedto the polynomial part lead to the
Smith form

�

s s

1 �s

�
.1/
)
�

s C 1 0

1 �s

�
.2/
)
�

s C 1 s.s C 1/

1 0

�
.3/
)
�

1 0

0 s.s C 1/

�

:
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The Smith-McMillan form hence is

M.s/ D 1

s.s C 1/

�

1 0

0 s.s C 1/

�

D
�

1
s.sC1/

0

0 1

�

:

The liquid flow system has no zeros but has two polesf0;�1g.
We may compute the poles and zeros also from the state space representation ofP ,

P .s/ D C.sI � A/�1B C D;

�

A � sI B

C D

�

D

2

6
6
4

�1 � s 0 1 1

1 �s 0 �1

�1 0 0 0

0 �1 0 0

3

7
7
5
:

The realization is minimal because bothB andC are square and nonsingular. The poles are
therefore the eigenvalues ofA, which indeed aref0;�1g as before. There are no transmission
zeros because det

�
A�sI B

C D

�

is a nonzero constant (verify this). �

Example 3.2.11 (Transmission zeros via state space and tran sfer matrix representation).
Consider the system with state space realization.A;B;C;D/, with

A D

2

4

0 0 0

1 0 0

0 1 0

3

5 ; B D

2

4

0 1

1 0

0 0

3

5 ; C D
�

0 1 0

0 0 1

�

; D D
�

0 0

0 0

�

:

The system’s transfer matrixP equals

P .s/ D C.sI � A/�1B C D D
�

1=s 1=s2

1=s2 1=s3

�

D 1

s3

�

s2 s

s 1

�

:

Elementary operations on the numerator polynomial matrix results in
�

s2 s

s 1

�

)
�

0 s

0 1

�

)
�

1 0

0 0

�

so the Smith-McMillan form ofP is

M.s/ D 1

s3

�

1 0

0 0

�

D
�

1=s3 0

0 0

�

:

The system therefore has three poles, all at zero:f0; 0; 0g. As the matrixA 2 R
3�3 has an

equal number of eigenvalues, it must be that the realizationis minimal and that its eigenvalues
coincide with the poles of the system. From the Smith-McMillan form we see that there are no
transmission zeros. This may also be verified from the matrixpencil

�

A � sI B

C D

�

D

2

6
6
6
6
4

�s 0 0 0 1

1 �s 0 1 0

0 1 �s 0 0

0 �1 0 0 0

0 0 �1 0 0

3

7
7
7
7
5

:

Elementary row and column operations do not affect the rank of this matrix pencil. Therefore
the rank equals that of

2

6
6
6
6
4

�s 0 0 0 1

1 �s 0 1 0

0 1 �s 0 0

0 �1 0 0 0

0 0 �1 0 0

3

7
7
7
7
5

)

2

6
6
6
6
4

�s 0 0 0 1

1 0 0 1 0

0 0 0 0 0

0 �1 0 0 0

0 0 �1 0 0

3

7
7
7
7
5

)

2

6
6
6
6
4

0 0 0 0 1

0 0 0 1 0

0 0 0 0 0

0 �1 0 0 0

0 0 �1 0 0

3

7
7
7
7
5

:
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As s has disappeared from the matrix pencil it is direct that the rank of the matrix pencil does not
depend ons. The system hence has no transmission zeros. �

3.2.4. Numerical computation of transmission zeros

If a transfer matrixP is given, the numerical computation of transmission zeros is in general
based on a minimal state space realization ofP because reliable numerical algorithms for rational
and polynomial matrix operations are not yet numerically asreliable as state space methods. We
briefly discuss two approaches.

Algorithm 3.2.12 (Transmission zeros via high gain output f eedback). The approach has
been proposed byDavison and Wang(1974), 1978. Let .A;B;C;D/ be a minimal realization
of P and assume thatP is either left-invertible or right-invertible. Then:

1. Determine an arbitrary full rank output feedback matrixK 2 R
nu�ny , e.g. using a random

number generator.

2. Determine the eigenvalues of the matrix

Z� WD A C BK.
1

�
I � DK/�1C

for various large real values of�, e.g.� D 1010; : : : ; 1020 at double precision computation.
Now as� goes to1 we observe that some eigenvalues go to infinity will others converge
(the so calledfiniteeigenvalues).

3. For square systems, the transmission zeros equal the finite eigenvalues ofZ�. For non-
square systems, the transmission zeros equal the finite eigenvalues ofZ� for almostall
choices of the output feedback matrixK.

4. In cases of doubt, vary the values of� andK and repeat the calculations.
�

See Section3.4for a sketch of the proof.

Algorithm 3.2.13 (Transmission zeros via generalized eige nvalues). The approach has
been proposed inLaub and Moore(1978) and makes use of theQZ algorithm for solving the
generalized eigenvalue problem. Let.A;B;C;D/ be a minimal realization ofP of ordern hav-
ing the additional property that it is left-invertible (if the system is right-invertible, then use the
dual system.AT ;C T ;BT ;DT /). Then:

1. Define the matricesM andL as

M D
�

In 0

0 0

�

; L D
�

A B

�C D

�

:

2. Compute a solution to thegeneralized eigenvalueproblem i.e. determine all valuess 2 C

andr 2 C
nCnu satisfying

ŒsM � L�r D 0

3. The set offinitevalues fors are the transmission zeros of the system.

Although reliable numerical algorithms exist for the solution of generalized eigenvalue prob-
lems, a major problem is to decide which values ofs belong to the finite transmission zeros and
which values are to be considered as infinite. However, this problem is inherent in all numerical
approaches to transmission zero computation. �
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3.3. MIMO structural requirements and design methods

During both the construction and the design of a control system it is mandatory that structural
requirements of plant and controller and the control configuration are taken into account. For
example, the choice of placement of the actuators and sensors may affect the number of right-
half plane zeros of the plant and thereby may limit the closedloop performance, irrespective
which controller is used. In this section a number of such requirements will be identified. These
requirements show up in the MIMO design methods that are discussed in this section.

3.3.1. Output controllability and functional reproducibility

Various concepts ofcontrollability are relevant for the design of control systems. A minimal
requirement for almost any control system, to be included inany control objective, is the re-
quirement that the output of the system can be steered to any desired position in output space by
manipulating the input variables. This property is formalized in the concept ofoutput controlla-
bility.

Summary 3.3.1 (Output controllability). A time-invariant linear system with inputu.t/ and
outputy.t/ is said to beoutput controllableif for any y1, y2 2 R

p there exists an inputu.t/,
t 2 Œt1; t2� with t1 < t2 that brings the output fromy.t1/ D y1 to y.t2/ D y2. In case the system
has a strictly proper transfer matrix and is described by a state-space realization.A;B;C /, the
system isoutput controllableif and only if the constant matrix

�

CB CAB CA2B : : : CAn�1B
�

(3.26)

has full row rank �

If in the above definitionC D In then we obtain the definition of state controllability. The
concept of output controllability is generally weaker: a system.A;B;C /may be output control-
lable and yet not be (state) controllable2. The property of output controllability is aninput-output
propertyof the system while (state) controllability is not.

Note that the concept of output controllability only requires that the output can be given a de-
sired value at each instant of time. A stronger requirement is to demand the output to be able to
follow any preassigned trajectory in time over a given time interval. A system capable of satisfy-
ing this requirement is said to beoutput functional reproducibleor functional controllable. Func-
tional controllability is a necessary requirement for output regulator and servo/tracking problems.
Brockett and Mesarovic(1965) introduced the notion ofreproducibility, termedoutput control-
lability by Rosenbrock(1970).

Summary 3.3.2 (Output functional reproducibility). A system having proper real-rational
ny � nu transfer matrix is said to befunctionally reproducibleif rankP D ny . In particular for
functionally reproducible it is necessary thatny � nu. �

Example 3.3.3 (Output controllability and Functional repr oducibility). Consider the linear
time-invariant state-space system of Example3.2.11,

A D

2

4

0 0 0

1 0 0

0 1 0

3

5 ; B D

2

4

0 1

1 0

0 0

3

5 ; C D
�

0 1 0

0 0 1

�

: (3.27)

2Here we assume thatC has full row rank, which is a natural assumption because otherwise the entries ofy are linearly
dependent.
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This forms a minimal realization of the transfer matrix

P .s/ D C.sI � A/�1B D
"

1
s

1
s2

1
s2

1
s3

#

: (3.28)

The system.A;B;C / is controllable and observable, andC has full rank. Thus the system
also is output controllable. However, the rank ofP is 1. Thus the system isnot functionally
reproducible. �

3.3.2. Decoupling control

A classical approach to multivariable control design consists of the design of a precompensator
that brings the system transfer matrix to diagonal form, with subsequent design of the actual
feedback loops for the various single-input, single-output channels separately. This allows the
tuning of individual controllers in separate feedback loops, and it is thought to provide an accept-
able control structure providing ease of survey for processoperators and maintenance personnel.
The subject of noninteracting or decoupling control as discussed in this section is based on the
works of Silverman(1970), Williams and Antsaklis(1986). The presentation follows that of
Williams and Antsaklis(1996).

In this section we investigate whether and how a squareP can be brought to diagonal form by
applying feedback and/or static precompensation. SupposethatP has state-space representation

Px.t/ D Ax.t/C Bu.t/;

y.t/ D Cx.t/C Du.t/

with u andy having equally many entries,ny D nu D m, i.e.,P .s/ D C.sI �A/�1BCD square.
Assume in what follows thatP is invertible. The inverse transfer matrixP�1—necessarily a
rational matrix—may be viewed as a precompensator ofP that diagonalizes the series connection
PP�1. If the direct feedthrough termD D P .1/ of P is invertible, then the inverseP�1 is
proper and has realization

P�1.s/ D �D�1C.sI � A C BD�1C /�1BD�1 C D�1: (3.29)

If D is singular then the inverseP�1—assuming it exists—is not proper. In this case we proceed
as follows. Define the indicesfi � 0 .i D 1; : : :m/ such thatDf defined as

Df .s/ D diag.sf1 ; sf2 ; : : : ; sfm/ (3.30)

is such that

D WD lim
jsj!1

Df .s/P .s/ (3.31)

is defined and every row ofD has at least one nonzero entry. This identifies the indicesfi

uniquely. Thefi equal the maximum of the relative degrees of the entries in the i th row of P .
Indeed, then by construction the largest relative degree ineach row ofDf P is zero, and as a
consequence limjsj!1 Df .s/P .s/ has a nonzero value at precisely the entries of relative degree
zero. The indicesfi may also be determined using the realization ofP : If the i th row of D is
not identical to zero thenfi D 0, otherwise

fi D minf k > 0 j row i of CAk�1B is not identical to zerog:

It may be shown thatfi � n, wheren is the state dimension. The indicesfi so defined are known
as thedecoupling indices.
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(a) (b)

ee uu y
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D�1KK PP

Decoupled plantD�1
f

Figure 3.4: (a) closed loop with original plant, (b) with decoupled plant

Summary 3.3.4 (Decoupling state feedback). If D as defined in (3.31) is nonsingular, then
the regular state feedback

u.t/ D D�1.�Cx.t/C v.t//

where

C D

2

6
6
6
4

C1�Af1

C2�Af2

:::

Cm�Afm

3

7
7
7
5

renders the system with outputy and new inputv decoupled with diagonal transfer matrix
D�1
f .s/ D diag.s�f1 ; s�f2 ; : : : ; s�fm/. The compensated plant is shown in Fig.3.4(b). �

HereCi� is denotes thei th row of the matrixC . A proof is given in Appendix3.4. The
decoupled plantD�1

f has all its poles ats D 0 and it has no transmission zeros. We also know

that regular state-feedback does not change the zeros of thematrix
�

A�sI B
C D

�

. This implies that
after state feedback all non-zero transmission zeros of thesystem are canceled by poles. In other
words, after state feedback the realization has unobservable modes at the open loop transmission
zeros. This is undesirable ifP has unstable transmission zeros as it precludes closed loopstability
using output feedback. IfP has no unstable transmission zeros, then we may proceed withthe
decoupled plantD�1

f and use (diagonal)K to further the design, see Fig.3.4. A decoupled plant
that is stable may offer better perspectives for further performance enhancement by multiloop
feedback in individual channels. To obtain a stable decoupled plant we take instead of (3.30) a
Df of the form

Df D diag.p1; : : : ;pm/

where thepi are strictly Hurwitz3 if monic4 polynomials of degreefi . The formulae are now
more messy, but the main results holds true also for this choice ofDf :

Summary 3.3.5 (Decoupling, stabilizing state feedback). Suppose the transfer matrixP of
the plant is proper, squarem � m and invertible, and suppose it has no unstable transmission
zeros. Let.A;B;C;D/ be a minimal realization ofP and letfi be the decoupling indices and
suppose thatpi are Hurwitz polynomials of degreefi . Then there is a regular state feedback
u.t/ D Fx.t/ C W v.t/ for which the loop fromv.t/ to y.t/ is decoupled. Its realization is
controllable and detectable and has a stable transfer matrix diag. 1

p1
; : : : ; 1

pm
/. �

3A strictly Hurwitzpolynomial is a polynomial whose zeros have strictly negative real part.
4A monicpolynomial is a polynomial whose highest degree coefficientequals 1.
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Example 3.3.6 (Diagonal decoupling by state feedback preco mpensation). Consider a
plant with transfer matrix

P .s/ D
�

1=s 1=s2

�1=s2 �1=s2

�

:

A minimal realization ofP is

�

A B

C D

�

D

2

6
6
6
6
6
6
4

0 0 0 0 0 1

1 0 0 0 1 0

0 0 0 0 1 �1

0 0 1 0 0 0

0 1 0 0 0 0

0 0 0 1 0 0

3

7
7
7
7
7
7
5

:

Its transmission zeros follow after a sequence of elementary row and column operations

P .s/ D 1

s2

�

s 1

1 �1

�

) 1

s2

�

s C 1 1

0 1

�

) 1

s2

�

1 0

0 s C 1

�

D
�

1=s2 0

0 .s C 1/=s2

�

:

ThusP has one transmission zeros ats D �1. It is a stable zero hence we may proceed. The
direct feedthrough termD is the zero matrix so the decoupling indicesfi are all greater than
zero. We need to computeCi�Ak�1B.

C1�B D
�

0 1 0 0
�

2

6
6
4

0 1

1 0

1 �1

0 0

3

7
7
5

D
�

1 0
�

it is not identically zero so thatf1 D 1. Likewise

C2�B D
�

0 0 0 1
�

2

6
6
4

0 1

1 0

1 �1

0 0

3

7
7
5

D
�

0 0
�

:

It is zero hence we must computeC2�AB,

C2�AB D
�

1 �1
�

:

As it is nonzero we havef2 D 2. This gives us

D D
�

C1�B

C2�AB

�

D
�

1 0

1 �1

�

:

The matrixD is nonsingular so a decoupling state feedback exists. Take

Df .s/ D
�

s C 1 0

0 .s C 1/2

�

:

Its diagonal entries have the degreesf1 D 1 andf2 D 2 as required. A realization of

Df .s/P .s/ D
�

.s C 1/=s .s C 1/=s2

.s C 1/2=s2 �.s C 1/2=s2

�
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is .A;B; C;D/ with

C D
�

1 1 0 0

0 0 2 1

�

; D D
�

1 0

1 �1

�

:

Now the regular state feedback

u.t/ D
�

1 0

1 �1

��1 �

�
�

1 1 0 0

0 0 2 1

�

x.t/C v.t/

�

renders the system with inputv and outputy, decoupled. After applying this state feedback we
arrive at the state-space system

Px.t/ D A C BD�1.�Cx.t/C v.t// D

2

6
6
4

�1 �1 �2 1

0 �1 0 0

0 0 �2 �1

0 0 1 0

3

7
7
5

x.t/C

2

6
6
4

1 �1

1 0

0 1

0 0

3

7
7
5
v.t/

y.t/ D Cx.t/C Dv.t/ D
�

0 1 0 0

0 0 0 1

�

x.t/

(3.32)

and its transfer matrix by construction is

D�1
f .s/ D

�

1=.s C 1/ 0

0 1=.s C 1/2

�

:

Note that a minimal realization ofD�1
f has order3 whereas the realization (3.32) has order 4.

Therefore (3.32) is not minimal. This is typical for decoupling procedures. �

3.3.3. Directional properties of gains

In contrast to a SISO system, a MIMO system generally does nothave a unique gain. A trivial
example is the2 � 2 system with constant transfer matrix

P .s/ D
�

1 0

0 2

�

:

The gain is in between1 and2 depending on the direction of the input.
There are various ways to define gains for MIMO systems. A natural generalization of the SISO

gainjy.j!/j=ju.j!/j from inputu.j!/ to outputy.j!/ is to use norms instead of merely absolute
values. We take the 2-norm. This subsection assumes knowledge ofnorms, see AppendixB.

Summary 3.3.7 (Bounds on gains). For any given inputu and fixed frequency! there holds

�.P .j!// � kP .j!/u.j!/k2

ku.j!/k2

� �.P .j!// (3.33)

and the lower bound�.P .j!// and upper bound�.P .j!// are achieved for certain inputsu. �
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Figure 3.5: Lower and upper bound on the gain ofT .j!/

Example 3.3.8 (Upper and lower bounds on gains). Consider the plant with transfer matrix

P .s/ D
"

1
s

1

s2C
p

2sC1

� 1
2.sC1/

1
s

#

:

In unity feedback the complementary sensitivity matrixT D P .I C P /�1 has dimension2 � 2.
So at each frequency! the matrixT .j!/ has two singular values. Figure3.5 shows the two
singular values�.j!/ and�.j!/ as a function of frequency. Near the crossover frequency the
singular values differ considerably. �

Let

P .j!/ D Y .j!/˙.j!/U �.j!/ (3.34)

be an SVD (at each frequency) ofP .j!/, that is,Y .j!/ andU.j!/ are unitary and

˙.j!/ D diag.�1.j!/; �2.j!/; : : : ; �min.ny ;nu/.j!//

with

�1.j!/ � �2.j!/ � : : : � �min.ny ;nu/.j!/ � 0:

The columnsuk.j!/ of U.j!/ theinput principal directions, Postlethwaite et al.(1981) and they
have the special property that their gains are precisely thecorresponding singular values

kP .j!/uk.j!/k2

kuk.j!/k2

D �k.j!/

and the responseyk.j!/ D P .j!/uk.j!/ in fact equals�k.j!/ times thekth column ofY .j!/.
The columns ofY .j!/ are theoutput principal directionsand the�k.j!/ theprincipal gains.

Thecondition number� defined as

�.P .j!// D �.P .j!//

�.P .j!//
(3.35)

is a possible measure of the difficulty of controlling the system. If for a plant all principal gains
are the same, such as whenP .j!/ is unitary, then�.j!/ D 1. If �.j!/ � 1 then the loop
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3.3. MIMO structural requirements and design methods

gainL D PK around the crossover frequencymaybe difficult to shape. Note that the condition
number is not invariant under scaling. Describing the same system in terms of a different set
of physical units leads to a different condition number. A high condition number indicates that
the system is “close” to losing its full rank, i.e. close to not satisfying the property of functional
controllability.

Example 3.3.9 (Multivariable control system—design goals ). The performance of a mul-
tivariable feedback system can be assessed using the notionof principal gains as follows. The
basic idea follows the ideas previously discussed for single input, single output systems.

The disturbance rejecting properties of the loop transfer require the sensitivity matrix to be
small:

�.S.j!// � 1:

At the same time the restriction of the propagation of measurement noise requires

�.T .j!// � 1:

As in the SISO case these two requirements are conflicting. Indeed, using the triangle inequality
we have the bounds

j1 � �.S.j!//j � �.T .j!// � 1 C �.S.j!// (3.36)

and

j1 � �.T .j!//j � �.S.j!// � 1 C �.T .j!//: (3.37)

It is useful to try to make the difference between�.T / and�.T /, and between�.S/ and�.S/,
not too large in the cross over region. Making them equal would imply that the whole plant
behaves identical in all directions and this is in general not possible.

We must also be concerned to make the control inputs not too large. Thus the transfer matrix
.I C KP /�1K from r to u must not be too large.

ku.j!/k2

kr.j!/k2

D k.I C K.j!/P .j!//�1K.j!/r.j!/k2

kr.j!/k2

� �..I C K.j!/P .j!//�1K.j!//

� �..I C K.j!/P .j!//�1/�.K.j!//

� �.K.j!//

�.I C K.j!/P .j!//

� �.K.j!//

1 � �.K.j!/P .j!//

� �.K.j!//

1 � �.K.j!//�.P .j!// : (3.38)

Here several properties of ExerciseB.2 are used and in the last two inequalities it is assumed
that�.K.j!//�.P .j!// < 1. The upperbound shows that where�.P .j!// is not too large that
�.K.j!// � 1 guarantees a small gain fromr.j!/ to u.j!/. The upper bound (3.38) of this gain
is easily determined numerically.

The direction of an important disturbance can be taken into consideration to advantage. Let
v.j!/ be a disturbance acting additively on the output of the system. Complete rejection of the
disturbance would require an input

u.j!/ D �P�1.j!/v.j!/: (3.39)
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Thus

ku.j!/k2

kv.j!/k2

D kP�1.j!/v.j!/k2

kv.j!/k2

(3.40)

measures the magnitude ofu needed to reject a unit magnitude disturbance acting in the direction
v. The most and least favorable disturbance directions are those for whichv is into the direction
of the principal output directions corresponding to�.P .j!// and�.P .j!//, respectively. This
leads to thedisturbance condition numberof the plant,

�v.P .j!// D kP�1.j!/v.j!/k2

kv.j!/k2

�.P .j!// (3.41)

which measures the input needed to reject the disturbancev relative to the input needed to reject
the disturbance acting in the most favorable direction. It follows that

1 � �v.P / � �.P / (3.42)

and�v.P / generalizes the notion of condition number of the plant defined in (3.35). �

3.3.4. Decentralized control structures

Dual to decoupling control where the aim is make the plantP diagonal, isdecentralized control
where it is the controllerK that is restricted to be diagonal or block diagonal,

K D diagfKig D

2

6
6
6
4

K1 0

K2

: : :

0 Km

3

7
7
7
5
: (3.43)

This control structure is calledmultiloop controland it assumes that there as many control inputs
as control outputs. In a multiloop control structure it is ingeneral desirable to make an ordering
of the input and output variables such that the interaction between the various control loops is as
small as possible. This is theinput-output pairing problem.

Example 3.3.10 (Relative gain of a two-input-two-output sy stem). Consider a two-input-
two-output system

�

y1

y2

�

D P

�

u1

u2

�

and suppose we decide to close the loop by a diagonal controlleruj D Kj .rj � yj /, that is, the
first component ofu is only controlled by the first component ofy, and similarlyu2 is controlled
only byy2. Suppose we leave the second control loop open for the momentand that we vary the
first control loop. If the open loop gain fromu2 to y2 does not change a lot as we vary the first
loopu1 D K1.r1 � y1/, it is save to say that we can design the second control loop independent
from the first, or to put it differently, that the second control loop is insensitive to tuning of the
first. This is desirable. In summary, we want the ratio

� WD gain fromu2 to y2 if first loop is open

gain fromu2 to y2 if first loop is closed
(3.44)
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preferably close to 1. To make this� more explicit we assume now that the reference signalr

is constant and that all signals have settled to their constant steady state values. Now if the first
loop is open then the first input entryu1 is zero (or constant). However if the first loop isclosed
then—assuming perfect control—it is the outputy1 that is constant (equal tor1). This allows us
to express (3.44) as

� D
dy2=du2

ˇ
ˇ
u1

dy2=du2

ˇ
ˇ
y1

where
ˇ
ˇ
u1

expresses thatu1 is considered constant in the differentiation. This expression for�
exists and may be computed ifP .0/ is invertible:

dy2

du2

ˇ
ˇ
ˇ
ˇ
u1

D d P21.0/u1 C P22.0/u2

du2

ˇ
ˇ
ˇ
ˇ
u1

D P22.0/

and becauseu D P�1.0/y we also have

dy2

du2

ˇ
ˇ
ˇ
ˇ
y1

D 1

du2=dy2

ˇ
ˇ
ˇ
ˇ
y1

D 1

d P�1
21 .0/y1CP�1

22 .0/y2

dy2

ˇ
ˇ
ˇ
ˇ
y1

D 1

P�1
22 .0/

D P�1
22 .0/:

The relative gain� hence equalsP22.0/P
�1
22 .0/. �

For general square MIMO systemsP we want to consider therelative gain array (RGA)which
is the (rational matrix)� defined element-wise as

�ij D Pij P�1
j i

or, equivalently as a matrix, as

� D P ı .P�1/T (3.45)

whereı denotes theHadamard productwhich is the entry-wise product of two matrices of the
same dimensions.

Summary 3.3.11 (Properties of the RGA).

1. In constant steady state there holds that

�ij .0/ D
dyi

duj

ˇ
ˇ
all loops.uk ;yk/, k ¤ j open

dyi

duj

ˇ
ˇ
all loops.uk ;yk /, k ¤ j closed

2. The sum of the elements of each row or each column of� is 1

3. Any permutation of rows and columns inP results in the same permutations of rows and
columns in�

4. � is invariant under diagonal input and output scaling ofP

5. If P is diagonal or upper or lower triangular then� D Im
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6. The norm�.�.j!// of the RGA is believed to be closely related to the minimized con-
dition number ofP .j!/ under diagonal scaling, and thus serves as an indicator for badly
conditioned systems. SeeNett and Manousiouthakis(1987), Grosdidier et al.(1985), and
Skogestad and Morari(1987).

7. The RGA measures the sensitivity ofP to relative element-by-element uncertainty. It
indicates thatP becomes singular by an element perturbation fromPij to Pij Œ1 � ��1

ij �.

If � deviates a lot fromIm then this is an indication that interaction is present in thesystem. �

Example 3.3.12 (Relative Gain Array for 2 � 2 systems). For the two-input, two-output case

P D
�

P11 P12

P21 P22

�

; .P�1/T D 1

P11P22 � P21P12

�

P22 �P21

�P12 P11

�

;

the relative gain array� D P ı P�T equals

� D
�

� 1 � �
1 � � �

�

; � WD P11P22

P11P22 � P21P12

:

We immediate see that rows and columns add up to one, as claimed. Some interesting special
cases are

P D
�

P11 0

0 P22

�

) � D
�

1 0

0 1

�

P D
�

P11 0

P21 P22

�

) � D
�

1 0

0 1

�

P D
�

0 P12

P21 0

�

) � D
�

0 1

1 0

�

P D
�

p p

�p p

�

) � D
�

0:5 0:5

0:5 0:5

�

In the first and second example, the relative gain suggests topair u1 with y1, andu2 with y1. In
the first example this pairing is also direct from the fact that P is diagonal. In the third example
the RGA isantidiagonal, so we want to pairu1 with y2 andu2 with y1. In the fourth example all
entries of the RGA are the same, hence no pairing can be deduced from the RGA.

If P is close to singular then several entries of� are large. The corresponding pairings are to
be avoided, and possibly no sensible pairing exists. For example

P D
�

a a

a a.1 C ı/

�

) � D
�

1Cı
ı

�1
ı�1

ı
1Cı
ı

�

with ı � 0. �

Although the RGA has been derived originally byBristol (1966) for the evaluation ofP .s/
at steady-states D 0 assuming stable steady-state behavior, the RGA may be useful over the
complete frequency range. The followingi/o pairing ruleshave been in use on the basis of an
heuristic understanding of the properties of the RGA:

1. Prefer those pairing selections where�.j!/ is close to unity around the crossover fre-
quency region. This prevents undesirable stability interaction with other loops.
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2. Avoid pairings with negative steady-state or low-frequency values of�i i .j!/ on the diag-
onal.

The following result byHovd and Skogestad(1992) makes more precise the statement inBristol
(1966) relating negative entries in the RGA, and nonminimum-phase behavior. See also the
counterexample against Bristol’s claim inGrosdidier and Morari(1987).

Summary 3.3.13 (Relative Gain Array and RHP transmission ze ros). Suppose thatP has
stable elements having no poles nor zeros ats D 0. Assume that the entries of� are nonzero
and finite fors ! 1. If �ij shows different signs when evaluated ats D 0 ands D 1, then at
least one of the following statements holds:

1. The entryPij has a zero in the right half plane

2. P has a transmission zero in the right half plane

3. The subsystem ofP with inputj and outputi removed has a transmission zero in the right
half plane

�

As decentralized or multiloop control structures are widely applied in industrial practice, a
requirement arises regarding the ability to take one loop out of operation without destabilizing
the other loops. In a problem setting employing integral feedback, this leads to the notion of
decentralized integral controllabilityCampo and Morari(1994).

Definition 3.3.14 (Decentralized integral controllabilit y (DIC)). The systemP is DIC if there
exists a decentralized (multiloop) controller having integral action in each loop such that the
feedback system is stable and remains stable when each loopi is individually detuned by a
factor"i for 0 � "i � 1. �

The definition of DIC implies that the systemP must be open-loop stable. It is also assumed
that the integrator in the control loop is put out of order when "i D 0 in loop i . The steady-state
RGA provides a tool for testing on DIC. The following result has been shown byGrosdidier et al.
(1985).

Summary 3.3.15 (Steady-state RGA and stability). Let the plantP be stable and square, and
consider a multiloop controllerK with diagonal transfer matrix having integral action in each
diagonal element. Assume further that the loop gainPK is strictly proper. If the RGA�.s/ of
the plant contains a negative diagonal value fors D 0 then the closed-loop system satisfies at
least one of the following properties:

1. The overall closed-loop system is unstable

2. The loop with the negative steady-state relative gain is unstable by itself

3. The closed-loop system is unstable if the loop corresponding to the negative steady-state
relative gain is opened

�

A further result regarding stability under multivariable integral feedback has been provided by
Lunze(1985); see alsoGrosdidier et al.(1985), andMorari (1985).
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Summary 3.3.16 (Steady-state gain and DIC). Consider the closed loop system consisting of
the open-loop stable plantP and the controllerK having transfer matrix

K.s/ WD ˛

s
Kss (3.46)

Assume unity feedback around the loop and assume that the summing junction in the loop in-
troduces a minus sign in the loop. Then a necessary conditionfor the closed loop system to be
stable for all̨ in an interval0 � ˛ � ˛ with ˛ > 0 is that the matrixP .0/Kss must have all its
eigenvalues in the open right half plane. �

Further results on decentralized i/o pairing can be found inSkogestad and Morari(1992), and
in Hovd and Skogestad(1994). The inherent control limitations of decentralized control have
been studied bySkogestad et al.(1991). Further results on decentralized integral controllability
can be found inLe et al.(1991) and inNwokah et al.(1993).

3.3.5. Internal model principle and the servomechanism problem

Theservomechanism problemis to design a controller – calledservocompensator– that renders
the plant output as insensitive as possible to disturbanceswhile at the same asymptotically track
certain reference inputsr . We discuss a state space solution to this problem; a solution that works
for SISO as well as MIMO systems. Consider a plant with state space realization

Px.t/ D Ax.t/C Bu.t/ u.t/ 2 R
nu ; y 2 R

ny ; x.0/ D x0 2 R
n

y.t/ D Cx.t/C v.t/ (3.47)

and assume thatv is a disturbance that is generated by a dynamic system havingall of its poles
on the imaginary axis

Pxv.t/ D Avxv.t/; xv.0/ D xv0

v.t/ D Cvxv.t/: (3.48)

The disturbance ispersistentbecause the eigenvalues ofAv are assumed to lie on the imaginary
axis. Without loss of generality we further assume that.Av;Cv/ is an observable pair. Then a
possible choice of theservocompensatoris the compensator (controller) with realization

Pxs.t/ D Asxs.t/C Bse.t/; xs.0/ D xs0

e.t/ D r.t/ � y.t/ (3.49)

whereAs is block-diagonal withny blocks

As D diag.Av;Av; : : : ;Av/ (3.50)

and whereBs is of compatible dimensions and such that.As;Bs/ is controllable, but otherwise
arbitrary. The composite system, consisting of the plant (3.47) and the servocompensator (3.49)
yields

�

Px.t/
Pxs.t/

�

D
�

A 0

�BsC As

� �

x.t/

xs.t/

�

C
�

B

0

�

u.t/C
�

0

Bs

�

.r.t/ � v.t//

y.t/ D
�

C 0
�
�

x.t/

xs.t/

�

C v.t/:
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Figure 3.6: Servomechanism configuration

As its stands the closed loop is not stable, but it may be stabilized by an appropriate state feedback

u.t/ D Fx.t/C Fsxs.t/ (3.51)

whereF andFs are chosen by any method for designing stabilizing state feedback, such as LQ
theory. The resulting closed loop is shown in Fig.3.6.

Summary 3.3.17 (Servocompensator). Suppose that the following conditions are satisfied.

1. .A;B/ is stabilizable and.A;C / is detectable,

2. nu � ny , i.e. there are at least as many inputs as there are outputs

3. rank
�

A��i I B
C D

�

D n C ny for every eigenvalue�i of Av.

ThenF , Fs can be selected such that the closed loop system matrix
�

A C BF BFs

�BsC As

�

(3.52)

has all its eigenvalues in the open left-half plane. In that case the controller (3.49),(3.51) is a
servocompensator in thate.t/ ! 0 ast ! 1 for any of the persistentv that satisfy (3.48). �

The system matrixAs of the servocompensator contains several copies of the system matrices
Av that definesv. This means that the servocompensator contains the mechanism that generates
v; it is an example of the more generalinternal model principle. The conditions as mentioned
imply the following, seeDavison(1996) andDesoer and Wang(1980).

� No transmission zero of the system should coincide with one of the imaginary axis poles
of the disturbance model

� The system should be functionally controllable

� The variablesr andv occur in the equations in a completely interchangeable role, so that
the disturbance model used forv can also be utilized forr . That is, for anyr that satisfies

Pxv.t/ D Avxv.t/; r.t/ D Cr xv.t/

the error signale.t/ converges to zero. Hence the outputy.t/ approachesr.t/ ast ! 1.

� Asymptotically, whene.t/ is zero, the disturbancev.t/ is still present and the servocom-
pensator acts in an open loop fashion as the autonomous generator of a compensating
disturbance at the outputy.t/, of equal form asv.t/ but of opposite sign.
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� If the state of the system is not available for feedback, thenthe use of a state estimator is
possible without altering the essentials of the preceding results.

Example 3.3.18 (Integral action). If the servocompensator is taken to be an integratorPxs D e

then constant disturbancesv are asymptotically rejected and constant reference inputsr asymp-
totically tracked. We shall verify the conditions of Summary 3.3.17for this case. As before the
plantP is assumed strictly proper with state space realization andcorrupted with noisev,

Px.t/ D Ax.t/C Bu.t/; y.t/ D Cx.t/C v.t/:

Combined with the integrating action of the servocompensator Pxs.t/ D e.t/, with e.t/ D r.t/ �
y.t/, we obtain

�

Px.t/
Pxs.t/

�

D
�

A 0

0 0

� �

x.t/

xs.t/

�

C
�

B

0

�

u.t/C
�

0

I

�

e.t/

D
�

A 0

�C 0

� �

x

xs

�

C
�

B

0

�

u.t/C
�

0

I

�

.r.t/ � v.t//:

Closing the loop with state feedbacku.t/ D Fx.t/CFsxs.t/ renders the closed loop state space
representation

�

Px.t/
Pxs.t/

�

D
�

A C BF BFs

�C 0

� �

x.t/

xs.t/

�

C
�

0

I

�

.r.t/ � v.t//

y.t/ D
�

C 0
�
�

x.t/

xs.t/

�

C v.t/:

All closed-loop poles can be arbitrarily assigned by state feedbacku.t/ D Fx.t/ C Fsxs.t/ if
and only if

��
A 0
C 0

�

;
�

B
0

��

is controllable. This is the case if and only if

�

B AB A2B � � �
0 CB CAB � � �

�

has full row rank. The above matrix may be decomposed as
�

A B

C 0

� �

0 B AB � � �
Im 0 0 � � �

�

and therefore has full row rank if and only if

1. .A;B/ is controllable,

2. nu � ny ,

3. rank

�

A B

C 0

�

D n C ny .

(In fact the third condition implies the second.) The three conditions are exactly what Sum-
mary 3.3.17states. If the full statex is not available for feedback then we may replace the
feedback lawu.t/ D Fx.t/C Fsxs.t/ by an approximating observer,

POx.t/ D .A � KC / Ox.t/C Bu.t/C Ky.t/

u.t/ D F Ox.t/C Fsxs.t/:

�
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3.4. Appendix: Proofs and Derivations

Derivation of process dynamic model of the two-tank liquid flow process.A dynamic process
model for the liquid flow process of figure3.1is derived under the following assumptions:

� The liquid is incompressible;

� The pressure in both vessels is atmospheric;

� The flow�2 depends instantaneously on the static pressure defined by the liquid levelH1;

� The flow�4 is the instantaneous result of a flow-controlled recycle pump;

� �3 is determined by a valve or pump outside the system boundary of the process under
consideration, independent of the variables under consideration in the model.

Let � denote density of the liquid expressed in kg/m3, and letA1 and A2 denote the cross-
sectional areas (in m2) of each vessel, then the mass balances over each vessel and arelation for
outflow are:

A1� Ph1.t/ D �Œ�1.t/C �4.t/ � �2.t/� (3.53)

A2� Ph2.t/ D �Œ�2.t/ � �4.t/ � �3.t/� (3.54)

The flow rate�2.t/ of the first tank is assumed to be a function of the levelh1 of this tank. The
common model is that

�2.t/ D k
p

h1.t/: (3.55)

wherek is a valve dependent constant. Next we linearize these equations around an assumed
equilibrium state.hk;0; �i;0/. Define the deviations from the equilibrium values with tildes, that
is,

�i .t/ D �i;0 C Q�i .t/; i D 1 : : : 4

hk.t/ D hk;0 C Qhk.t/; k D 1; 2: (3.56)

Linearization of equation (3.55) around.hk;0; �i;0/ gives

Q�2.t/ D k
p

h1;0

1

2

PQh1.t/ D �2;0

2h1;0

PQh1.t/: (3.57)

Inserting this relation into equations (3.53), (3.54) yields the linearized equations

" PQh1.t/
PQh2.t/

#

D
"

� �2;0

2A1h1;0
0

�2;0

2A1h1;0
0

#� Qh1.t/
Qh2.t/

�

C
"

1
A1

1
A1

0 � 1
A2

#� Q�1.t/
Q�4.t/

�

C
�

0

� 1
A2

�

Q�3.t/ (3.58)

Assuming that�4;0 D �1;0, and thus�2;0 D 2�1;0, and taking numerical values�1;0 D 1,
A1 D A2 D 1, andh1;0 D 1 leads to Equation (3.1).

Proof of Algorithm3.2.12. We only prove the square case, i.e., whereD andK are square. As�
goes to infinity, the zeross of

2

4

A � sI B 0

C D I

0 1
�
I K

3

5
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converge to the transmission zeros. Now apply the followingtwo elementary operations to the
above matrix: subtract�K times the second column from the third column and then interchange
these columns. Then we get the matrix

2

4

A � sI ��BK B

C I � �DK D

0 0 1
�
I

3

5 :

In this form it is clear that its zeros are the zeros of
�

A�sI �rhoB
C I��DK

�

. However, since

�

A � sI ��BK

C I � �DK

� �

I 0

�.I � �DK/�1C I

�

„ ƒ‚ …

nonsingular

D
�
A C BK. 1

�
I � DK/�1C � sI �B

0 I � �DK

�

we see that these zeros are simply the eigenvalues ofA C BK. 1
�
I � DK/�1C .

Proof of Summary3.3.4. We make use of the fact that if

Px.t/ D Ax.t/C Bu.t/; x.0/ D 0;

y.t/ D Cx.t/

then the derivativePy.t/ satisfies

Py.t/ D C Px.t/ D CAx.t/C CBu.t/

The matrixDf .s/ D diag.sf1 ; : : : ; sfm/ is a diagonal matrix ofdifferentiators. Since the plant
y D Pu satisfies

Px.t/ D Ax.t/C Bu.t/; x.0/ D 0;

y.t/ D Cx.t/C Du.t/ (3.59)

it follows that the component-wise differentiatedv defined asv WD Df y satisfies

Px.t/ D Ax.t/C Bu.t/; x.0/ D 0;

v.t/ D

2

6
6
6
6
4

df1

dtf1
y1.t/

df2

dtf2
y2.t/
:::

dfm

dtfm
ym.t/

3

7
7
7
7
5

D

2

6
6
6
4

C1�Af1

C2�Af2

:::

CmAfm

3

7
7
7
5

„ ƒ‚ …

C

x.t/C Du.t/

By assumptionD is nonsingular, sou.t/ D D�1.�Cx.t/ C v.t//. Inserting this in the state
realization (3.59) yields

Px.t/ D .A � BD�1C/x.t/C BD�1v.t/; x.0/ D 0;

y.t/ D .C � DD�1C/x.t/C DD�1v.t/

Sincev D Df y it must be that the above is a realization of theD�1
f .
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Proof of Lemma3.2.8(sketch).We only prove it for the case that none of the transmission zeros
s0 are poles. Then.A � s0In/

�1 exists for any transmission zero, ands0 is a transmission zero if
and only ifP .s0/ drops rank. Since

�

A � s0In B

C D

� �

In .s0In � A/�1B

0 I

�

D
�

A � s0In 0

C P .s0/

�

we see that the rank of
�

A�s0I B
C D

�

equalsn plus the rank ofP .s0/. Hences0 is a transmission
zero ofP if and only if

�
A�s0In B

C D

�

drops rank.

3.5. Exercises

3.1 Poles and transmission zeros.

a) Find the poles and transmission zeros ofs
s2 (trick question).

b) Find the poles and transmission zeros of
"

1
sC3

2
.s�2/.sC3/

�2
.s�2/.sC3/

sC2
.s�2/.sC3/

#

using the Smith-McMillan form.

c) Find the transmission zeros of
"

1
sC3

2
.s�2/.sC3/

�2
.s�2/.sC3/

sC2
.s�2/.sC3/

#

using the inverse of this rational matrix.

3.2 Blocking property of transmission zerosConsider the systemy D Pu and assume thatP
has minimal realizationP .s/ D C.sI � A/�1B C D and thatP has full column rank, that
is rankP D nu.

a) Show that with any transmission zeros0 there is au0 2 C
nu such that for the ex-

ponential inputu.t/ D u0es0t and appropriate initial statex.0/ the outputy.t. is
identically zero for all time.

b) Show the converse: If an exponential inputu.t/ D u0es0t and initial statex.0/ exist
such thaty.t/ D 0 for all t thens0 is a transmission zero.

3.3 Non-minimum phase loop gain.In Example3.1.2onedecoupling precompensator is found
that diagonalizes the loop gainPK with the property that both diagonal elements ofPK

have a right half-plane zero ats D 1. Show thateveryinternally stabilizing decoupling
controllerK has this property (unlessK is singular). [See Definition1.3.4.]

3.4 Internal model control & MIMO disturbance rejection.Consider the MIMO system shown
in Fig. 3.7and suppose that the plantP is stable.

a) Show that the closed loop is internally stable if and only if Q WD K.I C PK/�1 is a
stable transfer matrix.

b) ExpressK andS WD .I C PK/�1 in terms ofP andQ. Why is it useful to express
K andS in terms ofP andQ?
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Figure 3.7: Disturbance rejection for MIMO systems

c) Let P be the2 � 2 systemP .s/ D 1
sC1

�
1 s

�s 1

�

and suppose thatv is a persistent
harmonic disturbancev.t/ D

�
1
2

�

ei!0 t for some known!0.

i. Assume!0 ¤ ˙1. Find a stabilizingK (using the parameterization by stable
Q) such that in closed loop the effect ofv.t/ on z.t/ is asymptotically rejected
(i.e.,e.t/ ! 0 ast ! 1 for r.t/ D 0).

ii. Does there exist such a stabilizingK if !0 D ˙1? (Explain.)

3.5 Realization of inverse.Verify Eqn. (3.29).

3.6 An invertible system that is not decouplable by state feedback. Consider the plant with
transfer matrix

P .s/ D
�

1=.s C 1/ 1=s

1=.s � 1/ 1=s

�

:

a) Find the transmission zeros.

b) Show that the methods of Summary3.3.4and Summary3.3.5are not applicable here.

c) Find a stable precompensatorK0 that renders the productPK0 diagonal.

3.7 Determine the zeros of

P .s/ D

2

6
6
4

s2 C 6s C 7

.s C 2/.s C 3/

s C 1

s C 2

1

s C 3
1

3

7
7
5
:

Does the method of~ 3.3.2apply to this plant?
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Design

Overview– LQ and LQG design methods convert control system de-
sign problems to an optimization problem with quadratic time-domain
performance criteria.

In LQG disturbances and measurement noise are modeled as stochas-
tic processes. TheH2 formulation of the same method eliminates the
stochastic element. It permits a frequency domain view and allows the
introduction of frequency dependent weighting functions.

MIMO problems can be handled almost as easily as SISO problems.

4.1. Introduction

The application of optimal control theory to the practical design of multivariable control sys-
tems attracted much attention during the period 1960–1980.This theory considers linear finite-
dimensional systems represented in state space form, with quadratic performance criteria. The
system may be affected by disturbances and measurement noise represented as stochastic pro-
cesses, in particular, by Gaussian white noise. The theoretical results obtained for this class
of design methods are known under the general name ofLQG theory. Standard references are
Anderson and Moore(1971), Kwakernaak and Sivan(1972) and Anderson and Moore(1990).
The deterministic part is calledLQ theory.

In the period since 1980 the theory has been further refined under the name ofH2 theory
Doyle et al.(1989), in the wake of the attention for the so-calledH1 control theory.

In the present chapter we present a short overview of a numberof results of LQG andH2

theory with an eye to using them for control system design. LQtheory is basic to the whole
chapter, and is dealt with at some length in Section4.2(p. 136). Besides presenting the solution
to the LQ problem we discuss its properties, the choice of theweighting matrices, and how to
obtain systems with a prescribed degree of stability. Usingthe notion of return difference and
the associated return difference equality we discuss the asymptotic properties and the guaranteed
gain and phase margins associated with the LQ solution. The section concludes with a subsection
on the numerical solution of Riccati equations.

Section4.3 (p. 145) deals with the LQG problem. The LQ paradigm leads to state feedback.
By using optimal observers—Kalman filters—compensators based on output feedback may be
designed. For well-behaved plants—specifically, plants that have no right-half plane zeros—the
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4. LQ, LQG andH2 Control System Design

favorable properties of the LQ solution may asymptoticallybe recovered by assuming very small
measurement noise. This is known asloop transfer recovery.

In Section4.4(p. 152) it is demonstrated that LQG optimization amounts to minimization of
theH2-norm of the closed-loop system. This interpretation removes the stochastic ingredient
from the LQG framework, and reduces the role of the intensitymatrices that describe the white
noise processes in the LQG problem to that of design parameters. TheH2 interpretation naturally
leads toH2 optimization with frequency dependent weighting functions. These permit a great
deal of extra flexibility and makeH2 theory a tool for shaping closed-loop system functions. A
useful application is the design of feedback systems with integral control.

Multi-input multi-output systems are handled almost (but not quite) effortlessly in the LQG
andH2 framework. In Section4.6(p.161) we present both a SISO and a MIMO design example.

In Section4.7(p. 167) a number of proofs for this chapter are collected.

4.2. LQ theory

4.2.1. Introduction

In this section we describe the LQ paradigm. The acronym refers to Linear systems with
Quadratic performance criteria. Consider a linear time-invariant system represented in state space
form as

Px.t/ D Ax.t/C Bu.t/;

z.t/ D Dx.t/;
t � 0: (4.1)

For eacht � 0 the statex.t/ is ann-dimensional vector, the inputu.t/ a k-dimensional vector,
and the outputz.t/ anm-dimensional vector.

We wish to control the system from any initial statex.0/ such that the outputz is reduced to a
very small value as quickly as possible without making the inputu unduly large. To this end we
introduce the performance index

J D
Z 1

0

ŒzT.t/Qz.t/C uT.t/Ru.t/� dt: (4.2)

Q andR are symmetric weighting matrices, that is,Q D QT andR D RT. Often it is adequate
to let the two matrices simply be diagonal.

The two termszT.t/Qz.t/ anduT.t/Ru.t/ are quadratic forms in the components of the output
z and the inputu, respectively. The first term in the integral criterion (4.2) measures the accumu-
lated deviation of the output from zero. The second term measures the accumulated amplitude
of the control input. It is most sensible to choose the weighting matricesQ andR such that the
two terms are nonnegative, that is, to takeQ andR nonnegative-definite1. If the matrices are
diagonal then this means that their diagonal entries shouldbe nonnegative.

The problem of controlling the system such that the performance index (4.2) is minimal along
all possible trajectories of the system is theoptimal linear regulator problem.

4.2.2. Solution of the LQ problem

There is a wealth of literature on the linear regulator problem. The reason why it attracted so
much attention is that its solution may be represented infeedbackform. An optimal trajectory is

1An n � n symmetric matrixR is nonnegative-definite ifxTRx � 0 for everyn-dimensional vectorx. R is positive-
definite if xTRx > 0 for all nonzerox.
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generated by choosing the input fort � 0 as

u.t/ D �Fx.t/: (4.3)

This solution requires that the statex.t/ be fully accessible for measurement at all times. We
return to this unreasonable assumption in~ 4.3(p. 145). Thek � n state feedback gain matrixF
is given by

F D R�1BTX: (4.4)

The symmetricn�n matrixX is the nonnegative-definite solution of thealgebraic matrix Riccati
equation(ARE)

ATX C XA C DTQD � XBR�1BTX D 0: (4.5)

The proof is sketched in~ 4.7(p.167), the appendix to this chapter. The solution of the algebraic
Riccati equation is discussed in~ 4.2.9(p. 144).

We summarize a number of well-known important facts about the solution of the LQ problem.
An outline of the proof is given in~ 4.7.1(p. 167).

Summary 4.2.1 (Properties of the solution of the optimal lin ear regulator problem).
Assumptions:

� The system (4.1) is stabilizable2 and detectable3. Sufficient for stabilizability is that the
system is controllable. Sufficient for detectability is that it is observable.

� The weighting matricesQ andR are positive-definite.

The following facts are well documented (see for instanceKwakernaak and Sivan(1972) and
Anderson and Moore(1990)).

1. The algebraic Riccati equation (ARE)

ATX C XA C DTQD � XBR�1BTX D 0 (4.6)

has a unique nonnegative-definite symmetric solutionX . If the systemPx.t/ D Ax.t/,
z.t/ D Dx.t/ is observable thenX is positive-definite. There are finitely many other
solutions of the ARE.

2. The minimal value of the performance index (4.2) isJmin D xT.0/Xx.0/.

3. The minimal value of the performance index is achieved by the feedback control law

u.t/ D �Fx.t/; t � 0; (4.7)

with F D R�1BTX .

4. The closed-loop system

Px.t/ D .A � BF/x.t/; t � 0; (4.8)

is stable, that is, all the eigenvalues of the matrixA � BF have strictly negative real parts.

2That is, there exists a state feedbacku.t/ D �Fx.t/ such that the closed-loop systemPx.t/ D .A�BF /x.t/ is stable.
3That is, there exists a matrixK such that the systemPe.t/ D .A � KD/e.t/ is stable.
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�

The reasons for the assumptions may be explained as follows.If the system is not stabilizable
then obviously it cannot be stabilized. If it is not detectable then there exist state feedback con-
trollers that do not stabilize the system but hide the instability from the output—hence, stability
of the optimal solution is not guaranteed.R needs to be positive-definite to prevent infinite input
amplitudes. IfQ is not positive-definite then there may be unstable closed-loop modes that have
no effect on the performance index.

4.2.3. Choice of the weighting matrices

The choice of the weighting matricesQ andR is a trade-off between control performance (Q

large) and low input energy (R large). Increasing bothQ andR by the same factor leaves the
optimal solution invariant. Thus, only relative values arerelevant. TheQ andR parameters
generally need to be tuned until satisfactory behavior is obtained, or until the designer is satisfied
with the result.

An initial guess is to choose bothQ andR diagonal

Q D

2

6
6
4

Q1 0 0 � � � 0

0 Q2 0 � � � 0

� � � � � � � � � � � � � � �
0 � � � � � � 0 Qm

3

7
7
5
; R D

2

6
6
4

R1 0 0 � � � 0

0 R2 0 � � � 0

� � � � � � � � � � � � � � �
0 � � � � � � 0 Rk

3

7
7
5
; (4.9)

whereQ andR have positive diagonal entries such that

p

Qi D 1

zmax
i

; i D 1; 2; � � � ;m;
p

Ri D 1

umax
i

; i D 1; 2; � � � ; k: (4.10)

The numberzmax
i denotes the maximally acceptable deviation value for thei th component of the

outputz. The other quantityumax
i has a similar meaning for thei th component of the inputu.

Starting with this initial guess the values of the diagonal entries ofQ andR may be adjusted
by systematic trial and error.

4.2.4. Prescribed degree of stability

By including a time-dependent weighting function in the performance index that grows expo-
nentially with time we may force the optimal solutions to decay faster than the corresponding
exponential rate. The modified performance index is

J˛ D
Z 1

0

e2˛t ŒzT.t/Qz.t/C uT.t/Ru.t/� dt; (4.11)

with ˛ a real number. Define

x˛.t/ D x.t/e˛t ; u˛.t/ D u.t/e˛t ; t � 0: (4.12)

These signals satisfy

Px˛.t/ D .A C ˛I/x˛.t/C Bu˛.t/ (4.13)

and

J˛ D
Z 1

0

ŒzT
˛ .t/Qz˛.t/C uT

˛.t/Ru˛.t/� dt: (4.14)
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Consequently, the minimizingu˛ is

u˛.t/ D �R�1BTX˛x˛.t/; (4.15)

or

u.t/ D �F˛x.t/; (4.16)

with F˛ D R�1BTX˛. X˛ is the positive-definite solution of the modified algebraic Riccati
equation

.AT C ˛I/X˛ C X˛.A C ˛I/C DTQD � X˛BR�1BTX˛ D 0: (4.17)

The stabilizing property of the optimal solution of the modified problem implies that

Re �i .A C ˛I � BF˛/ < 0; i D 1; 2; : : : ; n; (4.18)

with �i .A C˛I � BF˛/ denoting thei th eigenvalue. Application of the control law (4.16) to the
system (4.1) creates a closed-loop system matrixNA˛ D A � BF˛. It follows from (4.18) that its
eigenvalues satisfy

Re �i . NA˛/ < �˛: (4.19)

Thus, choosing̨ positive results in an optimal closed-loop system with aprescribed degree of
stability.

.sI � A/�1B

F

x

u

(a)

.sI � A/�1B

F

x

uv

(b)

Figure 4.1: State feedback

4.2.5. Return difference equality and inequality

Figure4.1(a) shows the feedback connection of the systemPx D Ax CBu with the state feedback
controlleru D �Fx. If the loop is broken as in Fig.4.1(b) then the loop gain is

L.s/ D F.sI � A/�1B: (4.20)

The quantity

J.s/ D I C L.s/ (4.21)

is known as thereturn difference, J.s/u is the difference between the signalu in Fig. 4.1(b) and
the “returned” signalv D �L.s/u.

Several properties of the closed-loop system may be relatedto the return difference. Consider

detJ.s/ D detŒI C L.s/� D detŒI C F.sI � A/�1B�: (4.22)
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Using the well-known matrix equality det.I C MN / D det.I C NM / we obtain

detJ.s/ D detŒI C .sI � A/�1BF �

D det.sI � A/�1 det.sI � A C BF/

D det.sI � A C BF/

det.sI � A/
D �cl.s/

�ol.s/
: (4.23)

The quantities�ol.s/ D det.sI � A/ and�cl.s/ D det.sI � A C BF/ are the open- and the
closed-loop characteristic polynomial, respectively. Wefound the same result in~ 1.3 (p. 11) in
the form�cl.s/ D �ol.s/ detŒI C L.s/�.

Suppose that the gain matrixF is optimal as in Summary4.2.1. It is proved in~ 4.7.2(p. 171)
by manipulation of the algebraic Riccati equation (4.6) that the corresponding return difference
satisfies the equality

J T.�s/RJ.s/ D R C GT.�s/QG.s/: (4.24)

G.s/ D D.sI � A/�1B is theopen-loop transfer matrixof the system (4.1).
The relation (4.24) is known as thereturn difference equalityor as theKalman-Yakubovič-

Popov (KYP) equality, after its discoverers. In Subsection4.2.6 (p. 140) we use the return
difference equality to study the root loci of the optimal closed-loop poles.

By settings D j!, with ! 2 R, we obtain thereturn difference inequality4

J T.�j!/RJ.j!/ � R for all ! 2 R: (4.25)

In Subsection4.2.7(p. 143) we apply the return difference inequality to establish a well-known
robustness property of the optimal state feedback system.

4.2.6. Asymptotic performance weighting

For simplicity we first consider the case that (4.1) is a SISO system. To reflect this in the notation
we rewrite the system equations (4.1) in the form

Px.t/ D Ax.t/C bu.t/;

z.t/ D dx.t/;
(4.26)

with b a column vector andd a row vector. Similarly, we represent the optimal state feedback
controller as

u.t/ D �f x.t/; (4.27)

with f a row vector. The open-loop transfer functionG.s/ D d.sI � A/�1b, the loop gain
L.s/ D f .sI � A/�1b and the return differenceJ.s/ D 1 C L.s/ now all are scalar functions.
Without loss of generality we consider the performance index

J D
Z 1

0

Œz2.t/C �u2.t/� dt; (4.28)

with � a positive number. This amounts to settingQ D 1 andR D �.

4If P andQ are symmetric matrices of the same dimensions thenP � Q means thatxTPx � xTQx for every real
n-dimensional vectorx.
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Under these assumptions the return difference equality (4.24) reduces to

J.�s/J.s/ D 1 C 1

�
G.s/G.�s/: (4.29)

From (4.25) we have

J.s/ D �cl.s/

�ol.s/
; (4.30)

with �cl the closed-loop characteristic polynomial and�ol the open-loop characteristic polyno-
mial. We furthermore write

G.s/ D k .s/

�ol.s/
: (4.31)

The constantk is chosen such that the polynomial is monic5. From (4.29–4.31) we now obtain

�cl.�s/�cl.s/ D �ol.�s/�ol.s/C k2

�
 .�s/ .s/: (4.32)

The left-hand side�cl.�s/�cl.s/ of this relation defines a polynomial whose roots consists of
the closed-loop poles (the roots of�cl.s/) together with theirmirror imageswith respect to the
imaginary axis (the roots of�cl.�s//. It is easy to separate the two sets of poles, because by
stability the closed-loop poles are always in the left-halfcomplex plane.

From the right-hand side of (4.32) we may determine the following facts about the loci of the
closed-loop poles as the weight� on the input varies.

Infinite weight on the input term. If � ! 1 then the closed-loop poles and their mirror im-
ages approach the roots of�ol.s/�ol.�s/. This means that the closed-loop poles approach

� those open-loop poles that lie in the left-half complex plane (the “stable” open-loop
poles), and

� the mirror images of those open-loop poles that lie in the right-half complex plane
(the “unstable” open-loop poles).

If the open-loop system is stable to begin with then the closed-loop poles approach the
open-loop poles as the input is more and more heavily penalized. In fact, in the limit
� ! 1 all entries of the gainF become zero—optimal control in this case amounts to no
control at all.

If the open-loop system is unstable then in the limit� ! 1 the least control effort is used
that is needed to stabilize the system but no effort is spent on regulating the output.

Vanishing weight on the input term. As � # 0 the closed-loop poles the open-loop zeros (the
roots of ) come into play. Suppose thatq� open-loop zeros lie in the left-half complex
plane or on the imaginary axis, andqC zeros in the right-half plane.

� If � # 0 thenq� closed-loop poles approach theq� left-half plane open-loop zeros.

� A further qC closed-loop poles approach the mirror images in the left-half plane of
theqC right-half plane open-loop zeros.

5That is, the coefficient of the term of highest degree is 1.
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� The remainingn � q� � qC closed-loop poles approach infinity according to a But-
terworth pattern of ordern � q� � qC (see~ 2.7, p.88).

Just how small or large� should be chosen depends on the desired or achievable bandwidth.
We first estimate the radius of the Butterworth pole configuration that is created as� decreases.
Taking leading terms only, the right-hand side of (4.32) reduces to

.�s/nsn C k2

�
.�s/qsq ; (4.33)

with q the degree of , and, hence, the number of open-loop zeros. From this the2.n � q/ roots
that go to infinity as� # 0 may be estimated as the roots of

s2.n�q/ C .�1/n�q k2

�
D 0: (4.34)

Then � q left-half plane roots are approximations of the closed-loop poles. They form a Butter-
worth pattern of ordern � q and radius

!c D
�

k2

�

� 1
2.n�q/

: (4.35)

If the plant has no right-half plane zeros then this radius isan estimate of the closed-loop band-
width. The smaller� is the more accurate the estimate is. The bandwidth we refer to is the
bandwidth of the closed-loop system withz as output.

If the plant has right-half plane open-loop zeros then the bandwidth is limited to the magnitude
of the right-half plane zero that is closest to the origin. This agrees with the limits of performance
established in~ 1.7(p.40). For the MIMO case the situation is more complex. The results may be
summarized as follows. LetR D �R0, with � a positive number, andR0 a fixed positive-definite
symmetric matrix. We study the root loci of the closed-loop poles as a function of�.

� As � ! 1 the closed-loop poles approach those open-loop poles that lie in the left-half
plane and the mirror images in the left-half plane of the right-half plane open-loop poles.

� If � # 0 then those closed-loop poles that remain finite approach theleft-half plane zeros
of detGT.�s/QG.s/.

If the open-loop transfer matrixG.s/ D D.sI � A/�1B is square then we define the zeros
of detG.s/ as the open-loop zeros. In this case the closed-loop poles approach the left-
half plane open-loop zeros and the left-half plane mirror images of the right-half plane
open-loop zeros.

The closed-loop poles that do not remain finite as� # 0 go to infinity according to several
Butterworth patterns of different orders and different radii. The number of patterns and
their radii depend on the open-loop plant (Kwakernaak, 1976).

Understanding the asymptotic behavior of the closed-loop poles provides insight into the proper-
ties of the closed-loop systems. We note some further facts:

� As � # 0 the gain matrixF approaches1, that is, some or all of its entries go to infinity.

� Assume that the open-loop transfer matrixD.sI � A/�1B is square, and that all its zeros
are in the left-half plane. Then as we saw the closed-loop bandwidth inreases without
bound as� # 0. Correspondingly, the solutionX of the Riccati equation approaches the
zero matrix.
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v u

x

.sI � A/�1B

F

Figure 4.2: Loop gain for state feedback

4.2.7. Guaranteed gain and phase margins

If the state feedback loop is opened at the plant input as in Fig. 4.2then the loop gain isL.s/ D
F.sI � A/�1B. For the single-input case discussed in Subsection4.2.6(see Eqn. (4.29)) the
return difference inequality (4.25) takes the form

j1 C L.j!/j � 1; ! 2 R: (4.36)

This inequality implies that the Nyquist plot of the loop gain stays outside the circle with center
at�1 and radius 1. Figure4.3shows two possible behaviors of the Nyquist plot.

ReRe

Im Im

(a) (b)

D unit circle

Figure 4.3: Examples of Nyquist plots of optimal loop gains.(a): Open-loop
stable plant. (b): Open-loop unstable plant with one right-half
plane pole

Inspection shows that the modulus margin of the closed-loopsystem is 1. The gain margin is
infinite and the phase margin is at least60ı. More precisely, for open-loop stable systems the gain
may vary between 0 and1 without destabilizing the system. For open-loop unstable systems it
may vary between1

2
and1. The guaranteed stability margins are very favorable. Somecaution

in interpreting these results is needed, however. The margins only apply to perturbations at the
point where the loop is broken, that is, at the plant input. The closed-loop system may well be
very sensitive to perturbations at any other point.

The SISO results may be generalized to the multi-input case.Suppose that the loop gain
satisfies the return difference inequality (4.25). Assume that the loop gainL.s/ is perturbed to
W .s/L.s/, with W a stable transfer matrix. It is proved in Subsection4.7.3(p. 172) of ~ 4.7, the
appendix to this chapter, that the closed-loopremainsstable provided

RW .j!/C W T .�j!/R > R; ! 2 R: (4.37)
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If both R andW are diagonal then this reduces to

W .j!/C W T .�j!/ > I; ! 2 R: (4.38)

This shows that if thei th diagonal entryWi of W is real then it may have any value in the interval
. 1

2
;1/ without destabilizing the closed-loop system. If thei th diagonal entry isWi .j!/ D ej�

then the closed-loop system remains stable as long as the angle � is less than�
3
, that is,60ı.

Thus, the SISO results applies to each input channel separately.

4.2.8. Cross term in the performance index

In the optimal regulator problem for the stabilizable and detectable system

Px.t/ D Ax.t/C Bu.t/;

z.t/ D Dx.t/;
t � 0; (4.39)

we may consider the generalized quadratic performance index

J D
Z 1

0

�

zT.t/ uT.t/
�
�

Q S

ST R

� �

z.t/

u.t/

�

dt: (4.40)

We assume that
�

Q S

ST R

�

(4.41)

is positive-definite. Definev.t/ D u.t/C R�1STz.t/. Then minimization ofJ is equivalent to
minimizing

J D
Z 1

0

ŒzT.t/.Q � SR�1ST/z.t/C vT.t/Rv.t/� dt (4.42)

for the system

Px.t/ D .A � BR�1STD/x.t/C Bv.t/: (4.43)

The condition that (4.41) be positive-definite is equivalent to the condition that both R and
Q � SR�1ST be positive-definite (see Exercise4.6, p. 180). Thus we satisfy the conditions
of Summary4.2.1. The Riccati equation now is

ATX C XA C DTQD � .XB C DTS/R�1.BTX C STD/ D 0: (4.44)

The optimal input for the system (4.39) is u.t/ D �Fx.t/, with

F D R�1.BTX C STD/: (4.45)

4.2.9. Solution of the ARE

There are several algorithms for the solution of the algebraic Riccati equation (4.6) or (4.44).
For all but the simplest problem recourse needs to be taken tonumerical computer calculation.
Equation (4.44) is the most general form of the Riccati equation. By redefiningDTQD asQ and
DTS asS the ARE (4.44) reduces to

ATX C XA C Q � .XB C S/R�1.BTX C ST/ D 0: (4.46)
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The most dependable solution method relies on theHamiltonian matrix

H D
�

A � BR�1ST �BR�1BT

�Q C SR�1ST �.A � BR�1ST/T

�

(4.47)

associated with the LQ problem. Under the assumptions of Summary4.2.1(p. 137) or ~ 4.2.7
(p.143) the Hamiltonian matrixH has no eigenvalues on the imaginary axis. If� is an eigenvalue
of the 2n � 2n matrix H then�� is also an eigenvalue. Hence,H has exactlyn eigenvalues
with negative real part. Let the columns of the real2n � n matrix E form a basis for then-
dimensional space spanned by the eigenvectors and generalized eigenvectors ofH corresponding
to the eigenvalues with strictly negative real parts. Partition

E D
�

E1

E2

�

; (4.48)

with E1 andE2 both square. It is proved in~ 4.7.4(p. 173) that

X D E2E
�1
1 (4.49)

is the desired solution of the algebraic Riccati equation.
E may efficiently be computed by Schur decomposition (Golub and Van Loan, 1983)

H D U T U H (4.50)

of the Hamiltonian matrixH. U is unitary, that is,U U H D U HU D I . I is a unit matrix and
the superscript H denotes the complex-conjugate transpose. T is upper triangular, that is, all
entries below the main diagonal ofT are zero. The diagonal entries ofT are the eigenvalues of
H. The diagonal entries ofT may be arranged in any order. In particular, they may be ordered
such that the eigenvalues with negative real part precede those with positive real parts. Partition
U D ŒU1 U2�, whereU1 andU2 both haven columns. Then the columns ofU1 span the same
subspace as the eigenvectors and generalized eigenvectorscorresponding to the eigenvalues ofH

with negative real parts. Hence, we may takeE D U1.
This is the algorithm implemented in most numerical routines for the solution of algebraic

Riccati equations. An up-to-date account of the numerical aspects of the solution of the ARE
may be found inSima(1996).

4.2.10. Concluding remarks

The LQ paradigm would appear to be useless as a design methodology because full state feedback
is almost never feasible. Normally it simply is too costly toinstall the instrumentation needed to
measure all the state variables. Sometimes it is actually impossible to measure some of the state
variables.

In Section4.3 (p. 145) we see how instead of using state feedback control systems may be
designed based on feedback of selected output variables only. The idea is to reconstruct the state
as accurately as possible using an observer or Kalman filter.By basing feedback onestimatesof
the state several of the favorable properties of state feedback may be retained or closely recovered.

4.3. LQG Theory

4.3.1. Introduction

In this section we review what is known as LQG theory. LQG stands for Linear Quadratic Guas-
sian. By including Gaussian white noise in the LQ paradigm linear optimal feedback systems
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based onoutput feedbackrather than state feedback may be found.
We consider the system

Px.t/ D Ax.t/C Bu.t/C Gv.t/

y.t/ D Cx.t/Cw.t/

z.t/ D Dx.t/

9

=

;
t 2 R: (4.51)

Themeasured outputy is available for feedback. As in~ 2.3(p.64) the outputz is thecontrolled
output.The noise signalv models theplant disturbancesandw themeasurement noise.

The signalsv andw are vector-valued Gaussian white noise processes with

Ev.t/vT.s/ D V ı.t � s/

Ev.t/wT.s/ D 0

Ew.t/wT.s/ D W ı.t � s/

9

=

;
t; s 2 R: (4.52)

V andW are nonnegative-definite symmetric constant matrices, called theintensity matricesof
the two white noise processes. We do not go into the theory of stochastic processes in general
and that of white noise in particular, but refer to texts suchasWong(1983) andBagchi(1993).
The initial statex.0/ is assumed to be a random vector.

The various assumptions define the statex.t/, t 2 R, and the controlled outputz.t/, t 2 R, as
random processes. As a result, also the quadratic error expression

zT.t/Qz.t/C uT.t/Ru.t/; t � 0; (4.53)

is a random process. The problem of controlling the system such that the integrated expected
value

Z T

0

EŒzT.t/Qz.t/C uT.t/Ru.t/� dt (4.54)

is minimal is thestochastic linear regulator problem. The time intervalŒ0;T � at this point is
taken to be finite but eventually we consider the case thatT ! 1. At any timet the entire past
measurement signaly.s/, s � t , is assumed to be available for feedback. Figure4.4clarifies the
situation.

v

u

y

plant

w

z

Controller

Figure 4.4: LQG feedback

4.3.2. Observers

Consider the observed system

Px.t/ D Ax.t/C Bu.t/;

y.t/ D Cx.t/;
t 2 R: (4.55)
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y
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zu Plant
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Figure 4.5: Structure of an observer

This is the system (4.51) but without the state noisev and the measurement noisew. The state
x of the system (4.55) is not directly accessible because only the outputy is measured. We may
reconstruct the state with arbitrary precision by connecting anobserverof the form

POx.t/ D A Ox.t/C Bu.t/C KŒy.t/ � C Ox.t/�; t 2 R: (4.56)

The signalOx is meant to be an estimate of the statex.t/. It satisfies the state differential equation
of the system (4.55) with an additional input termKŒy.t/�C Ox.t/� on the right-hand side.K is the
observer gain matrix. It needs to be suitably chosen. Theobservation errory.t/ � C Ox.t/ is the
difference between the actual measured outputy.t/ and the outputOy.t/ D C Ox.t/ as reconstructed
from the estimated stateOx.t/. The extra input termKŒy.t/ � C Ox.t/� on the right-hand side of
(4.56) provides a correction that is active as soon as the observation error is nonzero. Figure4.5
shows the structure of the observer. Define

e.t/ D Ox.t/ � x.t/ (4.57)

as thestate estimation error. Differentiation ofe yields after substitution of (4.56) and (4.55)
that the error satisfies the differential equation

Pe.t/ D .A � KC /e.t/; t 2 R: (4.58)

If the system (4.55) is detectable then there always exists a gain matrixK such that the error
system (4.58) is stable. If the error system is stable thene.t/ ! 0 ast ! 1 for any initial error
e.0/. Hence,

Ox.t/ t!1�! x.t/; (4.59)

so that the estimated state converges to the actual state.

4.3.3. The Kalman filter

Suppose that we connect the observer

POx.t/ D A Ox.t/C Bu.t/C KŒy.t/ � C Ox.t/�; t 2 R: (4.60)

to the noisy system

Px.t/ D Ax.t/C Bu.t/C Gv.t/;

y.t/ D Cx.t/C w.t/;
t 2 R: (4.61)
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Differentiation ofe.t/ D Ox.t/ � x.t/ leads to the error differential equation

Pe.t/ D .A � KC /e.t/ � Gv.t/C Kw.t/; t 2 R: (4.62)

Owing to the two noise terms on the right-hand side the error now no longer converges to zero,
even if the error system is stable. Suppose that the error system is stable. It is proved in~ 4.7.7
(p. 176) that ast ! 1 theerror covariance matrix

Ee.t/eT.t/ (4.63)

converges to a constant steady-state valueY that satisfies the linear matrix equation

.A � KC /Y C Y .A � KC /T C GVGT C KWKT D 0: (4.64)

This type of matrix equation is known as aLyapunov equation. It is made plausible in Subsec-
tion 4.7.5that as a function of the gain matrixK the steady-state error covariance matrixY is
minimal if K is chosen as

K D Y C TW �1: (4.65)

“Minimal” means here that ifNY is the steady-state error covariance matrix correspondingto any
other observer gainNK then NY � Y . This inequality is to be taken in the sense thatNY � Y is
nonnegative-definite.

A consequence of this result is that the gain (4.65) minimizes the steady-state mean square state
reconstruction error limt!1 EeT.t/e.t/. As a matter of fact, the gain minimizes the weighted
mean square construction error limt!1 EeT.t/Wee.t/ for any nonnegative-definite weighting
matrixWe.

Substitution of the optimal gain matrix (4.65) into the Lyapunov equation (4.64) yields

AY C YAT C GVGT � Y C TW �1C Y D 0: (4.66)

This is another matrix Riccati equation. The observer

POx.t/ D A Ox.t/C Bu.t/C KŒy.t/ � C Ox.t/�; t 2 R; (4.67)

with the gain chosen as in (4.65) and the covariance matrixY the nonnegative-definite solution
of the Riccati equation (4.66) is the famousKalman filter(Kalman and Bucy, 1961).

We review several properties of the Kalman filter. They are the duals of the properties listed in
Summary4.2.1(p. 137) for the Riccati equation associated with the regulator problem6 .

Summary 4.3.1 (Properties of the Kalman filter).
Assumptions:

� The system

Px.t/ D Ax.t/C Gv.t/;

y.t/ D Cx.t/;
t 2 R; (4.68)

is stabilizable and detectable.
6The optimal regulator and the Kalman filter are dual in the following sense. Given the regulator problem of~ 4.2

(p. 136), replaceA with AT, B with C T, D with GT, Q with V , andR with W . Then the regulator Riccati equation
(4.6) becomes the observer Riccati equation (4.66), its solutionX becomesY , the state feedback gainF is the
transpose of the observer gainK, and the closed-loop system matrixA � BF is the transpose of the error system
matrix A � KC . By matching substitutions the observer problem may be transposed to a regulator problem.
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� The noise intensity matricesV andW are positive-definite.

The following facts follow from Summary4.2.1(p. 137) by duality:

1. The algebraic Riccati equation

AY C YAT C GVGT � Y C TW �1C Y D 0 (4.69)

has a unique nonnegative-definite symmetric solutionY . If the system (4.68) is control-
lable rather than just stabilizable thenY is positive-definite.

2. The minimal value of the steady-state weighted mean square state reconstruction error
lim t!1 EeT.t/Wee.t/ is7 tr Y We.

3. The minimal value of the mean square reconstruction erroris achieved by the observer
gain matrixK D Y C TW �1.

4. The error system

Pe.t/ D .A � KC /e.t/; t 2 R; (4.70)

is stable, that is, all the eigenvalues of the matrixA � KC have strictly negative real parts.
As a consequence also the observer

POx.t/ D A Ox.t/C Bu.t/C KŒy.t/� C Ox.t/�; t 2 R; (4.71)

is stable.
�

The reasons for the assumptions may be explained as follows.If the system (4.68) is not
detectable then no observer with a stable error system exists. If the system is not stabilizable
(with v as input) then there exist observers that are not stable but are immune to the state noise
v. Hence, stability of the error system is not guaranteed.W needs to be positive-definite to
prevent the Kalman filter from having infinite gain. IfV is not positive-definite then there may
be unstable modes that are not excited by the state noise and,hence, are not stabilized in the error
system.

4.3.4. Kalman filter with cross correlated noises

A useful generalization of the Kalman filter follows by assuming cross correlation of the white
noise processesv andw. Suppose that

E

�

v.t/

w.t/

�
�

vT.s/ wT.s/
�

D
�

V U

U T W

�

ı.t � s/; t; s 2 R: (4.72)

Assume that
�

V U

U T W

�

(4.73)

is positive-definite, and, as before, that the systemPx.t/ D Ax.t/ C Gv.t/, y.t/ D Cx.t/ is
stabilizable and detectable. Then the optimal observer gain is

K D .Y C T C GU /W �1; (4.74)

where the steady-state error covariance matrixY is the positive-definite solution of the Riccati
equation

AY C YAT C GVGT � .Y C T C GU /W �1.C Y C U TGT/ D 0: (4.75)
7The quantity trM D

Pm
iD1 Mi i is called thetraceof them � m matrix M with entriesMij , i; j D 1; 2; � � � ;m.
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4.3.5. Solution of the stochastic linear regulator problem

The stochastic linear regulator problem consists of minimizing

Z T

0

EŒzT.t/Qz.t/C uT.t/Ru.t/� dt (4.76)

for the system

Px.t/ D Ax.t/C Bu.t/C Gv.t/

y.t/ D Cx.t/Cw.t/

z.t/ D Dx.t/

9

=

;
t 2 R: (4.77)

We successively consider the situation of no state noise, state feedback, and output feedback.

No state noise. From~ 4.2 (p. 167) we know that if the disturbancev is absent and the state
x.t/may be directly and accurately accessed for measurement, then forT ! 1 the performance
index is minimized by the state feedback law

u.t/ D �Fx.t/; (4.78)

with the feedback gainF as in Summary4.2.1(p. 137).

State feedback. If the white noise disturbancev is present then the state and input cannot
be driven to 0, and the integrated generalized square error (4.76) does not converge to a finite
number asT ! 1. It is proved in Subsection4.7.6(p. 175) that the state feedback law (4.78)
minimizes therateat which (4.76) approaches1, that is, it minimizes

lim
T !1

1

T

Z T

0

EŒzT.t/Qz.t/C uT.t/Ru.t/� dt: (4.79)

This limit equals thesteady-state mean square error

lim
t!1

EŒzT.t/Qz.t/C uT.t/Ru.t/�: (4.80)

Hence, the state feedback law minimizes the steady-state mean square error.

Output feedback. We next consider the situation that the statecannotbe accessed for mea-
surement. The state may be optimally estimated, however, with the help of the Kalman filter.
Then the solution of the stochastic linear regulator problem with output feedback(rather than
state feedback) is to replace the statex.t/ in the state feedback law (4.78) with the estimated
state Ox.t/. Thus, the optimal controler is given by

POx.t/ D A Ox.t/C Bu.t/C KŒy.t/� C Ox.t/�;
u.t/ D �F Ox.t/; t 2 R: (4.81)

The controller minimizes the steady-state mean square error (4.80) under output feedback. The
feedback gainF and the observer gainK follow from Summaries4.2.1(p.137) and4.3.1(p.148),
respectively. Figure4.6shows the arrangement of the closed-loop system.

Using the estimated state as if it were the actual state is known ascertainty equivalence.
It divorces state estimation and control input selection. This idea is often referred to as the
separation principle.
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Figure 4.6: Observer based feedback control

The closed-loop system that results from interconnecting the plant (4.77) with the compensator
(4.81) is stable—under the assumptions of Summaries4.2.1and4.3.1, of course. This is most
easily recognized as follows. Substitution ofu.t/ D �F Ox.t/ into Px.t/ D Ax.t/CBu.t/CGv.t/

yields with the further substitutionOx.t/ D x.t/C e.t/

Px.t/ D .A � BF/x.t/ � BFe.t/C Gv.t/: (4.82)

Together with (4.62) we thus have
�

Px.t/
Pe.t/

�

D
�

A � BF �BF

0 A � KC

� �

x.t/

e.t/

�

C
�

Gv.t/

�Gv.t/C Kw.t/

�

: (4.83)

The eigenvalues of this system are the eigenvalues of the closed-loop system. Inspection shows
that these eigenvalues consist of the eigenvalues ofA�BF (theregulator poles) together with the
eigenvalues ofA � KC (theobserver poles). If the plant (4.77) has ordern then the compensator
also has ordern. Hence, there are2n closed-loop poles.

4.3.6. Asymptotic analysis and loop transfer recovery

In this subsection we study the effect of decreasing the intensity W of the measurement noise.
Suppose thatW D �W0, with W0 a fixed symmetric positive-definite weighting matrix and�
a positive number. We investigate the asymptotic behavior of the closed-loop system as� # 0.
Before doing this we need to introduce two assumptions:

� The disturbancev is additive to the plant inputu, that is,G D B. This allows the tightest
control of the disturbances.

� The open-loop plant transfer matrixC.sI �A/�1B is square, and its zeros all have negative
real parts.

Breaking the loop at the plant input as in Fig.4.7we obtain the loop gain

L� .s/ D Ce.s/P .s/ D F.sI � A C BF C K�C /�1K�C.sI � A/�1B: (4.84)

(Compare Exercise4.11, p. 181.) To emphasize the dependence on� the observer gain and the
loop gain are each provided with a subscript. As� # 0 the gainK� approaches1. At the same
time the error covariance matrixY� approaches the zero matrix. This is the dual of the conclusion
of Subsection4.2.6(p. 140) that the state feedback gainF goes to1 and the solutionX of the
Riccati equation approaches the zero matrix as the weight onthe input decreases.

The fact thatY� # 0 indicates that in the limit the observer reconstructs the state with complete
accuracy. It is proved in~ 4.7.7(p.176) that as� # 0 the loop gainL� approaches the expression

L0.s/ D F.sI � A/�1B: (4.85)
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Figure 4.7: Breaking the loop

The asymptotic loop gainL0 is precisely the loop gain for full state feedback. Accordingly, the
guaranteed gain and phase margins of Subsection~ 4.2.7(p. 143) are recouped. This is called
loop transfer recovery(LTR).

The term loop transfer recovery appears to have been coined by Doyle and Stein(1981). Ex-
tensive treatments may be found inAnderson and Moore(1990) andSaberi et al.(1993). We use
the method in the design examples of~ 4.6(p. 155).

4.4. H2 optimization

4.4.1. Introduction

In this section we define the LQG problem as a special case of a larger class of problems, which
has become known asH2 optimization. Most importantly, this approach allows to remove the
stochastic ingredient of the LQG formulation. In many applications it is difficult to establish the
precise stochastic properties of disturbances and noise signals. Very often in the application of
the LQG problem to control system design the noise intensitiesV andW play the role ofdesign
parametersrather than that they model reality.

The stochastic element is eliminated by recognizing that the performance index for the LQG
problem may be represented as asystem norm—theH2-norm. To introduce this point of view,
consider the stable system

Px.t/ D Ax.t/C Bv.t/;

y.t/ D Cx.t/;
t 2 R: (4.86)

The system has the transfer matrixH.s/ D C.sI � A/�1B. Suppose that the signalv is white
noise with covariance functionEv.t/vT.s/ D V ı.t � s/. Then the outputy of the system is a
stationary stochastic process with spectral density matrix

Sy.f / D H.j2�f /VH T.�j2�f /; f 2 R: (4.87)

As a result, the mean square output is

EyT.t/y.t/ D tr
Z 1

�1
Sy.f / df D tr

Z 1

�1
H.j2�f /VH Ï.j2�f / df: (4.88)

Here we introduce the notationH Ï.s/ D H T.�s/. The quantity

kHk2 D
s

tr
Z 1

�1
H.j2�f /H Ï.j2�f / df D

s

1

2�
tr
Z 1

�1
H.j!/H Ï.j!/ d! (4.89)
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Figure 4.8: Feedback system with stochastic inputs and outputs

is called theH2-norm of the system. If the white noisev has intensityV D I then the mean
square outputEyT.t/y.t/ equals precisely the square of theH2-norm of the system.
H2 refers to the space of square integrable functions on the imaginary axis whose inverse

Fourier transform is zero for negative time.

4.4.2. H2 optimization

In this subsection we rewrite the time domain LQG problem into an equivalent frequency domain
H2 optimization problem. While the LQG problem requires statespace realizations, theH2-
optimization problem is in terms of transfer matrices. To simplify the expressions to come we
assume thatQ D I andR D I , that is, the LQG performance index is

lim
t!1

EŒzT.t/z.t/C uT.t/u.t/�: (4.90)

This assumption causes no loss of generality because by scaling and transforming the variables
z andu the performance index may always be brought into this form.

For the open-loop system

Px D Ax C Bu C Gv; (4.91)

z D Dx; (4.92)

y D Cx C w (4.93)

we have in terms of transfer matrices

z D D.sI � A/�1G
„ ƒ‚ …

P11.s/

v C D.sI � A/�1B
„ ƒ‚ …

P12.s/

u; (4.94)

y D C.sI � A/�1G
„ ƒ‚ …

P21.s/

v C C.sI � A/�1B
„ ƒ‚ …

P22.s/

u C w: (4.95)

Interconnecting the system as in Fig.4.8 with a compensatorCe we have the signal balance
u D �Cey D �Ce.P21v C P22u C w/, so that

u D �.I C CeP22/
�1CeP21

„ ƒ‚ …

H21.s/

v�.I C CeP22/
�1Ce

„ ƒ‚ …

H22.s/

w: (4.96)

Fromz D P11v C P12u we obtain

z D P11 � P12.I C CeP22/
�1CeP21

„ ƒ‚ …

H11.s/

v�P12.I C CeP/
�1Ce

„ ƒ‚ …

H12.s/

w: (4.97)
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A more compact notation is
�

z

u

�

D
�

H11.s/ H12.s/

H21.s/ H22.s/

�

„ ƒ‚ …

H.s/

�

v

w

�

: (4.98)

From this we find for the steady-state mean square error

lim
t!1

E
�

zT.t/z.t/C uT.t/u.t/
�

D lim
t!1

E
�
�

z.t/

u.t/

�T �
z.t/

u.t/

�
�

(4.99)

D tr
Z 1

�1
H.j2�f /H Ï.j2�f / df (4.100)

D kHk2
2: (4.101)

Hence, solving the LQG problem amounts to minimizing theH2 norm of the closed-loop system
of Fig. 4.8with .v; w/ as input and.z;u/ as output.

The configuration of Fig.4.8 is a special case of the configuration of Fig.4.9. In the latter
diagramw is theexternal input(v andw in Fig. 4.8). The signalz is theerror signal,which
ideally should be zero (z and u in Fig. 4.8). Furthermore,u is the control input,and y the
observed output.The blockG is thegeneralized plant, andCe the compensator. Note that the
sign reversion at the compensator input in Fig.4.8has been absorbed into the compensatorCe.

G

Ce

wz

uy

Figure 4.9: The standardH2 problem

4.4.3. The standard H2 problem and its solution

The standardH2 optimization problem is the problem of choosing the compensatorCe in the
block diagram of Fig.4.9such that it

1. stabilizes the closed-loop system, and

2. minimizes theH2-norm of the closed-loop system (withw as input andz as output).

We represent the generalized plantG of Fig. 4.9 in state space form as

Px.t/ D Ax.t/C B1w.t/C B2u.t/; (4.102)

z.t/ D C1x.t/C D11w.t/C D12u.t/; (4.103)

y.t/ D C2x.t/C D21w.t/C D22u.t/: (4.104)

The H2 problem may be solved by reducing it to an LQG problem. This isdone in~ 4.7.8
(p. 177). The derivation necessitates the introduction of some assumptions, which are listed in
the summary that follows. They are natural assumptions for LQG problems.
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Summary 4.4.1 (Solution of the H2 problem). Consider the standardH2 optimization prob-
lem for the generalized plant

Px.t/ D Ax.t/C B1w.t/C B2u.t/; (4.105)

z.t/ D C1x.t/ C D12u.t/; (4.106)

y.t/ D C2x.t/C D21w.t/C D22u.t/: (4.107)

Assumptions:

� The systemPx.t/ D Ax.t/C B2u.t/, y.t/ D C2x.t/ is stabilizable and detectable.

� The matrix
�

A�sI B1
C2 D21

�

has full row rank for everys D j!, andD21 has full row rank.

� The matrix
�

A�sI B2
C1 D12

�

has full column rank for everys D j!, andD12 has full column
rank.

Under these assumptions the optimal output feedback controller u D Cey is

POx.t/ D A Ox.t/C B2u.t/C KŒy.t/ � C2 Ox.t/ � D22u.t/� (4.108)

u.t/ D �F Ox.t/: (4.109)

The observer and state feedback gain matrices are

F D .DT
12D12/

�1.BT
2 X C DT

12C1/; K D .Y C T
2 C B1D

T
21/.D21DT

21/
�1: (4.110)

The symmetric matricesX and Y are the unique positive-definite solutions of the algebraic
Riccati equations

ATX C XA C C T
1 C1 � .XB2 C C T

1 D12/.D
T
12D12/

�1.BT
2 X C DT

12C1/ D 0;

AY C AY T C B1B
T
1 � .Y C T

2 C B1D
T
21/.D21D

T
21/

�1.C2Y C D21BT
1 / D 0:

(4.111)

�

The condition thatD12 has full column rank means that there is “direct feedthrough” from the
inputu to the error signalz. Dually, the condition thatD21 has full row rank means that the some
noisew is directly fed through to the observed outputy.

TheH2 optimization problem and its solution are discussed at length in Saberi et al.(1995). In
~~ 4.5 (p. 155) and4.6 (p. 161) we discuss the application ofH2 optimization to control system
design.

4.5. Feedback system design by H2 optimization

4.5.1. Introduction

In this section we review how LQG andH2 optimization may be used to design SISO and MIMO
linear beedback systems.
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4. LQ, LQG andH2 Control System Design

4.5.2. Parameter selection for the LQG problem

We discuss how to select the design parameters for the LQG problem without a cross term in the
performance index and without cross correlation between the noises. The LQG problem consists
of the minimization of

lim
t!1

EŒzT.t/Qz.t/C uT.t/Ru.t/� (4.112)

for the system

Px.t/ D Ax.t/C Bu.t/C Gv.t/

z.t/ D Dx.t/

y.t/ D Cx.t/Cw.t/

9

=

;
t 2 R: (4.113)

Important design parameters are the weighting matricesQ andR and the intensitiesV andW .
In the absence of specific information about the nature of thedisturbances also the noise input
matrix G may be viewed as a design parameter. Finally there usually issome freedom in the
selection of the control outputz; this means that also the matrixD may be considered a design
parameter.

We discuss some rules of thumb for selecting the design parameters. They are based on the
assumption that we operate in the asymptotic domain where the weighting matricesR (the weight
on the input) andW (the measurement noise intensity) are small.

1. First the parametersD, Q andR for the regulator part are selected. These quantities
determine the dominant characteristics of the closed-loopsystem.

a) D determines the controlled outputz. Often the controlled outputz is also the mea-
sured outputy. The case wherez is noty is calledinferential control. There may be
compelling engineering reasons for selectingz different fromy.

b) In the SISO caseQ may be chosen equal to 1.

In the MIMO caseQ is best chosen to be diagonal according to the rules of~ 4.2.3
(p. 138).

c) In the SISO caseR is a scalar design parameter. It is adjusted by trial and error until
the desired bandwidth is achieved (see also~ 4.2.6, p.140)).

In the MIMO case one may letR D �R0, where the fixed matrixR0 is selected
according to the rules of~ 4.2.3 (p. 138) and� is selected to achieve the desired
bandwidth.

2. Next, the design parameters for theobserver partare determined. They are chosen to
achieve loop transfer recovery, as described in~ 4.3.6(p. 151).

a) To take advantage of loop transfer recovery we need to takeG D B. LTR is only
effective if the open-loop transfer functionP .s/ D C.sI � A/�1B has no right-
half plane zeros, or only has right-half plane zeros whose magnitudes are sufficiently
much greater than the desired bandwidth.

b) In the SISO case we letV D 1.

In the MIMO case we may selectV to be diagonal by the “dual” of the rules of
~ 4.2.3(p. 138). This amounts to choosing each diagonal entry ofV proportional
to the inverse of the square root of the amplitude of the largest disturbance that may
occur at the corresponding input channel.
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c) In the SISO caseW is a scalar parameter that is chosen small enough to achieve
loop transfer recovery. Asymptotically the finite observerpoles are the zeros of
detC.sI � A/�1B. These closed-loop poles correspond to canceling pole-zero pairs
between the plant and the compensator. The far-away observer poles determine the
bandwidth of the compensator and the high-frequency roll-off frequency for the com-
plementary sensitivity. The magnitude of the dominant observer poles should be per-
haps a decade larger than the magnitude of the dominant regulator poles.
In the MIMO case we letW D �W0. W0 is chosen diagonally with each diagonal
entry proportional to the inverse of the square root of the largest expected measure-
ment error at the corresponding output channel. The scalar� is chosen small enough
to achieve LTR.

Ce P
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+++
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Figure 4.10: Block diagram for loop recovery design

4.5.3. H2 Interpretation

In this subsection we discuss the interpretation of the LQG problem as anH2 optimization prob-
lem.

If we chooseG D B to take advantage of loop transfer recovery then the open-loop equations
(4.94–4.95) may be rewritten as

z D R.s/.u C v/; (4.114)

y D P .s/.u C v/C w; (4.115)

where

P .s/ D C.sI � A/�1B; R.s/ D D.sI � A/�1B: (4.116)

The corresponding block diagram is represented in Fig.4.10. If P is invertible then by block
diagram substitution Fig.4.10may be redrawn as in Fig.4.11, whereW0 D RP�1. In the case
of non-inferential controlW0 D I .

We consider the frequency domain interpretation of the arrangement of Fig.4.11. By setting
up two appropriate signal balances it is easy to find that

z D W0SPv � W0Tw; (4.117)

u D �T 0v � Uw: (4.118)

Here

S D .I C PCe/
�1; T D .I C PCe/

�1PCe; (4.119)

T 0 D .I C CeP /
�1CeP; U D Ce.I C PCe/

�1: (4.120)
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Figure 4.11: Equivalent block diagram

S is the sensitivity matrix,T the complementary sensitivity matrix, andU the input sensitivity
matrix. T 0 is the complementary sensitivity function if the loop is broken at the plant input
rather than at the plant output. In the SISO caseT 0 D T . From (4.117–4.118) we find for the
performance index

kHk2
2 D tr

Z 1

�1
.W0SPPÏSÏW Ï

0 C W0T T ÏW Ï

0 C T 0T 0Ï C U U Ï/ df: (4.121)

The argument j2�f is omitted from each term in the integrand. Inspection reveals that the
performance index involves a trade-off of the sensitivityS , the complementary sensitivitiesT
andT 0, and the input sensitivityU . The importance given to each of the system functions depends
onW0 andP , which act as frequency dependent weighting functions.

The weighting functions in (4.121) arise from the LQG problem and are not very flexible. For
more freedom we generalize the block diagram of Fig.4.11to that of Fig.4.12. V1 andV2 are
shaping filters andW1 andW2 weighting filters that may be used to modify the design. It is not
difficult to establish that

z1 D W1SPV1v � W1T V2w; (4.122)

z2 D �W2T
0V1v � W2U V2w: (4.123)

As a result, the performance index now takes the form

kHk2
2 D tr

Z 1

�1
.W1SPV1V

Ï

1 PÏSÏW Ï

1 C W1T V2V
Ï

2 T ÏW Ï

1

C W2T 0V1V
0Ï

1 T 0ÏW Ï

2 C W2U V2V
Ï

2 U ÏW Ï

2 / df: (4.124)

In the next subsections some applications of this generalized problem are discussed.

4.5.4. Design for integral control

There are various ways to obtain integrating action in the LQG framework. We discuss a solu-
tion that follows logically from the frequency domain interpretation (4.124). For simplicity we
only consider the SISO case. For the MIMO case the idea may be carried through similarly by
introducing integrating action in each input channel as forthe SISO case.

Integral control aims at suppressing constant disturbances, which requires makingS.0/ D 0.
If the system has no natural integrating action then integrating action needs to be introduced in
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Figure 4.12: Generalized configuration

the compensator. Inspection of (4.124) shows that takingV1.0/ D 1 forcesS.0/ to be zero—
otherwise the integral cannot be finite. Hence, we takeV1 as a rational function with a pole at 0.
In particular, we let

V1.s/ D s C ˛

s
: (4.125)

V1 may be seen as a filter that shapes the frequency distributionof the disturbance. The positive
constant̨ models the width of the band over which the low-frequency disturbance extends.

Further inspection of (4.124) reveals that the functionV1 also enters the third term of the
integrand. In the SISO case the factorT 0 in this term reduces toT . If S.0/ D 0 then by
complementarityT .0/ D 1. This means that this third term is infinite at frequency 0,unlessW2

has a factors that cancels the corresponding factors in the numerator ofV1. This has a clear
interpretation: If the closed-loop system is to suppress constant disturbances then we need to
allow constant inputs—hence we needW2.0/ D 0.

More in particular we could take

W2.s/ D s

s C ˛
W2o.s/; (4.126)

whereW2o remains to be chosen but usually is taken constant. This choice of W2 reduces the
weight on the input over the frequency band where the disturbances are large. This allows the
gain to be large in this frequency band.

A practical disadvantage of chooosingV1 as in (4.125) is that it makes the open-loop sys-
tem unstabilizable, because of the integrator outside the loop. This violates one of the assump-
tions of ~ 4.4.3 (p. 154) required for the solution of theH2 problem. The difficulty may be
circumvented by a suitable partitioning of the state space and the algebraic Riccati equations
(Kwakernaak and Sivan, 1972). We prefer to eliminate the problem by the block diagram sub-
stitutions (a)! (b) ! (c) of Fig. 4.13. The end result is that an extra factorsC˛

s
is included

in both the plant transfer function and the weighting function for the input. The extra factor in
the weighting function on the input cancels against the factor s

sC˛ that we include according to
(4.126). W2o remains.

Additionally an extra factor s
sC˛ is included in the compensator. If the modified problem leads
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Figure 4.13: Block diagram substitutions for integral control (a)!(b)!(c)

to an optimal compensatorC0 then the optimal compensator for the original problem is

C.s/ D s C ˛

s
C0.s/: (4.127)

This compensator explicitly includes integrating action.
Note that by the block diagram substitutions this method of obtaining integral control comes

down to including an integrator in the plant. After doing thedesign for the modified plant the
extra factor is moved over to the compensator. This way of ensuring integrating action is called
the integrator in the loopmethod. We apply it in the example of~ 4.6.3(p. 163). The method is
explained in greater generality in~ 6.7(p. 258) in the context ofH1 optimization.

4.5.5. High-frequency roll-off

Solving the LQG problems leads to compensators with a strictly proper transfer matrix. This
means that the high-frequency roll-off of the compensator and of the input sensitivity is 1
decade/decade (20 dB/decade). Correspondingly the high-frequency roll-off of the complemen-
tary sensitivity is at least 1 decade/decade. For some applications it may be desirable to have a
steeper high-frequency roll-off. Inspection of (4.124) shows that extra roll-off may be imposed by
letting the weighting functionW2 increasewith frequency. Consider the SISO case and suppose
thatV2.s/ D 1. Let

W2.s/ D �.1 C rs/; (4.128)

with r a positive constant. Then by inspecting the fourth term in the integrand of (4.124) we
conclude that the integral can only converge if at high frequencies the input sensitivityU , and,
hence, also the compensator transfer functionCe, rolls off at at least 2 decades/decade.
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Figure 4.14: Block diagram substitution for high-frequency roll-off

The difficulty that there is no state space realization for the blockW2 with the transfer function
(4.128) may be avoided by the block diagram substitution of Fig.4.14. If the modified problem
is solved by the compensatorC0 then the optimal compensator for the original problem is

Ce.s/ D C0.s/

W2.s/
D C0.s/

�.1 C rs/
: (4.129)

The extra roll-off is apparent. Even more roll-off may be obtained by lettingW2.s/ D O.sm/ as
jsj ! 1, with m � 2.

For a more general exposition of the block diagram substitution method see~ 6.7(p. 258).

4.6. Examples and applications

4.6.1. Introduction

In this section we present two design applications ofH2 theory: A simple SISO system and a not
very complicated MIMO system.

4.6.2. LQG design of a double integrator plant

We consider the double integrator plant

P .s/ D 1

s2
: (4.130)
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Figure 4.15: Loci of the closed-loop poles

The design target is a closed-loop system with a bandwidth of1 rad/s. Because the plant has a
natural double integration there is no need to design for integral control and we expect excel-
lent low-frequency characteristics. The plant has no right-half zeros that impair the achievable
performance. Neither do the poles.

In state space form the system may be represented as

Px D
�

0 1

0 0

�

„ ƒ‚ …

A

x C
�

0

1

�

„ƒ‚…

B

u; y D
�

1 0
�

„ƒ‚…

C

x: (4.131)

Completing the system equations we have

Px D Ax C Bu C Gv; (4.132)

y D Cx C w; (4.133)

z D Dx: (4.134)

We choose the controlled variablez equal to the measured variabley. so thatD D C . To profit
from loop transfer recovery we letG D B. In the SISO case we may chooseQ D V D 1

without loss of generality. Finally we writeR D � andW D � , with the constants� and� to be
determined.

We first consider the regulator design. In the notation of~ 4.2.6(p. 140) we havek D 1,
 .s/ D 1 and�ol.s/ D s2. It follows from (4.32) that the closed-loop characteristic polynomial
�cl for state feedback satisfies

�cl.�s/�cl.s/ D �ol.�s/�ol.s/C k2

�
 .�s/ .s/ D s4 C 1

�
: (4.135)

The roots of the polynomial on the right-hand side are1
2

p
2.˙1 ˙ j/=�

1
4 . To determine the

closed-loop poles we select those two roots that have negative real parts. They are given by

1

2

p
2.�1 ˙ j/=�

1
4 : (4.136)

Figure4.15shows the loci of the closed-loop poles as� varies. As the magnitude of the closed-
loop pole pair is1=�

1
4 the desired bandwidth of 1 rad/s is achieved for� D 1.
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We next turn to the observer design. By Exercise4.8(c) (p. 180) the observer characteristic
polynomial�f satisfies

�f .�s/�f .s/ D �ol.s/�ol.�s/Œ1 C 1

�
M.s/M.�s/� D s4 C 1

�4
; (4.137)

whereM.s/ D C.sI �A/�1G D 1=s2 and�ol.s/ D s2. This expression is completely similar to
that for the regulator characteristic polynomial, and we conclude that the observer characteristic
values are

1

2

p
2.�1 ˙ j/=�

1
4 : (4.138)

By the rule of thumb of~ 4.5.2(p. 156) we choose the magnitude1=�
1
4 of the observer pole pair

10 times greater than the bandwidth, that is, 10 rad/s. It follows that� D 0:0001.
By numerical computation8 it is found that the optimal compensator transfer function is

Ce.s/ D 155:6.s C 0:6428/

s2 C 15:56s C 121:0
: (4.139)

This is a lead compensator.
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Figure 4.16: Sensitivity function and complementary sensitivity function for
theH2 design

Figure4.16shows the magnitude plots of the sensitivity and complementary sensitivity func-
tions for� D :01, � D :0001 and� D :000001. The smaller� is the better loop transfer is
recovered. Since the high-frequency roll-off of the complementary sensitivity of 40 dB/decade
sets in at the angular frequency1=�

1
4 it is advantageous not to choose� too small. Taking�

large, though, results in extra peaking at crossover. The value � D :0001 seems a reasonable
compromise. Figure4.17gives the closed-loop step response. The value� D :000001 gives the
best response but that for� D :0001 is very close.

4.6.3. A MIMO system

As a second example we consider the two-input two-output plant with transfer ma-
trix (Kwakernaak, 1986)

P .s/ D

2

4

1
s2

1
s C 2

0 1
s C 2

3

5 : (4.140)

8This may be done very conveniently with MATLAB using the Control Toolbox (Control Toolbox, 1990).
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Figure 4.17: Closed-loop step response for theH2 design

Figure4.18shows the block diagram. The plant is triangularly coupled.It is easy to see that it
may be represented in state space form as

Px D

2

4

0 1 0

0 0 0

0 0 �2

3

5

„ ƒ‚ …

A

x C

2

4

0 0

1 0

0 1

3

5

„ ƒ‚ …

B

u; y D
�

1 0 1

0 0 1

�

„ ƒ‚ …

C

x: (4.141)

The first two components of the state represent the block1=s2 in Fig.4.18, and the third the block
1=.s C 2/.

s+2

u1

u2 y2

y1
+

+

1

1

s2

Figure 4.18: MIMO system

The plant has no right-half plane poles or zeros, so that there are no fundamental limitations to
its performance. We aim at a closed-loop bandwidth of 1 rad/son both channels, with good low-
and high-frequency characteristics.

We complete the system description to

Px D Ax C Bu C Gv; (4.142)

y D Cx C w; (4.143)

z D Dx: (4.144)

To take advantage of loop transfer recovery we letG D B. As the controlled outputz is available
for feedback we haveD D C . Assuming that the inputs and outputs are properly scaled we
choose

Q D I; R D �I; V D I; W D �I; (4.145)
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Figure 4.19: Loci of the regulator poles

with the positive scalars� and� to be determined. First we consider the design of the regulator
part, which determines the dominant characteristics. By numerical solution of the appropriate
algebraic Riccati equation for a range of values of� we obtain the loci of closed-loop poles of
Fig. 4.19. As � decreases the closed-loop poles move away from the double open-loop pole at
0 and the open-loop pole at�2. For� D 0:8 the closed-loop poles are�2:5424 and�:7162 ˙
j :7034. The latter pole pair is dominant with magnitude1:0038, which is the correct value for a
closed-loop bandwidth of 1 rad/s.

Next we consider the loci of the optimal observer poles as a function of� . Like in the double
integrator example, they are identical to those of the regulator poles.. Again following the rule
that the dominant observer poles have magnitude 10 times that of the dominant regulator poles
we let� D 5 � 10�5. This results in the optimal observer poles�200:01 and�7:076 ˙ j 7:067.
The latter pole pair has magnitude10. Using standard software theH2 solution may now be
found. Figure4.20shows the magnitudes of the four entries of the resulting2 � 2 sensitivity
matrixS .

The attenuation of disturbances that enter the system at thefirst output correponds to the
entriesS11 andS21 and is quite adequate, thanks to the double integrator in thecorresponding
input channel. The attenuation of disturbances that affectthe second output (represented byS12

andS22) is disappointing, however. The reason is that the low-frequency disturbances generated
by the double integrator completely dominate the disturbances generated in in the other channel.

We improve the performance of the second channel by introducing integrating action. Appli-
cation of the integrator-in-the-loop method of~ 4.5.4(p.158) amounts to including an extra block

s C ˛

s
(4.146)

in the second channel, as indicated in Fig.4.21. After completion of the design the extra block
is absorbed into the compensator. Representing the extra block by the state space realization
Px4 D u0

2, u2 D ˛x4 C u0
2 we obtain the modified plant

Px D

2

6
6
4

0 1 0 0

0 0 0 0

0 0 �2 ˛

0 0 0 0

3

7
7
5

„ ƒ‚ …

A

x C

2

6
6
4

0 0

1 0

0 1

0 1

3

7
7
5

„ ƒ‚ …

B

u; y D
�

1 0 1 0

0 0 1 0

�

„ ƒ‚ …

C

x: (4.147)

The inputu now has the componentsu1 andu0
2, andx has the componentsx1, x2, x3, andx4.
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Figure 4.20: Magnitudes of the entries of the sensitivity matrix S
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Figure 4.21: Expanded plant for integrating action in the second channel
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Figure 4.22: Loci of the regulator poles of the extended system

Again we letD D C , G D B, Q D V D I , R D �I andW D �I , with � and� to be
determined. We choosęD 1 so that the low-frequency disturbance at the second input channel
extends up to the desired bandwidth. Figure4.22shows the loci of the regulator poles with� as
parameter. Three of the loci move out to1 from the open-loop poles 0, 0, and�2. The fourth
moves out from the open-loop pole at 0 to the open-loop zero at�˛ D �1. For � D 0:5 the
regulator poles are�2:7200, �0:8141 ˙ j 0:7394 and�0:6079. The latter pole turns out to be
nondominant. The pole pair�0:8141 ˙ j 0:7394, which has magnitude 1.0998, determines the
bandwidth.

The loci of the optimal observer poles are again identical tothose for the regulator poles. For
� D 5 � 10�5 the observer poles are�200:01, �7:076 ˙ j 7:067 and�1. The latter pole is
nondominant and the pole pair�7:076 ˙ j 7:067 has magnitude10.

Figure4.23shows the magnitudes of the four entries of the sensitivity and complementary
sensitivity matricesS andT that follow for� D :5 and� D 5 � 10�5. The results are now much
more acceptable.

Note that the off-diagonal entries ofS andT are small (though less so in the crossover re-
gion). This means that the feedback compensator to an extentachieves decoupling. This is a
consequence of the high feedback gain at low frequencies. Infinite gain at all frequencies with
unit feedback would make the closed-loop transfer matrix equal to the unit matrix, and, hence,
completely decouple the system. The decoupling effect is also visible in Fig.4.24, which shows
the entriessij , i; j D 1; 2 of the closed-loop response to unit steps on the two inputs.

4.7. Appendix: Proofs

In this appendix we provide sketches of several of the proofsfor this chapter.

4.7.1. Outline of the solution of the regulator problem

We consider the problem of minimizing

Z 1

0
ŒzT.t/Qz.t/C uT.t/Ru.t/� dt (4.148)

for the stabilizable and detectable system

Px.t/ D Ax.t/ C Bu.t/; z.t/ D Dx.t/: (4.149)
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Lyapunov equation. We first study how to compute the quantity

Z t1

0
xT.s/Q.s/x.s/ ds C xT.t1/X1x.t1/ (4.150)

for solutions of the time-varying state differential equation Px.t/ D A.t/x.t/. Q.t/ is a time-dependent
nonnegative-definite symmetric matrix andX1 is a nonnegative-definite symmetric matrix. Substitution of
x.s/ D ˚.s; 0/x.0/, with˚ the state transition matrix of the system, yields

Z t1

0
xT.s/Q.s/x.s/ ds C xT.t1/X1x.t1/

D xT.0/

�Z t1

0
˚T.s; 0/Q.s/˚.s; 0/ ds C ˚T.t1; 0/X1˚.t1; 0/

�

x.0/:

(4.151)

Define the time-dependent matrix

X.t/ D
Z t1

t
˚T.s; t/Q.s/˚.s; t/ ds C ˚T.t1; t/X1˚.t1; t/: (4.152)

Then
Z t1

0
xT.s/Q.s/x.s/ ds C xT.t1/X1x.t1/ D xT.0/X.0/x.0/: (4.153)

Differentiation ofX.t/ with respect tot using @
@t
˚.s; t/ D ˚.s; t/A.t/ shows thatX.t/ satisfies the matrix

differential equation and terminal condition

� PX .t/ D AT.t/X.t/C X.t/A.t/ C Q.t/; X.t1/ D X1: (4.154)

This equation is aLyapunov matrix differential equation. If A is constant and stable andR is constant then
ast1 ! 1 the matrixX.t/ approaches a constant nonnegative-definite matrixNX that is independent ofX1

and is the unique solution of thealgebraic Lyapunov equation

0 D AT NX C NXA C Q: (4.155)

Solution of the regulator problem. We consider how to determine the time-dependent gainF.t/

such that the state feedbacku.t/ D �F.t/x.t/, 0 � t � t1, minimizes the performance criterion

Z t1

0
ŒzT.t/Qz.t/C uT.t/Ru.t/� dt C xT.t1/X1x.t1/

D
Z t1

0
xT.t/

�

DTQD C FT.t/RF.t/
�

x.t/ dt C xT.t1/X1x.t1/

(4.156)

for the systemPx.t/ D Ax.t/C Bu.t/ D ŒA � BF.t/�x.t/. X1 is a nonnegative-definite symmetric matrix.
It follows that

Z 1

0
ŒzT.t/Qz.t/C uT.t/Ru.t/� dt C xT.t1/X1x.t1/ D xT.0/X.0/x.0/; (4.157)

whereX.t/ is the solution of

� PX .t/ D ŒA � BF.t/�TX.t/C X.t/ŒA � BF.t/�C DTQD C FT.t/RF.t/; (4.158)

X.t1/ D X1. Completion of the square on the right-hand side (with respect toF.t/ results in

� PX .t/ D ŒF.t/ � R�1BTX.t/�TRŒF.t/ � R�1BTX.t/�

C ATX.t/C X.t/A C DTQD � X.t/BR�1BTX.t/; X.t1/ D X1: (4.159)
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Tracing the solutionX.t/ backwards fromt1 to 0 we see that at each timet the least increase ofX.t/ results
if the gainF.t/ is selected as

F.t/ D �R�1BTX.t/: (4.160)

Correspondingly, (4.159) reduces to thematrix differential Riccati equation

� PX .t/ D ATX.t/C X.t/A C DTQD � X.t/BR�1BTX.t/; X.t1/ D X1: (4.161)

If the system is stabilizable then the minimum of the performance criterion on the left-hand side of (4.156)
is a nonincreasing function of the terminal timet1. Because it is bounded from below (by 0) the criterion has
a well-defined limit ast1 ! 1. Hence, alsoX.t/ has a well-defined limit ast1 ! 1. Because of the time
independence of the system this limitNX is independent oft . The limit is obviously nonnegative-definite,
and satisfies the algebraic Riccati equation

0 D AT NX C NXA C DTQD � NXBR�1BT NX : (4.162)

Correspondingly the optimal feedback gain is time-invariant and equal to

F D �R�1BT NX : (4.163)

The left-hand side of (4.156) can only converge to a finite limit ifz.t/ D Dx.t/ ! 0 as t ! 1. By
detectability this implies thatx.t/ ! 0, that is, the closed-loop system is stable. If the system is observable
then NX is positive-definite; otherwise there exist nonzero initial states such thatz.t/ D Dx.t/ D 0 for
t � 0.

4.7.2. Kalman-Yakubovi č-Popov equality

The Kalman-Yakubovič-Popov equality is a generalizationof the return difference equality that we use in
~ 4.2.5(p. 139). The KYP equality establishes the connection between factorizations and algebraic Riccati
equations.

Summary 4.7.1 (Kalman-Yakubovi č-Popov equality). Consider the linear time-invariant systemPx.t/ D
Ax.t/C Bu.t/, y.t/ D Cx.t/C Du.t/, with transfer matrixG.s/ D C.sI � A/�1B C D, and letQ and
R be given symmetric constant matrices. Suppose that the algebraic matrix Riccati equation

0 D ATX C XA C C TQC � .XB C C TQD/.DTQD C R/�1.BTX C DTQC / (4.164)

has a symmetric solutionX . Then

R C GÏ.s/QG.s/ D J Ï.s/RDJ.s/: (4.165)

The constant symmetric matrixRD and the rational matrix functionJ are given by

RD D R C DTQD; J.s/ D I C F.sI � A/�1B; (4.166)

with F D R�1
D .BTX C DTQC /. The zeros of the numerator of detJ are the eigenvalues of the matrix

A � BF . �

We use the notationGÏ.s/ D GT.�s/.
The KYP equality arises in the study of the regulator problemfor the systemPx.t/ D Ax.t/ C Bu.t/,

y.t/ D Cx.t/C Du.t/, with the criterion
Z 1

0
ŒyT.t/Qy.t/ C uT.t/Ru.t/� dt: (4.167)

The equation (4.164) is the algebraic Riccati equation associated with this problem, andu.t/ D �Fx.t/ is
the corresponding optimal state feedback law.

The KYP equality is best known for the caseD D 0 (see for instanceKwakernaak and Sivan(1972)). It
then reduces to thereturn difference equality

J Ï.s/RJ.s/ D R C GÏ.s/QG.s/: (4.168)
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Kalman-Yakubovič-Popov equality.The proof starts from the algebraic Riccati equation

0 D ATX C XA C C TQC � .XB C C TQD/R�1
D .BTX C DTQC /; (4.169)

with RD D RCDTQD. From the relationF D R�1
D .BTX CDTQC /we haveBTX CDTQC D RDF ,

so that the Riccati equation may be written as

0 D ATX C XA C C TQC � FTRDF: (4.170)

This in turn we rewrite as

0 D �.�sI � AT/X � X.sI � A/C C TQC � FTRDF: (4.171)

Premultiplication byBT.�sI � AT/�1 and postmultiplication by.sI � A/�1B results in

0 D � BTX.sI � A/�1B � BT.�sI � AT/�1XB

C BT.�sI � AT/�1.C TQC � FTRDF/.sI � A/�1B:
(4.172)

SubstitutingBTX D RDF � DTQC we find

0 D.DTQC � RDF/.sI � A/�1B C BT.�sI � AT/�1.C TQD � FTRD/

C BT.�sI � AT/�1.C TQC � FTRDF/.sI � A/�1B:
(4.173)

Expansion of this expression, substitution ofC.sI � A/�1B D G.s/� D andF.sI � A/�1B D J.s/� I

and simplification lead to the desired result

R C GÏ.s/QG.s/ D J Ï.s/RDJ.s/: (4.174)

4.7.3. Robustness under state feedback

We consider an open-loop stable system with loop gain matrixL that satisfies the return difference inequality

.I C L/ÏR.I C L/ � R on the imaginary axis. (4.175)

We prove that if the loop gain is perturbed toWL, with W stable rational, then the closed-loop system
remains stable as long as

RW C W ÏR > R on the imaginary axis. (4.176)

The proof followsAnderson and Moore(1990). First consider the case thatR D I . It follows from the
return difference inequality thatLÏ C L C LÏL � 0 on the imaginary axis, or

L�1 C .L�1/Ï C I � 0 on the imaginary axis. (4.177)

The perturbed system is stable ifI C WL has no zeros in the right-half complex plane. Equivalently,the
perturbed system is stable if for0 � " � 1 no zeros of

I C Œ.1 � "/I C "W �L (4.178)

cross the imaginary axis. Hence, the perturbed system is stable if only if

L�1 C .1 � "/I C "W D M" (4.179)

is nonsingular on the imaginary axis for all0 � " � 1. Substitution ofL�1 D M" � .1 � "/I � "W into
(4.177) yields

M" C M Ï
" � 2.1 � "/I C ".W C W Ï/ D .2 � "/I C ".W C W Ï � I/: (4.180)

Inspection shows that if

W C W Ï > I (4.181)

on the imaginary axis thenM" C M Ï
" > 0 on the imaginary axis for all0 � " � 1, which means thatM"

is nonsingular on the imaginary axis. Hence, ifW C W Ï > I on the imaginary axis then the perturbed
system is stable.
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4.7.4. Riccati equations and the Hamiltonian matrix

We consider the algebraic Riccati equation

ATX C XA C Q � .XB C S/R�1.BTX C ST/ D 0 (4.182)

and the associated Hamiltonian matrix

H D
�

A � BR�1ST �BR�1BT

�Q C SR�1ST �.A � BR�1ST/T

�

: (4.183)

Summary 4.7.2 (Riccati equation and the Hamiltonian matrix).

1. If � is an eigenvalue ofH then also�� is an eigenvalue ofH.

2. Given a solutionX of the Riccati equation, defineF D R�1.BTX C ST/. Then

H

�

I

X

�

D
�

I

X

�

.A � BF/: (4.184)

3. If � is an eigenvalue ofA � BF corresponding to the eigenvectorx then� is also an eigenvalue of
H, corresponding to the eigenvector

�

I

X

�

x: (4.185)

Hence, if then � n matrix A � BF hasn eigenvalues with negative real parts—such as in the
solution of the LQ problem of Summary4.2.1(p. 137)—then the eigenvalues ofH consist of these
n eigenvalues ofA � BF and their negatives.

4. Assume thatH has no eigenvalues with zero real part. Then there is a similarity transformationU
that bringsH into upper triangular formT such that

H D U T U �1 D U

�

T11 T12

0 T22

�

U; (4.186)

where the eigenvalues of then � n diagonal blockT11 all have negative real parts and those ofT22

have positive real parts. Write

U D
�

U11 U12

U21 U22

�

; (4.187)

where each of the subblocks has dimensionsn � n. Then there is a solutionX of the Riccati equa-
tion such that the eigenvalues ofA � BF all have strictly negative real part, if and only ifU11 is
nonsingular. In that case

X D U21U �1
11 (4.188)

is the unique solution of the Riccati equation such that the eigenvalues ofA � BF all have strictly
negative real part. For the LQ problem of Summary4.2.1(p. 137) U11 is nonsingular.

�

For the transformation under4 there are several possibilities. One is to bringH into Jordan normal form.
For numerical computation it is to great advantage to use theSchur transformation.

Riccati equation and the Hamiltonian matrix (sketch).
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1. The Hamiltonian matrix is of the form

H D
�

A Q

R �AT

�

; (4.189)

with all blocks square, andQ andR symmetric. We have for the characteristic polynomial ofH

det.�I � H/ D det

�

�I � A �Q

�R �I C AT

�
.1/D det

�

��I C A Q

R ��I � AT

�

.2/D .�1/n det

�

R ��I � AT

��I C A Q

�
.3/D det

�

��I � AT R

Q ��I C A

�

.4/D det

�

��I C A Q

R ��I � AT

�
.5/D det

�

��I C A �Q

�R ��I � AT

�

(4.190)

In step (1) we multiply the matrix by�1. In step (2) we interchange the first and second rows of
blocks and in step (3) the firt and second columns of blocks. Instep (4) we transpose the matrix. In
step (5) we multiply the second row and the second column of blocks by�1.

Inspection shows that the characteristic polynomial does not change if� is replaced with�. Hence,
if � is an eigenvalue, so is��.

2. Using the Riccati equation we obtain from (4.183)

H

�

I

X

�

D
�

A � BF

�Q C SR�1ST � .A � BR�1ST/TX

�

(4.191)

D
�

A � BF

XA � XBF

�

D
�

I

X

�

.A � BF/: (4.192)

3. If .A � BF/x D �x then

H

�

I

X

�

x D
�

I

X

�

.A � BF/x D �

�

I

X

�

x: (4.193)

4. FromHU D U T we obtain

H

�

U11

U21

�

D
�

U11

U21

�

T11: (4.194)

After multiplying on the right byU11 it follows that

H

�

I

U21U �1
11

�

D
�

I

U21U �1
11

�

U11T11U �1
11 : (4.195)

We identifyX D U21U �1
11 andA � BF D U11T11U �1

11 . For the LQ problem the nonsingularity of
U11 follows by the existence ofX such thatA � BF is stable.

4.7.5. The Kalman filter

In this subsection we sketch the derivation of the Kalman filter.

Linear system driven by white noise Consider the stable linear systemPx.t/ D Ax.t/Cv.t/, driven
by white noise with intensityV , that is,Ev.t/vT.s/ D V ı.t � s/. The state of the system

x.t/ D
Z t

�1
eA.t�s/v.s/ ds; t 2 R; (4.196)
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is a stationary stochastic process with covariance matrix

Y D Ex.t/xT.t/ D
Z t

�1

Z t

�1
eA.t�s1/

�

Ev.s1/v
T.s2/

�

eAT.t�s2/ ds1ds2

D
Z t

�1
eA.t�s/V eAT.t�s/ ds D

Z 1

0
eA�V eAT� d�: (4.197)

It follows that

AY C YAT D
Z 1

0

�

AeA�V eAT� C eA�V eAT�AT
�

d�

D
Z 1

0

d

d�

�

eA�V eAT�
�

d� D eA�V eAT�
ˇ
ˇ
ˇ

1

0
D �V : (4.198)

Hence, the covariance matrixY is the unique solution of the Lyapunov equation

AY C YAT C V D 0: (4.199)

Observer error covariance matrix. We consider the systemPx.t/ D Ax.t/C Bu.t/C v.t/, y.t/ D
Cx.t/Cw.t/, wherev is white noise with intensityV andw white noise with intensityW . The estimation
errore.t/ D Ox.t/ � x.t/ of the observer

POx.t/ D A Ox.t/C Bu.t/C KŒy.t/ � C Ox.t/� (4.200)

satisfies the differential equation

Pe.t/ D .A � KC /e.t/ � Gv.t/C Kw.t/: (4.201)

The noise process�Gv.t/ C Kw.t/ is white noise with intensityGTVG C KTWK. Hence, if the error
system is stable then the error covariance matrixY D Ee.t/eT.t/ is the unique solution of the Lyapunov
equation

.A � KC /Y C Y .A � KC /T C GTVG C KTWK D 0: (4.202)

The Kalman filter. We discuss how to choose the observer gainK to minimize the error covariance
matrixY . To this end we complete the square (inK) and rewrite the Lyapunov equation (4.202) as

.K � YC TW �1/W .K � YC TW �1/T C AY C YAT C GVGT � YC TW �1C Y D 0: (4.203)

Suppose that there exists a gainK that stabilizes the error system and minimizes the error variance matrixY .
Then changing the gain toK C " QK, with " a small scalar andQK an arbitrary matrix of the same dimensions
asK, should only affectY quadratically in". Inspection of (4.203) shows that this implies

K D YC TW �1: (4.204)

With this gain the observer reduces to the Kalman filter. The minimal error variance matrixY satisfies the
Riccati equation

AY C YAT C GVGT � YC TW �1C Y D 0: (4.205)

4.7.6. Minimization of the steady-state mean square error under state
feedback

We consider the problem of choosing the gainF of the state feedback lawu.t/ D �Fx.t/ to minimize the
steady state mean square error

E
�

zT.t/Qz.t/ C uT.t/Ru.t/
�

(4.206)
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for the systemPx.t/ D Ax.t/C Bu.t/C v.t/. The white noisev has intensityV .
If the feedback law stabilizes the systemPx.t/ D .A � BF/x.t/ C v.t/ then the steady-state covariance

matrixY of the state is given by

Y D Ex.t/xT.t/ D
Z 1

0
e.A�BF /sV e.A�BF /Ts ds: (4.207)

Hence we have for the steady-state mean square error

E
�

zT.t/Qz.t/ C uT.t/Ru.t/
�

D E
�

xT.t/DTQDx.t/C xT.t/FTRFx.t/
�

D E tr
�

x.t/xT.t/DTQD C x.t/xT.t/FTRF
�

D tr Y
�

DTQD C FTRF
�

: (4.208)

We rewrite this in the form

E
�

zT.t/Qz.t/ C uT.t/Ru.t/
�

D tr Y
�

DTQD C FTRF
�

D tr
Z 1

0
e.A�BF /sV e.A�BF /Ts ds

�

DTQD C FTRF
�

D tr V

Z 1

0
e.A�BF /Ts

�

DTQD C FTRF
�

e.A�BF /s ds

„ ƒ‚ …

X

D tr VX: (4.209)

X is the solution of the Lyapunov equation

.A � BF/TX C X.A � BF/C DTQD C FTRF D 0: (4.210)

X and, hence, trVX , is minimized by choosingF D R�1BTX , with X the solution of the Riccati equation
ATX C XA C DTQD � XBR�1BTX D 0.

4.7.7. Loop transfer recovery

We study an LQG optimal system with measurement noise intensity W D �W0 as � # 0 under the
assumptions thatG D B and that the plant transfer matrixG.s/ D C.sI � A/�1B is square with stable
inverseG�1.s/.

Under the assumptionG D B we have in the absence of any measurement noisew

y D C.sI � A/�1B.u C v/ D G.s/.u C v/: (4.211)

Because by assumptionG�1 is stable the input noisev may be recovered with arbitrary precision by ap-
proximating the inverse relation

v D G�1.s/y � u (4.212)

with sufficient accuracy. From the noisev and the known inputu the statex may in turn be reconstructed
with arbitrary precision. Hence, we expect that as� decreases to 0 the covarianceY� of the estimation error
decreases to the zero matrix.

Under the assumptionG D B the Riccati equation for the optimal observer is

AY� C Y�AT C BVBT � Y�C TW �1C Y� D 0: (4.213)

We rewrite this as

AY� C Y�AT C BVBT � �K�W0KT
� D 0; (4.214)

with K� D Y�C TW �1 the gain. Inspection shows that ifY� # 0 then necessarilyK� ! 1. In fact we
may write

K� � 1p
�

BU� as� # 0; (4.215)
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whereU� is a square nonsingular matrix (which may depend on�) such thatU�W0U T
� D V .

We study the asymptotic behavior of the loop gain

L� .s/ D F.sI � A C BF C K�C /�1K�C.sI � A/�1B

� F.sI � A C BF C 1p
�

BU�C /�1 1p
�

BU�C.sI � A/�1B

� F.sI � A C 1p
�

BU�C /�1 1p
�

BU�C.sI � A/�1B

D F.sI � A/�1

�

I C 1p
�

BU�C.sI � A/�1

��1 1p
�

BU�C.sI � A/�1B

.1/D F.sI � A/�1B
1p
�

U�

�

I C 1p
�

C.sI � A/�1BU�

��1

C.sI � A/�1B

D F.sI � A/�1BU�

�

I
p
� C C.sI � A/�1BU�

��1
C.sI � A/�1B: (4.216)

In step (1) we use the well-known matrix identity.I C AB/�1A D A.I C BA/�1. Inspection of the final
equality shows that

L� .s/
�#0
�! F.sI � A/�1B; (4.217)

which is the loop gain under full state feedback.

4.7.8. Solution of the H2 optimization problem

We solve the standardH2 optimization problem of~ 4.4.3(p. 154) as if it is an LQG problem, that is, we
set out to minimize the steady-state value of

EzT.t/z.t/ (4.218)

under the assumption thatw is a white noise input with intensity matrixI .

State feedback. We first consider the solution with state feedback. For this it is enough to study the
equations

Px.t/ D Ax.t/C B1w.t/C B2u.t/; (4.219)

z.t/ D C1x.t/C D11w.t/C D12u.t/: (4.220)

If D11 ¤ 0 then the outputz has a white noise component that may well make the mean squareoutput
(4.218) infinite. We therefore assume thatD11 D 0. Under this assumption we have

z.t/ D C1x.t/C D12u.t/ D
�

I D12

�
�

C1x.t/

u.t/

�

D
�

I D12

�
�

z0.t/

u.t/

�

; (4.221)

wherez0.t/ D C1x.t/. As a result,

EzT.t/z.t/ D E
�

zT
0 .t/ uT.t/

�
�

I

DT
12

�
�

I D12

�
�

z0

u.t/

�

D E
�

zT
0 .t/ uT.t/

�
�

I D12

DT
12 DT

12D12

� �

z0

u.t/

�

: (4.222)

This defines a linear regulator problem with a cross term in the output and input. It has a solution if the
systemPx.t/ D Ax.t/C B2u.t/, z0.t/ D C1x.t/ is stabilizable and detectable, and the weighting matrix

�

I D12

DT
12 DT

12D12

�

(4.223)
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is positive-definite. A necessary and sufficient condition for the latter is thatDT
12D12 be nonsingular. The

solution to the regulator problem is a state feedback law of the form

u.t/ D �Fx.t/: (4.224)

The gain matrixF may easily be found from the results of~ 4.2.8(p. 144) and is given in Summary4.4.1
(p. 148).

Output feedback. If the state is not available for feedback then it needs to be estimated with a Kalman
filter. To this end we consider the equations

Px.t/ D Ax.t/C B1w.t/C B2u.t/; (4.225)

y.t/ D C2x.t/C D21w.t/C D22u.t/: (4.226)

The second equation may be put into the standard form for the Kalman filter if we considery.t/� D22u.t/

as the observed variable rather thany.t/. If we denote the observation noise asv.t/ D D21w.t/ then

Px.t/ D Ax.t/ C B1w.t/C B2u.t/; (4.227)

y.t/ � D22u.t/ D C2x.t/C v.t/ (4.228)

defines a stochastic system with cross correlated noise terms. We have

E

�

w.t/

v.t/

�
�

wT.s/ vT.s/
�

D E

�

I

D21

�

w.t/wT.s/
�

I DT
21

�

(4.229)

D
�

I DT
21

D21 D21DT
21

�

ı.t � s/: (4.230)

Suppose that the systemPx.t/ D Ax.t/ C B1w.t/, y.t/ D C2x.t/ is stabilizable and detectable, and the
intensity matrix

�

I DT
21

D21 D21DT
21

�

(4.231)

is positive-definite. A necessary and sufficient condition for the latter is thatD21DT
21 be nonsingular. Then

there exists a well-defined Kalman filter of the form

POx.t/ D A Ox.t/C B2u.t/C KŒy.t/ � C2 Ox.t/ � D22u.t/�: (4.232)

The gain matrixK may be solved from the formulas of~ 4.3.4(p. 149). Once the Kalman filter (4.232) is
in place the optimal input for the output feedback problem isobtained as

u.t/ D �F Ox.t/: (4.233)

F is the same state feedback gain as in (4.224).

4.8. Exercises

4.1 Cruise control system.The linearized dynamics of the vehicle of Example1.2.1(p. 3)
may be described by the equationPx.t/ D �ax.t/ C au.t/; wherea D 1=� is a positive
constant. Without loss of generality we may takea D 1.

Consider finding the linear state feedback that minimizes the criterion

Z 1

0

Œx2.t/C �u2.t/� dt (4.234)
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with � a positive constant. Determine the ARE, find its positive solution, and compute the
optimal state feedback gain.

Compute the closed-loop pole of the resulting optimal feedback system and check that the
closed-loop system is always stable. How does the closed-loop pole vary with�? Explain.

Plot the closed-loop response of the statex.t/ and inputu.t/ to the initial statex.0/ D 1

in dependence on�. Explain the way the closed-loop responses vary with�.

4.2 Cruise control system.Modify the criterion (4.234) to
Z 1

0

e2˛t Œx2.t/C �u2.t/� dt; (4.235)

with ˛ a positive constant. Rework Exercise4.1 while explaining and interpreting the
effect of˛.

r x zu
.sI � A/�1b

f

d

Figure 4.25: State feedback with reference inputr and outputz

4.3 Closed-loop frequency response characteristics.Recall these statements on page142:

If the plant has right-half plane open-loop zeros then the bandwidth is limited
to the magnitude of the right-half plane zero that is closestto the origin. This
agrees with the limits of performance established in~ 1.7(p. 40).

Verify these statements by considering the SISO configuration of Fig.4.25. Let L.s/ D
f .sI � A/�1b andG.s/ D d.sI � A/�1b.

a) Prove that

u D 1

1 C L.s/
r; z D G.s/

1 C L.s/
„ ƒ‚ …

H.s/

r: (4.236)

It follows that the closed-loop transfer functionH is

H.s/ D k .s/

�cl.s/
: (4.237)

b) Assume that the open-loop transfer functionG has no right-half plane zeros. Prove
that as� # 0 the closed-loop transfer function behaves as

H.s/ � k

Bn�q.s=!c/
: (4.238)

Bk denotes a Butterworth polynomial of orderk (see Table2.3, p. 92). Hence, the
closed-loop bandwidth is!c .
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c) Next assume that the open-loop transfer function has a single (real) right-half plane
zero�. Prove that asymptotically the closed-loop transfer function behaves as

H.s/ � s � �

s C �

k

Bn�q.s=!c/
: (4.239)

Argue that this means that asymptotically the bandwidth is� (that is, the frequency
response functionH.j!/=H.0/�1,! 2 R, is small over the frequency rangeŒ0; ��).

4.4 Phase margin.In Subsection4.2.7it is claimed that the phase margin is at least60ı. Prove
it.

4.5 LQ problem for system with direct feedthrough.The system

Px.t/ D Ax.t/C Bu.t/;

z.t/ D Dx.t/C Eu.t/;
t � 0; (4.240)

has what is called “direct feedthrough” because of the term with u in the outputz. Show
that the problem of minimizing

J D
Z 1

0

ŒzT.t/Qz.t/C uT.t/Ru.t/� dt (4.241)

for this system may be converted into the cross term problem of this subsection.

4.6 Positive-definiteness and Schur complement.Prove that the condition that the matrix (4.41)
be positive-definite is equivalent to either of the following two conditions:

a) BothR andQ � SR�1ST are positive-definite.Q � SR�1ST is called theSchur
complementof R. Hint:

�

Q S

ST R

�

D
�

I SR�1

0 I

� �

Q � SR�1ST 0

0 R

� �

I 0

R�1ST I

�

: (4.242)

b) BothQ andR � STQ�1S are positive-definite.R � STQ�1S is the Schur comple-
ment ofQ.

4.7 Cruise control system.Use the method of this Subsection4.2.9to solve the ARE that arises
in Exercise4.1.

4.8 Asymptotic results.The asymptotic results for the regulator problem may be “dualized” to
the Kalman filter.

a) Define the “observer return difference”

Jf .s/ D I C C.sI � A/�1K: (4.243)

Prove that

detJf .s/ D �f .s/

�ol.s/
; (4.244)

where�ol.s/ D det.sI � A/ is the system characteristic polynomial and�f .s/ D
det.sI � A C KC / the observer characteristic polynomial.
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b) Prove that the return differenceJf of the Kalman filter satisfies

Jf .s/WJ T
f .�s/ D W C M.s/VM T.�s/; (4.245)

whereM is the open-loop transfer matrixM.s/ D C.sI � A/�1G.

c) Consider the SISO case withV D 1 andW D � . Jf andM are now scalar functions.
Prove that

�f .s/�f .�s/ D �ol.s/�ol.�s/Œ1 C 1

�
M.s/M.�s/�: (4.246)

d) Write

M.s/ D g
�.s/

�ol.s/
; (4.247)

with � a monic polynomial andg a constant.

� Prove that as� ! 1 the optimal observer poles approach the open-loop poles
that lie in the left-half plane and the mirror images of the open-loop poles that
lie in the right-half plane.

� Prove that as� # 0 the optimal observer poles that do not go to1 approach
the open-loop zeros that lie in the left-half plane and the mirror images of the
open-loop zeros that lie in the right-half plane.

� Establish the asymptotic pattern of the optimal observer poles that approach1
as� # 0.

4.9 Cross correlated noises.Prove the claim of Subsection4.3.4.

4.10 Closed-loop eigenvalues.

a) Prove that the eigenvalues of (4.83) are the eigenvalues of the closed-loop system.

b) Show (most easily by a counterexample) that the fact that the observer and the closed-
loop system are stable does not mean that the compensator (4.81) by itself is stable.

4.11 Compensator transfer function.The configuration of Fig.4.6 may be rearranged as in
Fig. 4.26. Show that the equivalent compensatorCe has the transfer matrixCe.s/ D
F.sI � A C BF C KC /�1K:

Ce P
− y

z
u

Figure 4.26: Equivalent unit feedback configuration

4.12 Dual loop transfer recovery.Dual loop recovery provides an alternative approach to loop
recovery. Dual loop recovery results when the loop is brokenat the plantoutputy rather
than at the input (Kwakernaak and Sivan, 1972, ~ 5.6). In this case it is necessary to assume
thatD D C , that is, the controlled output is measured. Again we needC.sI � A/�1B to
be square with left-half plane zeros only. We letR D �R0 and consider the asymptotic
behavior for� # 0.
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a) Make it plausible that the loop gain approaches

L0.s/ D C.sI � A/�1K: (4.248)

b) Show that the corresponding return differenceJ0.s/ D I C L0.s/ satisfies the return
difference inequality

J0.j!/WJ T
0 .�j!/ � W; ! 2 R: (4.249)

c) Show that gain and phase margins apply that agree with those found in Subsec-
tion 4.2.7(p. 143).

4.13 Lyapunov equation.Prove that theH2-norm of the stable system (4.86) is given by
kHk2

2 D tr C Y C T, where the matrixY is the unique symmetric solution of the Lyapunov
equationAY C YAT C BBT D 0.

4.14 Generalized plant for the LQG problem.Show that for the LQG problem the generalized
plant of the corresponding standardH2 problem in state space form may be represented as

Px.t/ D Ax.t/C
�

G 0
�
�

v.t/

w.t/

�

C Bu.t/; (4.250)

2

4

z.t/

u.t/

y.t/

3

5 D

2

4

D

0

C

3

5x.t/C

2

4

0 0

0 0

0 I

3

5

�

v.t/

w.t/

�

C

2

4

0

I

0

3

5 u.t/: (4.251)

4.15 Transfer matrices.Derive (4.117–4.120).

4.16 High-frequency roll-off.Prove that LQG optimal compensators are strictly proper. Check
for the SISO case what the resulting roll-off is for the inputsensitivity function and the
complementary sensitivity function, dependent on the high-frequency roll-off of the plant.

4.17 Poles and zeros.What are the open-loop poles and zeros of the system of Fig.4.18.

4.18 Identical loci.On page165it is claimed that “Like in the double integrator example, they
are identical to those of the regulator poles.”

Check that this is a consequence of choosingQ D V D I , R D �I , W D �I , D D C

andG D B.

4.19 The caseR ¤ I . Subsection4.7.3considers the caseR D I . Show that the case thatR

is not necessarily the unit matrix may be reduced to the previous case by factoringR—
for instance by Cholesky factorization—asR D RT

0 R0. Work this out to prove that the
closed-loop system remains stable under perturbation satisfyingRW CW ÏR > R on the
imaginary axis.

4.20 Consider the plant

P .s/ D 1000

s.s C 10s C 3002/
:

Design a stabilizing controllerC.s/ that achieves a cross-over frequency of7Hz (i.e. the
0dB point ofL D PC is at7Hz), and such thatjS.j!/j < 2 for all frequencies.
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Overview– Various techniques exist to examine the stability robustness
of control systems subject to parametric uncertainty.

Parametric and nonparametric uncertainty with varying degree of
structure may be captured by thebasic perturbation model. The size
of the perturbation is characterized by bounds on the norm ofthe pertur-
bation. The small gain theorem provides the tool to analyze the stability
robustness of this model.

These methods allow to generalize the various stability robustness re-
sults for SISO systems of Chapter2 in several ways.

5.1. Introduction

In this chapter we discuss various paradigms for representing uncertainty about thedynamic
propertiesof a plant. Moreover, we present methods to analyze the effect of uncertainty on
closed-loop stability and performance.

Section5.2 is devoted toparametricuncertainty models. The idea is to assume that the equa-
tions that describe the dynamics of the plant and compensator (in particular, their transfer func-
tions or matrices) are known, but that there is uncertainty about the precise values of various
parameters in these equations. The uncertainty is characterized by anintervalof possible values.
We discuss some methods to analyze closed-loop stability under this type of uncertainty. The
most famous result isKharitonov’s theorem.

In ~ 5.3we introduce the so-calledbasic perturbation modelfor linear systems, which admits
a much wider class of perturbations, includingunstructured perturbations.Unstructured pertur-
bations may involve changes in the order of the dynamics and are characterized bynorm bounds.
Norm bounds are bounds on the norms of operators corresponding to systems.

In ~ 5.4 we review the small gain theorem. With the help of that we establish sufficient and
necessary conditions for the robust stability of the basic perturbation model. Next, in~ 5.5 the
basic stability robustness result is applied to proportional, proportional inverse perturbations and
fractional perturbations of feedback loops.

The perturbation models of~ 5.5are relatively crude. Doyle’sstructured singular valueallows
much finer structuring. It is introduced in~ 5.6. An appealing feature of structured singular value
analysis is that it allows studyingcombinedstability and performance robustness in a unified
framework. This is explained in~ 5.7. In ~ 5.8a number of proofs for this chapter are presented.
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prefilter
F

compensator
C

plant
P

reference
input

plant
input

error
signal

output
r zue

Figure 5.1: Feedback system

5.2. Parametric robustness analysis

In this section we review theparametricapproach to robustness analysis. In this view of uncer-
tainty the plant and compensator transfer functions are assumed to be given, but contain several
parameters whose values are not precisely known. We illustrate this by an example.

Example 5.2.1 (Third-order uncertain plant). Consider a feedback configuration as in Fig.5.1
where the plant transfer function is given by

P .s/ D g

s2.1 C �s/
: (5.1)

The gaing is not precisely known but is nominally equal tog0 = 1 [s�2]. The number� is a
parasitic time constant and nominally 0 [s]1. A system of this type can successfully be controlled
by a PD controller with transfer functionC.s/ = k C Td s. The latter transfer function is not
proper so we modify it to

C.s/ D k C Tds

1 C T0s
; (5.2)

where the time constantT0 is small so that the PD action is not affected at low frequencies. With
these plant and compensator transfer functions, the returndifferenceJ = 1 C L = 1 C PC is
given by

J.s/ D 1 C g

s2.1 C �s/

k C Td s

1 C T0s
D �T0s

4 C .� C T0/s
3 C s2 C gTds C gk

s2.1 C �s/.1 C T0s/
: (5.3)

Hence, the stability of the feedback system is determined bythe locations of the roots of the
closed-loop characteristic polynomial

�.s/ D �T0s
4 C .� C T0/s

3 C s2 C gTds C gk: (5.4)

Presumably, the compensator can be constructed with sufficient precision so that the values of
the parametersk, Td , andT0 are accurately known, and such that the closed-loop system is
stable at the nominal plant parameter valuesg = g0 = 1 and� = 0. The question is whether the
system remains stable under variations ofg and� , that is, whether the roots of the closed-loop
characteristic polynomial remain in the open left-half complex plane. �

Because we pursue this example at some length we use the opportunity to demonstrate how
the compensator may be designed by using the classicalroot locusdesign tool. We assume that
the ground rules for the construction of root loci are known.

1All physical units are SI. From this point on they are usuallyomitted.
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Figure 5.2: Root locus for compensator consisting of a simple gain
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Figure 5.3: Root locus for a PD compensator

Example 5.2.2 (Compensator design by root locus method). Given the nominal plant with
transfer function

P0.s/ D g0

s2
; (5.5)

the simplest choice for a compensator would be a simple gainC.s/ = k. Varyingk from 0 to1
or from 0 to�1 results in the root locus of Fig.5.2. For no value ofk stability is achieved.

Modification to a PD controller with transfer functionC.s/ = k C sTd amounts to addition of
a zero at�k=Td . Accordingly, keeping�k=Td fixed while varyingk the root locus of Fig.5.2
is altered to that of Fig.5.3 (only the part fork � 0 is shown). We assume that a closed-
loop bandwidth of 1 is required. This may be achieved by placing the two closed-loop poles at
1
2

p
2.�1 ˙ j/. The distance of this pole pair from the origin is 1, resulting in the desired closed-

loop bandwidth. Setting the ratio of the imaginary to the real part of this pole pair equal to 1
ensures an adequate time response with a good compromise between rise time and overshoot.

The closed-loop characteristic polynomial correspondingto the PD compensator transfer func-
tion C.s/ = k C sTd is easily found to be given by

s2 C g0Td s C g0k: (5.6)

Choosingg0Td =
p

2 andg0k = 1 (i.e.,Td =
p

2 andk = 1) places the closed-loop poles at the
desired locations. The zero in Fig.5.3may now be found at�k=Td = � 1

2

p
2 = �0:7071.

The final step in the design is to make the compensator transfer function proper by changing
it to

C.s/ D k C Tds

1 C T0s
: (5.7)
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This amounts to adding a pole at the location�1=T0. Assuming thatT0 is small the root lo-
cus now takes the appearance shown in Fig.5.4. The corresponding closed-loop characteristic
polynomial is

T0s3 C s2 C g0Td s C g0k: (5.8)

Keeping the valuesTd =
p

2 andk = 1 and choosingT0 somewhat arbitrarily equal to1=10

(which places the additional pole in Fig.5.4at �10) results in the closed-loop poles

�0:7652 ˙ j0:7715; �8:4697: (5.9)

The dominant pole pair at1
2

p
2.�1˙ j/ has been slightly shifted and an additional non-dominant

pole at�8:4697 appears. �

−1/To −k/Td

Im

Re
pole

at
zero

at
double
pole at 0

Figure 5.4: Root locus for the modified PD compensator

5.2.1. Routh-Hurwitz Criterion

In the parametric approach, stability robustness analysiscomes down to investigating the roots
of a characteristic polynomial of the form

�.s/ D �n.p/s
n C �n�1.p/s

n�1 C � � � C �0.p/; (5.10)

whose coefficients�n.p/, �n�1.p/, � � � , �0.p/ depend on the parameter vectorp. Usually it is
not possible to determine the dependence of the roots onp explicitly.

Sometimes, if the problem is not very complicated, the Routh-Hurwitz criterion may be in-
voked for testing stability. For completeness we summarizethis celebrated result (see for instance
Chen(1970)). Recall that a polynomial isHurwitz if all its roots have zero or negative real part.
It is strictly Hurwitz if all its roots have strictly negative real part.
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Theorem 5.2.3 (Routh-Hurwitz criterion). A polynomial

�.s/ D a0s
n C a1s

n�1 C � � � C an�1s C an (5.11)

with real coefficientsa0, a1, � � � , an is stable if and only then C 1 entries in the first column
of theHurwitz tableauexist, are nonzero and have the same sign.
TheHurwitz tableauis of the form

a0 a2 a4 a6 � � �
a1 a3 a5 a7 � � �
b0 b2 b4 � � �
b1 b3 b5 � � �
� � �

(5.12)

The first two rows of the tableau are directly taken from the “even” and “odd” coefficients of
the polynomial�, respectively. The third row is constructed from the two preceding rows by
letting

�

b0 b2 b4 � � �
�

D
�

a2 a4 a6 � � �
�

� a0

a1

�

a3 a5 a7 � � �
�

: (5.13)

The fourth rowb1, b3, � � � is formed from the two preceeding rows in the same way the third
row is formed from the first and second rows. All further rows are constructed in this manner.
Missing entries at the end of the rows are replaced with zeros. We stop aftern C 1 rows. �

In principle, the Routh-Hurwitz criterion allows establishing thestability regionof the parame-
ter dependent polynomial� as given by (5.10), that is, the set of all parameter valuesp for which
the roots of� all have strictly negative real part. In practice, this is often not simple.

Example 5.2.4 (Stability region for third-order plant). By way of example we consider the
third-order plant of Examples5.2.1and5.2.2. Using the numerical values established in Example
5.2.2we have from Example5.2.1that the closed-loop characteristic polynomial is given by

�.s/ D �

10
s4 C .� C 1

10
/s3 C s2 C g

p
2s C g: (5.14)

The parameter vectorp has componentsg and� . The Hurwitz tableau may easily be found to
be given by

�
10

1 g

� C 1
10

g
p

2

b0 g

b1

g

(5.15)
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where

b0 D
� C 1

10
�

p
2

10
g�

� C 1
10

; (5.16)

b1 D
.� C 1

10
�

p
2

10
g�/

p
2 � .� C 1

10
/2

� C 1
10

�
p

2
10

g�
g: (5.17)

Inspection of the coefficients of the closed-loop characteristic polynomial (5.14) shows that a
necessary condition for closed-loop stability is that bothg and� be positive. This condition
ensures the first, second and fifth entries of the first column of the tableau to be positive. The
third entryb0 is positive ifg < g3.�/, whereg3 is the function

g3.�/ D
5
p

2.� C 1
10
/

�
: (5.18)

The fourth entryb1 is positive ifg < g4.�/, with g4 the function

g4.�/ D
5.� C 1

10
/.

p
2 � 1

10
� �/

�
: (5.19)

Figure5.5shows the graphs ofg3 andg4 and the resulting stability region.
The case� = 0 needs to be considered separately. Inspection of the rootlocus of Fig.5.4

(which applies if� = 0) shows that for� = 0 closed-loop stability is obtained for allg > 0. �

g

g3

g4

θ

40

20

0
0 1 2

Figure 5.5: Stability region

Exercise 5.2.5 (Stability margins). The stability of the feedback system of Example5.2.4is
quite robust with respect to variations in the parameters� andg. Inspect the Nyquist plot of the
nominal loop gain to determine the various stability margins of ~ 1.4.2and Exercise1.4.9(b) of
the closed-loop system. �

5.2.2. Gridding

If the number of parameters is larger than two or three then itseldom is possible to establish the
stability region analytically as in Example5.2.4. A simple but laborious alternative method is
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5.2. Parametric robustness analysis

known asgridding. It consists of covering the relevant part of the parameter space with a grid,
and testing for stability in each grid point. The grid does not necessarily need to be rectangular.

Clearly this is a task that easily can be coded for a computer.The number of grid points in-
creases exponentially with the dimension of the parameter space, however, and the computational
load for a reasonably fine grid may well be enormous.

Example 5.2.6 (Gridding the stability region for the third- order plant). Figure5.6 shows
the results of gridding the parameter space in the region defined by0:5 � g � 4 and0 � � � 1.
The small circles indicate points where the closed-loop system is stable. Plus signs correspond
to unstable points. Each point may be obtained by applying the Routh-Hurwitz criterion or any
other stability test. �

+
+

+
+
+

+
+
+
+

4

2

0
0 1

θ

g

Figure 5.6: Stability region obtained by gridding

5.2.3. Kharitonov’s theorem

Gridding is straightforward but may involve a tremendous amount of repetitious computation. In
1978,Kharitonov(see alsoKharitonov(1978b)) published a result that subsequently attracted
much attention in the control literature2 because it may save a great deal of work. Kharitonov’s
theorem deals with the stability of a system with closed-loop characteristic polynomial

�.s/ D �0 C �1s C � � � C �nsn: (5.20)

Each of the coefficients�i is known to be bounded in the form

�
i

� �i � �i ; (5.21)

with �
i

and�i given numbers fori = 0, 1,� � � , n. Kharitonov’s theorem allows verifying whether
all these characteristic polynomials are strictly Hurwitzby checking onlyfour special polynomi-
als out of the infinite family.

2For a survey seeBarmish and Kang(1993).
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Theorem 5.2.7 (Kharitonov’s theorem). Each member of the infinite family of polynomi-
als

�.s/ D �0 C �1s C � � � C �nsn W with �
i

� �i � �i ; i D 0; 1; 2; � � � ; n; (5.22)

is stable if and only if each of the four Kharitonov polynomials

k1.s/ D �
0

C �
1
s C �2s2 C �3s3 C �

4
s4 C �

5
s5 C �6s

6 C � � � ; (5.23)

k2.s/ D �0 C �1s C �
2
s2 C �

3
s3 C �4s4 C �5s

5 C �
6
s6 C � � � ; (5.24)

k3.s/ D �0 C �
1
s C �

2
s2 C �3s3 C �4s4 C �

5
s5 C �

6
s6 C � � � ; (5.25)

k4.s/ D �
0

C �1s C �2s2 C �
3
s3 C �

4
s4 C �5s

5 C �6s
6 C � � � (5.26)

is stable. �

Note the repeated patterns of under- and overbars. A simple proof of Kharitonov’s theorem is
given byMinnichelli et al.(1989). We see what we can do with this result for our example.

Example 5.2.8 (Application of Kharitonov’s theorem). From Example5.2.1we know that
the stability of the third-order uncertain feedback systemis determined by the characteristic
polynomial

�.s/ D �T0s
4 C .� C T0/s

3 C s2 C gTds C gk; (5.27)

where in Example5.2.2we tookk = 1, Td =
p

2 andT0 = 1=10. Suppose that the variations of
the plant parametersg and� are known to be bounded by

g � g � g; 0 � � � �: (5.28)

Inspection of (5.27) shows that the coefficients�0, �1, �2, �3, and�4 are correspondingly
bounded by

g � �0 � g;

g
p

2 � �1 � g
p

2;

1 � �2 � 1;

T0 � �3 � T0 C �;

0 � �4 � T0�:

(5.29)

We assume that

0 � � � 0:2; (5.30)

so that� = 0.2, but consider two cases for the gaing:

1. 0:5 � g � 5, so thatg = 0.5 andg = 5. This corresponds to a variation in the gain by a
factor of ten. Inspection of Fig.5.5 shows that this region of variation is well within the
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5.2. Parametric robustness analysis

stability region. It is easily found that the four Kharitonov polynomials are

k1.s/ D 0:5 C 0:5
p

2s C s2 C 0:3s3; (5.31)

k2.s/ D 5 C 5
p

2s C s2 C 0:1s3 C 0:02s4; (5.32)

k3.s/ D 5 C 0:5
p

2s C s2 C 0:3s3 C 0:02s4; (5.33)

k4.s/ D 0:5 C 5
p

2 C s2 C 0:1s3: (5.34)

By the Routh-Hurwitz test or by numerical computation of theroots using MATLAB or
another computer tool it may be found thatk1 andk4 are strictly Hurwitz, whilek2 and
k3 are not Hurwitz. This shows that the polynomial�0 C �1s C �2s

2 C �3s3 C �4s4 is
not strictly Hurwitz for all variations of the coefficients within the bounds (5.29). This
doesnotprove that the closed-loop system is not stable for all variations ofg and� within
the bounds (5.28), however, because the coefficients�i of the polynomial do not vary
independentlywithin the bounds (5.29).

2. 0:5 � g � 2, so thatg = 0.5 andg = 2. The gain now only varies by a factor of four.
Repeating the calculations we find that each of the four Kharitonov polynomials is strictly
Hurwitz, so that the closed-loop system is stable for all parameter variations.

�

5.2.4. The edge theorem

Example5.2.8shows that Kharitonov’s theorem usually only yields sufficient but not necessary
conditions for robust stability in problems where the coefficients of the characteristic polynomial
do not vary independently. We therefore consider characteristic polynomials of the form

�.s/ D �0.p/s
n C �1.p/s

n�1 C � � � C �n.p/; (5.35)

where the parameter vectorp of uncertain coefficientspi , i = 1, 2, � � � , N , enterslinearly into
the coefficients�i .p/, i = 0, 1, � � � , n. Such problems are quite common; indeed, the example
we are pursuing is of this type. We may rearrange the characteristic polynomial in the form

�.s/ D �0.s/C
N
X

iD1

ai�i .s/; (5.36)

where the polynomials�i , i = 0, 1, � � � , N are fixed and given. Assuming that each of the
parametersai lies in a bounded interval of the formai � ai � ai , i = 1, 2, � � � , N , the family
of polynomials (5.36) forms apolytopeof polynomials. Then theedge theorem(Bartlett et al.,
1988) states that to check whether each polynomial in the polytope is Hurwitz it is sufficient to
verify whether the polynomials on each of theexposed edgesof the polytope are Hurwitz. The
exposed edges are obtained by fixingN � 1 of the parameterspi at their minimal or maximal
value, and varying the remaining parameter over its interval.
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5. Uncertainty Models and Robustness

Theorem 5.2.9 (Edge theorem). Let D be a simply connected domain in the complex
plane. Then all the roots of each polynomial (5.36) are contained inD if and only if the roots
of all polynomials on the edges of

�.s/ D �0.s/C
N
X

iD1

ai�i .s/ (5.37)

are inD. �

A simply connected domain is a domain such that every simple closed contour (i.e., a contour
that does not intersect itself) inside the domain encloses only points of the domain. For our
purposesD is the open left-half complex plane. The edges of (5.37) are obtained by fixingN �1

of the parametersai at their minimal or maximal value, and varying the remainingparameter
over its interval. There areN 2N �1 edges. Although obviously application of the edge theorem
involves much more work than that of Kharitonov’s theorem itproduces more results.

Example 5.2.10 (Application of the edge theorem). We apply the edge theorem to the third-
order uncertain plant. From Example5.2.1we know that the closed-loop characteristic polyno-
mial is given by

�.s/ D �T0s
4 C .� C T0/s

3 C s2 C gTds C gk (5.38)

D .T0s
3 C s2/C �.T0s

4 C s3/C g.Td s C k/: (5.39)

Assuming that0 � � � � andg � g � g this forms a polytope. By the edge theorem, we need
to check the locations of the roots of the four “exposed edges”

� D 0 W T0s3 C s2 C gTd s C gk; g � g � g;

� D � W �T0s
4 C .� C T0/s

3 C s2 C gTds C gk; g � g � g;

g D g W �T0s
4 C .� C T0/s

3 C s2 C gTd s C gk; 0 � � � �;

g D g W �T0s
4 C .� C T0/s

3 C s2 C gTd s C gk; 0 � � � �:

(5.40)

Figure5.7 shows the patterns traced by the various root loci so defined with T0, Td andk as
determined in Example5.2.2, and� = 0.2,g = 0.5,g = 5. This is the case where in Example
5.2.10application of Kharitonov’s theorem was not successful in demonstrating robust stability.
Figure 5.7 shows that the four root loci are all contained within the left-half complex plane.
By the edge theorem, the closed-loop system is stable for allparameter perturbations that are
considered. �

5.2.5. Testing the edges

Actually, to apply the edge theorem it is not necessary to “grid” the edges, as we did in Example
5.2.10. By a result ofBiałas(1985) the stability of convex combinations of stable polynomials3

p1 andp2 of the form

p D �p1 C .1 � �/p2; � 2 Œ0; 1�; (5.41)

3Stable polynomialis the same as strictly Hurwitz polynomial.

192



5.2. Parametric robustness analysis

-400 -300 -200 -100 0
-10

-5

0

5

10
Fourth edge

-10 -5 0
-10

-5

0

5

10
First edge

-15 -10 -5 0
-5

0

5
Second edge

-150 -100 -50 0
-1

-0.5

0

0.5

1
Third edge

Figure 5.7: Loci of the roots of the four exposed edges

may be established by a single test. Given a polynomial

q.s/ D q0s
n C q1s

n�1 C q2s
n�2 C � � � C qn; (5.42)

define itsHurwitz matrixQ (Gantmacher, 1964) as then � n matrix

Q D

2

6
6
6
6
6
6
4

q1 q3 q5 � � � � � � � � �
q0 q2 q4 � � � � � � � � �
0 q1 q3 q5 � � � � � �
0 q0 q2 q4 � � � � � �
0 0 q1 q3 q5 � � �
� � � � � � � � � � � � � � � � � �

3

7
7
7
7
7
7
5

: (5.43)

Białas’ result may be rendered as follows.

Summary 5.2.11 (Białas’ test). Suppose that the polynomialsp1 andp2 are strictly Hurwitz
with their leading coefficient nonnegative and the remaining coefficients positive. LetP1 andP2

be their Hurwitz matrices, and define the matrix

W D �P1P�1
2 : (5.44)

Then each of the polynomials

p D �p1 C .1 � �/p2; � 2 Œ0; 1�; (5.45)

is strictly Hurwitz iff the real eigenvalues ofW all are strictly negative. �

Note that no restrictions are imposed on the non-real eigenvalues ofW .

Example 5.2.12 (Application of Białas’ test). We apply Białas’ test to the third-order plant.
In Example5.2.10we found that by the edge theorem we need to check the locations of the roots
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of the four “exposed edges”

T0s
3 C s2 C gTds C gk; g � g � g;

�T0s
4 C .� C T0/s

3 C s2 C gTd s C gk; g � g � g;

�T0s
4 C .� C T0/s

3 C s2 C gTd s C gk; 0 � � � �;

�T0s
4 C .� C T0/s

3 C s2 C gTd s C gk; 0 � � � �:

(5.46)

The first of these families of polynomials is the convex combination of the two polynomials

p1.s/ D T0s
3 C s2 C gTd s C gk; (5.47)

p2.s/ D T0s
3 C s2 C gTd s C gk; (5.48)

which both are strictly Hurwitz for the given numerical values. The Hurwitz matrices of these
two polynomials are

P1 D

2

6
4

1 gk 0

T0 gTd 0

0 1 gk

3

7
5 ; P2 D

2

6
4

1 gk 0

T0 gTd 0

0 1 gk

3

7
5 ; (5.49)

respectively. Numerical evaluation, withT0 D 1=10, Td D
p

2, k D 1, g D 0:5, andg D 5,
yields

W D �P1P�1
2 D

2

4

�1:068 0:6848 0

�0:09685 �0:03152 0

0:01370 �0:1370 �0:1

3

5 : (5.50)

The eigenvalues ofW are�1, �0:1, and�0:1. They are all real and negative. Hence, by Białas’
test, the system is stable on the edge under investigation.

Similarly, it may be checked that the system is stable on the other edges. By the edge theorem,
the system is stable for the parameter perturbations studied. �

HH

�H�H

(a) (b)

pq v1

v2

w1

w2

Figure 5.8: (a) Basic perturbation model. (b) Arrangement for internal sta-
bility
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Figure 5.9: Uncertainty models of a unit feedback loop. (a) Nominal system.
(b) Additive uncertainty. (c) Multiplicative uncertainty

5.3. The basic perturbation model

This section presents a quite general uncertainty model. Itdeals with both parametric—orstruc-
tured—andunstructureduncertainties, although it is more suited to the latter. Unstructured un-
certainties are uncertainties that may involve essential changes in the dynamics of the system.
The common assumption in Robust Control is that the uncertainties may be modeled as an I/O-
system separate from the rest of the system. The simplest such system is shown in Fig.5.8. It
is sometimes called thebasic perturbation model (BPM). HereH is the system whose stability
robustness is under investigation. Its transfer matrixH is sometimes called theinterconnection
matrix. The block “�H ” represents a uncertainty of the dynamics of the system. This uncertainty
model is simple but the same time powerful4.

Lemma 5.3.1 (Internal stability of the basic perturbation m odel). Suppose thatH and�H

are stable systems. The following three statements are equivalent.

1. The BPM of Fig.5.8(a) is internally stable.

2. .I � H�H /
�1 exists and is stable.

3. .I ��H H /�1 exists and is stable.
�

Many robust stability problems can be brought back to robuststability of the BPM.

Example 5.3.2 (The additive uncertainty model). Figure5.9(a) shows a feedback loop with
loop gainL. After perturbing the loop gain fromL to L C �L, the feedback system may
be represented as in Fig.5.9(b). The block within the dashed lines is the unperturbed system,
denotedH , and�L is the uncertainty�H in the basic model.

To computeH , denote the input to the uncertainty block�L asq and its output asp, as in
Fig. 5.8. Inspection of the diagram of Fig.5.9(b) shows that with the uncertainty block�L taken
away, the system satisfies the signal balance equationq D �p � Lq, so that

q D �.I C L/�1p: (5.51)

It follows that the interconnection matrixH is

H D �.I C L/�1 D �S ; (5.52)

4It may be attributed toDoyle (1984).
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with S the sensitivity matrix of the feedback system. The model of Fig. 5.9(b) is known as the
additiveuncertainty model. �

Example 5.3.3 (The multiplicative uncertainty model). An alternative uncertainty model,
calledmultiplicative or proportional uncertainty model, is shown in Fig.5.9(c). The transfer
matrix of the perturbed loop gain is

.1 C�L/L; (5.53)

which is equivalent to an additive uncertainty�LL. The quantity�L may be viewed as the
relative sizeof the uncertainty. From the signal balanceq D L.�p � q/ we obtainq D �.I C
L/�1Lp, so that the interconnection matrix is

H D �.I C L/�1L D �T: (5.54)

T is the complementary sensitivity matrix of the feedback system. �

In the above two examples internal stability of the BPM is equivalent to internal stability of the
underlying additive and multiplicative uncertain feedback systems. So as far as robust stability
is concerned we may as well consider the simple BPM and forgetabout the internal structure of
the interconnection matrixH . This explains the interest in the BPM. The following important
theorem shows that the BPM is useful forany interconnected system, not just the for the above
two unit feedback loops.

Theorem 5.3.4 (A detectability theorem). Suppose we have a systeṁof interconnec-
tions of subsystemsC1;C2; : : : ;P1;P2; : : : and�1; �2; : : : and suppose thaṫ is internally
stable for zero uncertainties�1 D 0; �2 D 0; : : :. Then for any set of stable uncertainties
�1; �2; : : : the following two statements are equivalent.

1. The overall interconnected systeṁis internally stable,

2. the corresponding BPM is internally stable.
�

Typically the controller is designed to work well for thenominalsystem, which is the system
when all uncertainties are taken zero�i D 0. In particular then the controller stabilizes the
system for all�i D 0. So this assumption needed in the above theorem is not stringent.

Example 5.3.5 (Parameter perturbation). Consider the third-order plant of Example5.2.1
with transfer function

P .s/ D g

s2.1 C s�/
: (5.55)

The parametersg and� are uncertain. It is not difficult to represent this transferfunction by a
block diagram where the parametersg and� are found in distinct blocks. Figure5.10shows one
way of doing this. It does not matter that one of the blocks is apure differentiator. Note the way
the factor1 C s� in the denominator is handled by incorporating a feedback loop.

After perturbingg to g C �g and� to � C �� and including a feedback compensator with
transfer functionC the block diagram may be arranged as in Fig.5.11. The large block inside
the dashed lines is the interconnection matrixH of the basic perturbation model.
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u y
g 1=s2

s �

Figure 5.10: Block diagram for third-order plant
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p1q1 p2 q2

C

H

Figure 5.11: Application of the the basic uncertainty modelto the third-order
plant

To compute the interconnection matrixH we consider the block diagram of Fig.5.11. Inspec-
tion shows that with the perturbation blocks�g and�� omitted, the system satisfies the signal
balance equation

q2 D �s .p2 C �q2/C 1

s2
.p1 � gC.s/q2/ : (5.56)

Solution forq2 yields

q2 D 1=s2

1 C s� C C.s/g=s2
p1 � s

1 C s� C C.s/g=s2
p2: (5.57)

Further inspection reveals thatq1 D �C.s/q2, so that

q1 D � C.s/=s2

1 C s� C C.s/g=s2
p1 C sC.s/

1 C s� C C.s/g=s2
p2: (5.58)

Consequently, the interconnection matrix is

H.s/ D 1

1 C s� C C.s/g

s2

"

� C.s/

s2 sC.s/

1
s2 �s

#

(5.59)

D
1

1Cs�

1 C L.s/

�

C.s/

�1

�
�

� 1
s2 s

�

; (5.60)

whereL D PC is the (unperturbed) loop gain. �
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LL

(a) (b)

p

q

Figure 5.12: Left: feedback loop. Right: feedback loop withinternal input
and output.

5.4. The small gain theorem

In this section we analyze the stability of the basic uncertainty model using what is known as the
small gain theorem.This section and the rest of the lecture notes assumes familiarity with the
material of AppendixB on norms of signals and systems.

Theorem 5.4.1 (Small gain theorem). In the feedback loop of Fig.5.12(a), suppose thatL W
U ! U for some complete normed spaceU . Then a sufficient condition for the feedback loop of
Fig. 5.12(a) to be internally stable is that the input-output mapL is a contraction. IfL is linear
then it is a contraction if and only if

kLk < 1; (5.61)

wherek � k is the norm induced by the signal norm,

kLk WD sup
u2U

kLukU
kukU

:

�

A proof is given in Appendix5.8. The small gain theorem is a classic result in systems the-
ory (see for instanceDesoer and Vidyasagar(1975)). The small gain theorem gives asufficient
condition for internal stability that is very simple but often also very conservative. The power of
the small gain theorem is that it does not only apply to SISO linear time-invariant systems but
also to MIMO systems and even nonlinear time-varying systems (for that the theorem has to be
reformulated somewhat, see Subsection5.4.2). The signal spaces of signals of finiteL2-norm
kukL2 and the signals of finite amplitudekukL1

are two examples of complete normed spaces
(see AppendixB), hence, for these norms the small gain theorem applies. Please consult Ap-
pendixB about norms of signals and systems. Here we summarize the forus two most important
norms. TheL2-norm of signals is defined as

kzkL2 D
�Z 1

�1
z.t/Tz.t/ dt

�1=2

:

and the system norm induced by thisL2-norm:

kHk1 WD sup
u

kHukL2

kukL2

In the literature this system norm is denoted askHkH1
in honor of the mathematician Hardy,

or askHk1. We adopt the latter notation. The subscript1 in this notation may seem awkward,
but the reason is the following very useful result:
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5.4. The small gain theorem

Lemma 5.4.2 ( 1-norm). For an LTI systemy D Hu there holds

kHk1 D sup
Res>0

�.H.s//:

If H is rational thenkHk1 exists (that is, is finite) iffH is proper and stable and in that case

kHk1 D sup
!2R

�.H.j!//:

�

Here� denotes the largest singular value (see AppendixB).

Example 5.4.3 (Small gain theorem). Consider a feedback system as in Fig.5.12(a), whereL
is a linear time-invariant system with transfer function

L.s/ D � k

1 C s�
: (5.62)

� is a positive time constant andk a positive or negative gain. We investigate the stability ofthe
feedback system with the help of the small gain theorem.

1. Norm induced by theL1-norm. First consider BIBO stability in the sense of theL1-
norm on the input and output signals. By inverse Laplace transformation it follows that the
impulse response corresponding toL is given by

l.t/ D
(

� k
�

e�t=� for t � 0;

0 otherwise.
(5.63)

The normkLk of the system induced by theL1-norm is (see SummaryB.4.4)

kLk D klkL1 D
Z 1

�1
jl.t/j dt D jkj: (5.64)

Hence, by the small gain theorem a sufficient condition for internal stability of the feedback
system is that

�1 < k < 1: (5.65)

2. Norm induced by theL2-norm. For positive� the systemL is stable so according to
SummaryB.4.4theL2-induced norm exists and equals

kLk1 D sup
!2R

jL.j!/j D sup
!2R

ˇ
ˇ
ˇ
ˇ

k

1 C j!�

ˇ
ˇ
ˇ
ˇ

D jkj: (5.66)

Again we find from the small gain theorem that (5.65) is a sufficient condition for closed-
loop stability.

In conclusion, we determine the exact stability region. Thefeedback equation of the system of
Fig. 5.12(b) isw D v C Lw. Interpreting this in terms of Laplace transforms we may solve for
w to obtain

w D 1

1 � L
v; (5.67)
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5. Uncertainty Models and Robustness

so that the closed-loop transfer function is

1

1 � L.s/
D 1

1 C k
1Cs�

D 1 C s�

.1 C k/C s�
: (5.68)

Inspection shows that the closed-loop transfer function has a single pole at�.1 C k/=� . The
corresponding system is BIBO stable if and only if1 C k > 0. The closed-loop system is
internally stable if and only if

k > �1: (5.69)

This stability region is much larger than that indicated by (5.65). �

The small gain theorem applied to the BPM establishes that stability of H and�H in combi-
nation with the small gain conditionkH�H k < 1 imply internal stability of the BPM. However
this by itself is not in a very useful form since typically we do not know the uncertainty�H , so
verifying the small gain conditionkH�H k < 1 can not be done. It is useful to reformulate the
small gain theorem in such a way that the known part (the interconnection matrixH ) appears
separate from the unknown part (the uncertainty matrix�H ). Different such forms exist:

Theorem 5.4.4 (Small gain theorems for the BPM). Suppose that in the basic uncertainty
model of Fig.5.8(a) bothH and�H areL2-stable.

1. Sufficient for internal stability is that

�.�H .j!// <
1

�.H.j!//
for all ! 2 R [ f1g; (5.70)

with � denoting the largest singular value.

2. Another sufficient condition for internal stability is that

k�H k1 <
1

kHk1
: (5.71)

�

Inequalities (5.70,5.71) are asufficientconditions for internal stability. It is easy to find exam-
ples that admit uncertainties that violate these conditions but at the same time donot destabilize
the system. It may be proved, though5, that if robust stability is desired forall uncertainties sat-
isfying (5.71) then the condition is also necessary. This means that it is always possible to find a
uncertainty that violates (5.71) within an arbitrarily small margin but destabilizes the system:

Theorem 5.4.5 (Necessary and sufficient stability conditio ns). Suppose that in the BPM of
Fig. 5.8(a) bothH and�H are stable. Let
 be a positive constant. Then

1. The BPM is internally for all�H with k�H k1 � 1=
 iff kHk1 < 
 .

2. The BPM is internally for all�H with k�H k1 < 1=
 iff kHk1 � 
 .

�
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Figure 5.13: (a) Block diagram. (b) Uncertainty model

5.4.1. Examples

We consider two applications of the basic stability robustness result.

Example 5.4.6 (Stability under uncertainty). By way of example, we study which uncertain-
ties of the real parameter� preserve the stability of the system with transfer function

P .s/ D 1

1 C s�
: (5.72)

Arranging the system as in Fig.5.13(a) we obtain the uncertainty model of Fig.5.13(b), with �0

the nominal value of� and�� its uncertainty. Because the system should be nominally stable
we need�0 to be positive.

The interconnection matrixH of the standard uncertainty model is obtained from the signal
balance equationq D �s.p C �0q/ (omittingu andy). Solution forq yields

q D �s

1 C s�0

p: (5.73)

It follows that

H.s/ D �s

1 C s�0

D �s�0

1 C s�0

1

�0

; (5.74)

so that

�.H.j!// D jH.j!/j D 1

�0

s

!2�2
0

1 C !2�2
0

(5.75)

and

kHk1 D sup
!

�.H.j!// D 1

�0

: (5.76)

Since�.�H .j!// D j�� j D k�H k1, both (1) and (2) of Summary5.4.4imply that internal
stability is guaranteed for all uncertainties such thatj�� j < �0, or

��0 < �� < �0: (5.77)

5See (Vidysagar, 1985) for a proof for the rational case.
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5. Uncertainty Models and Robustness

Obviously, though, the system is stable for all� > 0, that is, for all uncertainties�� such that

��0 < �� < 1: (5.78)

Hence, the estimate for the stability region is quite conservative. On the other hand, it is easy
to find a uncertainty that violates (5.77) and destabilizes the system. The uncertainty�� =
��0.1 C "/, for instance, with" positive but arbitrarily small, violates (5.77) with an arbitrarily
small margin, anddestabilizesthe system (because it makes� negative).

Note that the class of uncertainties such thatk��k1 � �0 is much larger than just real uncer-
tainties satisfying (5.77). For instance,�� could be a transfer function, such as

�� .s/ D �0

˛

1 C s�
; (5.79)

with � any positive time constant, and̨a real number with magnitude less than 1. This “para-
sitic” uncertainty leaves the system stable. �

u y
g

1

s2

s

�g

�

��
p1q1 p2 q2

˛1 ˛2ˇ1 ˇ2

C

H

Figure 5.14: Scaled uncertainty model for the third-order plant

Example 5.4.7 (Two-parameter uncertainty). A more complicated example is the feedback
system discussed in Examples5.2.1, 5.2.2and5.3.5. It consists of a plant and a compensator
with transfer functions

P .s/ D g

s2.1 C s�/
; C.s/ D k C Td s

1 C T0s
; (5.80)

respectively. In Example5.3.5we found that the interconnection matrixH with respect to un-
certainties in the parametersg and� is

H.s/ D
1

1Cs�0

1 C L0.s/

�

C.s/

�1

�
�

� 1
s2 s

�

; (5.81)

with g0 and�0 denoting the nominal values of the two uncertain parametersg and� . Before
continuing the analysis we modify the uncertainty model of Fig. 5.11to that of Fig.5.14. This
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5.4. The small gain theorem

model includes scaling factors̨1 andˇ1 for the uncertainty�g and scaling factors̨2 andˇ2

for the uncertainty�� . The scaled uncertainties are denotedıg andı� , respectively. The product
˛1ˇ1 D "1 is the largest possible uncertainty ing, while ˛2ˇ2 D "2 is the largest possible
uncertainty in� . It is easily verified that the interconnection matrix corresponding to Fig.5.14is

H.s/ D
1

1Cs�0

1 C L0.s/

�

ˇ1C.s/

�ˇ2

�
�

�˛1

s2 ˛2s
�

: (5.82)

It may also easily be worked out that the largest eigenvalue of H T.�j!/H.j!/ is

�2.!/ D
1

1C!2�2
0

j1 C L0.j!/j2
�

ˇ2
1 jC.j!/j2 C ˇ2

2

�
�
˛2

1

!4
C ˛2

2!
2

�

; ! 2 R: (5.83)

The other eigenvalue is 0. The nonnegative quantity�.!/ is the largest singular value ofH.j!/.
By substitution ofL0 andC into (5.83) it follows that

�2.!/ D
�

ˇ2
1.k

2 C !2T 2
d /C ˇ2

2.1 C !2T 2
0 /
�

.˛2
1 C ˛2

2!
6/

j�.j!/j2 ; (5.84)

with � the closed-loop characteristic polynomial

�.s/ D �0T0s
4 C .�0 C T0/s

3 C s2 C g0Td s C g0k: (5.85)

First we note that if we choose the nominal value�0 of the parasitic time constant� equal to zero
— which is a natural choice — and"2 D ˛2ˇ2 ¤ 0 then�.1/ D 1, so that stability is not
guaranteed. Indeed, this situation admits negative valuesof � , which destabilize the closed-loop
system. Hence, we need to choose�0 positive but such that the nominal closed-loop system is
stable, of course.

Second, inspection of (5.84) shows that for fixed uncertainties"1 D ˛1ˇ1 and"2 D ˛2ˇ2 the
function� depends on the way the individual values of the scaling constants̨ 1,ˇ1,˛2, andˇ2 are
chosen. On first sight this seems surprising. Reflection reveals that this phenomenon is caused by
the fact that the stability robustness test is based onfull uncertainties�H . Full uncertainties are
uncertainties such that all entries of the uncertainty transfer matrix�H are filled with dynamical
uncertainties.

We choose the numerical valuesk D 1, Td D
p

2, andT0 D 1=10 as in Example5.2.2. In
Example5.2.8we consider variations in the time constant� between 0 and 0.2. Correspondingly,
we let �0 D 0:1 and "2 D 0:1. For the variations in the gaing we study two cases as in
Example5.2.8:

1. 0:5 � g � 5. Correspondingly, we letg0 D 2:75 and"1 D 2:25.

2. 0:5 � g � 2. Correspondingly, we takeg0 D 1:25 and"1 D 0:75.

For lack of a better choice we select for the time being

˛1 D ˇ1 D p
"1; ˛2 D ˇ2 D p

"2: (5.86)

Figure5.15shows the resulting plots of�.!/ for the cases (1) and (2). In case (1) the peak value
is about 67.1, while in case (2) it is approximately 38.7. Both cases fail the stability robustness
test by a very wide margin, although from Example5.2.4we know that in both situations stability
is ensured. The reasons that the test fails are that (i) the test is based on full uncertainties rather
than the structured uncertainties implied by the variations in the two parameters, and (ii) the test
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Figure 5.15: Plots of�.H.j!// for the two-parameter plant

also allowsdynamicaluncertainties rather than the real uncertainties implied by the parameter
variations.

Less conservative results may be obtained by allowing the scaling factors̨ 1, ˇ1, ˛2, andˇ2

to be frequency-dependent, and to choose them so as to minimize�.!/ for each!. Substituting
ˇ1 D "1=˛1 andˇ2 D "2=˛2 we obtain

�2.!/ D
"2

1.k
2 C !2T 2

d /C "21.k
2C!2T 2

d /!
6

�
C "2

2.1 C !2T 2
0 /� C "2

2.1 C !2T 2
0 /!

6

j�.j!/j2 ; (5.87)

where� D ˛2
1=˛

2
2 . It is easy to establish that for fixed! the quantity�2.!/ is minimized for

� D !3 "1

"2

s

k2 C !2T 2
d

1 C !2T 2
0

; (5.88)

and that for this value of�

�.!/ D
"1

q

k2 C !2T 2
d C "2!

3

q

1 C !2T 2
0

j�.j!/j ; ! � 0: (5.89)

Figure5.16shows plots of� for the same two cases (a) and (b) as before. In case (a) the peak
value of� is about 1.83, while in case (b) it is 1. Hence, only in case (b)robust stability is
established. The reason that in case (a) robust stability isnot proved is that the uncertainty model
allows dynamic uncertainties. Only if the size of the uncertainties is downsized by a factor of
almost 2 robust stability is guaranteed.

In Example5.6.8in the section on the structured singular value this exampleis further dis-
cussed. �

5.4.2. Nonlinear perturbations

The basic stability robustness result also applies fornonlinearperturbations. Suppose that the
perturbation�H in the block diagram of Fig.5.8(a) is a nonlinear operator that maps the signal
e.t/, t 2 R, into the signal.�H e/.t/, t 2 R. Assume that there exists a positive constantk such
that

k�H e1 ��H e2k � kke1 � e2k (5.90)
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Figure 5.16: Plots of�.H.j!// with optimal scaling for the two-parameter
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Figure 5.17: Sector bounded function

for every two inpute1; e2 to the nonlinearity. We use theL2-norm for signals. By application of
the fixed point theorem it follows that the perturbed system of Fig. 5.8(a) is stable if

kkHk1 < 1: (5.91)

Suppose for instance that the signals are scalar, and that�H is a static nonlinearity described by

.�H e/.t/ D f .e.t//; (5.92)

with f W R ! R. Letf satisfy the inequality
ˇ
ˇ
ˇ
ˇ

f .e/

e

ˇ
ˇ
ˇ
ˇ

� c; e ¤ 0; e 2 R; (5.93)

with c a nonnegative constant. Figure5.17illustrates the way the functionf is bounded. We call
f a sector bounded function. It is not difficult to see that (5.90) holds withk D c. It follows
that the perturbed system is stable for any static nonlinearperturbation satisfying (5.93) as long
asc � 1=kHk1.

Similarly, the basic stability robustness result holds fortime-varyingperturbations and pertur-
bations that are both nonlinear and time-varying, providedthat these perturbations are suitably
bounded.

5.5. Stability robustness of feedback systems

In this section we apply the results of~ 5.4 to various perturbation models for single-degree-
of-freedom feedback systems. We successively discuss proportional, proportional inverse and
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Figure 5.18: Proportional and scaled perturbations of a unit feedback loop

fractional perturbations for MIMO systems. The results of~ 1.4emerge as special cases.

5.5.1. Proportional perturbations

In ~ 5.3we consider additive and multiplicative (orproportional) perturbation models for single-
degree-of-freedom feedback systems. The proportional model is preferred because it represents
therelativesize of the perturbation. The corresponding block diagram is repeated in Fig.5.18(a).
It represents a perturbation

L �! .I C�L/L (5.94)

Sinceq D �L.p C q/, so thatq D �.I C L/�1Lp, the interconnection matrix is

H D �.I C L/�1L D �T; (5.95)

with T D .I C L/�1L D L.I C L/�1 thecomplementary sensitivity matrixof the closed-loop
system.

To scalethe proportional perturbation we modify the block diagram of Fig. 5.18(a) to that of
Fig. 5.18(b). This diagram represents a perturbation

L �! .I C V ıLW /L; (5.96)

whereV andW are available to scale such thatkıLk1 � 1. For this configuration the intercon-
nection matrix isH D �W T V .

Application of the results of Summary5.4.4leads to the following conclusions.

Summary 5.5.1 (Robust stability of feedback systems for pro portional perturbations).
Assume that the feedback system of Fig.5.18(a) is nominally stable.

1. A sufficient condition for the closed-loop system to be stable under proportional perturba-
tions of the form

L �! .1 C�L/L (5.97)
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is that�L be stable with

N�.�L.j!// <
1

N�.T .j!// for all ! 2 R: (5.98)

with T = .I CL/�1L = L.I CL/�1 the complementary sensitivity matrix of the feedback
loop. If stability is required forall perturbations satisfying the bound then the condition is
also necessary.

2. Underscaledperturbations

L �! .1 C V ıLW /L (5.99)

the system is stable for allkıLk1 � 1 if and only if

kW T V k1 < 1: (5.100)
�

For SISO systems part (1) of this result reduces to Doyle’s robustness criterion of~ 1.4. In
fact, Summary5.5.1is the original MIMO version of Doyle’s robustness criterion (Doyle, 1979).

−
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−
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p q
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Figure 5.19: Proportional inverse perturbation of unit feedback loop

5.5.2. Proportional inverse perturbations

The result of the preceding subsection confirms the importance of the complementary sensitivity
matrix (or function)T for robustness. We complement it with a “dual” result involving the
sensitivity functionS . To this end, consider the perturbation model of Fig.5.19(a), where the
perturbation�L�1 is included in a feedback loop. The model represents a perturbation

L �! .I C�L�1/�1L: (5.101)

Assuming thatL has an inverse, this may be rewritten as the perturbation

L�1 �! L�1.I C�L�1/: (5.102)
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Hence, the perturbation represents a proportional perturbation of theinverseloop gain. The
interconnection matrixH follows from the signal balanceq D �p � Lq so thatq D �.I C
L/�1p. Hence, the interconnection matrix is

H D �.I C L/�1 D �S : (5.103)

S D .I C L/�1 is the sensitivity matrix of the feedback loop.
We allow for scaling by modifying the model to that of Fig.5.19(b). This model represents

perturbations of the form

L�1 �! L�1.I C V ıL�1W /; (5.104)

whereV andW provide freedom to scale such thatkıL�1k1 � 1. The interconnection matrix
now isH D �W SV .

Application of the results of Summary5.4.4yields the following conclusions.

Summary 5.5.2 (Robust stability of feedback systems for pro portional inverse perturba-
tions). Assume that the feedback system of Fig.5.19(a) and (b) is nominally stable.

1. Underproportional inverse perturbationsof the form

L�1 �! L�1.I C�L�1/ (5.105)

a sufficient condition for stability is that�L�1 be stable with

N�.�L�1.j!// <
1

N�.S.j!// for all ! 2 R; (5.106)

with S = .I C L/�1 the sensitivity matrix of the feedback loop. If stability isrequired for
all perturbations satisfying the bound then the condition is also necessary.

2. Underscaledinverse perturbations of the form

L�1 �! L�1.I C V ıL�1W / (5.107)

the closed-loop system is stable for allkıL�1k1 � 1 if and only if

kW SV k1 < 1: (5.108)
�

5.5.3. Example

We illustrate the results of Summaries5.5.1and5.5.2by application to an example.

Example 5.5.3 (Robustness of a SISO closed-loop system). In Example5.2.1 we con-
sidered a SISO single-degree-of-freedom feedback system with plant and compensator transfer
functions

P .s/ D g

s2.1 C s�/
; C.s/ D k C Td s

1 C T0s
; (5.109)

respectively. Nominally the gaing equalsg0 D 1, while the parasitic time constant� is nom-
inally 0. In Example5.2.2we chose the compensator parameters ask D 1, Td D

p
2 and

T0 D 1=10.
We use the results of Summaries5.5.1and5.5.2to study what perturbations of the parameters

g and� leave the closed-loop system stable.
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5.5. Stability robustness of feedback systems

1. Loop gain perturbation model.Starting with the expression

L.s/ D P .s/C.s/ D g

s2.1 C s�/

k C Td s

1 C T0s
(5.110)

it is easy to find that the proportional loop gain perturbations are

�L.s/ D L.s/ � L0.s/

L0.s/
D

g�g0

g0
� s�

1 C s�
: (5.111)

Figures5.20(a) and (b) show the magnitude plot of the inverse1=T0 of the nominal com-
plementary sensitivity function. Inspection shows that1=T0 assumes relatively small val-
ues in the low-frequency region. This is where the proportional perturbations of the loop
gain need to be the smallest. For� D 0 the proportional perturbation (5.111) of the loop
gain reduces to

�L.s/ D g � g0

g0

; (5.112)

and, hence, is constant. The minimal value of the function1=jT0j is about 0.75. Therefore,
for � D 0 the robustness criterion1 of Summary5.5.1allows relative perturbations ofg
up to 0.75, so that0:25 < g < 1:75.

For g D g0, on the other hand, the proportional perturbation (5.111) of the loop gain
reduces to

�L.s/ D �s�

1 C s�
: (5.113)

Figure5.20(a) shows magnitude plots of this perturbation for several values of� . The
robustness criterion (a) of Summary5.5.1permits values of� up to about 1.15. For this
value of� the gaing can be neither increased nor decreased without violating the criterion.

For smaller values of the parasitic time constant� a wider range of gains is permitted. The
plots of ofj�Lj of Fig. 5.20(b) demonstrate that for� D 0:2 the gaing may vary between
about 0.255 and 1.745.

The stability bounds ong and� are conservative. The reason is of course that the pertur-
bation model allows a much wider class of perturbations thanjust those caused by changes
in the parametersg and� .

2. Inverse loop gain perturbation model.The proportional inverse loop gain perturbation is
given by

�L�1.s/ D L�1.s/ � L�1
0 .s/

L�1
0 .s/

D g0 � g

g
C s�

g0

g
: (5.114)

We apply the results of Summary5.5.2. Figure5.21gives the magnitude plot of the in-
verse1=S0 of the nominal sensitivity function. Inspection shows thatfor the inverse loop
gain perturbation model the high-frequency region is the most critical. By inspection of
(5.114) we see that if� ¤ 0 thenj�L�1.1/j D 1, so that robust stability is not ensured.
Apparently, this model cannot handle high-frequency perturbations caused by parasitic
dynamics.
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Figure 5.20: Robust stability test for the loop gain perturbation model: (a)
1=jT0j and the relative perturbations forg D 1. (b) 1=jT0j and
the relative perturbations for� D 0:2

For� D 0 the proportional inverse loop gain perturbation reduces to

�L�1.s/ D g0 � g

g
; (5.115)

and, hence, is constant. The magnitude of1=S0 has a minimum of about 0.867, so that
for � D 0 stability is ensured forj g0�g

g
j < 0:867, or 0:536 < g < 7:523. This range of

variation is larger than that found by application of the proportional loop gain perturbation
model.

Again, the result is conservative. It is disturbing that themodel does not handle parasitic
perturbations.
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Figure 5.21: Magnitude plot of1=S0

The derivation of the unstructured robust stability tests of Summary5.5.1is based on the small
gain theorem, and presumes the perturbations�L to beBIBO stable. This is highly restrictive
if the loop gainL by itself represents an unstable system, which may easily occur (in particular,
when the plant by itself is unstable).

210



5.5. Stability robustness of feedback systems

It is well-known (Vidysagar, 1985) that the stability assumption on the perturbation may be
relaxed to the assumption that both the nominal loop gain andthe perturbed loop gain have the
same number of right-half plane poles.

Likewise, the proofs of the inverse perturbation tests of Summary5.5.2require the perturbation
of the inverseof the loop gain to be stable. This is highly restrictive if the loop gain by itself
has right-half plane zeros. This occurs, in particular, when the plant has right-half plane zeros.
The requirement, however, may be relaxed to the assumption that the nominal loop gain and the
perturbed loop gain have thesame number of right-half plane zeros.

5.5.4. Fractional representation

The stability robustness analysis of feedback systems based on perturbations of the loop gain or
its inverse is simple, but often overly conservative.

Another model that is encountered in the literature6 relies on what we term herefractional
perturbations. It combines, in a way, loop gain perturbations and inverse loop gain perturbations.
In this analysis, the loop gainL is represented as

L D ND�1; (5.116)

where thedenominatorD is a square nonsingular rational or polynomial matrix, andN a rational
or polynomial matrix. Any rational transfer matrixL may be represented like this in many ways.
If D andN are polynomial then the representation is known as a (right)7 polynomial matrix
fraction representation. If D and N are rational and proper with all their poles in the open
left-half complex plane then the representation is known asa (right) rational matrix fraction
representation.

Example 5.5.4 (Fractional representations). For a SISO system the fractional representation
is obvious. Suppose that

L.s/ D g

s2.1 C s�/
: (5.117)

Clearly we have the polynomial fractional representationL D ND�1 with N.s/ D g and
D.s/ D s2.1 C s�/. The fractional representation may be made rational by letting

D.s/ D s2.1 C s�/

d.s/
; N.s/ D g

d.s/
; (5.118)

with d any strictly Hurwitz polynomial. �

Right fractional representation may also be obtained for MIMO systems (see for instance
(Vidysagar, 1985)).

5.5.5. Fractional perturbations

Figure5.22shows the fractional perturbation model. Inspection showsthat the perturbation is
given by

L �! .I C�N /L.I C�D/
�1; (5.119)

6The idea originates from Vidyasagar (Vidyasagar et al., 1982; Vidysagar, 1985). It is elaborated in
(McFarlane and Glover, 1990).

7Because the denominator is on the right.
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Figure 5.22: Fractional perturbation model

or

ND�1 �! .I C�N /ND�1.I C�D/
�1: (5.120)

Hence, the numerator and denominator are perturbed as

N �! .I C�N /N; D �! .I C�D/D: (5.121)

Thus,�D and�N representproportional perturbations of the denominatorandof the numerator,
respectively.
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Figure 5.23: Equivalent configurations

By block diagram substitution it is easily seen that the configuration of Fig.5.22is equivalent
to that of Fig.5.23(a). The latter, in turn, may be rearranged as in Fig.5.23(b). Here

p D ��Dq1 C�N q2 D �L

�

q1

q2

�

; (5.122)

212



5.5. Stability robustness of feedback systems

−

+

+L

W2

q2 q1

W1V

p

δL

H

Figure 5.24: Perturbation model with scaling

with

�L D Œ��D �N � : (5.123)

To establish the interconnection matrixH of the configuration of Fig.5.23(b) we consider the
signal balance equationq1 D p � Lq1. It follows that

q1 D .I C L/�1p D Sp; (5.124)

with S D .I C L/�1 the sensitivity matrix. Sinceq2 D �Lq1 we have

q2 D �L.I C L/�1p D �Tp; (5.125)

with T D L.I CL/�1 the complementary sensitivity matrix. Inspection of (5.124–5.125) shows
that the interconnection matrix is

H D
�

S

�T

�

: (5.126)

Investigation of the frequency dependence of the greatest singular value ofH.j!/ yields infor-
mation about the largest possible perturbations�L that leave the loop stable.

It is useful to allow for scaling by modifying the configuration of Fig. 5.23(b) to that of
Fig. 5.24. This modification corresponds to representing the perturbations as

�D D V ıDW1; �N D V ıN W2; (5.127)

whereV , W1, andW2 are suitably chosen (stable) rational matrices such that

kıLk1 � 1; with ıL D Œ�ıD ıN �: (5.128)

Accordingly, the interconnection matrix changes to

H D
�

W1SV

�W2T V

�

: (5.129)

Application of the results of Summary5.4.4yields the following conclusions.
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−
L

Figure 5.25: Feedback loop

Summary 5.5.5 (Numerator-denominator perturbations). In the stable feedback configura-
tion of Fig.5.25, suppose that the loop gain is perturbed as

L D ND�1 �! Œ.I C V ıN W2/N �Œ.I C V ıDW1/D�
�1 (5.130)

with V , W1 andW2 stable transfer matrices. Then the closed-loop system is stable for all stable
perturbationsıP D Œ�ıD ıN � such thatkıP k1 � 1 if and only if

kHk1 < 1: (5.131)

Here we have

H D
�

W1SV

�W2T V

�

; (5.132)

with S D .I C L/�1 the sensitivity matrix andT D L.I C L/�1 the complementary sensitivity
matrix. �

The largest singular value ofH.j!/, with H given by (5.132), equals the square root of the
largest eigenvalue of

H T.�j!/H.j!/ D V T.�j!/ŒST.�j!/W T
1 .�j!/W1.j!/S.j!/

C T T.�j!/W T
2 .�j!/W2.j!/T .j!/�V .j!/: (5.133)

For SISO systems this is the scalar function

H T.�j!/H.j!/ D jV .j!/j2ŒjS.j!/j2jW1.j!/j2 C jT .j!/j2jW2.j!/j2�: (5.134)

5.5.6. Discussion

We consider how to arrange the fractional perturbation model. In the SISO case, without loss of
generality we may take the scaling functionV equal to 1. ThenW1 represents the scaling factor
for the denominator perturbations andW2 that for the numerator perturbations. We accordingly
have

kHk2
1 D sup

!2R

�

jS.j!/j2jW1.j!/j2 C jT .j!/j2jW2.j!/j2
�

: (5.135)

For well-designed control systems the sensitivity function S is small at low frequencies while the
complementary sensitivity functionT is small at high frequencies. Figure5.26illustrates this.
Hence,W1 may be large at low frequencies andW2 large at high frequencies without violating
the robustness conditionkHk1 < 1. This means that at low frequencies we may allow large
denominator perturbations, and at high frequencies large numerator perturbations.
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Figure 5.26: Sensitivity function and complementary sensitivity function for
a well-designed feedback system

The most extreme point of view is to structure the perturbation model such that all low fre-
quency perturbations are denominator perturbations, and all high frequency perturbations are
numerator perturbations. Since we may trivially write

L D 1
1
L

; (5.136)

modeling low frequency perturbations as pure denominator perturbations implies modeling low
frequency perturbations asinverseloop gain perturbations. Likewise, modeling high frequency
perturbations as pure numerator perturbations implies modeling high frequency perturbations as
loop gain perturbations. This amounts to taking

jW1.j!/j D
�

WL�1.!/ at low frequencies,
0 at high frequencies,

(5.137)

jW2.j!/j D
�

0 at low frequencies,
WL.!/ at high frequencies,

(5.138)

with WL�1 a bound on the size of the inverse loop perturbations, andWL a bound on the size of
the loop perturbations.

Obviously, the boundary between “low” and “high” frequencies lies in the “crossover” region,
that is, near the frequency where the loop gain crosses over the zero dB line. In this frequency
region neitherS norT is small.

Another way of dealing with this perturbation model is to modify the stability robustness test
to checking whether for each! 2 R

j�L�1.j!/j < 1

jS.j!/j or j�L.j!/j <
1

jT .j!/j : (5.139)

This test amounts to verifying whether either the proportional loop gain perturbation test succeeds
or the proportional inverse loop gain test. Obviously, its results are less conservative than the
individual tests. Feedback systems are robustly stable forperturbations in the frequency regions
where either the sensitivity is small (at low frequencies) or the complementary sensitivity is small
(at high frequencies). In thecrossover regionneither sensitivity is small. Hence, the feedback
system is not robust for perturbations that strongly affectthe crossover region.

215



5. Uncertainty Models and Robustness

In the crossover region the uncertainty therefore should belimited. On the one hand this
limitation restrictsstructureduncertainty — caused by load variations and environmental changes
— that the system can handle. On the other hand,unstructureduncertainty — deriving from
neglected dynamics and parasitic effects — should be kept within bounds by adequate modeling.

5.5.7. Plant perturbation models

In the previous subsections we modeled the uncertainty as anuncertainty in the loop gainL,
which results in interconnection matrices in terms of this loop gain, such asS and T . It is
important to realize that we have a choice in how to model the uncertainty and that we need not
necessarily do that in terms of the loop gain. In particular as the uncertainty is usually present
in the plantP only, and not in controllerK, it makes sense to model the uncertainty as such.
Table5.1lists several ways to model plant uncertainty.

plant perturbed plant interconnection matrixH perturbation�

P P C V�P W �WKSV �P

P .I C V�P W /P �W T V �P

P P .I C V�P W / �WKSPV �P

P .I C V�P W /�1P �W SV �P

P P .I C V�P W /�1 �W .I C KP /�1V �P

D�1N .D C V�DW1/
�1.N C V�N W2/ �

�
W1S

W2KS

�

D�1V
�
�D �N

�

NN ND�1 . NN C W1�N V /. ND C W2�DV /�1 �V ND�1
�

KSW1 .ICKP /�1W2

� �
�N
�D

�

Table 5.1: A list of perturbation models with plantP and controllerK

5.6. Structured singular value robustness analysis

We return to the basic perturbation model of Fig.5.8, which we repeat in Fig.5.27(a). As
demonstrated in~ 5.3, the model is very flexible in representing both structured perturbations
(i.e., variations of well-defined parameters) and unstructured perturbations.

The stability robustness theorem of Summary5.4.4(p. 200) guarantees robustness under all
perturbations� such thatN�.�.j!// � N�.H.j!// < 1 for all ! 2 R. Perturbations�.j!/ whose
norm N�.�.j!// does not exceed the number1= N�.H.j!//, however, are completelyunstructured.
As a result, often quite conservative estimates are obtained of the stability region forstructured
perturbations. Several examples that we considered in the preceding sections confirm this.

Doyle (1982) proposed another measure for stability robustness based on the notion of what
he callsstructured singular value.In this approach, the perturbation structure is detailed asin
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Figure 5.27: (a) Basic perturbation model. (b) Structured perturbation model

Fig.5.27(b) (Safonov and Athans, 1981). The overall perturbation� has the block diagonal form

� D

2

6
6
4

�1 0 � � � 0

0 �2 0 � � �
� � � � � � � � � � � �
0 � � � 0 �K

3

7
7
5
: (5.140)

Each diagonal block entry�i has fixed dimensions, and has one of the following forms:

� �i D ıI , with ı a real number. If the unit matrixI has dimension 1 this represents a real
parameter variation. Otherwise, this is arepeated real scalar perturbation.

� �i D ıI , with ı a stable8 scalar transfer matrix. This represents ascalar or repeated
scalar dynamic perturbation.

� �i is a (not necessarily square) stable transfer matrix. This represents amultivariable
dynamic perturbation.

A wide variety of perturbations may be modeled this way.
We study which are the largest perturbations� with the given structure that do not destabilize

the system of Fig.5.27(a). Suppose that a given perturbation� destabilizes the system. Then by
the generalized Nyquist criterion of Summary1.3.13the Nyquist plot of det.I � H�/ encircles
the origin at least once, as illustrated in Fig.5.28. Consider the Nyquist plot of det.I � "H�/,
with " a real number that varies between 0 and 1. For" D 1 the modified Nyquist plot coincides
with that of Fig.5.28, while for " D 0 the plot reduces to the point 1. Since obviously the plot
depends continuously on", there must exist a value of" in the interval.0; 1� such that the Nyquist
plot of det.I � "H�/ passes through the origin. Hence, if� destabilizes the perturbed system,
there exist" 2 .0; 1� and! 2 R such that det.I � "H.j!/�.j!// D 0. Therefore,� doesnot
destabilize the perturbed system if and only if there do not exist " 2 .0; 1� and! 2 R such that
det.I � "H.j!�.j!// D 0.

8A transfer function or matrix is “stable” if all its poles arein the open left-half plane.
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Figure 5.28: Nyquist plot of det.I � H�/ for a destabilizing perturbation

Fix !, and let�.H.j!// be thelargestreal number such that det.I � H.j!/�.j!// ¤ 0 for
all �.j!/ (with the prescribed structure) such thatN�.�.j!// < �.H.j!//. Then, obviously, if
for a given perturbation�.j!/, ! 2 R,

N�.�.j!// < �.H.j!// for all ! 2 R (5.141)

then det.I �"H.j!/�.j!// ¤ 0 for " 2 .0; 1� and! 2 R. Therefore, the Nyquist plot of det.I �
H�/ does not encircle the origin, and, hence,� does not destabilize the system. Conversely, it is
always possible to find a perturbation� that violates (5.141) within an arbitrarily small margin
that destabilizes the perturbed system. The number�.H.j!// is known as themultivariable
robustness marginof the systemH at the frequency! (Safonov and Athans, 1981).

We note that for fixed!

�.H.j!// D supf
 j N�.�.j!// < 
 ) det.I � H.j!/�.j!// ¤ 0g
D inff N�.�.j!// j det.I � H.j!/�.j!// D 0g: (5.142)

If no structure is imposed on the perturbation� then�.H.j!// D 1= N�.H.j!//. This led Doyle
to terming the number�.H.j!// D 1=�.H.j!// thestructured singular valueof the complex-
valued matrixH.j!/.

Besides being determined byH.j!/ the structured singular value is of course also dependent
on the perturbation structure. Given the perturbation structure of the perturbations� of the
structured perturbation model, define byD the class ofconstantcomplex-valued matrices of the
form

� D

2

6
6
4

�1 0 � � � 0

0 �2 0 � � �
� � � � � � � � � � � �
0 � � � 0 �K

3

7
7
5
: (5.143)

The diagonal block�i has the same dimensions as the corresponding block of the dynamic
perturbation, and has the following form:

� �i D ıI , with ı a real number, if the dynamic perturbation is a scalar or repeated real
scalar perturbation.

� �i D ıI , with ı a complex number, if the dynamic perturbation is a scalar dynamic or a
repeated scalar dynamic perturbation.

� �i is a complex-valued matrix if the dynamic perturbation is a multivariable dynamic
perturbation.
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5.6.1. The structured singular value

We are now ready to define thestructured singular valueof a complex-valued matrixM :

Definition 5.6.1 (Structured singular value). Let M be ann � m complex-valued matrix,
andD a set ofm � n structured uncertainty matrices. Then thestructured singular valueof
M given the setD is the number�.M / defined by

1

�.M /
D inf

�2D; det.I�M�/D0
�.�/: (5.144)

If det.I � M�/ ¤ 0 for all � 2 D then�.M / D 0. �

The structured singular value�.M / is the inverse of the norm of the smallest perturbation�

(within the given classD) that makesI � M� singular. Thus, the larger�.M /, the smaller the
perturbation� is that is needed to makeI � M� singular.

Example 5.6.2 (Structured singular value). By way of example we consider the computation
of the structured singular value of a2 � 2 complex-valued matrix

M D
�

m11 m12

m21 m22

�

; (5.145)

under the real perturbation structure

� D
�

�1 0

0 �2

�

; (5.146)

with �1 2 R and�2 2 R. It is easily found that

N�.�/ D max.j�1j; j�2j/; det.I C M�/ D 1 C m11�1 C m22�2 C m�1�2; (5.147)

with m D det.M / D m11m22 �m12m21. Hence, the structured singular value ofM is the inverse
of

�.M / D inf
f�12R; �22RW 1Cm11�1Cm22�2Cm�1�2D0g

max.j�1j; j�2j/: (5.148)

Elimination of, say,�2 results in the equivalent expression

�.M / D inf
�12R

max.j�1j;
ˇ
ˇ
ˇ
ˇ

1 C m11�1

m22 C m�1

ˇ
ˇ
ˇ
ˇ
/: (5.149)

Suppose thatM is numerically given by

M D
�

1 2

3 4

�

: (5.150)

Then it may be found (the details are left to the reader) that

�.M / D �5 C
p

33

4
; (5.151)

so that

�.M / D 4

�5 C
p

33
D 5 C

p
33

2
D 5:3723: (5.152)

�
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5.6.2. Structured singular value and robustness

We discuss the structured singular value in more detail in~ 5.6.3, but first summarize its applica-
tion to robustness analysis.

Summary 5.6.3 (Structured robust stability). Given the stable unperturbed systemH the
perturbed system of Fig.5.27(b) is stable for all perturbations� such that�.j!/ 2 D for all
! 2 R if

N�.�.j!// < 1

�.H.j!//
for all ! 2 R; (5.153)

with � the structured singular value with respect to the perturbation structureD. If robust sta-
bility is required with respect toall perturbations within the perturbation class that satisfy the
bound (5.153) then the condition is besides sufficient also necessary. �

Given a structured perturbation� such that�.j!/ 2 D for every! 2 R, we have

k�k1 D sup
!2R

N�.�.j!//: (5.154)

Suppose that the perturbations arescaled, so thatk�k1 � 1. Then Summary5.6.3implies that
the perturbed system is stable if�H < 1, where

�H D sup
!2R

�.H.j!//: (5.155)

With some abuse of terminology, we call�H thestructured singular valueof H . Even more can
be said:

Theorem 5.6.4 (Structured robust stability for scaled pert urbations). The perturbed
system of Fig.5.27(b) is stable for all stable perturbations� such that�.j!/ 2 D for all
! 2 R andk�k1 � 1 if and only if�H < 1. �

Clearly, if the perturbations are scaled to a maximum norm of1 then a necessary and sufficient
condition for robust stability is that�H < 1.

5.6.3. Properties of the structured singular value

Before discussing the numerical computation of the structured singular value we list some of the
principal properties of the structured singular value (Doyle, 1982; Packard and Doyle, 1993).

Summary 5.6.5 (Principal properties of the structured sing ular value). The structured sin-
gular value�.M / of a matrixM under a structured perturbation setD has the following prop-
erties:

1. Scaling property:

�.˛M / D j˛j �.M / (5.156)

for every˛ 2 R. If none of the perturbations are real then this holds as wellfor every
complex˛.
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2. Upper and lower bounds:Suppose thatM is square. Then

�R.M / � �.M / � N�.M /; (5.157)

with �R defined as in Exercise5.10.

If none of the perturbations is real then

�.M / � �.M / � N�.M /; (5.158)

with � denoting the spectral radius. The upper bounds also apply ifM is not square.

3. Preservation of the structured singular value under diagonal scaling: Suppose that the
i th diagonal block of the perturbation structure has dimensionsmi � ni . Form two block
diagonal matricesD and ND whosei th diagonal blocks are given by

Di D di Ini ;
NDi D di Imi ; (5.159)

respectively, withdi a positive real number.Ik denotes ak � k unit matrix. Then

�.M / D �.DM ND�1/: (5.160)

4. Preservation of the structured singular value under unitary transformation:Suppose that
thei th diagonal block of the perturbation structure has dimensionsmi �ni . Form the block
diagonal matricesQ and NQ whosei th diagonal blocks are given by themi � mi unitary
matrixQi and theni � ni unitary matrix NQi , respectively. Then

�.M / D �.QM / D �.M NQ/: (5.161)
�

The scaling property is obvious. The upper bound in2 follows by considering unrestricted
perturbations of the form� 2 C

m�n (that is,� is a full m � n complex matrix). The lower
bound in2 is obtained by considering restricted perturbations of theform� D ıI , with ı a real
or complex number. The properties3 and4 are easily checked.

The following formula for the structured singular value of a2 � 2 dyadic matrix has useful
applications.

Summary 5.6.6 (Structured singular value of a dyadic matrix ). The structured singular
value of the2 � 2 dyadic matrix

M D
�

a1b1 a1b2

a2b1 a2b2

�

D
�

a1

a2

�
�

b1 b2

�

; (5.162)

with a1, a2, b1, andb2 complex numbers, with respect to the perturbation structure

� D
�

�1 0

0 �2

�

; �1 2 C; �2 2 C; (5.163)

is

�.M / D ja1b1j C ja2b2j: (5.164)

�

The proof is given in~ 5.8.
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5. Uncertainty Models and Robustness

5.6.4. Numerical approximation of the structured singular value

Exact calculation of the structured singular value is oftennot possible pracytically and in any case
computationally intensive. The numerical methods that arepresently available for approximating
the structured singular value are based on calculating upper and lower bounds for the structured
singular value.

Summary 5.6.7 (Upper and lower bounds for the structured sin gular value).

1. D-scaling upper bound.Let the diagonal matricesD and ND be chosen as in (3) of Sum-
mary5.6.5. Then with property (b) we have

�.M / D �.DM ND�1/ � N�.DM ND�1/: (5.165)

The rightmost side may be numerically minimized with respect to the free positive num-
bersdi that determineD and ND.

Suppose that the perturbation structure consists ofm repeated scalar dynamic perturbation
blocks andM full multivariable perturbation blocks. Then if2m C M � 3 the minimized
upper bound actuallyequalsthe structured singular value9.

2. Lower bound.Let Q be a unitary matrix as constructed in (4.) of Summary5.6.5. With
property (2.) we have (for complex perturbations only)

�.M / D �.MQ/ � �.MQ/: (5.166)

Actually, (Doyle, 1982),

�.M / D max
Q

�.MQ/; (5.167)

with Q varying over the set of matrices as constructed in (4.) of Summary5.6.5.
�

Practical algorithms for computing lower and upper bounds on the structured singular value for
complex perturbations have been implemented in the MATLAB �-Analysis and Synthesis Toolbox
(Balas et al., 1991). The closeness of the bounds is a measure of the reliabilityof the calculation.

The MATLAB Robust Control Toolbox(Chiang and Safonov, 1992) provides routines for cal-
culating upper bounds on the structured singular value for both complex and real perturbations.

5.6.5. Example

We apply the singular value method for the analysis of the stability robustness to an example.

Example 5.6.8 (SISO system with two parameters). By way of example, consider the SISO
feedback system that was studied in Example5.2.1and several other places. A plant with transfer
function

P .s/ D g

s2.1 C s�/
(5.168)

is connected in feedback with a compensator with transfer function

C.s/ D k C sTd

1 C sT0

: (5.169)

9If there arereal parametric perturbations then this result remains valid, provided that we use a generalization ofD-
scaling called.D;G/-scaling. This is a generalization that allows to exploit realness ofperturbations.
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5.7. Combined performance and stability robustness

We use the design values of the parameters established in Example5.2.2. In Example5.3.5it was
found that the interconnection matrix for scaled perturbations in the gaing and time constant�
is given by

H.s/ D
1

1Cs�0

1 C L0.s/

"

ˇ1C.s/

�ˇ2

#

�

�˛1

s2 ˛2s
�

; (5.170)

where the subscripto indicates nominal values, andL0 D P0C is the nominal loop gain. The
numbers̨ 1, ˛2, ˇ1, andˇ2 are scaling factors such thatjg � g0j � "1 with "1 D ˛1ˇ1, and
j� � �0j � "2 with "2 D ˛2ˇ2. The interconnection matrixH has a dyadic structure. Application
of the result of Summary5.6.6shows that its structured singular value with respect tocomplex
perturbations in the parameters is

�.H.j!// D

q
1

1C!2�2
0

j1 C L0.!/j

�

˛1ˇ1

jC.j!/j
!2

C ˛2ˇ2!

�

D
"1

q

k2 C !2T 2
d C "2!

3
q

1 C !2T 2
0

j�0.j!/j
; (5.171)

with �0.s/ D �0T0s4 C .�0 C T0/s
3 C s2 C g0Td s C g0k the nominal closed-loop characteristic

polynomial.
Inspection shows that the right-hand side of this expression is identical to that of (5.89) in

Example5.4.7, which was obtained by a singular value analysis based on optimal scaling. In
view of the statement in Summary5.6.7(1) this is no coincidence.

Figure5.29repeats the plots of of Fig.5.16of the structured singular value for the two cases
of Example5.4.7. For case (a) the peak value of the structured singular valueis greater than
1 so that robust stability is not guaranteed. Only in case (b)robust stability is certain. Since
the perturbation analysis is based on dynamic rather than parameter perturbations the results are
conservative. �
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Figure 5.29: Structured singular values for the two-parameter plant for two
cases

5.7. Combined performance and stability robustness

In the preceding section we introduced the structured singular value to study the stability robust-
ness of the basic perturbation model. We continue in this section by consideringperformance
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w H z

Figure 5.30: Control system
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Figure 5.31: Two-degree-of-freedom feedback control system.

and its robustness. Figure5.30represents a control system withexternalinputw, such as dis-
turbances, measurement noise, and reference signals, andexternaloutputz. The output signal
z represents anerror signal,and ideally should be zero. The transfer matrixH is the transfer
matrix from the external inputw to the error signalz.

Example 5.7.1 (Two-degree-of-freedom feedback system). To illustrate this model, consider
the two-degree-of-freedom feedback configuration of Fig.5.31. P is the plant,C the compen-
sator, andF a precompensator. The signalr is the reference signal,v the disturbance,m the
measurement noise,u the plant input, andy the control system output. It is easy to find that

y D .I C PC /�1PCFr C .I C PC /�1v � .I C PC /�1PC m

D TFr C Sv � T m; (5.172)

whereS is the sensitivity matrix of the feedback loop andT the complementary sensitivity
matrix. The tracking errorz = y � r is given by

z D y � r D .TF � I/r C Sv � T m: (5.173)

Considering the combined signal

w D

2

4

r

v

m

3

5 (5.174)

as the external input, it follows that the transfer matrix ofthe control system is

H D
�

TF � I S �T
�

: (5.175)

�

The performance of the control system of Fig.5.30 is ideal if H D 0, or, equivalently,
kHk1 D 0. Ideals cannot always be obtained, so we settle for the normkHk1 to be “small,”
rather than zero. By introducing suitable frequency dependent scaling functions (that is, by mod-
ifying H to WHV ) we may arrange that “satisfactory” performance is obtained if and only if

kHk1 < 1: (5.176)
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Figure 5.32: Magnitude plot ofSspec.

Example 5.7.2 (Performance specification). To demonstrate how performance may be spec-
ified this way, again consider the two-degree-of-freedom feedback system of Fig.5.31. For sim-
plicity we assume that it is a SISO system, and that the reference signal and measurement noise
are absent. It follows from Example5.7.1that the control system transfer function reduces to the
sensitivity functionS of the feedback loop:

H D 1

1 C PC
D S : (5.177)

Performance is deemed to be adequate if the sensitivity function satisfies the requirement

jS.j!/j < jSspec.j!/j; ! 2 R; (5.178)

with Sspeca specified rational function, such as

Sspec.s/ D s2

s2 C 2�!0s C !2
0

: (5.179)

The parameter!0 determines the minimal bandwidth, while the relative damping coefficient�
specifies the allowable amount of peaking. A doubly logarithmic magnitude plot ofSspec is
shown in Fig.5.32for !0 D 1 and� D 1

2
.

The inequality (5.178) is equivalent tojS.j!/V .j!/j < 1 for ! 2 R, with V D 1=Sspec.
RedefiningH asH D SV this reduces to

kHk1 < 1: (5.180)

�

By suitable scaling we thus may arrange that the performanceof the system of Fig.5.30 is
considered satisfactory if

kHk1 < 1: (5.181)

In what follows we exploit the observation that by (1) of Summary 5.4.4 this specification is
equivalent to the requirement that the artificially perturbed system of Fig.5.33remains stable
under all stable perturbations�0 such thatk�0k1 � 1.
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w H

∆0

z

Figure 5.33: Artificially perturbed system

5.7.1. Performance robustness

Performance is said to berobustif kHk1 remains less than 1 under perturbations. To make this
statement more specific we consider the configuration of Fig.5.34(a). The perturbation� may
be structured, and is scaled such thatk�k1 � 1. We describe the system by the interconnection
equations

�

z

q

�

D H

�

w

p

�

D
�

H11 H12

H21 H22

� �

w

p

�

: (5.182)

H11 is the nominal control system transfer matrix. We define performance to be robust if

1. the perturbed system remains stable under all perturbations, and

2. the1-norm of the transfer matrix of the perturbed system remainsless than 1 under all
perturbations.

w
H

z

qp

∆ ∆

∆0

w z

p qH

(a) (b)

Figure 5.34: (a) Perturbed control system. (b) Doubly perturbed system

Necessary and sufficient for robust performance is that the norm of the perturbed transfer matrix
fromw to z in the perturbation model of Fig.5.34(a) is less than 1 for every perturbation� with
norm less than or equal to 1. This, in turn, is equivalent to the condition that the augmented
perturbation model of Fig.5.34(b) is stable for every “full” perturbation�0 and every structured
perturbation�, both with norm less than or equal to 1. Necessary and sufficient for this is that

�H < 1; (5.183)

with � the structured singular value ofH with respect to the perturbation structure defined by
�

�0 0

0 �

�

: (5.184)
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5.7. Combined performance and stability robustness

Summary 5.7.3 (Robust performance and stability). Robust performance of the system of
Fig. 5.34(a) is achieved if and only if

�H < 1; (5.185)

where�H is the structured singular value ofH under perturbations of the form
�

�0 0

0 �

�

: (5.186)

�0 is a “full” perturbation, and� structured as specified. �
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Figure 5.35: SISO feedback system. (a) Nominal. (b) Perturbed

5.7.2. SISO design for robust stability and performance

We describe an elementary application of robust performance analysis using the structured sin-
gular value (compare (Doyle et al., 1992)). Consider the feedback control system configuration
of Fig. 5.35(a). A SISO plantP is connected in feedback with a compensatorC .

� Performance is measured by the closed-loop transfer function from the disturbancew to the
control system outputz, that is, by the sensitivity functionS D 1=.1CPC /. Performance
is considered satisfactory if

jS.j!/W1.j!/j < 1; ! 2 R; (5.187)

with W1 a suitable weighting function.

� Plant uncertainty is modeled by the scaled uncertainty model

P �! P .1 C ıP W2/; (5.188)

with W2 a stable function representing the maximal uncertainty, and ıP a scaled stable
perturbation such thatkıP k1 � 1.
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5. Uncertainty Models and Robustness

The block diagram of Fig.5.35(b) includes the weighting filterW1 and the plant perturbation
model. By inspection we obtain the signal balance equationy D w C p � PCy, so that

y D 1

1 C PC
.w C p/: (5.189)

By further inspection of the block diagram it follows that

z D W1y D W1S.w C p/; (5.190)

q D �W2PCy D �W2T .w C p/: (5.191)

Here

S D 1

1 C PC
; T D PC

1 C PC
(5.192)

are the sensitivity function and the complementary sensitivity function of the feedback system,
respectively. Thus, the transfer matrixH in the configuration of Fig.5.34(b) follows from

�

q

z

�

D
�

�W2T �W2T

W1S W1S

�

„ ƒ‚ …

H

�

p

w

�

: (5.193)

H has the dyadic structure

H D
�

W2T

W1S

�
�

�1 1
�

: (5.194)

With the result of Summary5.6.6we obtain the structured singular value of the interconnection
matrixH as

�H D sup
!2R

�.H.j!// D sup
!2R

.jW1.j!/S.j!/j C jW2.j!/T .j!/j/ (5.195)

D k jW1S j C jW2T j k1: (5.196)

By Summary5.7.3, robust performance and stability are achieved if and only if �H < 1.

Example 5.7.4 (Robust performance of SISO feedback system) . We consider the SISO
feedback system we studied in Example5.2.1 (p. 184) and on several other occasions, with
nominal plant and compensator transfer functions

P0.s/ D g0

s2
; C.s/ D k C sTd

1 C sT0

; (5.197)

respectively. We use the design values of Example5.2.2(p.185). In Fig.5.36magnitude plots are
given of the nominal sensitivity and complementary sensitivity functions of this feedback system.
The nominal sensitivity function is completely acceptable, so we impose as design specification
that under perturbation

ˇ
ˇ
ˇ
ˇ

S.j!/

S0.j!/

ˇ
ˇ
ˇ
ˇ

� 1 C "; ! 2 R; (5.198)

with S0 the nominal sensitivity function and the positive number" a tolerance. This comes down
to choosing the weighting functionW1 in (5.187) as

W1 D 1

.1 C "/S0

: (5.199)
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Figure 5.36: Nominal sensitivity and complementary sensitivity functions
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Figure 5.37: The bound and its effect onS

We consider how to select the weighting functionW2, which specifies the allowable perturba-
tions. With W1 chosen as in (5.199) the robust performance criterion�H < 1 according to
(5.195) reduces to

1

1 C "
C jW2.j!/T0.j!/j < 1; ! 2 R; (5.200)

with T0 the nominal complementary sensitivity function. This is equivalent to

jW2.j!/j <
"

1C"
jT0.j!/j

; ! 2 R: (5.201)

Figure5.37(a) shows a plot of the right-hand side of (5.201) for " D 0:25. This right-hand side is
a frequency dependent bound for the maximally allowable scaled perturbationıP . The plot shows
that for low frequencies the admissible proportional uncertainty is limited to"=.1 C "/ D 0:2,
but that the system is much more robust with respect to high-frequency perturbations. In the
crossover frequency region the allowable perturbation is even less than 0.2.
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5. Uncertainty Models and Robustness

Suppose, as we did before, that the plant is perturbed to

P .s/ D g

s2.1 C s�/
: (5.202)

The corresponding proportional plant perturbation is

�P .s/ D P .s/ � P0.s/

P0.s/
D

g�g0

g0
� s�

1 C s�
: (5.203)

At low frequencies the perturbation has approximate magnitudejg � g0j=g0. For performance
robustness this number definitely needs to be less than the minimum of the bound on the right-
hand side of (5.201), which is about "

1C" 0:75.
If " D 0:25 then the latter number is about 0.15. Figure5.37(a) includes a magnitude plot of

�P for jg � g0j=g0 D 0:1 (that is,g D 0:9 or g D 1:1) and� D 0:1. For this perturbation the
performance robustness test is just satisfied. Ifg is made smaller than 0.9 or larger than 1.1 or�

is increased beyond0:1 then the perturbation fails the test.
Figure5.37(b) shows the magnitude plot of the sensitivity functionS for g D 1:1 and� D 0:1.

Comparison with the boundj.1 C "/S0j shows that performance is robust, as expected. �

5.8. Appendix: Proofs

In this Appendix to Chapter5 the proofs of certain results in are sketched.

Proof of Białas’ test.We split the proof into two parts. In thefirst part we show a technical result
that says that the Hurwitz matrixHp of a polynomialp is nonsingular ifp is stable, and thatHp

is singular ifp has imaginary zeros. This we use in the second part to prove Białas’ test.
Part 1. We show thatHp is singular if and only ifp.s/ andp.�s/ have zeros in common. In

particular this implies what we need in the second part, namely thatHp is nonsingular for strictly
Hurwitz p and thatHp is singular forp with imaginary zeros (as these zeros come in conjugate
pairss D j! ands D �j!.)

First we establish that

p.s/ andp.�s/ have zeros in common.
”

There is a nonzero polynomialr of degree at most deg.p/ � 1 such thatrp is odd.

This is readily checked:rp is odd meansr.s/p.s/ D sh.s2/ so the zeros ofrp are then symmet-
ric with respect to the imaginary axis. Ifp.s/ andp.�s/ have no zeros in common then obvi-
ously suchr (of degree at most deg.p/�1) do not exist. If, on the other hand,p.s/ andp.�s/ do
have zeros in common, then a polynomialr is readily found: Ifp.0/ D 0 thenr.s/ WD p.�s/=s

will do. If p.s/ andp.�s/ have a common zero at̨ ¤ 0, thenr.s/ WD sp.�s/=.s2 � ˛2/ will
do.

The condition thatrp is odd is the same as saying that the even partŒrp�even D 0, and that is a
linear equation in the coefficients ofr . To see this more clearly we definet depending onr and
p ast WD rp and we writet D rp out in terms of its coefficients

�

r0 r1 � � � rn�1

�

2

6
6
6
6
4

p0 p1 p2 p3 � � � � � � 0

0 p0 p1 p2 � � � � � � 0

0 0 p0 p1 � � � � � � 0

� � � � � � � � � � � � � � � � � � 0

0 0 0 0 p0 � � � pn

3

7
7
7
7
5

D
�

t0 t1 � � � t2n�1

�

: (5.204)
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Here the coefficients are indexed as inr.s/ D r0s
n�1 C r1s

n�2 C � � � and t.s/ D t0s
2n�1 C

t1s
2n�2 C � � � , and the coefficients ofp are denoted bypi . Œrp�even is zero iff the odd-indexed

coefficientst1; t3; t5; � � � are all zero. That is, iff removal of the1st; 3rd; 5th etcetera columns of
(5.204) results in the zero vector,

�

r0 r1 � � � rn�1

�

2

6
6
6
6
4

p1 p3 � � � � � �
p0 p2 � � � � � �
0 p1 � � � � � �
� � � � � � � � � � � �
0 � � � � � � � � �

3

7
7
7
7
5

D
�

0 0 � � � 0
�

:

The big matrix in the middle may be recognized as then � n Hurwitz matrix Hp of p, and,
therefore, there exist nonzero polynomialsr of degree at most deg.p/ � 1 such thatŒrp�even D 0

iff the Hurwitz matrix ofp is singular. That is what we intended to prove.
Part 2. We examine the stability properties of the convex combinations

p� WD �p C .1 � �/q

of two polynomialsp andq. Now if p is stable but for some� 2 Œ0; 1� the polynomial�p C
.1 � �/q is not stable, then by continuity of the zeros of polynomials, there exists a�� 2 Œ0; 1�

for which��p C .1 � ��/q has imaginary zeros. By linearity the corresponding Hurwitz matrix
Hp��

equals

Hp��
D ��Hp C .1 � ��/Hq:

Note thatHp is nonsingular ifp is stable. Therefore, in that caseHp� may also be written as

Hp� D �Hp Œ1 C 1 � �
�

H �1
p Hq �:

The value of.1��/=� ranges over all nonnegative values as� ranges over all� 2 Œ0; 1�. and this
shows thatHp� is nonsingular for all such� iff all real valuedeigenvalues ofH �1

p Hq are strictly
positive.

Proof of Lemma5.3.1. Introducing internal inputs and outputs as in Fig.5.8(b), we obtain the
signal balance equations

w1 D v1 C�H .v2 C Hw1/; w2 D v2 C H.v1 C�Hw1/: (5.205)

Rearrangement yields

.I ��H H /w1 D v1 C�Hv2; .I � H�H /w2 D Hv1 C v2: (5.206)

For internal stability we need the transfer matrices fromv1; v2 to w1; w2 to exist and be stable.
These transfer matrices are

w1 D .I ��H H /�1v1 C .I ��H H /�1�Hv2;

w2 D .I � H�H /
�1Hv1 C .I � H�H /

�1v2:

By assumption bothH and�H are stable. Hence the above transfer matrices exist and are stable
precisely if.I �H�H /

�1 and.I ��H H /�1 exist and are stable. Now det.I �H�H / D det.I �
�H H / so existence and stability of.I � H�H /

�1 is equivalent to that of.I ��H H /�1.
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5. Uncertainty Models and Robustness

5.8.1. Small gain theorem

We prove Summary5.4.1.

Proof of Theorem5.4.1(sketch).If kLk < 1 thenL is stable. Hence the closed loop is internally
stable iff.I � L/�1 exists and is stable. The claim is that

.I � L/�1 D I C L C L2 C L3 C � � �
and that the right-hand side converges becausekLk < 1. Define

QN D
N
X

kD0

Lk

Then.I �L/QN D
PN

kD0.I �L/Lk D .I �L/C.L�L2/C� � �C.LN �LN C1/ D I �LN C1.
Now by the submultiplicative property of induced norms we have thatkLkk D kL � L � � � Lk �
kLk � kLk � � � kLk D kLkk . This allows to show thatQN is bounded (independent ofN ),

kQN k � kI CLC� � � LN k � kIkCkLkC� � � kLkN D
NX

kD0

kLkk D 1 � kLkN C1

1 � kLk � 1

1 � kLk

and that

lim
N !1

kI �.I CL/QN k D lim
N !1

kI �.I �LN C1/k D lim
N !1

kLN C1k � lim
N !1

kLkN C1 D 0

It is standard result in functional analysis that the set of bounded operators form a Banach space,
which for our case means thatQ1 WD limN !1 QN exists and is a bounded operator fromU to
U .

Proof of Theorem5.4.4. By the small gain theorem the BPM is guaranteed to be internally stable
if kH�H k1 < 1. Both conditions1 and2 imply kH�H k1 < 1. Indeed, by the submultiplica-
tive property Condition1 implies

kH�H k1 D sup
!

�.H.j!/�H .j!// � sup
!

�.H.j!//�.�H .j!// < 1

and Condition2 implies

kH�H k1 � kHk1k�H k1 < 1:

Proof of Theorem5.4.5. We only prove1 and only for
 D 1 (the case2 is similar, and if
 ¤ 1 a
simple scaling will make it equal to1). We know thatk�H k1 � 1 andkHk1 < 1 imply internal
stability. To prove the converse, suppose thatkHk1 � 1. Then there is an!� 2 R [ f1g for
which�.H.j!�// � 1. Now define� to be the constant uncertainty

� D 1

�.H.j!�//2
H.j!�//

�:

Then

�.�/ D 1

�.H.j!�//
� 1

and it is destabilizing, because

det.I ��H.j!�// D det.I � 1

�.H.j!�//2
.H.j!�//

�H.j!�// D 0:
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5.9. Exercises

5.8.2. Structured singular value of a dyadic matrix

We prove Summary5.6.6. In fact we prove the generalization that for rank 1 matrices

M D

2

6
4

a1

a2

:::

3

7
5

�

b1 b2 � � �
�

; ai ; bj 2 C (5.207)

and perturbation structure

� D

2

4

�1 0 � � �
0 �2 � � �
� � � � � � � � �

3

5 ; �i 2 C (5.208)

there holds that�.M / D
P

i jaibi j.

Proof of structured singular value of dyadic matrix.Given M as the product of a column and
row vectorM D ab we have

det.I � M�/ D det.I � ab�/ D det.1 � b�a/ D 1 �
X

i

ai bi�i : (5.209)

This gives a lower bound for the real part of det.I � M�/,

det.I � M�/ D 1 �
X

i

aibi�i � 1 �
X

i

jaibi j max
i

j�i j D 1 �
X

i

jaibi j�.�/: (5.210)

For det.I � M�/ to be zero we need at least that the lower bound is not positive, that is, that
�.�/ � 1=

P

i jai bi j. Now take� equal to

� D 1
P

i jaibi j

2

6
4

sgn.a1b1/ 0 � � �
0 sgn.a2b2/ � � �

� � � � � � : : :

3

7
5 : (5.211)

Then�.�/ D 1=
P

i jai bi j and it is such that

det.I � M�/ D 1 �
X

j

aj bj�j D 1 �
X

j

aj bj

sgnaj bj
P

i jaibi j
D 0: (5.212)

Hence a smallest� (in norm) that makesI � M� singular has norm1=
P

i jai bi j. Therefore
�.M / D

P

i jaibi j.
It may be shown that theD-scaling upper bound for rank 1 matrices equals�.M / in this

case.

5.9. Exercises

5.1 Stability margins.The stability of the feedback system of Example5.2.4is quite robust
with respect to variations in the parameters� andg. Inspect the Nyquist plot of the nominal
loop gain to determine the various stability margins of~ 1.4.2and Exercise1.4.9(b) of the
closed-loop system.
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5. Uncertainty Models and Robustness

5.2 Application of Białas’ test.Test the stability of the system on the remaining three edgesas
given by (5.46).

5.3 Parametric uncertainty.Consider the family of polynomials

�˛.s/ D .3 C ˛/C .2 C ˛/s C .4 C 3˛/s2 C 2

5
s3

with ˛ 2 R an uncertain constant in the intervalŒ�1; 1�.

a) Is each member of this family of polynomials strictly Hurwitz? (You may want to
use MATLAB .)

b) What can be deduced from Kharitonov’s theorem?

c) What can be deduced from the edge theorem?

+

+

+

x

A

qp
∆

sI1

Figure 5.38: Uncertainty of the state space system

5.4 Stability radius, (Hinrichsen and Pritchard, 1986). Investigate what uncertainties of the
matrixA make the system described by the state differential equation

Px.t/ D Ax.t/; t 2 R; (5.213)

unstable. Assume that the nominal systemPx.t/ D Ax.t/ is stable. The number

r.A/ D inf
A C� has at least one eigenvalue

in the closed right-half plane

�.�/ (5.214)

is called thestability radiusof the matrixA. The matrix norm used is the spectral norm.
If only real-valued uncertainties� are considered thenr.A/ is the real stability radius,
denotedrR.A/. If the elements of� may also assume complex values thenr.A/ is the
complex stability radius,denotedrC.A/.

a) Prove that

rR.A/ � rC.A/ � 1

kFk1
; (5.215)

with F the rational matrix given byF.s/ D .sI � A/�1. Hint: Represent the system
by the block diagram of Fig.5.38.
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b) A more structured uncertainty model results by assuming thatA is perturbed as

A �! A C B�C; (5.216)

with B andC matrices of suitable dimensions, and� the uncertainty. Adapt the
block diagram of Fig.5.38 and prove that the associated complex stability radius
rC.A;B;C / satisfiesrC.A;B;C / � 1=kHk1, with H.s/ D C.sI � A/�1B.

Hinrichsen and Pritchard(1986) prove thatrC.A/ D 1=kFk1 and rC.A;B;C / D
1=kHk1. Thus, explicit formulas are available for the complex stability radius. The
real stability radius is more difficult to determine (Qiu et al., 1995).

5.5 Consider the unit feedback loop of Fig.5.9and suppose the loop gainL equals

L.s/ D e�"s 1

s C 1
;

for some uncertain delay" � 0. Nominally the loop gain has no delay (" D 0).

a) Model the uncertainty as an additive uncertainty and thenuse Inequality (5.70) to
determine (numerically?) the largest delay"� below which the loop is internally
stable.

b) Model the uncertainty as a proportional (multiplicative) uncertainty and then use
Inequality (5.70) to determine (numerically?) the largest delay"� below which the
loop is internally stable.

5.6 Prove thatk defined in (5.93) indeed satisfies (5.90).

5.7 Structured singular value.Fill in the details of the calculation of Summary5.6.5.

5.8 A MIMO feedback system.Consider the MIMO system with the2 � 2 loop gain transfer
matrix

L.s/ D
�

1=2 0

ks=.s C 2/ 0

�

:

The loop gain depends on a parameterk 2 R.

a) Find the1-norm ofL (the norm still depends onk).

b) For which values ofk does the small-gain theorem guarantee that the closed loop of
Fig. 5.25(page214) is internally stable?

c) Determine allk for which the closed loop of Fig.5.25is internally stable.

d) Compute�.L.j!// with respect to structure

� D
�

�11 �12

�21 �22

�

; �ij 2 C:

5.9 Numerator-denominator plant perturbation.Table5.1 lists several perturbation models.

a) Verify the result for perturbed plantP C V�P W

b) Verify the result for perturbed plant.I C V�P W /�1P

c) Verify the result for perturbed plant.D C V�DW1/
�1.N C V�N W2/
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5. Uncertainty Models and Robustness

5.10 Alternative characterization of the structured singular value. Prove (Doyle, 1982) that if
all uncertainties are complex then

�.M / D max
�2 DW �.�/�1

�.M�/; (5.217)

with � denoting the spectral radius — that is, the magnitude of the largest eigenvalue (in
magnitude). Show that if on the other hand some of the uncertainties are real then

�.M / D max
�2 DW �.�/�1

�R.M�/: (5.218)

H1ere�R.A/ is largest of the magnitudes of the real eigenvalues of the complex matrixA.
If A has no real eigenvalues then�R.A/ D 0.

5.11 Proof of the principal properties of the structured singular valueFill in the details of the
proof of Summary5.6.5.

5.12 Computation of structured singular values withMATLAB . Reproduce the plots of Fig.5.29
using the appropriate numerical routines from the�-Toolbox or the Robust Control Tool-
box for the computation of structured singular values.

5.13 Structured singular values.Let M be the2 � 2-matrix

M D
�

0 1

0 0

�

:

a) Determine�.M /

b) Determine�.M / with respect to the structure

� D
�

ı1 0

0 ı2

�

; ı1; ı2 2 C:

c) Determine

inf
D
�.DMD�1/

where the minimization is with respect to the diagonal matricesD of the form

D D
�

d1 0

0 1

�

; d1 > 0:

5.14 Multiple uncertain parameters in a state space description. Suppose thatPx D Ax but that
A 2 R

n�n is uncertain,

A D A0 C ı1A1 C ı2A2 C � � � C ımAm;

with Ai known andıi 2 Œ�1; 1� unknown. The systemPx D Ax is Robustly stableif it
is stable for everyıi 2 Œ�1; 1�. Rewrite this robust stability problem into the problem of
internal stability of a BPM.

5.15 �-analysis.Consider the feedback loop of Fig.6.1and assume the plant is uncertain,

P .s/ D N0 C
Pn

iD1 ıN i Ni

D0 C
Pm

iD1 ıDiDi

whereNi andDi are given polynomials, andıN i ; ıDi uncertain real parameters inŒ�1; 1�.
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a) Given a controllerC , determine

i. an interconnection matrixH ,

ii. an uncertainty� (expressed in terms of theıN i ; ıDi )

such that the loop of Fig. 6.1 is internally stable for all possibleıN i ; ıDi 2 .�1; 1/ iff
sup! �.H.j!// � 1.

b) What is the rank of the interconnection matrixH as determined above?

5.16 Bound on performance robustness.In Example5.7.4we used the performance specifica-
tion (in the form ofW1) to find bounds on the maximally allowable scaled uncertainties
ıP . Conversely, we may use the uncertainty specification (in the form ofW2) to estimate
the largest possible performance variations.

a) Suppose thatg varies between 0.5 and 1.5 and� between 0 and 0.2. Determine a
functionW2 that tightly bounds the uncertainty�P of (5.203).

b) Use (5.201) to determine the smallest value of" for which robust performance is
guaranteed.

c) Compute the sensitivity functionS for a number of values of the parametersg and
� within the uncertainty region. Check how tight the bound on performance is that
follows from the value of" obtained in (5.16b).
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6. H1-Optimization and �-Synthesis

Overview– Design byH1-optimization involves the minimization of
the peak magnitude of a suitable closed-loop system function. It is very
well suited to frequency response shaping. Moreover, robustness against
plant uncertainty may be handled more directly than withH2 optimiza-
tion.

Design by�-synthesis aims at reducing the peak value of the struc-
tured singular value. It accomplishes joint robustness andperformance
optimization.

6.1. Introduction

In this chapter we introduce what is known asH1-optimization as a design tool for linear mul-
tivariable control systems.H1-optimization amounts to the minimization of the1-norm of a
relevant frequency response function. The name derives from the fact that mathematically the
problem may be set in the spaceH1 (named after the British mathematician G. H. Hardy), which
consists of all bounded functions that are analytic in the right-half complex plane. We do not go
to this length, however.
H1-optimization resemblesH2-optimization, where the criterion is the 2-norm. Because

the 2- and1-norms have different properties the results naturally arenot quite the same. An
important aspect ofH1 optimization is that it allows to include robustness constraints explicitly
in the criterion.

In ~ 6.2 (p. 240) we discuss themixed sensitivity problem.This specialH1 problem is an
important design tool. We show how this problem may be used toachieve the frequency response
shaping targets enumerated in~ 1.5(p. 27).

In ~ 6.3 (p. 248) we introduce thestandard problemof H1-optimization, which is the most
general version. The mixed sensitivity problem is a specialcase. Several other special cases of
the standard problem are exhibited.

The next section is devoted tosuboptimalsolutions of the standardH1-optimization problem.
An example demonstrates the difficulties that can occur and they illustrate the type of assumptions
needed for the solution of theH1-optimization problem.

In ~ 6.5 (p. 253) we review state space formulae for the suboptimal solutions and establish a
lower bound for the1-norm. Two algebraic Riccati equations are needed for the solution.

In ~ 6.6(p.255) we discuss optimal (as opposed tosuboptimal) solutions and highlight some of
their peculiarities. Section6.7(p. 258) explains how integral control and high-frequency roll-off
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6. H1-Optimization and�-Synthesis

may be handled.
Section6.8(p.266) is devoted to an introductory exposition of�-synthesis. This approximate

technique for joint robustness and performance optimization usesH1 optimization to reduce the
peak value of the structured singular value. Section6.9(p.270) is given over to a rather elaborate
description of an application of�-synthesis.

C P
−

Figure 6.1: Feedback loop

6.2. The mixed sensitivity problem

In ~ 5.5.5(p. 211) we studied the stability robustness of the feedback configuration of Fig.6.1.
We considered fractional perturbations of the type

L D ND�1 �! .I C V ıN W2/ND�1.I C V ıDW1/
�1: (6.1)

The frequency dependent matricesV , W1, andW2 are so chosen that the scaled perturbation
ıp D Œ�ıD ıN � satisfieskıP k1 � 1. Stability robustness is guaranteed if

kHk1 < 1; (6.2)

where

H D
�

W1SV

�W2T V

�

: (6.3)

S D .I CL/�1 andT D L.I CL/�1 are the sensitivity matrix and the complementary sensitivity
matrix of the closed-loop system, respectively, withL the loop gainL D PC .

Given a feedback system with controllerC and corresponding loop gainL D PC that does
not satisfy the inequality (6.2) one may look for a different controller that does achieve inequality.
An effective way of doing this is to consider the problem ofminimizingkHk1 with respect to
all controllersC that stabilize the system. If the minimal value
 of kHk1 is greater than 1 then
no controller exists that stabilizes the systems for all perturbations such thatkıP k1 � 1. In this
case, stability robustness is only obtained for perturbations satisfyingkıP k1 � 1=
 .

The problem of minimizing









�

W1SV

�W2T V

�








1
(6.4)

(Kwakernaak, 1983, 1985) is a version of what is known as themixed sensitivity problem
(Verma and Jonckheere, 1984). The name derives from the fact that the optimization involves
both the sensitivity and the complementary sensitivity function.

In what follows we explain that the mixed sensitivity problem cannot only be used to verify
stability robustness for a class of perturbations, but alsoto achieve a number of other important
design targetsfor the one-degree-of-freedom feedback configuration of Fig. 6.1.
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6.2. The mixed sensitivity problem

Before starting on this, however, we introduce a useful modification of the problem. We may
write W2T V D W2L.I C L/�1V D W2PC.I C L/�1V D W2PU V , where

U D C.I C PC /�1 (6.5)

is the input sensitivity matrix introduced in~ 1.5 (p. 27) . For a fixed plant we may absorb the
plant transfer matrixP (and the minus sign) into the weighting matrixW2, and consider the
modified problem of minimizing










�

W1SV

W2U V

�








1
(6.6)

with respect to all stabilizing controllers. We redefine theproblem of minimizing (6.6) as the
mixed sensitivity problem.

We mainly consider the SISO mixed sensitivity problem. The criterion (6.6) then reduces to
the square root of the scalar quantity

sup
!2R

�

jW1.j!/S.j!/V .j!/j2 C jW2.j!/U.j!/V .j!/j2
�

: (6.7)

Many of the conclusions also hold for the MIMO case, althoughtheir application may be more
involved.

6.2.1. Frequency response shaping

The mixed sensitivity problem may be used for simultaneously shaping the sensitivity and input
sensitivity functions. The reason is that the solution of the mixed sensitivity sensitivity problem
often has theequalizing property(see~ 6.6, p. 255). This property implies that the frequency
dependent function

jW1.j!/S.j!/V .j!/j2 C jW2.j!/U.j!/V .j!/j2; (6.8)

whose peak value is minimized, actually is aconstant(Kwakernaak, 1985). If we denote the
constant as
 2, with 
 nonnegative, then it immediately follows from

jW1.j!/S.j!/V .j!/j2 C jW2.j!/U.j!/V .j!/j2 D 
 2 (6.9)

that for the optimal solution

jW1.j!/S.j!/V .j!/j2 � 
 2; ! 2 R;

jW2.j!/U.j!/V .j!/j2 � 
 2; ! 2 R:
(6.10)

Hence,

jS.j!/j � 


jW1.j!/V .j!/j
; ! 2 R; (6.11)

jU.j!/j � 


jW2.j!/V .j!/j
; ! 2 R: (6.12)

By choosing the functionsW1, W2, andV correctly the functionsS andU may be made small
in appropriate frequency regions. This is also true if the optimal solution does not have the
equalizing property.
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6. H1-Optimization and�-Synthesis

If the weighting functions are suitably chosen (in particular, withW1V large at low frequencies
andW2V large at high frequencies), then often the solution of the mixed sensitivity problem has
the property that the first term of the criterion dominates atlow frequencies and the second at
high frequencies:

jW1.j!/S.j!/V .j!/j2
„ ƒ‚ …

dominates at low frequencies

C jW2.j!/U.j!/V .j!/j2
„ ƒ‚ …

dominates at high frequencies

D 
 2: (6.13)

As a result,

jS.j!/j � 


jW1.j!/V .j!/j
for ! small; (6.14)

jU.j!/j � 


jW2.j!/V .j!/j
for ! large: (6.15)

This result allows quite effective control over the shape ofthe sensitivity and input sensitivity
functions, and, hence, over the performance of the feedbacksystem.

Because the1-norm involves the supremum frequency response shaping based on minimiza-
tion of the1-norm is more direct than for theH2 optimization methods of~ 4.5(p. 155).

Note, however, that the limits of performance discussed in~ 1.6(p. 40) can never be violated.
Hence, the weighting functions must be chosen with the respect due to these limits.

6.2.2. Type k control and high-frequency roll-off

In (6.14–6.15), equality may often be achievedasymptotically.

Type k control. Suppose thatjW1.j!/V .j!/j behaves as1=!k as! ! 0, with k a nonnegative
integer. This is the case ifW1.s/V .s/ includes a factorsk in the denominator. ThenjS.j!/j
behaves as!k as! ! 0, which implies a typek control system, with excellent low-frequency
disturbance attenuation ifk � 1. If k D 1 then the system has integrating action.

High-frequency roll-off. Likewise, suppose thatjW2.j!/V .j!/j behaves as!m as! ! 1.
This is the case ifW2V is nonproper, that is, if the degree of the numerator ofW2V exceeds that
of the denominator (bym). ThenjU.j!/j behaves as!�m as! ! 1. FromU D C=.1 C PC /

it follows thatC D U=.1 C UP /. Hence, ifP is strictly proper andm � 0 then alsoC behaves
as!�m, andT D PC=.1 C PC / behaves as!�.mCe/, with e the pole excess1 of P .

Hence, by choosingm we pre-assign thehigh-frequency roll-offof the controller transfer
function, and the roll-offs of the complementary and input sensitivity functions. This is important
for robustness against high-frequency unstructured plantperturbations.

Similar techniques to obtain typek control and high-frequency roll-off are used in~ 4.5.4
(p. 158) and~ 4.5.5(p. 160) , respectively, forH2 optimization.

6.2.3. Partial pole placement

There is a further important property of the solution of the mixed sensitivity problem that needs
to be discussed before considering an example. This involves a pole cancellation phenomenon
that is sometimes misunderstood. The equalizing property of ~ 6.2.1(p. 241) implies that

W1.s/W1.�s/S.s/S.�s/V .s/V .�s/C W2.s/W2.�s/U.s/U.�s/V .s/V .�s/ D 
 2 (6.16)
1The pole excess of a rational transfer functionP is the difference between the number of poles and the number of

zeros. This number is also known as therelative degreeof P
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6.2. The mixed sensitivity problem

for all s in the complex plane. We write the transfer functionP and the weighting functionsW1,
W2, andV in rational form as

P D N

D
; W1 D A1

B1

; W2 D A2

B2

; V D M

E
; (6.17)

with all numerators and denominators polynomials. If also the controller transfer function is
represented in rational form as

C D Y

X
(6.18)

then it easily follows that

S D DX

DX C N Y
; U D DY

DX C N Y
: (6.19)

The denominator

Dcl D DX C N Y (6.20)

is the closed-loop characteristic polynomial of the feedback system. SubstitutingS andU as
given by (6.19) into (6.16) we easily obtain

DÏD � M ÏM � .AÏ

1 A1B
Ï

2 B2X
ÏX C AÏ

2 A2B
Ï

1 B1Y
ÏY /

EÏE � BÏ

1 B1 � BÏ

2 B2 � DÏ

cl Dcl
D 
 2: (6.21)

If A is any rational or polynomial function thenAÏ is defined byAÏ.s/ D A.�s/.
Since the right-hand side of (6.21) is a constant, all polynomial factors in the numerator of the

rational function on the left cancel against correspondingfactors in the denominator. In particular,
the factorDÏD cancels. If there are no cancellations betweenDÏD andEÏEBÏ

1 B1BÏ

2 B2 then
the closed-loop characteristic polynomialDcl (which by stability has left-half plane roots only)
necessarily has among its roots those roots ofD that lie in the left-half plane, and the mirror
images with respect to the imaginary axis of those roots ofD that lie in the right-half plane. This
means that the open-loop poles (the roots ofD), possibly after having been mirrored into the
left-half plane,reappearas closed-loop poles.

This phenomenon, which is not propitious for good feedback system design, may be prevented
by choosing the denominator polynomialE of V equal to the plant denominator polynomial
D, so thatV D M=D. With this special choice of the denominator ofV , the polynomialE
cancels againstD in the left-hand side of (6.21), so that the open-loop poles donot reappear as
closed-loop poles.

Further inspection of (6.21) shows that if there are no cancellations betweenM ÏM and
EÏEBÏ

1 B1B
Ï

2 B2, and we assume without loss of generality thatM has left-half plane roots
only, then the polynomialM cancels against a corresponding factor inDcl. If we takeV proper
(which ensuresV .j!/ to be finite at high frequencies) then the polynomialM has the same
degree asD, and, hence, has the same number of roots asD.

All this means that by letting

V D M

D
; (6.22)

where the polynomialM has the same degree as the denominator polynomialD of the plant, the
open-loop poles (the roots ofD) are reassigned to the locations of the roots ofM . By suitably
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6. H1-Optimization and�-Synthesis

choosing the remaining weighting functionsW1 andW2 these roots may often be arranged to be
thedominantpoles.

This technique, known aspartial pole placement(Kwakernaak, 1986; Postlethwaite et al.,
1990) allows further control over the design. It is very useful indesigning for a specified band-
width and good time response properties.

In the design examples in this chapter it is illustrated how the ideas of partial pole placement
and frequency shaping are combined.

A discussion of the root loci properties of the mixed sensitivity problem may be found in
Choi and Johnson(1996).

6.2.4. Example: Double integrator

We apply the mixed sensitivity problem to the same example asin ~ 4.6.2(p. 161), whereH2

optimization is illustrated2. Consider a SISO plant with nominal transfer function

P0.s/ D 1

s2
: (6.23)

The actual, perturbed plant has the transfer function

P .s/ D g

s2.1 C s�/
; (6.24)

whereg is nominally 1 and the nonnegative parasitic time constant� is nominally 0.

Perturbation analysis. We start with a preliminary robustness analysis. The variations in the
parasitic time constant� mainly cause high-frequency perturbations, while the low-frequency
perturbations are primarily the effect of the variations inthe gaing. Accordingly, we model
the effect of the parasitic time constant as anumeratorperturbation, and the gain variations as
denominatorperturbations, and write

P .s/ D N.s/

D.s/
D

1
1Cs�

s2

g

: (6.25)

Correspondingly, the relative perturbations of the denominator and the numerator are

D.s/ � D0.s/

D0.s/
D 1

g
� 1;

N.s/ � N0.s/

N0.s/
D �s�

1 C s�
: (6.26)

The relative perturbation of the denominator is constant over all frequencies, also in the crossover
region. Because the plant is minimum-phase trouble-free crossover may be achieved (that is,
without undue peaking of the sensitivity and complementarysensitivity functions). Hence, we
expect that—in the absence of other perturbations—values of j1=g � 1j up to almost 1 may be
tolerated.

The size of the relative perturbation of the numerator is less than 1 for frequencies below
1=� , and equal to 1 for high frequencies. To prevent destabilization it is advisable to make
the complementary sensitivity small for frequencies greater than1=� . As the complementary
sensitivity starts to decrease at the closed-loop bandwidth, the largest possible value of� dictates

2Much of the text of this subsection has been taken fromKwakernaak(1993).
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6.2. The mixed sensitivity problem

the bandwidth. Assuming that performance requirements specify the system to have a closed-
loop bandwidth of 1, we expect that — in the absence of other perturbations — values of the
parasitic time constant� up to 1 do not destabilize the system.

Thus, both for robustness and for performance, we aim at a closed-loop bandwidth of 1 with
small sensitivity at low frequencies and a sufficiently fastdecrease of the complementary sensi-
tivity at high frequencies with a smooth transition in the crossover region.

1/| |V

ω

.01 .1 1 10 100

1

.1

.01

.001

10

.0001

Figure 6.2: Bode magnitude plot of1=V

Choice of the weighting functions. To accomplish this with a mixed sensitivity design, we
successively consider the choice of the functionsV D M=D (that is, of the polynomialM ), W1

andW2.
To obtain a good time response corresponding to the bandwidth 1, which does not suffer from

sluggishness or excessive overshoot, we assign two dominant poles to the locations1
2

p
2.�1˙ j/.

This is achieved by choosing the polynomialM as

M.s/ D Œs � 1

2

p
2.�1 C j/�Œs � 1

2

p
2.�1 � j/� D s2 C s

p
2 C 1; (6.27)

so that

V .s/ D s2 C s
p

2 C 1

s2
: (6.28)

We tentatively choose the weighting functionW1 equal to 1. Then if the first of the two terms of
the mixed sensitivity criterion dominates at low frequencies from we have from (6.14) that

jS.j!/j � 


jV .j!/j D 


ˇ
ˇ
ˇ
ˇ

.j!/2

.j!/2 C j!
p

2 C 1

ˇ
ˇ
ˇ
ˇ

at low frequencies. (6.29)

Figure 6.2 shows the magnitude plot of the factor1=V . The plot implies a very good low-
frequency behavior of the sensitivity function. Owing to the presence of the double open-loop
pole at the origin the feedback system is of type 2. There is noneed to correct this low frequency
behavior by choosingW1 different from 1.

Next contemplate the high-frequency behavior. For high frequenciesV is constant and equal
to 1. Consider choosingW2 as

W2.s/ D c.1 C rs/; (6.30)
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with c andr nonnegative constants such thatc ¤ 0. Then for high frequencies the magnitude of
W2.j!/ asymptotically behaves asc if r D 0, and ascr! if r ¤ 0.

Hence, ifr D 0 then the high-frequency roll-off of the input sensitivity functionU and the
controller transfer functionC is 0 and that of the complementary sensitivityT is 2 decades/decade
(40 dB/decade).

If r ¤ 0 then U and C roll off at 1 decade/decade (20 dB/decade) andT rolls off at 3
decades/decade (60 dB/decade).

c=10

c=1

c=1/10

c=1/100

c=1/10

c=1

c=10

c=1/100
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1
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.001
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1

.1
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.001

sensitivity | |S
complementary
sensitivity | |T

ω ω

Figure 6.3: Bode magnitude plots ofS andT for r D 0

Solution of the mixed sensitivity problem. We first study the caser D 0, which results in a
proper but not strictly proper controller transfer function C , and a high-frequency roll-off ofT
of 2 decades/decade. Figure6.3shows3 the optimal sensitivity functionS and the corresponding
complementary sensitivity functionT for c D 1=100, c D 1=10, c D 1, andc D 10. Inspection
shows that asc increases,jT j decreases andjS j increases, which conforms to expectation. The
smallerc is, the closer the shape ofjS j is to that of the plot of Fig.6.2.

We choosec D 1=10. This makes the sensitivity small with little peaking at thecut-off
frequency. The corresponding optimal controller has the transfer function

C.s/ D 1:2586
s C 0:61967

1 C 0:15563s
; (6.31)

and results in the closed-loop poles1
2

p
2.�1 ˙ j/ and�5:0114. The two former poles dominate

the latter pole, as planned. The minimal1-norm iskHk1 D 1:2861.
Robustness against high-frequency perturbations may be improved by making the complemen-

tary sensitivity functionT decrease faster at high frequencies. This is accomplished by taking
the constantr nonzero. Inspection ofW2 as given by (6.30) shows that by choosingr D 1 the
resulting extra roll-off ofU , C , andT sets in at the frequency 1. Forr D 1=10 the break point
is shifted to the frequency 10. Figure6.4shows the resulting magnitude plots. Forr D 1=10 the
sensitivity function has little extra peaking while starting at the frequency 10 the complementary

3The actual computation of the controller is discussed in Example6.6.1(p. 256).
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Figure 6.4: Bode magnitude plots ofS andT for c D 1=10

sensitivity function rolls off at a rate of 3 decades/decade. The corresponding optimal controller
transfer function is

C.s/ D 1:2107
s C 0:5987

1 C 0:20355s C 0:01267s2
; (6.32)

which results in the closed-loop poles1
2

p
2.�1 ˙ j/ and�7:3281 ˙ j1:8765. Again the former

two poles dominate the latter. The minimal1-norm iskHk1 D 1:3833.
Inspection of the two controllers (6.31) and (6.32) shows that both basically are lead controllers

with high-frequency roll-off.

0 .5 1 1.5
0

2

4

6

g

θ

Figure 6.5: Stability region

Robustness analysis. We conclude this example with a brief analysis to check whether our
expectations about robustness have come true. Given the controller C D Y=X the closed-
loop characteristic polynomial of the perturbed plant isDcl.s/ D D.s/X.s/ C N.s/Y .s/ D
.1 C s�/s2X.s/C gY .s/. By straightforward computation, which involves fixing oneof the two
parametersg and� and varying the other, the stability region of Fig.6.5may be established for
the controller (6.31). That for the other controller is similar. The diagram shows that for� D 0

the closed-loop system is stable for allg > 0, that is, for all�1 < 1
g

� 1 < 1. This stability
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6. H1-Optimization and�-Synthesis

interval is larger than predicted. Forg D 1 the system is stable for0 � � < 1:179, which also is
a somewhat larger interval than expected.

The controller (6.31) is similar to the modified PD controller that is obtained in Example5.2.2
(p.185) by root locus design. Likewise, the stability region of Fig. 6.5is similar to that of Fig.5.5.

G

K yu

w z

Figure 6.6: The standardH1 problem configuration

6.3. The standard H1 problem

The mixed sensitivity problem is a special case of the so-called standardH1 problem (Doyle,
1984). This standard problem is defined by the configuration of Fig. 6.6. The “plant” is a given
system with two sets of inputs and two sets of outputs. It is often referred to as thegeneralized
plant. The signalw is anexternal input, and represents driving signals that generate disturbances,
measurement noise, and reference inputs. The signalu is thecontrol input.The outputz has the
meaning ofcontrol error, and ideally should be zero. The outputy, finally, is theobserved output,
and is available for feedback. The plant has an open-loop transfer matrixG such that

�

z

y

�

D G

�

w

u

�

D
�

G11 G12

G21 G22

� �

w

u

�

: (6.33)

By connecting the feedback controller

u D Ky (6.34)

we obtain fromy D G21wCG22u the closed-loop signal balance equationy D G21wCG22Ky,
so thaty D .I � G22K/

�1G21w. Fromz D G11w C G12u D G11x C G12Ky we then have

z D ŒG11 C G12K.I � G22K/
�1G21�

„ ƒ‚ …

H

w: (6.35)

Hence, the closed-loop transfer matrixH is

H D G11 C G12K.I � G22K/
�1G21: (6.36)

The standardH1-optimal regulation problem is the problem of determining acontroller with
transfer matrixK that

1. internally stabilizes the closed-loop system (as definedin ~ 1.3.2(p. 12)), and
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Figure 6.7: The mixed sensitivity problem

2. minimizes the1-norm kHk1 of the closed-loop transfer matrixH from the external
inputw to the control errorz.

To explain why the mixed sensitivity problem is a special case of the standard problem we
consider the block diagram of Fig.6.7, where the controller transfer function now is denotedK

rather thanC . In this diagram, the external signalw generates the disturbancev after passing
through a shaping filter with transfer matrixV . The “control error”z has two components,z1 and
z2. The first componentz1 is the control system output after passing through a weighting filter
with transfer matrixW1. The second componentz2 is the plant inputu after passing through a
weighting filter with transfer matrixW2.

It is easy to verify that for the closed-loop system

z D
�

z1

z2

�

D
�

W1SV

�W2U V

�

„ ƒ‚ …

H

w; (6.37)

so that minimization of the1-norm of the closed-loop transfer matrixH amounts to minimiza-
tion of










�

W1SV

W2U V

�








1
: (6.38)

In the block diagram of Fig.6.7 we denote the input to the controller asy, as in the standard
problem of Fig.6.6. We read off from the block diagram that

z1 D W1Vw C W1Pu;

z2 D W2u;

y D �Vw � Pu:

(6.39)

Hence, the open-loop transfer matrixG for the standard problem is

G D

2

4

W1V W1P

0 W2

�V �P

3

5 (6.40)

Other well-known special cases of the standard problemH1 problem are thefiltering problem
and theminimum sensitivity problem(see Exercises6.6and6.3).

TheH1-optimal regulation problem is treated in detail byGreen and Limebeer(1995) and
Zhou et al.(1996).
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Figure 6.8: Feedback arrangement for the standard problem
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Figure 6.9: A filtering problem

6.4. Suboptimal solutions and and example

Determining the optimal controllerK of the standardH1 problem is not an easy task. To get a
feel for the problems that can arise and for the assumptions that are required—assumptions also
required by software—we examine in this section a problem that is easy enough to allow for an
explicit solution.

Consider the configuration of Fig.6.9. It is a special case of the standardH1 control config-
uration of Fig.6.6 (see Exercise6.6) but it is not a control problem as there is no feedback. It
depicts afiltering problem. The idea being that the systemK (called filter in this respect) should
try to filter the information of the ‘message’m out of the limited information ofy. Ideally, then,
the output ofK equalsm, renderingz � 0, but generally this is not possible. It then makes sense
to chooseK so as to minimizez in some norm, for instance using theH2- orH1-norm.

In this section we develop optimal and suboptimal solutionsof the filteringH1-problem for
the case that

G11.s/ D 1; G21 D s � 2

s C 2
:

Since bothG11 andG21 are stable it will be clear that the loop of Fig.6.9 is internally stable if
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and only ifK is stable. The transfer functionH fromw to z whose1-norm we aim to minimize,
is

H.s/ D G11.s/ � G21.s/K.s/ D 1 � s � 2

s C 2
K.s/:

As we do not yet know whatK.s/ is we also do not know whatH.s/ is, except ats D 2 because
for that value ofs the terms�2

sC3
K.s/ reduces to zero. Indeed,K.s/ is not allowed to have a pole

at s D 2 becauseK needs to be stable. So, whatever stableK we take, we always have that

H.2/ D 1:

At this point we recall a useful result, a result which is a consequence of the classicalMaximum
Modulus Principlefrom complex functions theory; our special version, though, may also be
proved using the small gain theorem (see~ 6.10and also Summary1.7.4):

Lemma 6.4.1. If H.s/ is a stable rational function thenkHk1 � jH.z0/j for any z0 in the
right-half complex plane. �

For our example this implies

kHk1 � 1

for any stableK. But, this norm can be achieved: simply takeK D 0. It results in the constant
H D 1 which has normkHk1 D 1.

Next we derive so-calledsuboptimalsolution. Suboptimal solutions are stabilizingK that
achieve

kHk1 < 
; (6.41)

with 
 a given nonnegative number. The reason for determining suboptimal solutions is that
optimal solutions in most cases cannot be found directly. Once suboptimal solutions may be
obtained, optimal solutions may be approximated by searching on the number
 .

We first need the following result. Recall thatkHk1 is finite if and only ifH is proper and
stable and that then

kHk1 D kHkL1
WD sup

!2R

�.H.j!//: (6.42)

Summary 6.4.2 (Inequality for L1-norm). Let 
 be a nonnegative number andH a rational
transfer matrix. ThenkHkL1

� 
 is equivalent to either of the following statements:

1. H ÏH � 
 2I on the imaginary axis;

2. HH Ï � 
 2I on the imaginary axis.
�

HereH Ï is defined byH Ï.s/ D H T.�s/. H Ï is called theadjointof H . If A andB are two
complex-valued matrices thenA � B means thatB � A is a nonnegative-definite matrix. “On
the imaginary axis” means for alls D j!, ! 2 R. The proof of Summary6.4.2may be found in
~ 6.10(p. 281).

For our filtering problem we have as optimal value the bound


opt D 1:
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So suboptimal solutions exist iff
 > 1. Application of Summary6.4.2to our problem gives

kHkL1
� 
 ” .1 � s�2

sC2
K/Ï .1 � s�2

sC2
K/ � 
 2

” .1 � sC2
s�2

KÏ/ .1 � s�2
sC2

K/ � 
 2

” 1 � 
 2 � sC2
s�2

KÏ � s�2
sC2

K C KÏK � 0

”
�

KÏ 1
�
�

1 � sC2
s�2

� s�2
sC2

1 � 
 2

� �

K

1

�

� 0:

Interestingly the matrix in the middle of the last inequality can also be written as
�

1 � sC2
s�2

� s�2
sC2

1 � 
 2

�

D W Ï.s/

�

1 0

0 �1

�

W .s/

with

W .s/ D
�

W11.s/ W12.s/

W21.s/ W22.s/

�

D
"


 2� s�2
sC2


 2�1
1





 2�1
.1 � s�2

sC2
/ 


#

: (6.43)

Note thatW .s/ is well defined for
 > 
opt D 1. So we have

kHkL1
� 
 ”

�

KÏ 1
�

W Ï

�

1 0

0 �1

�

W

�

K

1

�

� 0:

If we chooseK as

K D �W21

W11

then by constructionW
�

K
1

�

if of the form
�

0
A

�

so that

�

KÏ 1
�

W Ï

�

1 0

0 �1

�

W

�

K

1

�

D
�

0 AÏ
�
�

1 0

0 �1

� �

0

A

�

D �AÏA � 0:

This implies thatkHkL1
� 
 . With theW of (6.43) the so constructedK D � W21

W11
equals

K.s/ D s C 2

s C 
 2C2


 2�1

D .
 2 � 1/.s C 2/

.
 2 � 1/s C 
 2 C 2
: (6.44)

This filterK has a pole ats D � 
 2C2


 2�1
so clearly for
 > 1 it is stable, hence it is a solution of the

suboptimalH1 problem with bound
 . (There is a theory that shows that stability ofK is not a
coincidence, but we do not need to bother about these detailshere.) As
 approaches
opt D 1

from above the pole ofK goes to minus infinity, and at
 D 1 the pole disappears leaving the
optimal filterK D 0.

This example illustrates a number of points, most of which also occur in more complicated
problems.

� In this example it turned out to be possible to come up with an explicit formula for the
optimalsolutionK. This generally is very complicated if not impossible.

� What is easier in the general case is to solve thesuboptimal problem, i.e. the problem
whether or not there exists a stabilizingK that achievekHk1 < 
 for some given bound

 > 0.
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� A line search in
 then can bring us as close as we want to the optimal controllerK.

� Some coefficients of suboptimal controllers approach zero (or infinity) as
 approaches

opt. Only at 
 D 
opt do these coefficients disappear: at
 D 
opt a cancellation of
common factors occurs leaving an optimal controller of lower order. This is a common
situation.

It is unfortunate that software usually does not perform thecancellation for us, even though
it can be done. We have to do it manually and we can not discard it. Indeed, as the example
shows the controller may have a pole that approaches minus infinity as
 approaches
opt.
For 
 close to the optimal value the controller hence has a very fast mode. This is to be
avoided.

� If in this exampleG12 would have had imaginary zeros thenK, which equalsK D G11�H
G12

,
would normally have had imaginary poles (not allowed). Thiscase complicates the stan-
dard theory and is typically ruled out by software.

� Similarly, if G12 would have been strictly proper thenK D G11�H
G12

would normally have
been non-proper. Also this case complicates the standard theory and it is ruled out by
software. This situation is an indication that the problem is not well formulated. Indeed, if
the optimalK tends to be nonproper then it may be wise to minimize notkHk1 but, for
instance,k

�
H

W2K

�

k1 for some appropriate weightW2 that ensures that (sub)optimalK’s
to have sufficient high-frequency roll-off.

For the last two reasons one usually assumes thatG12 in the filtering example has no zeros on the
imaginary axis, including infinity.

6.5. State space solution of the standard H1 problem

Among the various solutions of the suboptimal standardH1 problem, the one based
on state space realizations is the most popular, (Doyle et al., 1989; Stoorvogel, 1992;
Trentelman and Stoorvogel, 1993). In these approaches it is assumed that the generalized plant
G is proper. Hence it has a realization of the form

Px D Ax C B1w C B2u; (6.45)

z D C1x C D11w C D12u; (6.46)

y D C2x C D21w C D22u: (6.47)

In the�-TOOLS MATLAB toolbox (Balas et al., 1991) and the ROBUST CONTROL TOOLBOX

(Chiang and Safonov, 1992) a solution of the correspondingH1 problem based on Riccati equa-
tions is implemented that requires the following conditions to be satisfied:

1. .A; B2/ is stabilizable and.C2; A/ is detectable.

2.

�

A � j!I B2

C1 D12

�

has full column rank for all! 2 R (hence,D12 is tall4).

3.

�

A � j!I B1

C2 D21

�

has full row rank for all! 2 R (hence,D21 is wide).

4. D12 andD21 have full rank.

4A matrix is tall if it has at least as many rows as columns. It iswide if it has at least as many columns as rows.
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The first assumption is natural for otherwise the system can not be stabilized. The other assump-
tions ensure thatG12 andG21 have full column rank and full row rank respectively on the imagi-
nary axis, including infinity. With these assumptions the formulae for suboptimal controllers are
rather technical but for a special case they are manageable:

Theorem 6.5.1 (The solution of the standard H1 problem). Consider the configuration
of Fig. 6.6and assume the above four assumptions are satisfied, and for simplicity, that also

�

B1

D21

�

DT
21 D

�

0

I

�

; DT
12

�

C1 D12

�

D
�

0 I
�

: (6.48)

Then there exists a stabilizing controller for whichkHk1 < 
 iff the following three condi-
tions hold.

1. AQ C QAT C Q. 1

 2 C T

1 C1 � C T
2 C2/Q C B1BT

1 D 0 has a stabilizing solutionQ � 0,

2. PA C ATP C P . 1

 2 B1B

T
1 � B2B

T
2 /P C C T

1 C1 D 0 has a stabilizing solutionP � 0

3. All eigenvalues ofQP have magnitude less than
 2.

If these three conditions are satisfied then one controlleru D Ky that stabilizes and achieves
kHk1 < 
 is the controller with realization

(

POx D .A C Œ 1

 2 B1BT

1 � B2B
T
2 �P / Ox C .I � 1


 2 QP /�1QC T
2 .y � C2 Ox/

u D �BT
2 Ox

: (6.49)

The formulae forK are rather cumbersome if the assumptions (6.48) do not hold, computa-
tionally it makes no difference. The solution, as we see, involves two algebraic Riccati equations
whose solutions define an observercumstate feedback law. The full solution is documented in a
paper byGlover and Doyle(1988). More extensive treatments may be found in a celebrated paper
by Doyle et al.(1989) and inGlover and Doyle(1989). Stoorvogel(1992) discusses a number of
further refinements of the problem. The problem can also be solved using linear matrix inequal-
ities (LMIs). LMIs are convex programs; an important topic but one that is not covered in this
course.

6.5.1. Characteristics of the state space solution

We list a few properties of the state space solution.

1. For the two Riccati equations to have a solution it is required that the associated Hamilto-
nian matrices

�
A B1BT

1

� 1

 2 C T

1 C1 C C T
2 C2 �AT

�

;

�
A 1


 2 B1B
T
1 � BT

2 B2

�C T
1 C1 �AT

�

have no imaginary eigenvalues (see~ 4.7.4). Stated differently, if
0 is thelargestvalue of

 for which one or both of the above two Hamiltonian matrices has an imaginary eigen-
value, then


opt � 
0:
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2. The controller (6.49) is stabilizing iff

Q � 0; P � 0; �max.QP / < 
 2; (6.50)

where�max denotes the largest eigenvalue. This is a convenient way to test whether stabi-
lizing controllers exist.

3. The controller (6.49) is of the same order as the generalized plant (6.45–6.47).

4. The transfer matrix of the controller (6.49) is strictly proper.

6.6. Optimal solutions to the H1 problem

Finding optimal controllers as opposed to suboptimal controllers involves a search over the pa-
rameter
 . As the search advances the optimal controller is approached more and more closely.
There are two possibilities for the optimal solution:

Type A solution. The suboptimal controller (6.49) is stabilizing for all
 � 
0, with 
0 the
lower bound discussed in6.5.1. In this case, the optimal solution is obtained for
 D 
0.

Type B solution. As
 varies, the central controller becomes destabilizing as
 decreases below
some number
opt with 
opt � 
0.

In type B solutions a somewhat disconcerting phenomenon occurs. In the example of~ 6.4
about filtering several of the coefficients of central controller (filter) grow without bound as

approaches
opt D 1. In the state space solution the phenomenon is manifested bythe fact that as

 approaches
opt either of the two following eventualities occurs (Glover and Doyle, 1989):

(B1.) The matrixI � 1

 2 QP becomes singular.

(B2.) The solutionsP and/orQ grow without bound, and at
 D 
opt they do not exist.

In both cases large coefficients occur in the equations that define the central controller.
As illustrated in the example of~ 6.4, however, the controller transfer matrix approaches a

well-defined limit as
 # 
opt, corresponding to theoptimal controller. The type B optimal
controller is of lower order than the suboptimal central controller. Also this is generally true.
It is possible to characterize and computeall optimal solutions of type B (Glover et al., 1991;
Kwakernaak, 1991).

An important characteristic of optimal solutions of type B is that the largest singular value
N�.H.j!// of the optimal closed-loop frequency response matrixH is constantas a function of
the frequency! 2 R. This is known as theequalizing propertyof optimal solutions.

Straightforward implementation of the two-Riccati equation algorithm leads to numerical dif-
ficulties for type B problems. As the solution approaches theoptimum several or all of the coef-
ficients of the controller become very large. Because eventually the numbers become too large
the optimum cannot be approached too closely. This is something we have to keep in mind when
we compute such controllers.

6.6.1. Numerical examples

We present the numerical solution of two examples of the standard problem.
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Example 6.6.1 (Mixed sensitivity problem for the double int egrator). We consider the
mixed sensitivity problem discussed in~ 6.2.4(p. 244). With P , V , W1 andW2 as in6.3, by
(6.39) the standard plant transfer matrix is

G.s/ D

2

6
4

M.s/

s2
1
s2

0 c.1 C rs/

� M.s/

s2 � 1
s2

3

7
5 ; (6.51)

whereM.s/ D s2 C s
p

2 C 1. We consider the caser D 0 andc D 0:1. It is easy to check that
for r D 0 a state space representation of the plant is

Px D
�

0 0

1 0

�

„ ƒ‚ …

A

x C
�

1p
2

�

„ƒ‚…

B1

w C
�

1

0

�

„ƒ‚…

B2

u; (6.52)

z D
�

0 1

0 0

�

„ ƒ‚ …

C1

x C
�

1

0

�

„ƒ‚…

D11

w C
�

0

c

�

„ƒ‚…

D12

u; (6.53)

y D
�

0 �1
�

„ ƒ‚ …

C2

x C
�

�1
�

„ƒ‚…

D21

w: (6.54)

Note that we constructed a joint minimal realization of the blocksP andV in the diagram of
Fig. 6.7. This is necessary to satisfy the stabilizability condition of ~ 6.5(p. 253).

A numerical solution may be obtained with the help of the�-TOOLS MATLAB toolbox
(Balas et al., 1991). The search procedure forH1 state space problems implemented in�-
TOOLS terminates at
 D 1:2861 (for a specified tolerance in the
 -search of10�8). The state
space representation of the corresponding controller is

POx D
�

�0:3422 � 109 �1:7147 � 109

1 �1:4142

�

Ox C
�

�0:3015

�0:4264

�

y; (6.55)

u D Œ�1:1348 � 109 � 5:6871 � 109� Ox: (6.56)

Numerical computation of the transfer function of the controller results in

K.s/ D 2:7671 � 109s C 1:7147 � 109

s2 C 0:3422 � 109s C 2:1986 � 109
: (6.57)

The solution is of type B as indicated by the large coefficients. By discarding the terms2 in the
denominator we may reduce the controller to

K.s/ D 1:2586
s C 0:6197

1 C 0:1556s
; (6.58)

which is the result stated in (6.31)(p. 246). It may be checked that the optimal controller pos-
sesses the equalizing property: the mixed sensitivity criterion does not depend on frequency.

The caser ¤ 0 is dealt with in Exercise6.10(p. 284). �
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Figure 6.10: Feedforward configuration

Example 6.6.2 (Disturbance feedforward). Hagander and Bernhardsson(1992) discuss the
example of Fig.6.10. A disturbancew acts on a plant with transfer function1=.s C 1/. The
plant is controlled by an inputu through an actuator that also has the transfer function1=.s C 1/.
The disturbancew may be measured directly, and it is desired to control the plant output by
feedforward control from the disturbance. Thus, the observed outputy isw. The “control error”
has as components the weighted control system outputz1 D x2=�, with � a positive coefficient,
and the control inputz2 D u. The latter is included to prevent overly large inputs.

In state space form the standard plant is given by

Px D
�

�1 0

1 �1

�

„ ƒ‚ …

A

x C
�

0

1

�

„ƒ‚…

B1

w C
�

1

0

�

„ƒ‚…

B2

u; (6.59)

z D
"

0 1
�

0 0

#

„ ƒ‚ …

C1

x C
�

0

0

�

„ƒ‚…

D11

w C
�

0

1

�

„ƒ‚…

D12

u; (6.60)

y D
�

0 0
�

„ƒ‚…

C2

x C
�

1
�

„ƒ‚…

D21

w: (6.61)

The lower bound of~ 6.5.1(p. 254) may be found to be given by


0 D 1
p

1 C �2
: (6.62)

Define the number

�c D

sp
5 C 1

2
D 1:270: (6.63)

Hagander and Bernhardsson prove this (see Exercise6.8):

1. For� > �c the optimal solution is of type A.

2. For� < �c the optimal solution is of type B.
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For� D 2, for instance, numerical computation using�-Tools with a tolerance10�8 results in


opt D 
0 D 1p
5

D 0:4472; (6.64)

with the central controller

POx D
�

�1:6229 �0:4056

1 �1

�

Ox C
�

0

0:7071

�

y; (6.65)

u D Œ�0:8809 � 0:5736� Ox: (6.66)

The coefficients of the state representation of the controller are of the order of unity, and the
controller transfer function is

K.s/ D �0:4056s � 0:4056s

s2 C 2:6229s C 2:0285
: (6.67)

There is no question of order reduction. The optimal solution is of type A.
For� D 1 numerical computation leads to


opt D 0:7167 > 
0 D 0:7071; (6.68)

with the central controller

POx D
�

�6:9574 � 107 �4:9862 � 107

1 �1

�

Ox C
�

0

1

�

y; (6.69)

u D Œ�6:9574 � 107 � 4:9862 � 107� Ox: (6.70)

The controller transfer function is

K.s/ D �4:9862 � 107s � 4:9862 � 107

s2 C 0:6957 � 108s C 1:1944 � 108
: (6.71)

By discarding the terms2 in the denominator this reduces to the first-order controller

K.s/ D �0:7167
s C 1

s C 1:7167
: (6.72)

The optimal solution now is of type B. �

6.7. Integral control and high-frequency roll-off

In this section we discuss the application ofH1 optimization, in particular the mixed sensitivity
problem, to achieve two specific design targets: integral control and high-frequency roll-off.
Integral control is dealt with in~ 6.7.1. In ~ 6.7.2we explain how to design for high-frequency
roll-off. Subsection6.7.3is devoted to an example.

The methods to obtain integral control and high frequency roll-off discussed in this section
for H1 design may also be used withH2 optimization. This is illustrated for SISO systems in
~ 4.5.4(p. 158) and~ 4.5.5(p. 160).
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C P
−

Figure 6.11: One-degree-of-freedom feedback system

6.7.1. Integral control

In ~ 2.3 (p. 64) it is explained that integral control is a powerful and important technique. By
making sure that the control loop contains “integrating action” robust rejection of constant dis-
turbances may be obtained, as well as excellent low-frequency disturbance attenuation and com-
mand signal tracking. In~ 6.2.2(p.242) it is claimed that the mixed sensitivity problem allows to
design for integrating action. Consider the SISO mixed sensitivity problem for the one-degree-of-
freedom configuration of Fig.6.11. The mixed sensitivity problem amounts to the minimization
of the peak value of the function

jV .j!/W1.j!/S.j!/j2 C jV .j!/W2.j!/U.j!/j2; ! 2 R: (6.73)

S andU are the sensitivity function and input sensitivity function

S D 1

1 C PC
; U D C

1 C PC
; (6.74)

respectively, andV , W1 andW2 suitable frequency dependent weighting functions.
If the plant P has “natural” integrating action, that is,P has a pole at 0, then no special

provisions are needed. In the absence of natural integrating action we may introduce integrating
action by letting the productV W1 have a pole at 0. This forces the sensitivity functionS to have
a zero at 0, because otherwise (6.73) is unbounded at! D 0.

There are two ways to introduce such a pole intoV W1:

1. LetV have a pole at 0, that is, take

V .s/ D V0.s/

s
; (6.75)

with V0.0/ ¤ 0. We call this theconstant disturbance modelmethod.

2. LetW1 have a pole at 0, that is, take

W1.s/ D W1o.s/

s
; (6.76)

with W1o.0/ ¤ 0. This is theconstant error suppressionmethod.

We discuss these two possibilities.

Constant disturbance model. We first consider lettingV have a pole at 0. AlthoughV W1

needs to have a pole at 0, the weighting functionV W2 cannot have such a pole. IfV W2 has a
pole at 0 thenU would be forced to be zero at 0.S andU cannot vanish simultaneously at 0.
Hence, ifV has a pole at 0 thenW2 should have a zero at 0.

This makes sense. Including a pole at 0 inV means thatV contains a model for constant
disturbances. Constant disturbances can only be rejected by constant inputs to the plant. Hence,
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zero frequency inputs should not be penalized byW2. Therefore, ifV is of the form (6.75) then
we need

W2.s/ D sW2o.s/; (6.77)

with W2o.0/ ¤ 1.
Figure 6.12(a) defines the interconnection matrixG for the resulting standard problem.

Inspection shows that owing to the pole at 0 in the blockV0.s/=s outside the feedback loop
this standard problem does not satisfy the stabilizabilitycondition of~ 6.5(p. 253).

The first step towards resolving this difficulty is to modify the diagram to that of Fig.6.12(b),
where the plant transfer matrix has been changed tosP .s/=s. The idea is to construct a simulta-
neous minimal state realization of the blocksV0.s/=s andsP .s/=s. This brings the unstable pole
at 0 “inside the loop.”

The difficulty now is, of course, that owing to the cancellation in sP .s/=s there is no minimal
realization that is controllable from the plant input. Hence, we remove the factors from the
numerator ofsP .s/=s by modifying the diagram to that of Fig.6.12(c). By a minimal joint
realization of the blocksV0.s/=s and P .s/=s the interconnection system may now be made
stabilizable. This is illustrated in the example of~ 6.7.3.

The block diagram of Fig.6.12(c) defines a modified mixed sensitivity problem. Suppose that
the controllerK0 solves this modified problem. Then the original problem is solved by controller

K.s/ D K0.s/

s
: (6.78)

Constant error suppression. We next consider choosingW1.s/ D W1o.s/=s. This corre-
sponds to penalizing constant errors in the output with infinite weight. Figure6.13(a) shows the
corresponding block diagram. Again straightforward realization results in violation of the stabi-
lizability condition of~ 6.5 (p. 253). The offending factor1=s may be pulled inside the loop as
in Fig. 6.13(b). Further block diagram substitution yields the arrangement of Fig.6.13(c).

Integrator in the loop method. Contemplation of the block diagrams of Figs.6.12(c) and
6.13(c) shows that both the constant disturbance model method and the constant error rejection
method may be reduced to theintegrator in the loopmethod. This method amounts to connecting
an integrator1=s in series with the plantP as in Fig.6.14(a), and doing a mixed sensitivity design
for this augmented system.

After a controllerK0 has been obtained for the augmented plant the actual controller that is
implemented consists of the series connectionK.s/ D K0.s/=s of the controllerK0 and the
integrator as in Fig.6.14(b). To prevent the pole at 0 of the integrator from reappearing in the
closed-loop system it is necessary to letV have a pole at 0. ReplacingV .s/ with V0.s/=s in the
diagram of Fig.6.14(a) produces the block diagrams of Figs.6.12(c) and6.13(c).

6.7.2. High-frequency roll-off

As explained in~ 6.2.2(p. 242), high-frequency roll-off in the controller transfer function K and
the input sensitivity functionU may be pre-assigned by suitably choosing the high-frequency
behavior of the weighting functionW2. If W2.s/V .s/ is of ordersm ass approaches1 thenK

andU have a high-frequency roll-off ofm decades/decade. NormallyV is chosen biproper5 such

5That is, bothV and1=V are proper. This means thatV .1/ is finite and nonzero.
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Figure 6.12: Constant disturbance model
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Figure 6.13: Constant error suppression
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Figure 6.14: Integrator in the loop method

thatV .1/ D 1. Hence, to achieve a roll-off ofm decades/decade it is necessary thatW2 behaves
assm for larges.

If the desired roll-offm is greater than 0 then the weighting functionW2 needs to be nonproper.
The resulting interconnection matrix

G D

2

4

W1V W1P

0 W2

�V �P

3

5 (6.79)

is also nonproper and, hence, cannot be realized as a state system of the form needed for the state
space solution of theH1-problem.

The makeshift solution usually seen in the literature is to cut off the roll-on at high frequency.
Suppose by way of example that the desired form ofW2 is W2.s/ D c.1 C rs/, with c andr

positive constants. ThenW2 may be made proper by modifying it to

W2.s/ D c.1 C rs/

1 C s�
; (6.80)

with � � r a small positive time constant.
This contrivance may be avoided by the block diagram substitution of Fig.6.15(Krause, 1992).

If W2 is nonproper then, in the SISO case,W �1
2 is necessarily proper, and there is no difficulty in

finding a state realization of the equivalent mixed sensitivity problem defined by Fig.6.15with
the modified plantP0 D W �1

2 P .
Suppose that the modified problem is solved by the controllerK0. Then the original problem

is solved by

K D K0W
�1

2 : (6.81)

Inspection suggests that the optimal controllerK has the zeros ofW2 as its poles. Because this
is in fact not the case the extra poles introduced intoK cancel against corresponding zeros. This
increase in complexity is the price of using the state space solution.

The example of~ 6.7.3illustrates the procedure.
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WW

V

K

Ko Po

P W

w

y u

z2

z122 1

v

−
+

+
−1

Figure 6.15: Block diagram substitution for nonproperW2

6.7.3. Example

We present a simple example to illustrate the mechanics of designing for integrating action and
high-frequency roll-off. Consider the first-order plant

P .s/ D p

s C p
; (6.82)

with p D 0:1. These are the design specifications:

1. Constant disturbance rejection.

2. A closed-loop bandwidth of 1.

3. A suitable time response to step disturbances without undue sluggishness or overshoot.

4. High-frequency roll-off of the controller and input sensitivity at 1 decade/decade.

We use the integrator in the loop method of~ 6.7.1to design for integrating action. Accordingly,
the plant is modified to

P0.s/ D p

s.s C p/
: (6.83)

Partial pole placement (see~ 6.2.3, p.242) is achieved by letting

V .s/ D s2 C as C b

s.s C p/
: (6.84)

The choicea D
p

2 andb D 1 places two closed-loop poles at the roots

1

2

p
2.�1 ˙ j/ (6.85)

of the numerator ofV . We plan these to be the dominant closed-loop poles in order to achieve a
satisfactory time response and the required bandwidth.

To satisfy the high-frequency roll-off specification we let

W2.s/ D c.1 C rs/; (6.86)

with the positive constantsc andr to be selected6. It does not look as if anything needs to be
accomplished withW1 so we simply letW1.s/ D 1.
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Figure 6.16: Modified block diagram for the example

Figure 6.16 shows the block diagram of the mixed sensitivity problem thus defined. It is
obtained from Fig.6.14(a) with the substitution of Fig.6.15.

We can now see why in the eventual design the controllerK has no pole at the zero�1=r of
the weighting factorW2. The diagram of Fig.6.16defines a standard mixed sensitivity problem
with

P .s/ D
p

rc

s.s C 1
r
/.s C p/

; (6.87)

V .s/ D s2 C as C b

s.s C p/
D
.s C 1

r
/.s2 C as C b/

s.s C 1
r
/.s C p/

; (6.88)

andW1.s/ D W2.s/ D 1.
If V is in the form of the rightmost side of (6.88) then its numerator has a zero at�1=r . By

the partial pole assignment argument of~ 6.2.3(p.242) this zero reappears as a closed-loop pole.
Because this zero is also an open-loop pole it is necessarilya zero of the controllerK0 that solves
the mixed sensitivity problem of Fig.6.16. This zero, in turn, cancels in the transfer functionK

of (6.81).
The system within the larger shaded block of Fig.6.16has the transfer matrix representation

z1 D
h

s2 C as C b
s.s C p/

p
s.s C p/

i �

w

u

�

: (6.89)

This system has the minimal state realization
�

Px1

Px2

�

D
�

0 0

1 �p

� �

x1

x2

�

C
�

b

a � p

�

w C
�

p

0

�

u; (6.90)

z1 D
�

0 1
�
�

x1

x2

�

C w: (6.91)

The block

u D 1

c.1 C rs/
u0 (6.92)

6See also Exercise6.9(p. 283).
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may be represented in state form as

Px3 D �1

r
x3 C 1

c
u0; (6.93)

u D 1

r
x3: (6.94)

Combining the state differential equations (6.90) and (6.93) and arranging the output equations we
obtain the equations for the interconnection system that defines the standard problem as follows:

2

4

Px1

Px2

Px3

3

5 D

2

4

0 0
p

r

1 �p 0

0 0 � 1
r

3

5

„ ƒ‚ …

A

2

4

x1

x2

x3

3

5C

2

4

b

a � p

0

3

5

„ ƒ‚ …

B1

w C

2

4

0

0
1
c

3

5

„ƒ‚…

B2

u0; (6.95)

z D
�

0 1 0

0 0 0

�

„ ƒ‚ …

C1

2

4

x1

x2

x3

3

5C
�

1

0

�

„ƒ‚…

D11

w C
�

0

1

�

„ƒ‚…

D12

u0 (6.96)

y D
�

0 �1 0
�

„ ƒ‚ …

C2

2

4

x1

x2

x3

3

5C .�1/
„ƒ‚…

D21

w: (6.97)

Let c D 1 and r D 0:1. Numerical computation of the optimal controller yields the type B
solution

K0.s/ D 1:377 � 1010s2 C 14:055 � 1010s C 2:820 � 1010

s3 C 0:1142 � 1010s2 C 1:3207 � 1010s C 1:9195 � 1010
(6.98)

Neglecting the terms3 in the denominator results in

K0.s/ D 1:377s2 C 14:055s C 2:820

0:1142s2 C 1:3207s C 1:91195
(6.99)

D 12:056
.s C 10/.s C 0:2047/

.s C 9:8552/.s C 1:7049/
: (6.100)

Hence, the optimal controller for the original problem is

K.s/ D K0.s/

sW2.s/
D 12:056

.s C 10/.s C 0:2047/

.s C 9:8552/.s C 1:7049/
� 10

s.s C 10/
(6.101)

D 120:56.s C 0:2047/

s.s C 9:8552/.s C 1:7049/
: (6.102)

The pole at�10 cancels, as expected, and the controller has integrating action, as planned. The
controller has a high-frequency roll-off of 2 decades/decade.

6.8. �-Synthesis

In ~ 5.7 (p. 223) the use of the structured singular value for the analysis ofstability and perfor-
mance robustness is explained. We briefly review the conclusions.
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In Fig. 6.17(a), the interconnection blockH represents a control system, with structured per-
turbations represented by the block�. The signalw is the external input to the control system
andz the control error. The input and output signals of the perturbation block are denotedp
andq, respectively. The perturbations are assumed to have been scaled such that all possible
structured perturbations are bounded byk�k1 � 1.

Let H� denote the transfer function fromw to z (under perturbation�). Again, the transfer
function is assumed to have been scaled in such a way that the control system performance is
deemed satisfactory ifkH�k1 � 1.

The central result established in~ 5.7 is that the control system

1. is robustly stable, that is, is stable under all structured perturbations� such thatk�k1 �
1, and

2. has robust performance, that is,kH�k1 � 1 under all structured perturbations� such
thatk�k1 � 1,

if and only if

�H < 1: (6.103)

The quantity�H , defined in (5.155), is the structured singular value ofH with respect to pertur-
bations as in Fig.6.17(b), with� structured and�0 unstructured.

Suppose that the control system performance and stability robustness may be modified by
feedback through a controller with transfer matrixK, as in Fig.6.18(a). The controller feeds the
measured outputy back to the control inputu. Denote by�HK the structured singular value of
the closed-loop transfer matrixHK of the system of Fig.6.18(b) with respect to structured per-
turbations� and unstructured perturbations�0. Then�-synthesisis any procedure to construct
a controllerK (if any exists) that stabilizes the nominal feedback systemand makes

�HK < 1: (6.104)

(a) (b)

q p
w z w z

q p

∆ ∆

∆0

HH

Figure 6.17:�-Analysis for robust stability and performance.

6.8.1. Approximate �-synthesis for SISO robust performance

In ~ 5.7the SISO single-degree-of-freedom configuration of Fig.6.19is considered. We analyze
its robustness with respect to proportional plant perturbations of the form

P �! P .1 C ıpW2/ (6.105)
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Figure 6.18:�-Synthesis for robust stability and performance.
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Figure 6.19: Single-degree- of-freedom configuration

with kıP k1 � 1. The system is deemed to have satisfactory performance robustness if

kW1Sk1 � 1 (6.106)

for all perturbations, withS the sensitivity function of the closed-loop system.W1 andW2 are
suitable frequency dependent functions.

By determining the structured singular value it follows in~ 5.7 that the closed-loop system is
robustly stable and has robust performance if and only if

�HK D sup
!2R

.jW1.j!/S.j!/j C jW2.j!/T .j!/j/ < 1: (6.107)

T is the complementary sensitivity function of the closed-loop system. Hence, the robust perfor-
mance and stability problem consists of determining a feedback controllerK (if any exists) that
stabilizes the nominal system and satisfies�HK < 1.

One way of doing this is tominimize�HK with respect to all stabilizing controllersK. Un-
fortunately, this is not a standardH1-optimal control problem. The problem cannot be solved
by the techniques available for the standardH1 problem. In fact, no solution is known to this
problem.

By the well-known inequality.a C b/2 � 2.a2 C b2/ for any two real numbersa andb it
follows that

.jW1S j C jW2T j/2 � 2.jW1S j2 C jW2T j2/: (6.108)

Hence,

sup
!2R

.jW1.j!/S.j!/j2 C jW2.j!/T .j!/j2/ < 1
2 (6.109)
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implies�HK < 1. Therefore, if we can find a controllerK such that

sup
!2R

.jW1.j!/S.j!/j2 C jW2.j!/T .j!/j2/1=2 D









�

W1S

W2T

�








1
< 1

2

p
2 (6.110)

then this controller achieves robust performance and stability. Such a controller, if any exists,
may be obtained by minimizing










�

W1S

W2T

�








1
; (6.111)

which is nothing but a mixed sensitivity problem.
Thus, the robust design problem has been reduced to a mixed sensitivity problem. This re-

duction is not necessarily successful in solving the robustdesign problem — see Exercise6.13
(p. 284).

6.8.2. Approximate solution of the �-synthesis problem

More complicated robust design problems than the simple SISO problem we discussed cannot
be reduced to a tractable problem so easily. Various approximate solution methods to the�-
synthesis problem have been suggested. The best known of these (Doyle, 1984) relies on the
property (see Summary5.6.5(2–3)

�.M / � N�ŒDM ND�1�; (6.112)

with D and ND suitable diagonal matrices. The problem of minimizing

�HK D sup
!2R

�.HK.j!// (6.113)

is now replaced with the problem of minimizing the bound

sup
!2R

N�ŒD.j!/HK.j!/ ND�1.j!/� D kDHK
ND�1k1; (6.114)

where for each frequency! the diagonal matricesD.j!/ and ND.j!/ are chosen so that the bound
is the tightest possible. Minimizing (6.114) with respect toK is a standardH1 problem, provided
D and ND are rational stable matrix functions.

Doyle’s method is based onD-K iteration:

Summary 6.8.1 ( D-K iteration).

1. Choose an initial controllerK that stabilizes the closed-loop system, and compute the
corresponding nominal closed-loop transfer matrixHK.

One way of finding an initial controller is to minimizekH 0
Kk1 with respect to all stabiliz-

ing K, whereH 0
K is the closed-loop transfer matrix of the configuration of Fig. 6.18from

w to z with � D �0 D 0.

2. Evaluate the upper bound

min
D.j!/; ND.j!/

N�ŒD.j!/HK.j!/ ND�1.j!/�; (6.115)

with D and ND diagonal matrices as in Summary5.6.5(c), for a number of values of! on
a suitable frequency grid. The maximum of this upper bound over the frequency grid is an
estimate of�HK .

If �HK is small enough then stop. Otherwise, continue.
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3. On the frequency grid, fit stable minimum-phase rational functions to the diagonal entries
of D and ND. Because of the scaling property it is sufficient to fit theirmagnitudesonly.
The resulting extra freedom (in the phase) is used to improvethe fit. Replace the original
matrix functionsD and ND with their rational approximations.

4. Given the rational approximationsD and ND, minimizekDHK
ND�1k1 with respect to all

stabilizing controllersK. Denote the minimizing controller asK and the corresponding
closed-loop transfer matrix asHK. Return to2.

�

Any algorithm that solves the standardH1-problem exactly or approximately may be used
in step (d). The procedure is continued until a satisfactorysolution is obtained. Convergence is
not guaranteed. The method may be implemented with routinesprovided in the�-Tools toolbox
(Balas et al., 1991). A lengthy example is discussed in~ 6.9.

The method is essentially restricted to “complex” perturbations, that is, perturbations corre-
sponding to dynamic uncertainties. “Real” perturbations,caused by uncertain parameters, need
to be overbounded by dynamic uncertainties.

6.9. An application of �-synthesis

To illustrate the application of�-synthesis we consider the by now familiar SISO plant of Exam-
ple5.2.1(p. 184) with transfer function

P .s/ D g

s2.1 C s�/
: (6.116)

Nominally,g D g0 D 1 and� D 0, so that the nominal plant transfer function is

P0.s/ D g0

s2
: (6.117)

In Example5.2.2(p.185) root locus techniques are used to design a modified PD controller with
transfer function

C.s/ D k C sTd

1 C sT0

; k D 1; Td D
p

2 D 1:414; T0 D 0:1: (6.118)

The corresponding closed-loop poles are�0:7652 ˙ j 0:7715 and�8:4679.
In this section we explore howD–K iteration may be used to obtain an improved design that

achieves robust performance.

6.9.1. Performance specification

In Example5.7.4(p. 228) the robustness of the feedback system is studied with respect to the
performance specification

jS.j!/j � 1

jV .j!/j ; ! 2 R: (6.119)

The functionV is chosen as

1

V
D .1 C "/S0: (6.120)
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Figure 6.20: Magnitude plot ofS for different parameter value combinations
and the bound1=V

S0 is the sensitivity function of the nominal closed-loop system and is given by

S0.s/ D s2.1 C sT0/

�0.s/
; (6.121)

with �0.s/ D T0s
3 C s2 C g0Td s C g0k the nominal closed-loop characteristic polynomial. The

number" is a tolerance.
In Example5.7.4it is found that robust performance is guaranteed with a tolerance" D 0:25

for parameter perturbations that satisfy

0:9 � g � 1:1; 0 � � < 0:1: (6.122)

The robustness test used in this example is based on a proportional loop perturbation model.
In the present example we wish to redesign the system such that performance robustness is

achieved for a modified range of parameter perturbations, namely for

0:5 � g � 1:5; 0 � � < 0:05: (6.123)

For the purposes of this example we moreover change the performance specification model.
Instead of relating performance to the nominal performanceof a more or less arbitrary design we
choose the weighting functionV such that

1

V .s/
D .1 C "/

s2

s2 C 2�!0s C !2
0

: (6.124)

Again," is a tolerance. The constant!0 specifies the minimum bandwidth and� determines the
maximally allowable peaking. Numerically we choose" D 0:25, !0 D 1, and� D 1

2
.

The design (6.118) doesnot meet the specification (6.119) with V given by (6.124) for the
range of perturbations (6.123). Figure6.20shows plots of the bound1=jV j together with plots
of the perturbed sensitivity functionsS for the four extreme combinations of parameter values.
In particular, the bound is violated when the value of the gain g drops to too small values.

6.9.2. Setting up the problem

To set up the�-synthesis problem we first define the perturbation model. Asseen in Example
5.7.4the loop gain has proportional perturbations

�P .s/ D P .s/ � P0.s/

P0.s/
D

g�g0

g0
� s�

1 C s�
: (6.125)
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Figure 6.22: Perturbation and performance model

We bound the perturbations asj�P .j!/j � jW0.j!/j for all ! 2 R, with

W0.s/ D ˛ C s�0

1 C s�0

: (6.126)

The number̨ , with˛ < 1, is a boundjg�g0j=g0 � ˛ for the relative perturbations ing, and�0 is
the largest possible value for the parasitic time constant� . Numerically we let̨ D 0:5 and�0 D
0:05. Figure6.21shows plots of the perturbationjıP j for various combinations of values of the
uncertain parameters together with a magnitude plot ofW0. Figure6.22shows the corresponding
scaled perturbation model. It also includes the scaling functionV used to normalize performance.
The next step in preparing forD–K iteration is to compute the interconnection matrixG as in
Fig. 6.18from the interconnection equations

2

4

p

z

y

3

5 D G

2

4

q

w

u

3

5 : (6.127)

Inspection of the block diagram of Fig.6.22shows that

p D W0u;

z D Vw C P0.q C u/; (6.128)

y D �Vw � P0.q C u/;
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so that
2

4

p

z

y

3

5 D

2

4

0 0 W0

P0 W1 P0

�P0 �W1 �P0

3

5

„ ƒ‚ …

G

2

4

q

w

u

3

5 : (6.129)

To apply the state space algorithm for the solution of theH1 problem we need a state space
representation ofG. For the outputz we have from the block diagram of Fig.6.22

z D Vw C P0u0 D 1

1 C "

s2 C 2�!0s C !2
0

s2
w C g0

s2
u0: (6.130)

This transfer function representation may be realized by the two-dimensional state space system

�

Px1

Px2

�

D
�

0 1

0 0

� �

x1

x2

�

C

2

4

2�!0

1C" 0

!2
0

1C" g0

3

5

�

w

u0

�

;

z D
�

1 0
�
�

x1

x2

�

C 1

1 C "
w:

(6.131)

The weighting filterW0 may be realized as

Px3 D � 1

�0

x3 C ˛ � 1

�0

u;

p D u C x3: (6.132)

Using the interconnection equationu0 D q C u we obtain from (6.131–6.132) the overall state
differential and output equations

Px D

2

6
4

0 1 0

0 0 0

0 0 � 1
�0

3

7
5x C

2
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0
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�0

3

7
7
5

2

4

q

w

u

3

5 ;

2

4

p

z

y

3

5 D

2

4

0 0 1

1 0 0

�1 0 0

3

5x C
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0 0 1

0 1
1C" 0
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1C" 0
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4
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w
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5 :

(6.133)

To initialize theD–K iteration we select the controller that was obtained in Example 5.2.2
(p. 185) with transfer function

K0.s/ D k C sTd

1 C sT0

: (6.134)

This controller has the state space representation

Px D � 1

T0

x C 1

T0

y;

u D .k � Td

T0

/x C Td

T0

y: (6.135)
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6.9.3. D–K iteration

TheD–K iteration procedure is initialized by defining a frequency axis, calculating the frequency
response of the initial closed-loop systemH0 on this axis, and computing and plotting the lower
and upper bounds of the structured singular value ofH0 on this frequency axis7. The calculation
of the upper bound also yields the “D-scales.”
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Figure 6.23: The structured singular value of the initial design

The plot of Fig.6.23shows that the structured singular value peaks to a value of about 1.3.
Note that the computed lower and upper bounds coincide to theextent that they are indistin-
guishable in the plot. Since the peak value exceeds 1, the closed-loop system does not have
robust performance, as we already know.

The next step is to fit rational functions to theD-scales. A quite good-looking fit may be
obtained on the first diagonal entry ofD with a transfer function of order 2. The second diagonal
entry is normalized to be equal to 1, and, hence, does not needto be fitted. Figure6.24shows
the calculated and fitted scales for the first diagonal entry.Because we have1 � 1 perturbation
blocks only, the left and right scales are equal.

The following step in the�-synthesis procedure is to perform anH1 optimization on the
scaled systemG1 D DGD�1. The result is a sub-optimal solution corresponding to the bound

1 D 1:01.

In the search procedure for theH1-optimal solution the search is terminated when the optimal
value of the search parameter
 has been reached within a prespecified tolerance. This tolerance

7The calculations were done with the MATLAB �-tools toolbox. The manual (Balas et al., 1991) offers a step-by-step
explanation of the iterative process.
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Figure 6.24: Calculated and fittedD-scales
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should be chosen with care. Taking it too small not only prolongs the computation but — more
importantly — results in a solution that is close to but not equal to the actualH1 optimal solution.
As seen in~ 6.6(p. 205), solutions that are close to optimal often have large coefficients. These
large coefficients make the subsequent calculations, in particular that of the frequency response
of the optimal closed-loop system, ill-conditioned, and easily lead to erroneous results. This
difficulty is a weak point of algorithms for the solution of oftheH1 problem that do not provide
the actual optimal solution.
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Figure 6.25: Structured singular values for the three successive designs

Figure6.25shows the structured singular value of the closed-loop system that corresponds to
the controller that has been obtained after the first iteration. The peak value of the structured
singular value is about 0.97. This means that the design achieves robust stability.

To increase the robustness margin anotherD–K iteration may be performed. Again theD-
scale may be fitted with a second-order rational function. The H1 optimization results in a
suboptimal solution with level
2 D 0:91.

Figure6.25shows the structured singular value plots of the three designs we now have. For
the third design the structured value has a peak value of about 0.9, well below the critical value 1.

The plot for the structured singular value for the final design is quite flat. This appears to be
typical for minimum-� designs (Lin et al., 1993).

6.9.4. Assessment of the solution

The controllerK2 achieves a peak structured singular value of 0.9. It therefore has robust perfor-
mance with a good margin. The margin may be improved by further D–K iterations. We pause
to analyze the solution that has been obtained.

Figure6.26shows plots of the sensitivity function of the closed-loop system with the controller
K2 for the four extreme combinations of the values of the uncertain parametersg and� . The
plots confirm that the system has robust performance.

Figure6.27gives plots of the nominal system functionsS andU . The input sensitivity function
U increases to quite a large value, and has no high-frequency roll-off, at least not in the frequency
region shown. The plot shows that robust performance is obtained at the cost of a large controller
gain-bandwidthproduct. The reason for this is that the design procedure has no explicit or implicit
provision that restrains the bandwidth.
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Figure 6.26: Perturbed sensitivity functions forK2 and the bound1=V
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Figure 6.27: Nominal sensitivityS and input sensitivityU for the controller
K2

6.9.5. Bandwidth limitation

We revise the problem formulation to limit the bandwidth explicitly. One way of doing this is to
impose bounds on the high-frequency behavior of the input sensitivity functionU . This, in turn,
may be done by bounding the high-frequency behavior of the weighted input sensitivityU V .
Figure6.28shows a magnitude plot ofU V for the controllerK2. We wish to modify the design
so thatU V is bounded as

jU.j!/V .j!/j � 1

jW2.j!/j
; ! 2 R; (6.136)
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Figure 6.29: Modified block diagram for extra performance specification

where

1

W2.s/
D ˇ

s C !1

: (6.137)

Numerically, we tentatively choosěD 100 and!1 D 1. Figure6.28includes the corresponding
bound1=jW2j on jU j.

To include this extra performance specification we modify the block diagram of Fig.6.22
to that of Fig.6.29. The diagram includes an additional outputz2 while z has been renamed
to z1. The closed-loop transfer function fromw to z2 is �W2U V . To handle the performance
specificationskSV k1 � 1 andkW2U V k1 � 1 jointly we impose the performance specification










�

W1SV

W2U V

�








1
� 1; (6.138)

whereW1 D 1. This is the familiar performance specification of the mixedsensitivity problem.

By inspection of Fig.6.29we see that the structured perturbation model used to designfor
robust performance now is

�

q

w

�

D
�

ıP 0 0

0 ı1 ı2

�

„ ƒ‚ …

�

2

4

p

z1

z2

3

5 ; (6.139)

with ıP , ı1 andı2 independent scalar complex perturbations such thatk�k1 � 1.

BecauseW2 is a nonproper rational function we modify the diagram to theequivalent diagram
of Fig. 6.30(compare~ 6.7, p. 258). The controllerK and the filterW2 are combined to a new
controller QK D KW2, and any nonproper transfer functions now have been eliminated. It is easy
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Figure 6.30: Revised modified block diagram

to check that the open-loop interconnection system according to Fig.6.30may be represented as
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(6.140)

To let the structured perturbation� have square diagonal blocks we rename the external inputw

tow1 and expand the interconnection system with a void additional external inputw2:

Px D

2

6
6
6
6
4

0 1 0 0

0 0 0 g0

0 0 � 1
�0

˛�1
�0

0 0 0 �!1

3

7
7
7
7
5

x C

2

6
6
6
6
4

0
2�!0

1C" 0 0

g0
!2

0

1C" 0 0

0 0 0 0

0 0 0 ˇ

3

7
7
7
7
5

2

6
6
4

q

w1

w2

Qu

3

7
7
5
;

2

6
6
4

p

z1

z2

y

3

7
7
5

D

2

6
6
4

0 0 1 1

1 0 0 0

0 0 0 0

�1 0 0 0

3

7
7
5

x C

2

6
6
6
6
4

0 0 0 0

0 1
1C" 0 0

0 0 0 1

0 � 1
1C" 0 0

3

7
7
7
7
5

2

6
6
4

q

w1

w2

Qu

3

7
7
5
:

(6.141)

The perturbation model now is
�

q

w

�

D
�

ıP 0

0 �0

� �

p

z

�

: (6.142)

with ıp a scalar block and�0 a full 2 � 2 block.
To obtain an initial design we do anH1-optimal design on the system withq andp removed,

that is, on the nominal, unperturbed system. This amounts tothe solution of a mixed sensitivity
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problem. Nine iterations are needed to find a suboptimal solution according to the level
0 D
0:97. The latter number is less than 1, which means that nominal performance is achieved. The
peak value of the structured singular value turns out to be 1.78, however, so that we do not have
robust performance.

OneD–K iteration leads to a design with a reduced peak value of the structured singular value
of 1.32 (see Fig.6.31). Further reduction does not seem possible. This means thatthe bandwidth
constraint is too severe.

To relax the bandwidth constraint we change the value ofˇ in the bound1=W2 as given by
(6.137) from 100 to 1000. Starting withH1-optimal initial design oneD-K iteration leads to a
design with a peak structured singular value of 1.1. Again, robust performance is not feasible.

Finally, after choosinǧ D 10000 the same procedure results after oneD-K iteration in a
controller with a peak structured singular value of 1.02. This controller very nearly has robust
performance with the required bandwidth.

Figure6.31shows the structured singular value plots for the three controllers that are succes-
sively obtained foř D 100, ˇ D 1000 andˇ D 10000.
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Figure 6.31: Structured singular value plots for three successive designs

6.9.6. Order reduction of the final design

The limited bandwidth robust controller has order 9. This number may be explained as follows.
The generalized plant (6.141) has order 4. In the (single)D–K iteration that yields the controller
the “D-scale” is fitted by a rational function of order 2. Premultiplying the plant byD and
postmultiplying by its inverse increases the plant order to4 C 2 C 2 D 8. Central suboptimal
controllers QK for this plant hence also have order 8. This means that the corresponding controllers
K D QKW �1

2 for the configuration of Fig.6.29have order 9.
It is typical for theD-K algorithm that controllers of high order are obtained. Thisis caused

by the process of fitting rational scales. Often the order of the controller may considerably be
decreased without affecting performance or robustness.

Figure6.32(a) shows the Bode magnitude and phase plots of the limited bandwidth robust
controller. The controller is minimum-phase and has pole excess 2. Its Bode plot has break
points near the frequencies 1, 60 and 1000 rad/s. We construct a simplified controller in two
steps:

1. The break point at 1000 rad/s is caused by a large pole. We remove this pole by omitting
the leading terms9 from the denominator of the controller. This large pole corresponds to
a pole at1 of theH1-optimal controller. Figure6.32(b) is the Bode plot of the resulting
simplified controller.
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Figure 6.32: Exact (a) and approximate (b, c) frequency responses of the
controller

2. The Bode plot that is now found shows that the controller has pole excess 1. It has break
points at 1 rad/s (corresponding to a single zero) and at 60 rad/s (corresponding to a double
pole). We therefore attempt to approximate the controller transfer function by a rational
function with a single zero and two poles. A suitable numerical routine from MATLAB

yields the approximation

K.s/ D 6420
s C 0:6234

.s C 22:43/2 C 45:312
: (6.143)

Figure6.32(c) shows that the approximation is quite good.
Figure6.33gives the magnitudes of the perturbed sensitivity functions corresponding to the

four extreme combinations of parameter values that are obtained for this reduced-order controller.
The plots confirm that performance is very nearly robust.

Figure6.34displays the nominal performance. Comparison of the plot ofthe input sensitivity
U with that of Fig.6.27confirms that the bandwidth has been reduced.
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Figure 6.33: Perturbed sensitivity functions of the reduced-order limited-
bandwidth design
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Figure 6.34: Nominal sensitivityS and input sensitivityU of the reduced-
order limited- bandwidth design

6.9.7. Conclusion

The example illustrates that�-synthesis makes it possible to design for robust performance while
explicitly and quantitatively accounting for plant uncertainty. The method cannot be used naı̈vely,
though, and considerable insight is needed.

A severe shortcoming is that the design method inherently leads to controllers of high order,
often unnecessarily high. At this time onlyad hocmethods are available to decrease the order.
The usual approach is to apply an order reduction algorithm to the controller.

6.10. Appendix: Proofs

Proof of Lemma6.4.1. By contradiction: ifkHk1 < jH.z0/j thenkH.s/=H.z0/k1 < 1 hence
by the small gain theorem.I � H.s/=H.z0//

�1 is stable, butI � H.s/=H.z0/ has a zero at
s D z0 so.I � H.s/=H.z0//

�1 is not stable. Contradiction, hencekHk1 � jH.z0/j.

Proof of Summary6.4.2. By the definition of the1-norm the inequalitykHk1 � 
 is equiva-
lent to the condition that�.H Ï.j!/H.j!// � 
 for ! 2 R, with � the largest singular value.
This in turn is the same as the condition that�i .H

ÏH / � 
 2 on the imaginary axis for alli ,
with �i the i th largest eigenvalue. This finally amounts to the conditionthatH ÏH � 
 2I on
the imaginary axis, which proves Summary6.4.2.

6.11. Exercises

6.1 Closed-loop transfer matrix.Verify (6.37).

6.2 Minimum sensitivity problem.A special case of the mixed sensitivity problem is the min-
imization of the infinity normkW SV k1 of the weighted sensitivity matrixS for the
closed-loop system of Fig.6.1. Show that this minimum sensitivity problem is a standard
problem with open-loop plant

G D
�

W V WP

�V �P

�

: (6.144)

The SISO version of this problem historically is the firstH1 optimization problem that
was studied. It was solved in a famous paper byZames(1981).
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6.3 The model matching problem.The model matching problem consists of finding a stable
transfer matrixK that minimizes

kP � KkL1
WD sup

!

�.P .j!/ � K.j!// (6.145)

with P a given (unstable) transfer matrix. Is this a standardH1 problem? (The problem
is known as the (generalized)Nehariproblem).
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Figure 6.35: Two-degree- of-freedom feedback configuration

6.4 Two-degree-of-freedom feedback system.As a further application consider the two-degree-
of-freedom configuration of Fig.6.35. In Fig.6.36the diagram is expanded with a shaping
filter V1 that generates the disturbancev from the driving signalw1, a shaping filterV2 that
generates the measurement noisem D V2w2 from the driving signalw2, a shaping filter
V0 that generates the reference signalr from the driving signalw3, a weighting filterW1

that produces the weighted tracking errorz1 D W1.z0 � r/, and a weighting filterW2 that
produces the weighted plant inputz2 D W2u. Moreover, the controllerC and the prefilter
F are combined into a single blockK. Define the “control error”z with componentsz1 and
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Figure 6.36: Block diagram for a standard problem

z2, the observed outputy with componentsy1 andy2 as indicated in the block diagram,
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the external inputw with componentsw1, w2, andw3, and the control inputu. Determine
the open-loop generalized plant transfer matrixG and the closed-loop transfer matrixH .

6.5 Mixed sensitivity problem.Show that for the mixed sensitivity problem “stability of the
loop aroundG22” is equivalent to stability of the feedback loop. Discuss what additional
requirements are needed to ensure that the entire closed-loop system be stable.

6.6 Filtering problem. Show that the filtering problem discussed in~ 6.4 is a standardH1
problem.

6.7 Mixed sensitivity problem.Consider the unstable plant with transfer function

P .s/ D
1 � 1

4
s

.1 � 10s/2
:

a) We aim for a closed loop bandwidth of about 1, and we wantS.0/ D 0 for con-
stant disturbance rejection. Further we want sufficient high frequency roll-off of the
controller, and thatjS j andjT j do not peak much.

Use the mixed sensitivity approach of~ 6.2 to design a suitable controller (see also
~ 6.7). Explain your choices ofW1 andW2 andM and plotjS j and jT j and step
response for the more successful choices.

b) S or T designed above peak a bit. Is this inherent to the problem or alimitation of
the mixed sensitivity design method? (Explain.)

6.8 Disturbance feedforward.

a) Verify that the lower bound
0 is given by (6.62).

b) Prove that�c as given by (6.63) separates the solutions of type A and type B.

c) Prove that if� < �c then the minimal1-norm
opt is the positive solution of the
equation
 4 C 2
 3 D 1=�2 (Hagander and Bernhardsson, 1992).

d) Check the frequency dependence of the largest singular value of the closed-loop fre-
quency response matrix for the two types of solutions.

e) What do you have to say about the optimal solution for� D �c?

C P
u

v

z
+

+

−

Figure 6.37: One-degree-of- freedom system with disturbancev

6.9 Completion of the design.Complete the design of this example.

(a) For the controller (6.102), compute and plot the sensitivity functionS , the input
sensitivity functionU , and the complementary sensitivity functionT .
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6. H1-Optimization and�-Synthesis

(b) Check whether these functions behave satisfactorily, in particular, ifS andT do not
peak too much. See if these functions may be improved by changing the values ofc
andr by trial and error.

(c) The roll-off of 2 decades/decade is more than called for by the design specifications.
The desired roll-off of 1 decade/decade may be obtained withthe constant weighting
functionW2.s/ D c. Recompute the optimal controller for this weighting function
with c D 1.

(d) Repeat (a) and (b) for the design of (c).

(e) Compute and plot the time responses of the outputz and the plant inputu to a unit
step disturbancev in the configuration of Fig.6.37for the designs selected in (b) and
(d). Discuss the results.

6.10 Roll-off in the double integrator example.In Example6.6.1(p.256) the numerical solution
of the double integrator example of~ 6.2.4(p. 244) is presented forr D 0. Extend this to
the caser ¤ 0, and verify (6.32).

6.11 Proof of inequality.In ~ 6.8.1we needed the inequality.a C b/2 � 2.a2 C b2/ for any two
real numbersa andb. Prove this.

6.12 Minimization of upper bound.Show that the upper bound on the right-hand side of (6.108)
may also be obtained from Summary5.6.5(2) (p. 220).

6.13 Reduction to mixed sensitivity problem.In ~ 6.8.1(p. 267) it is argued that robust per-
formance such thatkSV k1 < 1 under proportional plant perturbations bounded by
k�P k1 � kW0k1 is achieved iff

sup
!2R

.jS.j!/V .j!/j C jT .j!/W0.j!/j/ < 1: (6.146)

A sufficient condition for this is that

sup
!2R

.jS.j!/V .j!/j2 C jT .j!/W0.j!/j2/ < 1
2

p
2: (6.147)

To see whether the latter condition may be satisfied we consider the mixed sensitivity
problem consisting of the minimization ofkHk1, with

H D
�

SV

�T W0

�

: (6.148)

(a) Show that the mixed sensitivity problem at hand may be solved as a standardH1
problem with generalized plant

G D

2

6
4

V P0

0 W0V �1P0

�V �P0

3

7
5 : (6.149)

(b) Find a (minimal) state representation ofG. (Hint: Compare (6.131) and (6.132).)
Check that Assumption4 of ~ 6.5 (p. 253) needed for the state space solution of the
H1 problem is not satisfied. To remedy this, modify the problem by adding a third
componentz1 D �u to the error signalz, with � small.
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htb

u.t/ y.t/

10

(c) Solve theH1-optimization problem for a small value of�, say,� D 10�6 or even
smaller. Use the numerical values introduced earlier:g0 D 1, " D 0:25, !0 D 1,
� D 0:5, ˛ D 0:5, and�0 D 0:05. Check thatkHk1 cannot be made less than about
0.8, and, hence, the condition (6.147) cannot be met.

(d) Verify that the solution of the mixed sensitivity problem does not satisfy (6.146).
Also check that the solution does not achieve robust performance for the real param-
eter variations (6.123).

The fact that a robust design cannot be obtained this way doesnot mean that a robust
design does not exist.

6.14 State space representation.Derive or prove the state space representations (6.131) and
(6.132).

6.15 Peak in the structured singular value plot.Figure6.31shows that the singular value plot
for the limited-bandwidth design has a small peak of magnitude slightly greater than 1
near the frequency 1 rad/s. Inspection of Fig.6.33, however, reveals no violation of the
performance specification onS near this frequency. What is the explanation for this peak?

6.16 Comparison with other designs.The controller (6.143) is not very different from the con-
trollers found in Example5.2.2(p. 185) by the root locus method, byH2 optimization in
~ 4.6.2(p. 161). and by solution of a mixed sensitivity problem in~ 6.2.4(p. 244).

a) Compare the four designs by computing their closed-loop poles and plotting the sen-
sitivity and complementary sensitivity functions in one graph.

b) Compute the stability regions for the four designs and plot them in one graph as in
Fig. 6.5.

c) Discuss the comparative robustness and performance of the four designs.

6.17 �-synthesis for an infinite dimensional system.We are given a metal beam of one meter of
which we can control the temperatureu at the left end, and of which we can measure the
temperaturey at the right end (see the figure below). Assuming perfect isolation, it may
be shown that the transfer function fromu to y is

P .s/ D 1

cosh.
p

s=a/
D 1

1 C 1
2!
.s=a/C 1

4!
.s=a/2 C 1

6!
.s=a/3 C � � �

;

wherea > 0 is the diffusion constant of the metal. It is a stable system.For copper,a
equalsa D 1:16 � 10�4 so the time constant1=a is large, and heating hence may take a
long time.

a) Make the Bode magnitude plot of this (nonrational)P .
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6. H1-Optimization and�-Synthesis

b) The problem is to bring the temperaturey of the right end of the beam to a given
desired constant temperatureTdesiredby choice ofu.

Formulate this problem as a�-synthesis problem.(You do not need to solve it with
Matlab). Your solution method should at least address the following.

� How to model the nonrationalP as a perturbation of an appropriate ‘nominal’
rationalP0;

� How to ensure convergence ofy.t/ to Tdesired, and that the convergence is “rea-
sonably” fast;

� What are the perturbations�, �0 and generalized plantG as in Fig. 6.18 (page
270);

� What to do ifD-K iteration does not result in�H WD sup! �.H.j!// < 1?
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A. Matrices

This appendix lists several matrix definitions, formulae and results that are used in the lecture
notes.

In what follows capital letters denote matrices, lower caseletters denote column or row vectors
or scalars. The element in thei th row andj th column of a matrixA is denoted byAij . Whenever
sumsA C B and productsAB etcetera are used then it is assumed that the dimensions of the
matrices are compatible.

A.1. Basic matrix results

Eigenvalues and eigenvectors

A column vectorv 2 C
n is aneigenvectorof a square matrixA 2 C

n�n if v ¤ 0 andAv D �v

for some� 2 C. In that case� is referred to as aneigenvalueof A. Often�i .A/ is used to denote
the i th eigenvalue ofA (which assumes an ordering of the eigenvalues, an ordering that should
be clear from the context in which it is used). The eigenvalues are the zeros of thecharacteristic
polynomial

�A.�/ D det.�In � A/; .� 2 C; /

whereIn denotes then � n identitymatrix orunit matrix.
An eigenvalue decompositionof a square matrixA is a decomposition ofA of the form

A D VDV �1; whereV andD are square andD is diagonal.

In this case the diagonal entries ofD are the eigenvalues ofA and the columns ofV are the
corresponding eigenvectors. Not every square matrixA has an eigenvalue decomposition.

The eigenvalues of a squareA and ofTAT �1 are the same for any nonsingularT . In particular
�A D �TAT �1 .

Rank, trace, determinant, singular and nonsingular matric es

Thetrace,tr.A/ of a square matrixA 2 C
n�n is defined as tr.A/ D

Pn
iD1 Ai i . It may be shown

that

tr.A/ D
n
X

iD1

�i.A/:

The rank of a (possibly nonsquare) matrixA is the maximal number of linearly independent
rows (or, equivalently, columns) inA. It also equals the rank of the square matrixATA which in
turn equals the number of nonzero eigenvalues ofATA.

Thedeterminantof a square matrixA 2 C
n�n is usually defined (but not calculated) recursively

by

det.A/ D
� Pn

j D1.�1/j C1A1j det.Aminor
1j / if n > 1

A if n D 1
:
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HereAminor
ij is the.n � 1/ � .n � 1/-matrix obtained fromA by removing itsi th row andj th

column. The determinant of a matrix equals the product of itseigenvalues, det.A/ D
Qn

iD1 �i .A/.
A square matrix issingular if det.A/ D 0 and isregular or nonsingularif det.A/ ¤ 0. For

square matricesA andB of the same dimension we have

det.AB/ D det.A/ det.B/:

Symmetric, Hermitian and positive definite matrices, the tr anspose and unitary matrices

A matrix A 2 R
n�n is (real) symmetricif AT D A. HereAT is the transposeof A is defined

elementwise as.AT/ij D Aj i ; .i; j D 1; : : : ; n/.
A matrix A 2 C

n�n is Hermitian if AH D A. HereAH is thecomplex conjugate transposeof
A defined as.AH/ij D Aj i .i; j D 1; : : : ; n/. Overbarsx C jy of a complex numberx C jy
denote the complex conjugate:x C jy D x � jy.

Every real-symmetric and Hermitian matrixA has an eigenvalue decompositionA D VDV �1

and they have the special property that the matrixV may be chosenunitary which is that the
columns ofV have unit length and are mutually orthogonal:V HV D I .

A symmetric or Hermitian matrixA is said to benonnegative definiteor positive semi-definite
if xHAx � 0 for all column vectorsx. We denote this by

A � 0:

A symmetric or Hermitian matrixA is said to bepositive definiteif xHAx > 0 for all nonzero
column vectorsx. We denote this by

A > 0:

For Hermitian matricesA andB the inequalityA � B is defined to mean thatA � B � 0.

Lemma A.1.1 (Nonnegative definite matrices). Let A 2 C
n�n be a Hermitian matrix. Then

1. All eigenvalues ofA are real valued,

2. A � 0 ” �i .A/ � 0 .8 i D 1; : : : ; n/;

3. A > 0 ” �i .A/ > 0 .8 i D 1; : : : ; n/;

4. If T is nonsingular thenA � 0 if and onlyT HAT � 0.
�

A.2. Three matrix lemmas

Lemma A.2.1 (Eigenvalues of matrix products). SupposeA andBH are matrices of the same
dimensionn � m. Then for any� 2 C there holds

det.�In � AB/ D �n�m det.�Im � BA/: (A.1)

Proof. One the one hand we have

�

�Im B

A In

� �

Im � 1
�
B

0 In

�

D
�

�Im 0

A In � 1
�
AB

�

288



A.2. Three matrix lemmas

and on the other hand
�

�Im B

A In

� �

Im 0

�A In

�

D
�

�Im � BA B

0 In

�

:

Taking determinants of both of these equations shows that

�m det.In � 1

�
AB/ D det

�

�Im B

A In

�

D det.�Im � BA/:

So thenonzeroeigenvalues ofAB and BA are the same. This gives the two very useful
identities:

1. det.In � AB/ D det.Im � BA/,

2. tr.AB/ D
P

i �i .AB/ D
P

j �j .BA/ D tr.BA/.

Lemma A.2.2 (Sherman-Morrison-Woodburry & rank-one updat e).

.A C U V H/�1 D A�1 � A�1U.I C V HA�1V H/A�1:

This formula is used mostly ifU D u andV D v are column vectors. ThenU V H D uvH

has rank one, and it shows that a rank-one update ofA corresponds to a rank-one update of its
inverse,

.A C uvH/�1 D A�1 � 1

1 C vHA�1u
.A�1u/.vHA�1/

„ ƒ‚ …

rank-one

:

�

Lemma A.2.3 (Schur complement). Suppose a Hermitian matrixA is partitioned as

A D
�

P Q

QH R

�

with P andR square. Then

A > 0 ” P is invertible,P > 0 andR � QHP�1Q > 0:

The matrixR � QHP�1Q is referred to as theSchur complementof P (in A). �
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B. Norms of signals and systems

For a SISO system with transfer functionH the interpretation ofjH.j!/j as a “gain” from input
to output is clear, but how may we define “gain” for a MIMO system with a transfermatrix H?
One way to do this is to use normskH.j!/k instead of absolute values. There are many different
norms and in this appendix we review the most common norms forboth signals and systems. The
theory of norms leads to a re-assessment of stability.

B.1. Norms of vector-valued signals

We consider continuous-time signalsz defined on the time axisR. These signals may be scalar-
valued (with values inR or C) or vector-valued (with values inRn or C

n). They may be added
and multiplied by real or complex numbers and, hence, are elements of what is known as avector
space.

Given such a signalz, its norm is a mathematically well-defined notion that is a measure for
the “size” of the signal.

Definition B.1.1 (Norms). Let X be a vector space over the real or complex numbers. Then a
function

k � k W X ! R (B.1)

that mapsX into the real numbersR is anorm if it satisfies the following properties:

1. kxk � 0 for all x 2 X (nonnegativity),

2. kxk D 0 if and only if x D 0 (positive-definiteness),

3. k�xk D j�j � kxk for every scalar� and allx 2 X (homogeneity with respect to scaling),

4. kx C yk � kxk C kyk for all x 2 X andy 2 X (triangle inequality).

The pair.X; k � k) is called anormedvector space. If it is clear which norm is used,X by itself
is often called a normed vector space. �

A well-known norm is thep-norm of vectors inCn.

Example B.1.2 (Norms of vectors in C
n). Suppose thatx D .x1;x2; � � � ;xn/ is an n-

dimensional complex-valued vector, that is,x is an element ofCn. Then for1 � p � 1
thep-normof x is defined as

kxkp D
( �Pn

iD1 jxi jp
�1=p

for 1 � p < 1;

maxiD1;2;��� ;n jxi j for p D 1:
(B.2)

Well-known special cases are the norms

kxk1 D
n
X

iD1

jxi j; kxk2 D
 

n
X

iD1

jxi j2
!1=2

; kxk1 D max
iD1;2;��� ;n

jxi j: (B.3)

kxk2 is the familiarEuclidean norm. �
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B.2. Singular values of vectors and matrices

We review the notion of singular values of a matrix1. If A is ann�m complex-valued matrix then
the matricesAHA andAAH are both nonnegative-definite Hermitian. As a result, the eigenvalues
of bothAHA andAAH are all real and nonnegative. The min.n;m/ largest eigenvalues

�i .A
HA/; �i .AAH/; i D 1; 2; : : : ; min.n;m/; (B.4)

of AHA and AAH, respectively, ordered in decreasing magnitude, are equal. The remaining
eigenvalues, if any, are zero. The square roots of these min.n;m/ eigenvalues are called the
singular valuesof the matrixA, and are denoted

�i .A/ D �
1=2
i .AHA/ D �

1=2
i .AAH/; i D 1; 2; : : : ; min.n;m/: (B.5)

Obviously, they are nonnegative real numbers. The number ofnonzerosingular values equals the
rank ofA.

Summary B.2.1 (Singular value decomposition). Givenn�m matrixA let˙ be the diagonal
n�m matrix whose diagonal elements are�i .A/, i = 1, 2,: : :, min.n;m/. Then there exist square
unitary matricesU andV such that

A D U˙V H: (B.6)

A (complex-valued) matrixU is unitary if U HU = U U H = I , with I a unit matrix of correct
dimensions. The representation (B.6) is known as thesingular value decomposition (SVD)of the
matrixA.

The largest and smallest singular value�1.A/ and�min.n;m/.A/ respectively are commonly
denoted by an overbar and an underbar

�.A/ D �1.A/; �.A/ D �min.n;m/.A/:

Moreover, the largest singular value�.A/ is a norm ofA. It is known as thespectral norm. �

There exist numerically reliable methods to compute the matricesU andV and the singular
values. These methods are numerically more stable than any available for the computation of
eigenvalues.

Example B.2.2 (Singular value decomposition). The singular value decomposition of the
3 � 1 matrixA given by

A D

2

4

0

3

4

3

5 (B.7)

is A = U˙V H, where

U D

2

4

0 �0:6 �0:8

0:6 0:64 �0:48

0:8 �0:48 0:36

3

5 ; ˙ D

2

4

5

0

0

3

5 ; V D 1: (B.8)

The matrixA has a single nonzero singular value (because it has rank 1), equal to 5. Hence, the
spectral norm ofA is �1.A/ D 5. �

1See for instance Section 10.8 ofNoble(1969).
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B.3. Norms of signals

Thep-norm for constant vectors may easily be generalized to vector-valued signals.

Definition B.3.1 ( Lp-norm of a signal). For any1 � p � 1 thep-normor Lp-normkzkLp

of a continuous-time scalar-valued signalz, is defined by

kzkLp D
( �R1

�1 jz.t/jp dt
�1=p

for 1 � p < 1;

supt2R jz.t/j for p D 1:
(B.9)

If z.t/ is vector-valued with values inRn or C
n, this definition is generalized to

kzkLp D
( �R1

�1 kz.t/kp dt
�1=p

for 1 � p < 1;

supt2R kz.t/k for p D 1;
(B.10)

wherek � k is any norm on then-dimensional spaceRn or C
n. �

The signal norms that we mostly need are theL2-norm, defined as

kzkL2 D
�Z 1

�1
kz.t/k2

2 dt

�1=2

(B.11)

and theL1-norm, defined as

kzkL1
D sup

t2R

kz.t/k1: (B.12)

The squarekzk2
L2

of theL2-norm is often called theenergyof the signalz, and theL1-norm
kzkL1

its amplitudeor peak value.

Example B.3.2 ( L2 and L1-norm). Consider the signalz with two entries

z.t/ D
�

e�t
1.t/

2e�3t
1.t/

�

:

Here1.t/ denotes the unit step, soz.t/ is zero for negative time. Fromt D 0 onwards both
entries ofz.t/ decay to zero ast increases. Therefore

kzkL1
D sup

t�0

max.e�t ; 2e�3t / D 2:

The square of theL2-norm follows as

kzk2
L2

D
Z 1

0

e�2t C 4e�6t dt D e�2t

�2
C 4

e�6t

�6

ˇ
ˇ
ˇ
ˇ

tD1

tD0

D 1

2
C 4

6
D 7

6

The energy ofz equals7=6, itsL2-norm is
p

7=6. �

B.4. Norms of linear operators and systems

On the basis of normed signal spaces we may define norms of operators that act on these signals.
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Definition B.4.1 (Induced norm of a linear operator). Suppose that� is a linear map� W
U ! Y from a normed spaceU with normk � kU to a normed spaceY with normk � kY . Then
the norm of the operator� induced by the normsk � kU andk � kY is defined by

k�k D sup
kukU¤0

k�ukY
kukU

: (B.13)

�

Constant matrices represent linear maps, so that (B.13) may be used to define norms of ma-
trices. For instance the spectral norm�.M / is the norm induced by the2-norm (see Exer-
ciseB.2(B.2a)).

Lemma B.4.2 (The spectral norm is an induced norm). Let M 2 C
m�n. Then

�.M / D sup
x2Cn; x¤0

kM xk2

kxk2

:

�

B.4.1. Norms of linear systems

We next turn to a discussion of the norm of a system. Consider asystem as in Fig.B.1, which
maps the input signalu into an output signaly. Given an inputu, we denote the output of the
system asy = �u. If � is a linear operator the system is said to be linear. The norm of the system
is now defined as the norm of this operator.

u � y

Figure B.1: Input-output mapping system

We establish formulas for the norms of a linear time-invariant system induced by theL2- and
L1-norms of the input and output signals.

Summary B.4.3 (Norms of linear time-invariant systems). Consider a MIMO convolution
system with impulse response matrixh,

y.t/ D
Z 1

�1
h.�/u.t � �/ d�; t 2 R: (B.14)

Moreover letH denote the transfer matrix, i.e.,H is the Laplace transform ofh.

1. L1-induced norm.The norm of the system induced by theL1-norm (B.11) is given by

max
iD1;2;��� ;m

Z 1

�1

kX

j D1

jhij .t/j dt; (B.15)

wherehij is the.i; j / entry of them � k impulse response matrixh.
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2. L2-induced norm.SupposeH is a rational matrix. The norm of the system induced by the
L2-norm exists if and only ifH is proper and has no poles in the closed right-half plane. In
that case theL2-induced norm (B.13) equals theH1-normof the transfer matrix defined
as

kHkH1
D sup

!2R

�.H.j!//: (B.16)

�

A sketch of the proof is found in~ B.6. For SISO systems the expressions for the two norms
obtained in SummaryB.4.3simplify considerably.

Summary B.4.4 (Norms for SISO systems). The norms of a SISO system with (scalar) im-
pulse responseh and transfer functionH induced by theL1- andL2-norms are successively
given byactionof the impulse response

khkL1 D
Z 1

�1
jh.t/j dt; (B.17)

and the peak value on the Bode plotif H has no unstable poles

kHkH1
D sup

!2R

jH.j!/j: (B.18)

If H has unstable poles then the induced norms do not exist. �

Example B.4.5 (Norms of a simple system). As a simple example, consider a SISO first-order
system with transfer function

H.s/ D 1

1 C s�
; (B.19)

with � a positive constant. The corresponding impulse response is

h.t/ D
(

1
�

e�t=� for t � 0;

0 for t < 0:
(B.20)

It is easily found that the norm of the system induced by theL1-norm is

khk1 D
Z 1

0

1

�
e�t=� dt D 1: (B.21)

The norm induced by theL2-norm follows as

kHkH1
D sup

!2R

1

j1 C j!� j D sup
!2R

1p
1 C !2�2

D 1: (B.22)

For this example the two system norms are equal. Usually theyare not. �

Remark. In the robust control literature theH1-norm of a transfer matrixH is commonly
denoted bykHk1 and not bykHkH1

as we have done here.
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Summary B.4.6 (State-space computation of common system no rms). Suppose a system
has proper transfer matrixH and letH.s/ D C.sIn � A/�1B C D be a minimal realization of
H . Then

1. kHkH2 is finite if and only ifD D 0 andA is astability matrix2. In that case

kHkH2 D
p

tr BTYB D
p

tr CXC T

whereX andY are the solutions of the linear equations

AX C XAT D �BBT; ATY C YA D �C TC:

The solutionsX and Y are unique and are respectively known as thecontrollability
gramianandobservability gramian.

2. The Hankel normkHkH is finite only if A is a stability matrix. In that case

kHkH D
p

�max.X Y /

whereX andY are the controllability gramian and observability gramian. The matrixX Y

has real nonnegative eigenvalues only, and�max.X Y / denotes the largest of them.

3. TheH1-normkHkH1
is finite if and only ifA is a stability matrix. Then
 2 R is an

upper bound

kHkH1
< 


if and only if �.D/ < 
 and the2n � 2n matrix
�

A 0

�C TC �AT

�

�
�

�B

C TD

�

.
 2I � DTD/�1
�

DTC BT
�

(B.23)

has no imaginary eigenvalues. This result shows that computation of theH1-norm can
be done witj iteration (on
 ) and computation of eigenvalues. There are various other
approaches.

�

Proofs are listed in AppendixB.6.

B.5. BIBO and internal stability

Norms shed a new light on the notions of stability and internal stability. Consider the MIMO
input-output mapping system of Fig.B.1 with linear input-output map�. In ~ 1.3.2we defined
the system to be BIBO stable if any bounded inputu results in a bounded outputy D �u. Now
bounded means having finite norm, and so different norms may yield different versions of BIBO
stability. Normally theL1- orL2-norms ofu andy are used.

We review a few fairly obvious facts.

Summary B.5.1 (BIBO stability).

1. If k�k is finite, with k � k the norm induced by the norms of the input and output signals,
then the system is said to be BIBO stable (with respect the

2A constant matrixA is astability matrixif it is square and all its eigenvalues have negative real part.
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2. Suppose that the system is linear time-invariant with rational transfer matrixH . Then the
system is BIBO stable (both when theL1- and theL2-norms ofu andy are used) if and
only if H is proper and has all its poles in the open left-half complex plane.

�

Given the above it will be no surprise that we say that a transfer matrix isstableif it is proper
and has all its poles in the open left-half complex plane. In~ 1.3.2we already defined the notion
of internal stabilityfor MIMO interconnected systems: An interconnected systemis internally
stable if the system obtained by adding external input and output signals in every exposed inter-
connection is BIBO stable. Here we specialize this for the MIMO system of Fig.B.2.

r e u y
PK

Figure B.2: Multivariable feedback structure

r e u y
PK

w

Figure B.3: Inputsr ,w and outputse, u defining internal stability

Assume that feedback system shown in Fig.B.2 is multivariablei.e., u or y have more than
one entry. The closed loop of Fig.B.2 is by definitioninternally stableif in the extended closed
loop of Fig.B.3 the maps from.w; r/ to .e;u/ are BIBO stable. In terms of the transfer matrices,
these maps are

�

e

u

�

D
�

I P

�K I

��1 �
r

w

�

(B.24)

D
�
I � P .I C KP /�1K �P .I C KP /�1

.I C KP /�1K .I C KP /�1

� �

r

w

�

(B.25)

Necessary for internal stability is that

det.I C P .1/K.1// ¤ 0:

Feedback systems that satisfy this nonsingularity condition are said to bewell-posed,
Hsu and Chen(1968). The following is a variation of Eqn. (1.44).

Lemma B.5.2 (Internal stability). SupposeP andK are proper, having minimal realizations
.AP ;BP ;CP ;DP / and.AK;BK ;CK;DK/. Then the feedback system of Fig.B.2 is internally
stable if and only if det.I C DP DK/ ¤ 0 and the polynomial

det.I C P .s/K.s// det.sI � AP / det.sI � AK/
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has all its zeros in the open left-half plane. �

If the ny � nu systemP is not square, then the dimensionny � ny of I C PK and dimension
nu � nu of I C KP differ. The fact that det.I C PK/ D det.I C KP / allows to evaluate the
stability of the system at the loop location having the lowest dimension.

Example B.5.3 (Internal stability of closed-loop system). Consider the loop gain

L.s/ D
"

1
sC1

1
s�1

0 1
sC1

#

:

The unity feedback aroundL gives as closed-loop characteristic polynomial:

det.I C L.s// det.sI � AL/ D
�

s C 2

s C 1

�2

.s C 1/2.s � 1/ D .s C 2/2.s � 1/: (B.26)

The closed loop system hence is not internally stable. Evaluation of the sensitivity matrix

.I C L.s//�1 D
"

sC1
sC2

� sC1
.sC2/2

0 sC1
sC2

#

shows that this transfer matrix in the closed-loop system isstable, but the complementary sensi-
tivity matrix

.I C L.s//�1L.s/ D
"

1
sC2

s2C2sC3
.s�1/.sC2/2

0 1
sC2

#

is unstable, confirming that the closed-loop system indeed is not internally stable. �

Example B.5.4 (Internal stability and pole-zero cancellat ion). Consider

P .s/ D
"

1
s

1
s

2
sC1

1
s

#

; K.s/ D
"

1 2s
s�1

0 � 2s
s�1

#

:

The unstable poles D 1 of the controller does not appear in the productPK,

P .s/K.s/ D
�

1
s

0
2

sC1
2

sC1

�

:

This may suggest as in the SISO case that the map fromr to u will be unstable. Indeed the
lower-left entry of this map is unstable,

K.I C PK/�1 D
"

� �
� 4s2

.s�1/.sC1/.sC3/
�

#

:

Instability may also be verified using LemmaB.5.2; it is readily verified that

det.I C P .s/K.s//det.sI � AP / det.sI � AK/

D det

�
sC1

s
0

2
sC1

sC3
sC1

�

s2.s C 1/.s � 1/ D s.s � 1/.s C 1/.s C 3/

and this has a zero ats D 1. �
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B.6. Appendix: Proofs

Proof of SummaryB.4.6.

1. If D is not zero then the impulse response matrixh.t/ D C eAtB1.t/ C ı.t/D contains
Dirac delta functions and as a result theH2-norm can not be finite. SoD D 0 and

h.t/ D C eAt B1.t/:

If A is not a stability matrix thenh.t/ is unbounded, hence theH2-norm is infinite. So
D D 0 andA is a stability matrix. Then

kHk2
H2

D tr
Z 1

�1
h.t/Th.t/ dt

D tr
Z 1

0

BTeATt C TC eAt B dt

D tr
�

BT
Z 1

0

eATt C TC eAt dt

„ ƒ‚ …

Y

B
�

:

The so defined matrixY satisfies

ATY CYA D
Z 1

0

ATeATt C TC eAt C eATtC TC eAt A dt D eATt C TC eAt
ˇ
ˇ
tD1
tD0

D �C TC:

(B.27)

That is,Y satisfies the Lyapunov equationATY C YA D �C TC , and asA is a stability
matrix the solutionY of (B.27) is well known to be unique.

2. Let X andY be the controllability and observability gramians. By the property of state,
the outputy for positive time is a function of the statex0 at t D 0. Then

Z 1

0

y.t/Ty.t/ dt D
Z 1

0

xT
0 eATtC TC eAt x0 dt D xT

0 Y x0:

If X satisfiesAX C XAT D �BBT then its inverseZ WD X �1 satisfiesZA C ATZ D
�ZBBTZ. By completion of the square we may write

d

dt
xTZx D 2xTZ Px D 2xT.ZAx C ZBu/ D xT.ZA C ATZ/x C 2xTZBu

D xT.�ZBBTZ/xT C 2xTZBu

D uTu � .u � BTZx/T.u � BTZx/:

Therefore, assumingx.�1/ D 0,
Z 0

�1
ku.t/k2

2 � ku.t/� BTZx.t/k2
2 dt D xT.t/Zx.t/

ˇ
ˇ
tD0

tD�1 D xT
0 Zx0 D xT

0 X �1x0:

From this expression it follows that the smallestu (in norm) that steersx fromx.�1/ D 0

to x.0/ D x0 is u.t/ D BTZx.t/ (verify this). This then shows that

sup
u

R1
0

yT.t/y.t/ dt
R 0

�1 uT.t/u.t/ dt
D xT

0 Y x0

xT
0 X �1x0

:
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Now this supremum is less then some
 2 for somex0 if and only if

xT
0 Y x0 < 


2 � xT
0 X �1x0:

There exist suchx0 iff Y < 
 2X �1, which in turn is equivalent to that�i .YX / D
�i .X

1=2YX 1=2/ < 
 2. This proves the result.

3. kHkH1
< 
 holds if and only ifH is stable and
 2I � H ÏH is positive definite on

jR [ 1. This is the case iff it is positive definite at infinity (i.e.,�.D/ < 
 , i.e. 
 2I �
DTD > 0) and nowhere on the imaginary axis
 2I � H ÏH is singular. We will show
that
 2I � H ÏH has imaginary zeros iff (B.23) has imaginary eigenvalues. It is readily
verified that a realization of
 2I � H ÏH is

2

4

A � sI 0 �B

�C TC �AT � sI C TD

DTC BT 
 2I � DTD

3

5

By the Schur complement results applied to this matrix we seethat

det

�

A � sI 0

�C TC �AT � sI

�

� det.
 2I � H ÏH / D det.
 2I � DTD/ � det.Aham� sI/:

whereAham is the Hamiltonian matrix (B.23). As A has no imaginary eigenvalues we have
that
 2I �H ÏH has no zeros on the imaginary axis iffAhamhas no imaginary eigenvalues.

Proof of Norms of linear time-invariant systems.We indicate how the formulas for the system
norms as given in SummaryB.4.3are obtained.

1. L1-induced norm.In terms of explicit sums, thei th componentyi of the outputy D h�u

of the convolution system may be bounded as

jyi.t/j D

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

Z 1

�1

X

j

hij .�/uj .t � �/ d�

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

�
Z 1

�1

X

j

jhij .�/j � juj .t � �/j d�

�

0

@

Z 1

�1

X

j

jhij .�/j d�

1

A � kukL1
; t 2 R; (B.28)

so that

kykL1
� max

i

0

@

Z 1

�1

X

j

jhij .�/j d�

1

A � kukL1
: (B.29)

This shows that

k�k � max
i

Z 1

�1

X

j

jhij .�/j d�: (B.30)

The proof that the inequality may be replaced by equality follows by showing that there
exists an inputu such that (B.29) is achieved withequality.
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2. L2-induced norm.By Parseval’s theorem (see e.g.Kwakernaak and Sivan(1991)) we have
that

kyk2
L2

kuk2
L2

D
R1

�1 yH.t/y.t/ dt
R1

�1 uH.t/u.t/ dt

D
1

2�

R1
�1 OyH.j!/ Oy.j!/ d!

1
2�

R1
�1 OuH.j!/ Ou.j!/ d!

(B.31)

D
R1

�1 OuH.j!/H H.j!/H.j!/ Ou.j!/ d!
R1

�1 OuH.j!/ Ou.j!/ d!
(B.32)

where Oy is the Laplace transform ofy and Ou that ofu. For any fixed frequency! we have
that

sup
u.j!/

OuH.j!/H H.j!/H.j!/ Ou.j!/
OuH.j!/ Ou.j!/ D �2.H.j!//:

Therefore

sup
u

kyk2
L2

kuk2
L2

� sup
!
�2.H.j!//: (B.33)

The right hand side of this inequality is by definitionkHk2
H1

. The proof that the inequality
may be replaced by equality follows by showing that there exists an inputu for which
(B.33) is achieved with equality within an arbitrarily small positive margin".

B.7. Problems

B.1 Singular value decomposition.Let A = U˙V H be the singular value decomposition of the
n � m matrix A, with singular values�i , i = 1, 2, � � � , min.n;m/. Denote the columns of
then � n unitary matrixU asui , i = 1, 2,� � � , n, and those of them � m unitary matrixV

asvi , i = 1, 2,� � � , m. Prove the following statements:

a) For i = 1, 2, � � � , min.n;m/ the column vectorui is an eigenvector ofAAH corre-
sponding to the eigenvalue�2

i . Any remaining columns are eigenvectors correspond-
ing to the eigenvalue 0.

b) Similarly, for i = 1, 2, � � � , min.n;m/ the column vectorvi is an eigenvector of
AHA corresponding to the eigenvalue�2

i . Any remaining columns are eigenvectors
corresponding to the eigenvalue 0.

c) Fori = 1, 2,� � � , min.n;m/ the vectorsui andvi satisfy

Avi D �i ui ; AHui D �ivi : (B.34)

B.2 Singular values.Given is a squaren�n matrixA. Prove the following properties (compare
p. R-5 ofChiang and Safonov(1988)):

a) �.A/ D maxx2Cn; x¤0
kAxk2

kxk2
.
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b) �.A/ D minx2Cn; x¤0
kAxk2

kxk2
.

c) �.A/ � j�i .A/j � �.A/, with �i .A/ thei th eigenvalue ofA.

d) If A�1 exists then�.A/ D 1=�.A�1/ and�.A/ D 1=�.A�1/.

e) �.˛A/ D j˛j�.A/, with ˛ any complex number.

f) �.A C B/ � �.A/C �.B/.

g) �.AB/ � �.A/�.B/.

h) �.A/ � �.B/ � �.A C B/ � �.A/C �.B/.

i) max.�.A/; �.B// � �.ŒA B�/ �
p

2 max.�.A/; �.B//.

j) maxi;j jAij j � �.A/ � n maxi;j jAij j, with Aij the.i; j / element ofA.

k)
Pn

iD1 �
2
i .A/ D tr.AHA/.

B.3 Induced norms of linear operators.The space of linear operators from a vector spaceU to
a vector spaceY is itself a vector space.

a) Show that the induced normk � k as defined by (B.13) is indeed a norm on this space
satisfying the properties of DefinitionB.1.1.

Prove that this norm has the following additional properties:

b) If y = �u, thenkykY � k�k � kukU for anyu 2 U .

c) Submultiplicative property:Let �1 W U ! V and�2 W V ! Y be two linear
operators, withU , V andY normed spaces. Thenk�2�1k � k�2k � k�1k, with all the
norms induced.

B.4 Matrix norms induced by vector norms.Consider them � k complex-valued matrixM as
a linear mapCk ! C

m defined byy D M u. Then depending on the norms defined on
C

k andC
m we obtain different matrix norms.

a) Matrix norm induced by the 1-norm. Prove that the norm of the matrixM induced
by the 1-norm (both forU andY) is themaximum absolute column sum

kM k D max
j

X

i

jMij j; (B.35)

with Mij the.i; j / entry ofM .

b) Matrix norm induced by the1-norm. Prove that the norm of the matrixM induced
by the1-norm (both forU andY) is themaximum absolute row sum

kM k D max
i

X

j

jMij j; (B.36)

with Mij the.i; j / entry ofM .

Prove these statements.

B.5 H2-norm and Hankel norm of MIMO systems.Two further norms of linear time-invariant
systems are commonly encountered. Consider a stable MIMO system with transfer matrix
H and impulse response matrixh.
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a) H2-norm.Show that theH2-norm defined as

kHkH2 D
s

tr

�Z 1

�1
H T.�j2�f /H.j2�f / df

�

D
s

tr

�Z 1

�1
hT.t/h.t/ dt

�

(B.37)

is a norm. The notation tr indicates the trace of a matrix.

b) Hankel norm.The impulse response matrixh defines an operator

y.t/ D
Z 0

�1
h.t � �/u.�/ d�; t � 0: (B.38)

which maps continuous-time signalsu defined on the time axis.�1; 0� to
continuous-time signalsy defined on the time axisŒ0;1/. The Hankel normkHkH

of the system with impulse response matrixh is defined as the norm of the map given
by (B.38) induced by theL2-norms ofu W .�1; 0� ! R

nu andy W Œ0;1/ ! R
ny .

Prove that this is indeed a norm.

c) Compute theH2-norm and the Hankel norm of the SISO system of ExampleB.4.5.
Hint: To compute the Hankel norm first show that ify satisfies (B.38) andh is given
by (B.20) thenkyk2

2 D 1
2�
.
R 0

�1 e�=�u.�/ d�/2. From this, prove thatkHkH D 1
2
.

B.6 Proof. Consider SummaryB.5.1.

a) Prove the statements1 and2.

b) Show by a counterexample that the converse of1 is not true, that is, for certain
systems and norms the system may be BIBO stable in the sense asdefined whilek�k
is not necessarily finite.

c) In the literature the following better though more complicated definition of BIBO
stability is found: The system is BIBO stable if for every positive real constantN
there exists a positive real constantM such thatkuk � N implieskyk � M . With
this definition the system is BIBO stable if and only ifk�k < 1. Prove this.
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