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Synopsis: The purpose of this paper is to
demonstrate some graphical methods for
finding the transient response of a control
system. A simple position follow-up system
is considered for convenience although the
method is applicable in the same form for
higher order systems or those in which only
empirical frequency data is known. The
basic procedure is to find the roots of the
differential equation which correspond to the
exponential transient terms which dominate
the response. Doctor Profos! of Switzerland
points out that the plot of the function which
describes the system from error to output is
a function of a complex variable of which
frequency is the imaginary part and damping
is the real part. The Nyquist plot is thus
one line of a conformal map with the root
of the equation being the value of the vari-
able which makes the function equal to —1.
Any line of plot can be calculated for sys-
tems with known functions with essentially
the same ease as the Nyquist plot by use of
some graphical tricks. The amplitude of
any transient term is determined from the
plot once the root is known by use of a
theorem of operational calculus. The de-
velopment possibilities of the subject seem
to be very great as suggested by several
topics not yet investigated.

Review of Fundamentals

AQUADRATIC sysTEM will first be
analyzed in order to emphasize
the important concepts in finding any
transient response. Consider the posi-
tion follow-up system shown in Figure 1.

The differential equation relating the
output to the error is

d
Ke =<1+ Tu d?)% 6,(t) 1)

K is the output speed corresponding to a
unit error. 7T, is the time constant of
motor acceleration, other delays are
neglected. But input is the output plus
the error.

0:(8) =0,() +€() =
1 d\d
[1+§<1+Tud‘t) d—t]ﬂa(t) @)
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Consider the input to be a unit step
and note that the steady state value of
output will also be unity. Assume that
the output transient can be represented
by exponential terms, so that 6,()=
Ae" is substituted into the differential
equation, and the common factor Ae¥
cancelled.

1
0=1+1_<(1+ Tys)s 3)

Note that s appears at each point where
d/dt had occurred before. This equation
in s is an algebraic one, and any value of
s which satisfies it represents an expo-
nential term which can exist in the tran-
sient.

Anticipating the fact that s will replace
d/dt when an exponential solution is
assumed, the system itself can be more
conveniently represented by the block
diagram of Figure 2. The function in a
block represents the ratio of its output to
its input. The relationship between
6;and 8, can now be set up directly.

(ﬁ 6,+¢€

€ 1
s =1+{Z=1+I_< (14 Tys)s 4

For this case of a quadratic equation

the roots can be found directly by com-
pleting the square and solving for s.

1 |k 1\
:l:] — — — =
2T 5 Ty \2Ty

—an=jon (5)

s=—

The oscillatory case is taken because it
is typical of the response of a fast control
system. The transient solution is the
sum of two exponentials, one for each
root.

Al monionip f,p(=on—dont ©)

But this can be converted to a cosine
function using the relation

e“'= cos wt+j sin wt ()
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Select as the new undetermined constants
the amplitude 4 and the phase angle ¢

Ae™ " cos (wnt— ) (8)

The constants are determined from the
initial conditions that the output is
zero and its rate of change is zero at time
zero. The complete solution for output
then becomes:

1
cos ¢

6, =1 -—( >e“’"‘ cos (wnt—a);

in which tan ¢ =" (9)
Wy
The following numerical values are
selected for convenience

K =2/seconds T =1 second (10)

Note that if T were equal to one-
tenth second, the value of 6,/8, given in
equation 4 would be the same if s and
K were both made ten times larger.
Thus, the results of these problems can be
shifted into any range of values with
which the reader may be normally accus-
tomed. Substituting the foregoing
values gives

8o(t) =1—1.07¢ %% cos (1.32t—21°)  (11)
Graphical Plot to Locate Real Roots

The consideration of an additional
delay in the control system raises the
degree of the equation from second to
third. In this case, consider the delay
to be the time constant of the inductive
build-up of current in the field of the
generator supplying the motor. Setting
up the ratio 6,/6,

0; € 1
P 1+00_ 1+K(1+Tas)(1+TMs)8 (12)
The previous values of K=2,T,=1

will be kept and Ty taken as one-fourth
second.
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Figure 1. Position follow-up system

Complex roots such as those which
arose in the quadratic system always
occur as a conjugate pair; therefore this
third degree equation must have either
one or three real roots. In finding the
real value of s which makes the function
of s of equation 12 equal to zero, one of
the reasons for the simplicity of finding
roots of a known function will become
apparent. The factors of ¢/, are al-
ready known therefore, make 6,/6, = 0
by making €/, =—1. In guessing s
to be a negative real quantity —a, each
factor of €/6, is a real quantity and can be
plotted against —¢ as shown in Figure 3.

The range of —o from 0 to —1 gives
a product of factors which is negative,
but the magnitude is a fraction so that a
root cannot exist in this region. The

region beyond —o=-—4 certainly
contains a root. A guess of —g=-—5
gives a result of ¢/0, = —2!/,. A second

guess of —o=—41/, suggests itself to
make ¢€/6,=—1 because the factor
14T¢S is then cut in half whereas the
other factors are nearly constant. The
new result is ¢/6,= —63/64 with further
correction probably not justified by
accuracy of the data. Note the calcula-
tion of €/6, is very rapid by maintaining
the identity of the factors, and that
guesses of values of roots are immedi-
ately suggested.

Divide by the factor s+4!/, to reduce
the third degree polynomial to a quad-
ratic. Solve for the complex roots of
the quadratic as before to find s=—0.25
=41.30. Apply initial conditions to
determine the constants to find that the
total response is given by

0,(£) =1—0.08¢—*5"—1.036¢ "% X
cos (1.306—27°) (13)

The main effect of considering the
second delay is to cut down the damping
rate of the oscillation.

Vector Plot of Error-Output Ratio
For Sinusoidal Signals

A standard method of counteracting
the effect of a time delay is to insert in the
amplifier a circuit whose output includes
the derivative of error. The form of its
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(1+TyS)S

output,/input fuuction is shown in the
block diagram of Figure 4.

The determination of the roots of such
a system is generally agreed to be a
tedious job by present methods and is
infrequently done. The frequency re-
sponse method instead has been developed
to a fine point as indicated by the many
recent articles on the subject.? In this
method the feed-back loop is broken and
a sinusoidal signal is impressed. The
output is determined in magnitude and
phase angle as a function of frequency.
This information can be obtained by any
one of several calculating methods or by
direct laboratory tests. A convenient
way to show the results is to plot the
vector ratio of error/output. The plot
for the foregoing system is shown in
Figure 5 with the frequency identified
by numbers in parenthesis.

For a stable system, the locus of ¢/,
must swing outside the —1 point, physi-
cally meaning that the output/error
ratio is a fraction at the frequency such
that the output is in phase with the error.
The vector ratio of 6,/6, is greater than
the €/6, ratio by 1 and is therefore a
vector to the curve with tail at the —1
point. Increasing the gain to K=6
contracts the curve as shown bringing
it inside the —1 point indicating an
unstable system. An intermediate value

Figure 2. Simplified block diagram

of gain K=3 contracts the curve in
toward —1 point so that one would
expect that the system was closer to
becoming unstable, or having less damp-
ing. A quantitative value of damping,
however, is now primarily a matter of
experience based on systems with known
vector plots and known transient per-
formance. It is precisely at this point
that the key idea of Profos becomes ef-
fective.’

Determination of Principle Roots
From Vector Plot

The key idea of P. Profos! is to con-
sider the vector plot to be the base line
from which the complex roots of the main
damped sinusoidal term can be deter-
mined. Recall from the simple quad-
ratic system that these roots make the
€/0, ratio equal —1. These roots could
be determined if a plot of the function
of s could be made as a function of both
—o and w.

One recognizes a somewhat similar
situation in plotting an electrostatic
field in which the complex variable in-
volves flux and voltage. The patterns
for lines of constant voltage and lines of
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flux is known to be a grid of curvilinear
squares. If this flux plotting property
can be justified for ¢/6,, the root values
of —o0, and w, can be determined by
sketching. The justification is that €/6,
is a function of s which has a particular
derivative with respect to s for any value
of s in the region of interest. Thus in
Figure 6 the change of ¢/6, along the
curve for an increment Ajw means that
the derivative must be located 90 degrees
clockwise from this increase. If the
change in variable at this point were
— Ac instead, the change in the e/6,
function would be opposite in direction
to the derivative. The magnitude of
the change of the function would be the
same for equal small changes —Ac¢ or
Ajw. Thus for fairly large, but equal
changes in —o and w, a set of curvilinear
squares will be formed as indicated by the
dotted lines.

Note that this complex plot can be
based on an original vector plot ob-
tained from laboratory data as well as
from one which is calculated. This is
valid however, only for systems which
are linear in the test range and the
results are applicable only to this linear
range. This restriction is necessary be-
cause the justification of the curvilinear
square pattern is that the derivative of
€/0, is dependent only on the nature of
. the signal, not the amplitude.

One can sketch such a grid with more
confidence after having calculated a few
systems with known functional form.
This can be done conveniently by some
graphical tricks, as shown in the next
section.

Calculation of Complex Plot

The ratio of output to input for any one
time delay is a vector quantity specified
by amplitude and phase angle. The
output to input ratio for several time
delays in series is then the product of
their amplitudes and a sum of their
phase angles.

(1 4joTy) (1 +jwTs) =A1e’#1 4,64 =

A4 zel(¢1+¢z) (14)

If one keeps track of amplitudes log-
arithmecally, the product can be taken
by adding logarithms.

log 4;4:= log A+ log 4. (15)

The logarithmic scale commonly used
is the decibel scale defined by the equa-
tion below.

decibel =20 logy, 4 (16)

The new problem introduced is to
express any one term 14-Tg as an ampli-
tude and phase angle. Several schemes
are of course possible, but the following
is believed to be the most convenient.
Consider the term to be factored as
shown below with the T factors saved
for later consideration.

14-Ts= T(}Yﬁ-s)

The term s can be located as a vector
from the origin. The complete vector
is one with tail at the —1/T point and
head at the s point. This vector can
be measured by a protractor pivoted at
the —1/T point with scale in line with
the s point. The amplitude is desired
in decibels so the scale is so marked.
This scale can be checked by noting the
magnitude of 1 is marked as 0 decibel

a7

and the magnitude of 2 as 6 decibels
in Figure 7.

The case of a quadratic term in the
¢/0, ratio frequently arises. Such a
term can be broken into two factors
having conjugate complex roots as
shown below.

S2+as+b=[S—(—a+iB)][S—

(—a—jf)] (18)

These conjugate roots are thus the pivot
points for the protractor in making meas-
urements to the s point.

The procedure is now simply one of
tabulating decibels and angles for each
term, adding decibels for the total
decibels, and adding angles for the total
angle of the €/, ratio. The over-all
amplitude factor for the product can now
be established by checking the special
case of s is equal to 0. The value of
¢/0, for s=o0, eliminating K and s factors
is 1 as shown in the block diagram. The
sum of the decibels reading with pro-
tractor swung to the origin actually ob-
tained is due to all of the factors accumu-
lated in setting up the 1/T+s vectors.
This decibel value should be subtracted
from all sums obtained for other values of
s. Division by the gain K is achieved by
subtracting the decibels for that K from
the net decibels previously obtained.
The ¢/6, vector is then known as an angle
and decibels of magnitude and so can be
plotted using the same protractor.

It is convenient to make the first cal-
culation for constant values of —¢ and
the uniform changes in jo. Thus a cur-
vilinear square pattern should be formed
with any mistake in calculating one point
showing up by its failure to be in line with
the grid set up by the other points. The
plot for the system of Figure 4 is shown in
Figure 6 for T¢=1/2 and K=4. The

Figure 6. Complex plot for system. Con-
formal map properties are indicated. Root at
s=—apEjo,=—0.95+j2.25
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value of s which makes ¢/0,=—1 is
§=—0p*ju,=—0.95%+72.25. The am-
plitude of the transient having this root
as well as its initial phase angle, needs to
be determined before the transient can
be plotted. Fortunately this is possible
without need for finding the rest of the
roots and substituting initial conditions
by means of a theorem of operational
calculus.

Amplitudes From Operational
Calculus

The concept of s thus far presented has
been simply that of being a complex num-
ber used in the exponential solution of the
differential equation. This concept is
sufficient for explaining the process of
finding the roots to the equation. The
symbol s, however, has a more potent
significance as it is used in operational
methods such as the Laplace Transform.?
Those familiar with these methods of
course realize that this is a long study in
itself, but essentially only one fact need
be used. The amplitude of any transient
term is given in terms of its root by

1

Al =7 <
d(oi)
s— =2
ds 0, S =381

But the derivative of the function can
be determined directly from the complex
plot. It is vector with an angle of 84
degrees as shown in Figure 6. The
magnitude is the change in €/6, divided
by the change in s. An average of sev-
eral measurements in the region of the —1
point gives the value of 0.60.

The two transient terms involving the
pair of complex roots can be converted
into a single term as in the simple quadra-
tic system. The conversion is made very
rapid by noting that the amplitude terms
are conjugates of each other. In taking
the sum therefore their real parts add and
their imaginary parts cancel. The re-
sult can thus be written as twice the real
part of one of them.

2R[e“ ”"‘e"“’"’:l _ 2e” o2l 0os (wnt—a—B)

19)

ae’@pelB ab
(20)
in which
gl =5= —optjo,
and

dfo;
I8 = b
be E(%)]s =—op+tjwn

The other two roots to this fourth
degree system are found to be real roots
of —2.58 and —16.6. The derivatives
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can be found by any one of several
methods but from the slope of the func-
tion they are —1.45 and +1.66, respec-
tively. The complete solution including
the steady state value of 1 becomes:

8,(t) =1—1.36e0-55" cos (2.25t—17°)+

0.267¢~ 258 —(.036¢~ 1667 (21)

Procedure For Complicated Systems

A solution of a fourth degree equation
is nothing new, but this method can
readily be applied to higher order equa-
tions. Thus additional time delays ot
stabilization circuits will distort the fre-
quency locus but the conformal map can
still be sketched.

The quadratic roots found from the
original plot represent the transient term
which will frequently dominate the com-
plete transient response. If a complete
solution is desired, however, these known
factors can be divided out of the 6,/6,
ratio. Thus, for any value of frequency,
the angle and decibels readings for the
protractors pivoted at the conjugate root
points, with the scale at the frequency
point, should be subtracted from those of
original vector to obtain those of the
‘new vector. Note that in general the
portion of the original vector plot for
higher frequency values will now be con-
tracted into the —1 region. Thus, one
would have to have frequency data in the
region of the higher order roots in order to
find them. Usually the corresponding
transient term will be found to damp out
rapidly so that they would be needed
only to study the initial break away of
the output. It is probable that other
methods would be more applicable to
studying this region.

The construction of a vector plot for a
multiple loop system can be readily car-
ried out on a completely vector basis.
The multiplication process has already
been shown, and the addition process is
simply the familiar completion of a
parallelogram. Many time saving tricks
are possible however by shifting or rotat-
ing an entire plot with respect to its pre-
vious position. The predominance of
feed-back signals over feed-forward signals
makes the inverse plot more convenient,
for starting at the output one can build
up a diagram back to the input step by
step.

Occasionally systems will have two
pairs of quadratic roots in about the same
frequency range. The Nyquist plot
then circles the —1 point with the result
that a plot built up from one side over-
laps a plot built up from the other side.
This situation can be handled by a proc-
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ess of successive approximations. Start
with the pair of complex roots suggested
by the plot built from one side and divide
the function by these factors. The result-
ant plot will usually give good indication
of the other pair of roots since over-
lapping is eliminated. The first pair of
roots may now be determined more
accurately by dividing the original plot
by the factors corresponding to the
second pair of roots.

For systems in which the damping is
near critical, the behavior of the plot
near the origin must be understood. A
good example to work out is for a simple
quadratic with roots of —1=j'. The
first ‘“‘square’ is shaped like a triangle
with base from 0 to —1, and curved sides
crossing at —1/2+j'. The missing corner
will be found to be at the midpoint of the
0 to —1 line.

Protractor measurements could be
eliminated by substituting potentiometers
at the pivot point which turn in resistance
proportional to angle. The decibel read-
ings could similarly be replaced with
potentiometers which are turned as a
logarithmetic function of the distance to
the s point. Connecting each set of po-
tentiometers in series will then give to-
tal angle and total decibels as resistances.
These resistances could then be used as
inputs to instrument servos which could
actuate meters or locate the position of a
pen.

Development Possibilities

What are the possibilities for new types
of laboratory tests to give empirical data
other than just frequency response? The
problem would seem to be primarily one
of achieving a steady state condition long
enough to get a reading and not have the
natural transient of the system present.
An exponential build-up might work in
that starting from zero the transient
should not appear and the only reading
necessary is the ratio of output to input,
which should be constant during the
build-up. An exponentially increasing
sine wave would correspond to a complex
value of s, though the reading here would
have to include phase angle as well as
magnitude.

The similarities of the conformal map-
ping properties of static fields and these
functions of s seem to offer the most in-
teresting possibilities. Conceivably the
known system information could be set up
as boundary conditions of an electrosta-
tic field so that the pattern of equipoten-
tial lines and lines of flux would corre-
spond to the system plot. The system
plots of the type described in this paper
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however, have several values of s which
makes the e/f, equal to —1 where as
only one voltage could exist at the —1
point for the field. Another system
plot is possible however in which the
roles of ¢/6, and s are reversed. Any
point on the plane would correspond to a
value of s and €/, is plotted as loci of its
constant real part and constant imagi-
nary part.

A physical picture of the plot can be
gained by considering a surveying con-
tour map in which lines of constant alti-

Figure 7. Vector
determination of
) 1/T+s
2
jt
0
-1 0

tude correspond to constant real part and
lines of maximum slope correspond to
lines of constant imaginary part. On
this basis a quadratic function in the re-
gion of the roots has the shape of a horse’s
saddle. Imagine a view of the saddle
from above with the origin at the horn of
the saddle and the —¢ axis running
straight back to the rear. One trace of
zero imaginary part is along this axis and
the other intersects it at right angles at
the center of the saddle. Picture now the
saddle to be immersed in water and
gradually lifted out. The water level
lines on the saddle give the locus for a real
part of ¢/6,= —1 as the gain of the servo

is increased. In this situation the roots
of the transient equation lie at the inter-
section of the locus for a real part of ¢/-
6,= —1 and the locus for zero imaginary
part. These roots therefore move down
the saddle from the horn and the rear
until they meet in the center for the criti-
cal damping case. Further increase in
gain, or raising of the saddle, causes the
roots to appear as a conjugate pair mov-
ing down each side toward the stirrups.

Will a static field be capable of mapping
such a pattern? If so, what boundary
conditions will be necessary? This seem-
ingly never-ending chain of questions
serves to keep the subject interesting,
since one does not know what useful
method might be encountered in the
process of finding the answers.
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