
THE MATRIX EXPONENTIAL FUNCTION

MICHAEL VANVALKENBURGH

This handout covers the material from class on November 10 (Wednesday), November 12
(Friday), and the beginning of November 15 (Monday).

1. Definition and Basic Properties of the Matrix Exponential

Recall that the exponential function f(x) = ex on the line has two equivalent definitions:

ex =
∞∑

k=0

xk

k!

and

ex = lim
N→∞

(
1 +

x

N

)N

.

It is an amazing fact that these expressions also make sense when “plugging in matrices.”
That is, for any A ∈Mn,n,

eA =
∞∑

k=0

Ak

k!
= lim

N→∞

(
I +

1

N
A

)N

∈Mn,n.

(We adopt the convention that A0 = I for any matrix A, just as with the convention that
00 = 1.)

Example. If the matrix A is nilpotent (that is, if Ak is the zero matrix for some positive
integer k), then the above series expansion for eA is actually a finite sum. Note in comparison
that the only nilpotent scalar is the number 0; thus it is sometimes easier to compute the
exponential of a matrix than it is to compute the exponential of a real number! For example,
if

A =

(
0 1
0 0

)
,

then we have A2 =

(
0 0
0 0

)
, and one can see from either expression above that eA =

(
1 1
0 1

)
.
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Example. If A =

(
0 −1
1 0

)
, then for any t ∈ R we have

etA =

(
cos t − sin t
sin t cos t

)
.

In words, we say that

(
0 −1
1 0

)
is the “infinitesimal generator” of rotation about the origin.

Now one may ask: Which properties of the scalar exponential are still true for the matrix
exponential?

Theorem 1. For any A ∈Mn,n and any t, s ∈ R, we have

e(t+s)A = etAesA.

Proof. We write out the right side:

etAesA =

( ∞∑
j=0

tjAj

j!

)( ∞∑

k=0

skAk

k!

)
.

The coefficient of AN is
N∑

m=0

tm

m!

sN−m

(N −m)!
=

1

N !

N∑
m=0

(
N
m

)
tmsN−m =

1

N !
(t + s)N ,

which proves the theorem. ¤

Corollary 1. For any A ∈Mn,n, t ∈ R, the matrix etA is invertible with inverse e−tA.

Theorem 2. If A,B ∈Mn,n commute (that is, if AB = BA), then for any t ∈ R we have

et(A+B) = etAetB.

Proof. By the same type of calculation as before, the coefficient of tN in etAetB is

1

N !

N∑

k=0

(
N
k

)
AkBN−k.

Since A and B commute by hypothesis, this is equal to

1

N !
(A + B)N ,

which proves the theorem. ¤
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However, not all properties of the scalar exponential hold for the matrix exponential, as
the following example shows:

Note. If A =

(
0 −t
0 0

)
and B =

(
0 0
t 0

)
, then

eA =

(
1 −t
0 1

)
, eB =

(
1 0
t 1

)
, eA+B =

(
cos t − sin t
sin t cos t

)
,

and

eAeB =

(
1− t2 −t

t 1

)
.

So eA+B and eAeB are not necessarily equal.

2. A Concrete Expression for eA

We can use the Jordan Canonical Form (JCF) of a matrix A to find a concrete expression
for the matrix eA. First of all, we state the Jordan Canonical Form Theorem without proof.

Theorem 3. Every A ∈Mn,n(C) is similar to a matrix of the form

J =




J0 0 0 · · · 0
0 J1 0 · · · 0
· · · · · · ·
0 0 0 · · · Js


 ,

with

J0 =




λ1 0 0 · · · 0
0 λ2 0 · · · 0
· · · · · · ·
0 0 0 · · · λq




and, for i = 1, . . . , s,

Ji =




λq+i 1 0 0 · · · 0 0
0 λq+i 1 0 · · · 0 0
· · · · · · · · ·
0 0 0 0 · · · λq+i 1
0 0 0 0 · · · 0 λq+i




,

where the λj, j = 1, . . . , q + s, are the (not necessarily distinct) eigenvalues of A.

From this very powerful theorem, we can easily derive the following facts (which we have
already discussed, earlier in the semester):
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Corollary 2. The determinant of a matrix is the product of its eigenvalues, and the trace of
a matrix is the sum of its eigenvalues. In both cases, the eigenvalues are repeated according
to their algebraic multiplicities. In shorthand, det A =

∏
λj and trA =

∑
λj.

To compute a concrete expression for eA, say that A has Jordan Canonical Form J , as
written above. So A = PJP−1 for some invertible matrix P . Thus

etA = etPJP−1

= PetJP−1

= P




etJ0 · · · 0

0
. . . 0

0 · · · etJs


 P−1

Since J0 is a diagonal matrix, it is easy to see that

etJ0 =




etλ1 · · · 0

0
. . . 0

0 · · · etλq


 .

Hence it remains to find an expression for etJi , for i = 1, . . . , s.

We write Ji = λq+iIri
+ Zi, where Iri

is the ri × ri identity matrix and Zi is the ri × ri

matrix having zeros everywhere except for 1’s on the superdiagonal. By Theorem 2 above
we have

etJi = etλq+ietZi ,

and one can check that

etZi =




1 t t2

2!
· · · tri−1

(ri−1)!

0 1 t · · · tri−2

(ri−2)!

0 0 1 · · · ·
· · · · · · ·
0 0 0 · · · t
0 0 0 · · · 1




.

Putting this all together gives an explicit expression for etA. (See also Homework 9.)

3. The Determinant of a Matrix Exponential

In this section we compute det eA. Suppose that A ∈ Mn,n has eigenvalues {λ1, . . . , λn},
repeated according to algebraic multiplicity. Since the determinant is the product and the
trace is the sum of the eigenvalues, and since the eigenvalues of eA are eλj , we should have

det(eA) =
∏

eλj = e
∑

λj = etrA.
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However, there is a subtle mistake in this argument: We need to make sure that the eigen-
values of eA have the same algebraic multiplicities as the corresponding eigenvalues of A. To
avoid this complication we give a somewhat different argument.

Theorem 4. As ε → 0,

det(I + εA) = 1 + ε tr(A) +O(ε2).

Proof. Let {λj} be the eigenvalues of A. By considering the characteristic polynomials of A
and I + ε A, it is easy to see that the eigenvalues of I + εA are {1 + ελj}, and that λj has
the same algebraic multiplicity as 1 + ελj. Thus

det(I + ε A) =
n∏

j=1

(1 + ελj)

= 1 + ε

(
n∑

j=1

λj

)
+O(ε2)

= 1 + ε tr(A) +O(ε2).

¤

With this tool in hand, we come to the main theorem of this section:

Theorem 5. det(eA) = etr(A).

Proof.

det(eA) = det

(
lim

N→∞

(
I +

1

N
A

)N
)

= lim
N→∞

(
det

(
I +

1

N
A

))N

= lim
N→∞

(
1 +

tr(A)

N
+O

(
1

N2

))N

= etr(A).

¤

Hence we have another proof of the following fact:

Corollary 3. For any A ∈Mn,n, eA ∈Mn,n is an invertible matrix.
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4. An Interesting Question

What is the relationship between some family of matrices F ⊂Mn,n and the corresponding
family of matrices G = {eA; A ∈ F}?

5. Connection with Fundamental Matrices

Returning to systems of linear, first-order ordinary differential equations with constant
coefficients, consider

(∗) x′(t) = Ax(t).

(Here we use the boldface x to denote a vector.)

Similarly to the scalar case, this is solved by an exponential function; only now it is a
matrix exponential function. Indeed, the important fact is that

d

dt
etA =

d

dt

∞∑

k=1

tkAk

k!

=
∞∑

k=1

tk−1Ak

(k − 1)!

= AetA.

This shows that the solution of the initial value problem{
x′(t) = Ax(t)

x(t0) = x0

is given by

x(t) = e(t−t0)Ax0.

Moreover, since etA has linearly independent columns (after all, it is invertible), the matrix

X(t) = etA

is a fundamental matrix for the system (∗).

6. Variation of Parameters from this Point of View

To solve

x′(t) = Ax(t) + f(t),

we look for a solution of the form

xp(t) = etAv(t),
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where v(t) is to be determined. We simply plug this form into the equation and find that
we want:

etAv′(t) = f(t).

Thus, by integrating,

xp(t) = e(t−t0)Aξ0 +

∫ t

t0

e(t−s)Af(s) ds

is the particular solution satisfying xp(t0) = ξ0.

7. An introduction to Dynamical Systems in the Plane

We now think of etA : Rn → Rn as a “propagator.” It takes a vector x0 and moves it t
units of time into the future. For any fixed t ∈ R, this gives an invertible linear mapping from
Rn to Rn. It is interesting to note that this mapping preserves orientation (since det etA > 0),
and it preserves volume in Rn if and only if tr(A) = 0 (or t = 0). As t changes, this gives an
invertible “flow” in Rn.

Given an initial point x0, we have a trajectory

R 3 t → etAx0 ∈ Rn.

This is quite possibly a curved path as a function of t. Our problem now is to classify all
possible “pictures” in R2. We call these pictures phase portraits.

it is easiest to see what happens when the initial point is an eigenvector of A. If x is an
eigenvector of A with eigenvalue λ, then

etAx = etλx.

Hence the point simply moves along a straight line as a function of t. Thus a first step is to
find the eigenvalues and eigenvectors of the matrix A.

To simplify the situation, we consider the Jordan Canonical Form of A (which is easy to
derive when n = 2). Then the flow given by etA is just the flow of etJ , but with respect to
different coordinates.

For A ∈M2,2(R), det(A) 6= 0, A is similar to one of the following:

(i)

(
λ 0
0 µ

)
, where µ < λ < 0 or 0 < µ < λ.

(ii)

(
λ 0
0 λ

)
, where λ > 0 or λ < 0.

(iii)

(
λ 0
0 µ

)
, where µ < 0 < λ.
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(iv)

(
λ 1
0 λ

)
, where λ > 0 or λ < 0.

(v)

(
σ ν
−ν σ

)
, where σ, ν 6= and (σ > 0 or σ < 0).

(vi)

(
0 ν
−ν 0

)
, where ν 6= 0.

In Homework 10 you will study the case (iv) in detail, and you will consider the case when
det(A) = 0 (not given here). I will sketch some of the phase portraits in class.

THE END.


