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Elementary Proofs of Some Classical Stability Criteria 
HERVE CHAPELLAT, MOHAMED MANSOUR, FELLOW, IEEE, AND 

SHANKAR P. BHATTACHARYYA, FELLOW, IEEE 

Abstract-Classical stability results and tests on the stability of a 
given polynomial are proved and derived here using a simple conti- 
nuity property. The resulting new proofs given of the Hermite-Bielei 
theorem and the Routh and Jury tests are elementary and insightful. 
Most important, the proofs given here would allow the instructor to 
present these fundamental topics of control theory, for the first time, 
in an elementary, rational, and meaningful way rather than as mere 
sets of rules and formulae. 

I. INTRODUCTION 
N THIS PAPER, we present a unified and elementary I approach to the classical problem of determining the 

stability of a polynomial from its coefficients. The ap- 
proach consists of a systematic use of the following fact: 
Given a parameterized family of polynomials and any 
continuous path in this parameter space leading from a 
stable to an unstable polynomial, then, the first unstable 
point that is encountered in traversing this path corre- 
sponds to a polynomial whose unstable roots lie on the 
boundary (and not in the interior) of the instability region 
in the complex plane. 

The above result, which we call the boundary crossing 
theorem, is established rigorously in the next section. The 
proof follows simply from the continuity of the roots of a 
polynomial with respect to its coefficients. The conse- 
quences of this result, however, are quite far reaching, 
and we demonstrate this in the subsequent sections by 
using it to give simple derivations of the classical Her- 
mite-Bieler theorem, the Routh test for left half plane sta- 
bility, and the Jury test for unit circle stability. 

The contribution of this paper relative to the existing 
literature is that our, simple proofs of these fundamental 
results make them accessible even to undergraduates, 
whereas the existing proofs in the literature certainly do 
not. 

11. THE BOUNDARY CROSSING THEOREM 
We first introduce two well-known results that will lead 

us to the main theorem. 
Theorem 2. I (Roucht s Theorem): Let f ( z )  and g (z)  

be two functions that are analytic inside and on a simple 
closed contour C. If Ig(z)  I < I f ( z )  I for all z on C , f ( z )  
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andf(z) + g(z )  have the same number of zeros (multi- 
plicities included) inside C. 

This is just one formulation of RouchC's theorem, but 
it is sufficient for our purposes. Let us now state and prove 
a second important result [ 11. 

Theorem 2.2: Let 
rn 

j = 1  
P ( s )  = po + p1s + - * * + p n s n  = p n  .rr (s - s,)", 

Pn * 0 

Q ( s )  = (PO + E O )  + (PI + € 1 ) ~  + * * + ( P n  + En)sn 
and consider a circle c k  of radius r k  centered at s k ,  which 
is a root of P ( s )  of multiplicity t k .  Let r k  be fixed but 
satisfy 

0 5 r k  < min I s k  - sjl, 

f o r j = 1 , 2 , - - . , k - l , k + l , . - .  9 m. 
Then, there exists a positive number E ,  such that if I ei I 
I E,  f o r i  = 0, 1, * - - , n, Q (s ) has precisely t k  zeros 
in the circle c k . '  

Proofi P (  s )  is nonzero and continuous on the com- 
pact set c k ,  and therefore, it is possible to find 8 k  > 0 
such that 

( P ( s ) (  2 8 k  > 0, vs E c k .  

On the other hand, consider the polynomial R ( s )  defined 
by 

R ( s )  = Eo + EIS + - * + ensn. 

On the circle c k ,  we have 
n n 

n 

Mk 

Thus, if E is chosen so that E < 8 k / M k ,  we can conclude 
that 

( ~ ( s ) l  c I P ( ~ ) ( ,  for all s on ck 
so that by RouchC's theorem, Q ( s )  and P ( s )  have the 
same number of zeros inside c k .  Since the choice of r k  

ensures that P ( s )  has just one zero of multiplicity t k  at s k ,  

we see that Q ( s )  has precisely t k  zeros in Ck. 
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Corollary 2.2: Fix m circles C1, * * , C,, that are 
pairwise disjoint and centered at sI, s2, * * - , s,, respec- 
tively. Then, it is always possible to find, by repeatedly 
applying the previous theorem, an E > 0 such that for any 
l c i l  5 E ,  f o r i  = 0, 1, - - - , n, Q ( s )  has precisely 5 
zeros inside each of the circles Cj.  Note that in this case, 
Q ( s )  always has tl + t2 + * - * + t,,, = n zeros and must 
therefore remain of degree n so that necessarily E < I p n  1.  

The above theorem and its corollary lead to the follow- 
ing main result. 

A. Main Theorem 
Let us consider the complex plane C ,  and let S be any 

given open set. We know that S, which is its boundary aS 
together with the interior U o  of the closed set U = C - 
S, form a partition of the complex plane, that is 

S U as U uo = c, 
s n  u O = ~ n a s = a s n  uo=4 .  

We assume, moreover, that these three sets are all non- 
empty. These assumptions are very general. In stability 
theory, we might choose for S the open left half plane C- 
(for continuous time systems) or the open unit disk D' (for 
discrete time systems) or suitable subsets of these, re- 
spectively. 

Now, let P( X, s) be a family of polynomials of fixed 
degree n, which is continuous with respect to X on a fixed 
interval I = [a, b]. In other words, P(X ,  s) can be writ- 
ten as 

P(X, s) = po(h)  + p1(X)s + - * * + p , (X)s"  

where p o ( X ) ,  pl(X), - * , p n  ( A )  are continuous func- 
tions of X on I and where p n  ( A )  # 0 for all h E I. From 
the results of Theorem 2.2 and its corollary, it is imme- 
diate that in general, for any open set 0, the set of poly- 
nomials of degree n that have all their roots in 0 is itself 
open. In the case that we consider above, we thus con- 
clude that if for some t E I, P ( t ,  s) has all its roots in S. 
It is then always possible to find a positive CY such that 

V t '  E ( t  - CY, t + CY) n I ,  P(tr ,  s) 

also has all its roots in S. This leads to the following fun- 
damental result. 

Theorem 2.3 (Boundary Crossing Theorem): Suppose 
that P ( a ,  s) has all its roots in S, where P(b ,  s) has at 
least one root in U. Then, there exists at least one p in 
(a, b] such that 

a) P ( p ,  s)  has all its roots in S U 8s. 
b) P ( p ,  s) has at least one root in as. 

Proofi To prove this result, let us introduce the set 
E of all real numbers t belonging to (a, b] and satisfying 
the following property: 

6:  ~ t '  E ( a ,  t), P ( t ' ,  s) has all its roots in S. 

By assumption, we know that P ( a ,  s) itself has all its 
roots in S, and therefore, as we saw already, it is possible 

to find CY > 0 such that 

Vtr E [ a ,  a + CY) n I ,  P ( t ' ,  s) 

also has all its roots in S. From this, we conclude that E 
is not empty since, for example, a + a / 2  belongs to E. 
Moreover, from the definition of E, it is obvious that we 
have the following property: 

t2 E E, and a < tl < t2 

imply that t ,  itself belongs to E. Given this, it is easy to 
see that E is an interval, and if we define 

p = sup t ( 1 )  
t € E  

then we have that 
E = ( a ,  PI. 

A) On the one hand, it is impossible that P ( p ,  s) has 
all its roots in S. If this were the case, then necessarily, 
p < b, and it would be possible to find an CY > 0 such 
that p + CY < band 

~ t '  E ( p  - a, + a) n I ,  P ( t ' ,  s) 

also has all its roots in S. As a result, p +  CY/^ would 
belong to E, contradicting the definition of p in (1). 

B) On the other hand, it is also impossible that P ( p ,  
s) has even one root in the interior of U because a 
straightforward application of Theorem 2.1 would grant 
the possibility of finding an CY > 0 such that 

tit' E ( p  - a, + CY) n I ,  ~ ( t ' ,  s) 

has at least one root in the interior of U, and this would 
contradict the fact that p - E belongs to E for E small 
enough. From A) and B), we thus conclude that P ( p ,  s) 
has all its roots in S U aS and at least one root in as. H 

The above result is interesting but also very intuitive 
and just states that in going from one open set to another 
open set disjoint from the first, the root set of a continuous 
family of polynomials P ( X ,  s) of fixed degree must in- 
tersect at some intermediate stage the frontier of the first 
open set. In the following sections, we will show the 
power of this simple result as we apply it to some classical 
stability problems. 

111. THE HERMITE-BIEHLER THEOREM 
The first result presented below is the interlacing theo- 

rem, which is sometimes referred to as the Hermite-Bieh- 
ler theorem. We first introduce some general notation and 
definitions that will be used in the following. 

Consider a polynomial of degree n 

P ( s )  = po + p , s  + p2s2 + - * + p n s n .  

P ( s )  is said to be Hurwitz if and only if all its roots lie 
in the open left half of the complex plane. For a Hurwitz 
polynomial with real coefficients, we have the following 
two elementary properties: 

Property 3.1: If a polynomial P ( s )  is Hurwitz, all its 
coefficients are nonzero and have the same sign, either all 
positive or all negative. 
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Proof: The proof follows from the fact that P ( s )  can 
be factored into a product of first- and second-degree Hur- 
witz polynomials for which the property obviously holds. 

Property 3.2: If a polynomial P ( s )  is Hurwitz and of 
degree n, the phase arg ( P (  j w ) )  is a continuous and 
strictly increasing function of w on ( - 00, + 00 ). More- 
over, the net increase in phase from - 00 to + 00 is 

arg ( P (  +j00)) - arg ( P (  -j00)) = n a .  ( 2 )  
Proof: If P ( s )  is Hurwitz, we can write 

n 

P ( s )  = p n  ,n ( s  - si), with si = ai + jbi ,  and ai < 0. 

Then, we have 

1 =  I 

n 

arg ( ~ ( j w ) )  = arg ( p n )  + C arg (jo - ai - jb; )  
i =  I 

n 

= arg ( p , )  + ,C arctan ( ~ :a:) 
I =  I 

and thus, arg ( P (  j w ) )  is a sum of a constant plus n con- 
tinuous, strictly increasing functions. Moreover, each of 
these n functions has a net increase of a in going from 
-0O to +a. 

The even and odd parts of P ( s )  are defined as 

* , Peven(s )  := po + p2s2 + p4s4 + - 
P d d ( S )  := PIS + p 3 s 3  + p 5 s 5  + * * ( 3 )  

We also define P ' ( w )  and P " ( w )  as follows: 

P y a )  := Peve"(jw) = po - p2w2 + p4w4 - * - - , 
P d d (  j w )  

P O ( @ )  := ~ = p 1  - p 3 w 2  + psw4 - . . 
j w  

(4 )  
P ' ( w )  and P " ( w )  are both polynomials in w 2 ,  and as an 
immediate consequence, their root sets will always be 
symmetric with respect to the origin of the complex plane. 
Suppose now that the degree of the polynomial P ( s )  is 
even, that is, n = 2 m ,  m > 0 .  In that case, we have 

P ' ( w )  = po - p2w2 + p 4 w 4  - - * 

P " ( w )  = p1 - p3w + p5w4 - * 

+ ( - 1 ) m - 1 ~ 2 m - I  

+ ( - 1 ) m ~ 2 m ~ 2 m ,  

2 

w 2 m - 2  

Oejnition 3. I :  We say that P ( s )  satisfies the interlac- 

a) p2m and p 2 m - 1  have the same sign. 
b) All the roots of P ' ( w )  and P " ( w )  are real, and the 

m positive roots of P ' ( w )  together with the m - 1 
positive roots of P " ( w )  interlace in the following 
manner: 

ing property if and only if 

If, on the contrary, the degree of P (  s )  are odd, n = 2 m  
+ 1 ,  m 2 0 ,  and 

P ' ( w )  = po - p 2 w 2  + p4w4 - * * + ( - l )pTmw2m 

P " ( w )  = p1 - p3w2 + p5w4 - * * + ( - 1 ) m p 2 m + 1 W 2 m  

and the definition of the interlacing property for this case 
is then naturally modified to 

a) pzm+ and p2m have the same sign. 
b) All the roots of P ' ( w )  and P " ( w )  are real, and the 

m positive roots of P ' ( w )  together with the m pos- 
itive roots of P' ( U )  interlace in the following man- 
ner: 

0 < w'J < w0,1 < - 
< w e . m - 1  < w 0 , m - l  < U e , m  < wo,m- 

This last definition is illustrated in Fig. 1 .  
We can now enunciate and prove the following theo- 

rem: 
Theorem 3.1 (Interlacing Theorem for Real Polyno- 

mials): A real polynomial P ( s )  is Hurwitz if and only if 
it satisfies the interlacing property. 

Proof: To prove the necessity of the interlacing 
property, let us suppose that we start with a real Hurwitz 
polynomial of degree n 

P ( s )  = po + p1s + p 2 s 2  + * * + pnsn. 
We already know from Property 3.1 that all the coeffi- 
cients p i  have the same sign; thus part a) of the interlacing 
property is already proven, and we can assume without 
loss of generality that all the coefficients are positive. To 
prove part b), we will assume arbitrarily that P ( s )  is of 
even degree so that n = 2 m .  Now, we also know from 
Property 3.2  that the phase of P (  j w )  strictly increases 
from - n a / 2  to n a / 2  as w runs from -00 to +00.  Due 
to the fact that the roots of P ( s )  are symmetric with re- 
spect to the real axis, it is also true that arg ( P (  j w ) )  
increases from 0 to + n a / 2  = m a  as w goes from 0 to 
+ W .  Hence, as goes from 0 to +a, P (  j w )  starts on 
the positive real axis ( P ( 0 )  = p o  > 0 ) ,  circles strictly 
counterclockwise around the origin m a  radians before 
going to infinity, and never passes through the origin since 
P (  j w )  # 0 for all w .  As a result, it is very easy to see 
that the plot of P (  j w )  has to cut the imaginary axis m 
times so that the real part of P ( j w  ) becomes zero m times 
as w increases, at the positive values 

* R , I ,  w R , 2 ,  ' * 7 a R , m .  

Similarly, the plot of P (  j w )  starts on the positive real 
axis and cuts the real axis another m - 1 times as w in- 
creases so that the imaginary part of P ( j w  ) also becomes 
zero m times (including w = 0)  before growing to infinity 
as w goes to infinity at 

0, UI.19 w1.2, * * 7 W I . m -  I .  

Moreover, since P (  jo) circles around the origin, we ob- 
viously have 
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P!(w) := ( (1  - A ) q , m - l  + X ~ 2 m - l )  

m -  I 

II (U' - [ ( l  - X ) W Z , i  + Xwp,,i]2). 
i = l  

Obviously, the coefficients of PA (s) are polynomial func- 
tions in A, which are therefore continuous on [0, 11. 
Moreover, the coefficient of the highest degree term of 
PA (s) is ( 1 - A )  q2m + Xp2m and always remains positive 
as X varies from 0 to 1. For X = 0, we have Po(s) = 
Q ( s )  and for A = 1, P l ( s )  = P(s) .  Suppose now that 
P ( s )  is not Hurwitz. From the boundary crossing theo- 
rem, we then know that there necessarily exists some X in 
(0, 1 ] such that PA (s) has a root on the imaginary axis. 
However, Ph ( s )  has a root on the imaginary axis if and 
only if P i ( w )  and Pi((w) have a common root, but ob- 
viously, the roots of P:( w )  satisfy 

(7)  

( 8 )  

2 
ay-; = ((1 - X)w:,; + Xw{J 

w;;i = (( 1 - X)w%,; + Xwp,,i)2. 

and those of P i ( w )  

Now, take any two roots of P i ( w )  in (7). If i < j ,  we 
know from (5) that U$,: < U:,;, and similarly, from (6) ,  
w $  < U $  so that we also have 

ut;; < U%. 

In the same way, it can be seen that the same order as in 
( 5 )  and (6) is preserved between the roots of P!(w) as 
well as between any root of P i ( w )  and any root of P;( U ) .  

In other words, part b) of the interlacing property is in- 
variant under such convex combinations so that we also 
have for every X in [ 0, 1 1: 

0 < w;,21 < w;;1 < * - * 

A2 h2 < u e , m - 1  U 0 . m - 1  < < u t ; m -  

However, this shows that whatever the value of X in [0, 
1 1, P i (  U )  and Pi (a) can never have a common root, 
and this therefore leads to a contradiction, which com- 

Remark 1:  The same kind of theorem holds for poly- 
pletes the proof. 

nomials with complex coefficients: 

P(s) = (a ,  + jb,) + (Ul  + j b l ) s  + * * - 
+ (a,-l + jb,-l)sn-l + ( a ,  + j bn) sR .  

As in the real case, one can show that the real and imag- 
inary parts of P ( j ( U )  ) satisfy an interlacing property that 
is very similar to the one we defined earlier. However, 
these real and imaginary parts no longer correspond to the 
even and odd parts of P (  s) but rather to the two polyno- 
mials 

PR(s) = a0 + jbls + a2s2 + jb3s3 + . * 9 

P,(s) = jb,  + als  + jb2s2  + a3s3 + - - . 

Remark 2: In fact, it is always possible to derive results 
similar to the interlacing theorem with respect to any sta- 

Fig. 1 .  The interlacing property. 

0 w R , I  < w1.I < oR.2  < w1,2 < * ' 

< @R,m-I  < w l , m - I  @R,m* 

Now, the proof of necessity is completed by simply no- 
ticing that the real part of P (  j w )  is nothing but P'(w), 
and the imaginary part of P (  jo) is UP"( j w ) .  

For the converse, assume that P ( s )  satisfies the inter- 
lacing property, and suppose for example that P ( s )  is of 
degree n = 2m and that p2m,  p2m-1  are both positive. Let 
us consider the roots of P' ( U )  and Po ( w ) 

0 < < Op,J < - * u : , m - ~  u $ . m - l  < w:,m- 

( 5 )  
From this, we deduce that P'( U )  and Po ( U )  can be writ- 
ten as 

m 

P ' (w)  = pzm ,n (U' - U:,:.) 
I =  I 

m - l  

P O ( w )  =p2m-I II (U' - up,;;>. 
i = l  

Now, let us consider a polynomial Q ( s ) that is known to 
be stable, of the same degree 2m,  and with all its coeffi- 
cients positive. For example, we could take Q ( s )  = ( s  
+ 1 ) 2 m .  In any event, write 

Q ( s )  = qo + qls + q2s2 + * - * + q2ms2m. 

Since Q ( s )  is stable, we know from the first part of the 
theorem that Q ( s ) satisfies the interlacing theorem so that 
Q e ( w )  has m positive roots - * , eo(@) has 
m - 1 positive roots w; , , ,  - , u : , ~ . -  I ,  and 

0 < < @:,I < * * 

w2,m-I < wZ,rn-~ < w2.m < u Z , m .  ( 6 )  
Therefore, we can also write 

m 

Q ' ( w )  = q 2 m  (U' - U:,?) 
i =  I 

m - 1  

Q"(u)  = qZm-1 II 
i =  1 

( w 2  - w Z , ' ~ ) .  

Consider now the polynomial Ph (s) defined by 

pi(w) := ( ( 1  - X ) q 2 m  + X ~ 2 m )  
m 

2 
* II (U' - [( 1 - X)w%,; + xw{,i] ) 

i =  I 
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bility region S, which has the property that the phase of 
the polynomial evaluated along the boundary of S in- 
creases monotonically and undergoes a net change of n?r. 
In this case, the stability of the polynomial with respect 
to S is equivalent to the interlacing of its real and imagi- 
nary parts evaluated along the boundary of S. 

Consider, for example, the Schur or unit circle stability 
of a real polynomial 

P ( z )  = pnzn  + pfl-,zn-l + - + PlZ + Po. 

It is important to prove that the stability of P ( z )  is equiv- 
alent to the interlacing of the real and imaginary parts of 
P ( z )  evaluated along the upper half of the unit circle. 
More precisely, the two functions of 8 

q e )  = P,, cos ( n e )  + - + - + P I  COS ( e )  + po 

and 

z(e) = p,, sin (ne) + - - + p 1  sin ( e )  
must interlace on [0, TI. 

terlacing on the unit circle of the two polynomials 
This condition can in fact be further refined to the in- 

Pl(Z) = z( P ( z )  + z"P( l / z ) )  

and 

P*(z)  = @ ( z )  - z"P( l / z ) ) .  

In the next two sections, we use the results of Sections I1 
and I11 to give elementary proofs of Jury's (unit circle) 
and Routh's (left half plane) stability tests. 

IV. SCHUR STABILITY 
The problem of checking the stability of a discrete time 

system reduces to the determination of whether or not the 
roots of the characteristic polynomial of the system lie 
strictly within the unit circle or not. In this section, we 
develop a simple test procedure for this problem based on 
the boundary crossing theorem. The procedure turns out 
to be equivalent to Jury's test for unit circle stability. 

First, we recall that a polynomial is said to be Schur if 
it has all its roots inside the unit circle. Now, let 

P ( z )  = po + p1z + * - + pnzn  

hence 

Now, consider a polynomial P ( z )  of degree n 

P ( z )  = po + p1z + * - * + pnzn  

Q ( z )  = Z"P( l / z )  = poz" + PrZ"-' + * * * 

and let us define 

+ P n - I Z  + Pn 

and 

R ( z )  = ( l / z ) ( P ( z )  - ( P o / P n ) Q ( z > ) ,  

(always of degree I n - 1). 

Then, we have the following key lemma, which allows 
the degree of the test polynomial to be reduced without 
losing stability information. 

Lemma 4. I: If P (  z )  satisfies 1 p n  I > I po 1, we have the 
following equivalence: 

P ( z )  Schur o R ( z )  Schur. 

Proofi First notice that we obviously have 

R ( z )  Schur o z R ( z )  Schur. 

Now, consider the family of polynomials 

h ( z )  = P ( z )  - A(Po/P, , )  Q ( z ) ,  where A E [O, 11. 

We can see that Po(z)  = P ( z ) ,  and P l ( z )  = z R ( z ) .  + 
Moreover, the coefficient of degree n of P h ( z )  is p,, - 
Ap;/p,, and satisfies 

IPn - AP;/PflI = (Pn - VPO/Pfl)POJ ' l P n l  

- ~ I P o / P n ( ( P o (  > IPnI - (Pol  ' 0 

so that Ph ( z )  remains of fixed degree n. 
Assume now by contradiction that one of these two poly- 

nomials is stable, whereas the other one is not. Then, from 
the boundary crossing theorem, we can conclude that there 
must exist a A in [0, 1 1  such that P h ( z )  has a root on the 
unit circle at the point zo = .de, 8 E [0, 2 ~ ) ,  that is 

Px(Z0)  = P(Z0) - UPo/Pn)  z ; ; P ( l / z o )  = 0. (9) 

Then, we have two cases: 
be a polynomial Of degree n. We have the net- 1 )  zo = f 1 .  Then 1 / z o  zo,  and therefore, from (9) 
essary condition. 

Schur is that 
Property 4.1: A necessary condition for P ( z )  to be P ( z o ) ( l  - APo/Pn(+l)n)  = 0 

20 

1Pnl ' IPol. but this implies that P ( z o )  = P (  l / z o )  = 0,  and there- 
fore, zoR(zo)  = 0, which is a contradiction since we as- 
sumed that at least one of the polynomials P ( z )  and zR ( z )  
was stable. 

2) zo = eie, 8 # 0,  8 # ?r. In this case, P h ( z )  being 
a real polynomial, we know that z t  = 1 / z o  is also a root 

In effect, if P ( z )  has all its roots zl, 
unit circle, the product of these roots is given by 

* - , z,, inside the 

n 
Po 

i =  1 P n  
z . = -  
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of Ph(z). Then 

P(z0) - X(PO/Pn) zV ( l / z o )  = 0 

P(l/zo) - x(Po/Pn)(l/zo)" P(Z0) = 0 

P(zo) (  1 - x 2 p ; / p ; )  = 0. 

and 

so that 

v 

Again, this implies that P (  zo) = 0 as well as P (  1 /zo) = 
0; thus also, R ( z o )  = 0, which again leads to a 
contradiction. 

The above lemma leads to the following procedure for 
successively reducing the degree and testing for stability. 
Starting with a polynomial P (  z )  that one wants to check 
for stability, one follows the following procedure: 

#O 

1) Set ~(''(z) = P(z). 
2 )  Verify 1 p 2 ' 1  > ~ p s " ~ .  
3) Construct P" + I )  ( z )  = l/z(P(i)(z) - 

(pp/p"z"P"'( 1 /z)). 
4) Go back to 2 )  until you either find that 2) is violated 

( P ( z )  is not Schur) or until you reach P'"-"(z) 
(which is of degree 1) in which case condition 2 )  is 
also sufficient, and P(z) is Schur. 

It can be verified by the reader that this procedure leads 
precisely to the Jury stability test. 

Example: Consider a polynomial of degree 3 in the 
variable z 

P ( z )  = z 3  + az2 + bz + c. 
According to our algorithm, we form the following poly- 
nomial 

~ y ~ )  = I / ~ ( P ( ~ )  - cz3~(1/z)) 

= ( 1  - c 2 ) z 2  + (U - bc)z + b - uc 

and then 

P'2'(z) = l/z ( P"'(z) - ( b  - ac)z2P(l'(l,z)) 
2 ( 1  - c'f - ( b  - ac)  

Z - - 
1 - c2  

On the other hand, the Jury's table is given by 

We can see here that the first two lines of this table cor- 
respond to the coefficients of P (  z), the third and fourth 
lines to those of P(')(Z), and the last one to a constant 
times P'2'(z), and the tests to be carried out are the same. 

V. HURWITZ STABILITY 
We now turn to the problem of left half plane or Hur- 

witz stability and develop an elementary test procedure 
for it based on the interlacing theorem and therefore on 
the boundary crossing theorem. This procedure turns out 
to be equivalent to Routh's well-known test. 

Let P (  s) be a polynomial of degree n > 0, and assume 
that all the coefficients of P ( s )  are positive: 

P ( s )  = po + p1s + * * + pnsn, 

p i > O f o r i = O ,  , n .  

Remember that P ( s )  can be decomposed into its odd and 
even parts as 

P ( s )  = P e y )  + Pdd(S). 

Now, define the polynomial Q ( s )  of degree n - 1 by the 
following : 

I f n  = 2m: Q ( s )  = ( P e v e n ( s )  

- ~ 2 m  / ~ 2 m -  1 spdd ( s > ) 
+ P"d(s). 

- ~ 2 r n + 1 / ~ 2 m s P ~ ~ ~ " ( s ) )  

+ Peven(s). ( 10) 

I f n  = 2m + 1: ~ ( s )  = ( P d ( s )  

That is, in general, with p = pn/pnPl 

Q ( s )  = p,-l~"-l + ( ~ " - 2  - pp,-g)~"-' + p , , - 3 ~ " - ~  

+ (&4 - pp,-3)sn-4 + * * . ( 1 1 )  
We then have the following key result on degree reduc- 
tion: 

Lemma 5. I: If P (  s) has all its coefficients positive 

P ( s )  is stable @ Q ( s )  is stable. 

Proofi We assume, for example, that n = 2m and 

a) Assume that P ( s )  = po + * - - + p Z m ~ 2 m  is stable 
use the interlacing theorem. 

and therefore satisfies the interlacing theorem. Let 

0 < we.1 < w0.1 < we.2  < ~ 0 . 2  < * e * 

< ~ e . 2 m - I  < ~ 0 . 2 m - I  < ~ e , 2 m  

C b a 1  

1 U b c  

cu - b cb - U c2  - 1 

cu - b cb - U c2  - 1 

(c' - - (ca - bf (bc - a ) ( ( c 2  - 1) - (ca - b)). 
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be the interlacing roots of P'( U )  and Po( U ) .  One can 
easily check by using (10) and the definitions (4) that 
Q e ( w )  and Q o ( w )  are given by 

Q'(w) = P ' ( w )  + P W ~ ~ ' O ( ~ ) ,  P = ~ 2 m / ~ 2 m - 1 ,  

Q o ( w )  = P ' ( w ) .  

From this, we already conclude that Q o ( w )  has the re- 
quired number of positive roots, namely, the m - 1 roots 
of Po( w ) :  

* O , I ?  w0,2, * * * 7 w0,rn-l. 
Moreover, due to the form of Q' ( U ) ,  we can deduce that 

Q'(0) = P ' ( 0 )  > 0 

Q'(w0,1) = f " ( ~ o , i )  < 0 

Q ' ( u ~ , ~ - ~ )  = P e ( ~ o , m - 2 ) ,  has the sign of ( - l ) m - 2  

Q e ( w o , , - l )  = P e ( w o , , - l ) ,  has the sign of ( -l)"-'. 

Hence, we can already conclude that Q e ( w )  has m - 1 
positive roots w:,~, - * * , we,,, ' - I ,  which interlace 
with the roots of Qo ( U ) .  Since Qe ( w ) is of degree m - 
1 in w 2 ,  these are the only positive roots it can have. 
Moreover, we have seen that the sign of Q' ( W )  at the last 
r o o t o o , m ~ l o f Q o ( o ) i s t h a t o f ( - l ) " - ' ,  butthehighest 
coefficient of Q' ( U )  is nothing but 

From this, we see that q2m-2 must be strictly positive, as 
is q2m-1 = p2,,,-'; otherwise, Q e ( w )  would again have a 
change of sign between w0," - and + m ,  which would 
result in the contradiction of Q'(w)  having m positive 
roots (whereas it is a polynomial of degree only m - 1 
in w ). Therefore, Q ( s) satisfies the interlacing property 
and is stable if P ( s )  is stable as well. 

b) Conversely, assuming that Q ( s )  is stable, we can 
write that 

P ( s )  = (QeVe"(s) + psQodd(s)) + Qdd(s). 

By the same reasoning as in a), we can see that P o ( u )  
already has the required number m - 1 of positive roots 
and that P ' ( w )  already has m - 1 roots in the interval 
(0, coo," - that interlace with the roots of Po(@). More- 
over, the sign ofP'(w) at wo,m-  l  is the same as ( - l ) m - l ,  
whereas by adding the term p2ms2m to P ( s ) ,  the sign of 
P ' ( o )  at +oo is that of ( - 1 ) " .  Thus, P ' ( w )  has a mth 
positive root: 

a e , m  > W O , , - 1 %  

Thus, P (  s) satisfies the interlacing property and is there- 
fore stable. H 

The above lemma shows how the stability of a poly- 
nomial P (s )  can be checked by successively reducing its 
degree as follows: 

1) Set ~ " ' ( s )  = ~ ( s ) .  

- -  

2) Verify that all the coefficients of P " ' ( s )  are posi- 

3) Construct P ( ' + ' ) ( s )  according to (11 ) .  
4) Go back to 2) until you either find that any 2) is 

violated ( P ( s )  is not Hurwitz) or until you reach 
P ( " - 2 ) ( s )  (which is of degree 2) in which case, 
condition 2) is also sufficient (P( s) is Hurwitz ). 

The reader may verify that this procedure is identical to 
Routh's test since it generates the Routh's table. However 
our procedure does not allow us to count the stable and 
unstable zeros of the polynomial as can be done with 
Routh's theorem. 

tive. 

Example: Consider a polynomial of degree 4 
P ( s )  = s4 + as3 + bs2 + cs + d. 

Following the algorithm above, we form the polynomials 

p = 1 / a  

and 
P"'(s) = as3 + (b - c / u ) s 2  + cs + d 

and then 
a 2  

P = G  

and 

Considering that at each step, only the even or the odd 
part of the polynomial is modified, we have to verify the 
positiveness of the following set of coefficients: 

1 b d  
U C 

b - c / a  d 
a 2d 

ab - c '  
c - -  

However, this the just the Routh table for this polyno- 
mial. Our proof also shows the following well-known 
property: All the numbers that appear in the Routh table 
of a Hurwitz polynomial are positive (and not only the 
first column). 

VI. CONCLUDING REMARKS 
In this paper, we have presented a unified approach to 

determining the Hurwitz or Schur stability of a polyno- 
mial. The unification is achieved by a systematic use of 
the so-called boundary crossing theorem. This results in 
a simple derivation of the Routh and Jury tables. We ex- 
pect that many other results in stability theory can be sim- 
ilarly simplified by approaching them via this elementary 
notion. 
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