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Summary -A novel method is presented for producing dead-bea
response in a lightly-damped oscillatory feedback system. Complete
transient response times of the order of a fraction of the natural
oscillatory period can be obtained. Excellent waveshape reproduction
is achieved through a linear phase lag with frequency. The method
consists of exciting several transient oscillations, at closely spaced
times, with magnitudes and phases so adjusted that the resultant
sum of the transient oscillation phasors is zero.'The steady-state out-
put is the arithmetic sum of the excitation magnitudes.

When a step input transient is divided into two spaced excitations,
one-half cycle response is obtainable. When the input transient is
divided into three excitations, one-fourth period or faster transient
times are realizable, depending upon the available dynamic range or
signal-to-noise ratio. The principle of design is to adjust a system to
the maximum possible resonant frequency, independent of the
damping factor, but stable, and then to apply the Posicast control to
completely remove the oscillatory component in the output. In an
electrical feedback control system, the additional hardware consists
of one or two artificial transmission lines.

INTRODUCTION

T HE PROBLEM in a feedback control system is
to change the stored energy of an object from one
value to another without subsequent oscillations

or overshoot. This method can be easily demonstrated
by its application to the problem of changing the at-rest
position of an undamped pendulum. The system input is
the point of suspension. In Fig. 1, (a) is the initial posi-
tion; (b) is the condition immediately after the input
step has been broken into two parts and only half of the
desired change has been applied to the support; (c) is the
condition after one-half cycle of the natural transient
period of the pendulum. At this instant, the support is
suddenly moved until it is directly over the bob and (d)
shows the final position. The scheduling of the motion
of the support is the transference of an equalizer, which
compensates for the resonant frequency of the load by
introducing attenuation at the resonant frequency. This
is, however, a time-domain synthesis yielding a linear
time-domain equalizer.
The electrical analog of the pendulum is a capacitive

load with inductance and resistance in series between
the supply and the load. The input is voltage across the
series RLC, and the output is voltage across the capac-
itor. The step response for an input voltage of magni-
tude A is shown in Fig. 2.

If after time Tn/2, the input voltage has added to it a
second step of magnitude B (determined from Fig. 2),
so that the sum is (A +B), then at this instant the cur-
rent will suddenly drop to zero, since the voltage across
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Fig. 1.

the condenser is also (A +B). The steady-state condi-
tion has been suddenly achieved, and there will be no
further transient.
The final value is reached just as the velocity goes to

zero. This is what happens when a fisherman drops his
fly in the water at the maximum-position and zero-
velocity instant. Hence the descriptive name positive-
cast or Posicast for this kind of system.

A B

TIME

Fig. 2.

The input command was broken into two parts; the
first part was applied immediately, and the second part
was delayed until after one-half period of the natural
transient, T/2. Fig. 2 shows the relative magnitudes of
the two excitation functions. Amplitude A is propor-
tional to the first excitation function, amplitude B is the
magnitude of the second excitation function, and A +B
is the amplitude of the input driving function and of
the output of the system. Mathematically, the Laplace
transform of the control function is

[ka + (1- ka)6T/2]. (1)
T/2 is the delay between the initial and the final

pulse. The ratio of the first to the second pulse is a
measure of the attenuation of the oscillation envelope
during the transient time.
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k ka ) = epr \
k
1ka

= ep

7TJ is the over-all response or transient time. In this
special case of half-period control, Tr= T/2. The natural
transient radian frequency of oscillation is

Wn = 2,7rfn, = (A) o \+/ I ~2(3)

r is the per unit dimensionless damping per undamped
radian of the oscillatory system. ¢ is equal to aolwo, the
sine of the angle between the jw axis and the pole in the
s plane. r, is the tangent of the same angle, equal to

alo* or ¢/V\/1 D2.
Fig. 3 shows the block diagram of the half-period

control of a resonant component, in which the input is
broken into an initial and delayed step. This can be
represented as a unity input plus a negative pulse gen-

erator, which is shown as the block P. Fig. 4 shows the
gain and phase response of the system before and after
compensation. Curves A are for a lightly-damped reso-

nant component alone. Curves B are for the lightly-
damped system in Fig. 3 after the application of the
Posicast control. The phase lag is approximately linear
with frequency. Curves C are for a highly damped reso-

nant component alone and curvesD are for the same sys-

tem after the application of Posicast control. Fig. 5

shows the s-plane plot for the undamped system. The
uncompensated resonance is represented by two com-

plex poles. The Posicast component alone has two com-

plex zeros which exactly coincide in location in the s

plane with the complex poles. The cascade combination

of these two has a series of complex zeros at a very high
frequency only.

This system is linear, and although it contains non-

minimum phase elements, the parallel branches guar-

antee that the over-all system will always be minimum

phase.
Even though temperature changes may affect the

constants of the delay line or the oscillatory system, the

basic character of the response is relatively unchanged,
so long as the distance between the poles and the zeros

is significantly less than the distance between the poles
and the jco axis.
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Fig. 5.-(a) G(s) original lightly-damped oscillatory system, (b) 1+P
Poslcast compensating section, (c) Resultant system, one-half
period response.
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Smith: Posicast Control of Damped Oscillatory Systems

It can be seen that this Posicast compensator per-
forms the function of equalization. At the frequencies
for which the system gain is high, the compensator gain
is low. In the Bibliography are references to other work
using delay lines as equalizers. In Wiener's work [1],
a line with many taps was used to approximate an im-
pulse response whose peak was delayed in time, in order
to achieve a maximum discrimination between signal
and noise. In Calvert's work, multitapped delay lines
were used as equalizers to generate phase lead and to ad-
just the attenuation on a real frequency response basis.
Exponential functions of s were converted to trigono-
metric form and then approximated by Taylor's series.

It is not necessary to build actual LC delay lines for
low frequency systems. Servomechanisms may require
delays of the order of 0.05 second. These can be
achieved with RC twin-tee networks, an amplifier, and
negative feedback around the whole. It is beyond the
scope of this paper to discuss the design of precision de-
lay lines [5 ]. Process controls may require delays of 30
seconds. These can be realized pneumatically with ori-
fices and membrane-divided capacities in a twin-tee
network, with an air amplifier and negative feedback.
In the megacycle range, various network configurations
will yield a circular pattern of poles and zeros, each uni-
formly spaced in the vertical s-plane direction, and very
closely approximating a delay line.

ONE-QUARTER CYCLE RESPONSE

A resonant load can be driven by an input step to pro-
duce an output step completely realized in a very small
fraction of a period. The excitation function must de-
liver a positive step first, a negative step after a short
delay, and a final positive step. These three inputs to the
resonant load excite three oscillatory transients. Each
can be represented by the real part of a rotating phasor
which is diminishing in magnitude at the rate exp (-at).
These are called shrinking phasors or shrinking vectors.
The vector sum of the three phasors at any time after
the last input step must be zero for the transient re-
sponse to have no overshoot and to remain constant at
its steady-state value. The arithmetic sum of the magni-
tudes of the three steps is the steady-state output. For
very short transient times (very-wide bandwidth), the
first accelerating force and the second braking force
must be very large compared to the final step and to the
steady-state gain.

Fig. 6 shows the excitation function necessary to drive
an undamped resonant load to achieve the best step
response in one-quarter period. Fig. 6(b) is a vector
diagram of the three phasors representing the three os-
cillation components excited by the three steps in Fig.
6(a). The first step is of magnitude 1.7 and starts a
negative cosine oscillation of 1.7 amplitude. The second
step is 450 later with magnitude of -2.4. The sum of
these two is a positive sine wave of 1.7 amplitude. The
third step is of magnitude 1.7 and occurs when the re-
sultant oscillation has reached unity with zero deriva-
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Fig. 6-(a) System input, step response of (1 +P). (b) Vector
diagram for one-quarter-period Posicast control.

tive. The vector sum of the three is zero and the arith-
metic sum is unity.
When the system has damping, the vectors diminish

in magnitude with time, and so are called shrinking
vectors. At the time instant of the last step, the three os-
cillations should be represented by the three solid vec-
tors in Fig. 6(b). The magnitudes of the steps to produce
these, however, should be larger for the earlier vectors,
because of the damping. The original step magnitudes
are shown with dotted vectors.

Fig. 7 shows the form of the output transient from the
undamped resonant load when driven with the excita-
tion of Fig. 6. It is the first 450 of a negative cosine wave
attached to the last 450 of a positive cosine wave. The
steps in Fig. 6 must be the center lines of these cosine
waves. Fig. 8 is a practical circuit for obtaining the ex-
citation function of Fig. 6. This is a doubly reflecting
line, with each section having a delay of 1/16 of the
resonant period. A positive input step drives the output
positive and starts a transient propagating down the
distortionless delay line. When this transient reaches
the 0.707R it is reflected with reversed phase and this
reflection reverses the output when it arrives back at the
sending end of the delay line. The transient which con-
tinues to the end of the second delay line is reflected
back with a doubling of amplitude and this restores the
output to a positive polarity at the end of a total delay
time of one-fourth period.
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Fig. 7-System output.
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Fig. 8-Circuit for (1 +p).

For the complex zeros of this Posicast delay line sec-
tion to cancel exactly the complex poles of a resonant
component, the delay line should have the transference

k - 2k2(cos WnT te-aTr2 + e.-sTr

k+ -WT + 1 (4)
k - 2kl (cos- +1

fore the arithnmetic sum of the three steps of The cotmi-
pensator should equal unity. This yields the calibration
constant shown in the denominator of (4).

It is beyond the scope of this paper to discuss the z
plane and the z transform, in which the substitution
z = E8T is used. However, for those skilled in this method,
it is apparent that (4) can be changed into a ratio of
polynomials in z by making the substitution above.
Eq. (4) will then have a numerator quadratic, with two
complex z-plane zeros. These zeros should be designed
to coincide exactly with the system s-plane poles when
they are plotted in the z plane (z transform of the sys-
tem). This method has great mathematical rigor and
simplicity.
A compensator can be built for any multiple-pole

system of any order, which will have only tangential
transients, with no transient components which ap-
proach the final value asymptotically. In this case, all
of the poles and zeros from the s-plane plot of the com-
plete system are transferred to the z plane and plotted
there as poles and zeros (z transform). For each z-plane
pole, the compensator produces a z-plane zero. The
polynomial in z for all of these zeros is the Posicast com-
pensator transference. This is applicable to two or more
coupled resonant frequencies.
When one attempts to achieve extremely short re-

sponse times, initial pulse must be many times larger
than steady-state value. This may result in saturation
of amplifiers or transducers in the system. Less than
one-quarter period response is feasible primarily only in
low-level applications. For high-level servo systems
driven near saturation, the law of diminishing returns
excludes responses faster than one-fourth-period.

where k is the value previously defined. This equation is
valid for all 3-step or double-pulse excitations.
The control in (4) above is derived from two restric-

tions on the system. For each step out of the compen-
sator, an oscillation component is excited. After the last
step, these three oscillation components can be repre-
sented by three rotating phasors. That due to the last
step has a magnitude equal to the last step and a phase
of zero degrees. That phasor due to the next-to-the-last
step has a magnitude less than the step due to the at-
tenuation of the oscillation, 1/Vk, which has occurred
in the time between the middle and the last step. It has
an angle of wnT,/2 radians, which is 450 for quarter-
period control. That phasor due to the first step has a
magnitude equal to the first step times 1/k, the attenua-
tion during the total transient period. It has an angle of
W,T, radians, which is 900 for quarter-period control.
The sum of these three phasors must equal zero. Setting
the real and imaginary parts separately equal to zero,
one has two equations from which the relative magni-
tudes of the three steps can be calculated. These are the
three numerator terms in (4).
The compensator should have unity steady-state

gain, delivering a unit output for a unit input. There-

FEEDBACK SYSTEMS

This method of control can be applied to any complex
feedback system. With respect to the input, only a feed-
forward pulse generator is needed. Fig. 9 shows the
block diagram. The compensator (1+P) should have
unity steady-state gain. When transmission lines are
used, or amplifiers to simulate lines, changes in tem-
perature will change the gain. Therefore, high steady-
state stability and accuracy are achieved by dividing the
function (1 +P) into two parts as shown in Fig. 9(b).
The unity-gain input to the system is left undisturbed.
In parallel with this is introduced a pulse generator, P,
capacitively- or transformer-coupled with zero steady-
state gain. The pulse generator P has no steady-state
gain. Fig. 10(a) shows the wiring diagram for a pulse
generator of this sort. Its transference is

P-= K + K,e8Tr12 + K2 -Tr (5)
where

Ko =

2k12 (cos WnTr) - 1

k - 2k"12 cos 1-+ 1
2/

(6)
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(a)

(b)

Fig. 9-(a) Statement of best control. (b) Constructional form
to minimize the effects of changes in steady-state gain of p.
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COMPENSATION FOR LOAD DISTURBANCES
Fig. 11 (next page) shows a block diagram of the orig-

inal uncompensated feedback system. It is desire(d to
make the speed of response of this system as great as
possible. The functions GI and G2 are adjusted to mnake
the damped resonant frequency as high as possible, with
the restriction that the system always be reliably stable
for the normal variations in the parameters with signal
level and with temperature. A statement of the optimum
realizable form of control is the block diagram in Fig.
12. This is not the block diagram for the construction
but only states that the load signal should have come
through a block which divided it into two or more com-
ponents so phased that the transients excited by these
components would cancel out. Fig. 13 is the block dia-
gram of the actual system. This can be derived fromn
Fig. 12 by block diagram substitutions.
The compensation block required, Po', is the trans-

ference Po with unity negative feedback. This block
alone would have the transfer function

PO Ko + KlE-aTrl2 + K2t-Tr
Po ==(1 O)1 + P0 1 + Ko + K le-Tr12 + K2sCTr.

Po' is a reentrant transmission line, or a continuously re-
flecting transmission line, which is terminated in values
other than the characteristic impedance at each end.
The transference of this block can be represented by

1
PO, = 1 - 1 + Ko + K1l_JTrI2 + K2g-Tr(

1
P0'=1- (1-X+X2-X +X4--..) (12)

where

= (1 )Ko 2 + (1:K)KTo (13)
-I -

- i.707

Fig. 10-(a) Circuit for p in feedforward independent of the
input. (b) Step response of p alone.

K2 =

2k1 2(cos-T
\ 2J

k - 2kll2 (cosT)c1
2

1

k - 2k1'2 (COS cn) + 1'
2

Ko-K1+ K2 = 0. (9)

Fig. 10(b) shows the step-response pulse output at c-d
in Fig. 10(a).

This transference has both poles and zeros. However,
the use of this block within the feedback system intro-
duces a unique mode of operation in which the poles are
excited for only a short time and then are quenched. A
step change or disturbance of the load produces at the
input to Po' a triple step operated on by the function
1/G1. These three steps have the unique relationship
necessary to cancel the feedback pulses from the output
of Po, so that the input to Po is not a triple step, but is
only a single step, operated on by the function 1/G1.
The line, therefore, delivers only a triple-step output for
a single-step load disturbance.
The function P0' can be constructed like Fig. 10, ex-

cept that the impedance values are so chosen as to pro-
duce continuous reflections back and forth down the
line in accordance with (10)-(12). Or, the actual circuit
of Fig. 10 can be used with an isolating amplifier pro-
viding negative feedback. Since this minor loop feed-
forward has only high-frequency response, it is not

1957 i.]z ) 0
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Fig. 12-Statement of best control.
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Fig. 13-Constructional arrangement for load compensator.

necessary for it to have zero frequency gain and can be
transformer- or capacitively-coupled. The block 1/G1G1F
is the inverse of the original system loop gain. However,
this computation 'must be effective only for very high
frequencies in the region where the loop gain is unity
with a phase lag of nearly 180°.
The input of the pulse-generating line P0 can be

thought of as being located at the null position of a

bridge which is driven by the output of this line. There-
fore, pulses generated due to the delay within the line
itself do not excite the line further, but disappear into
the cancellation of the load-excited oscillation.

Fig. 14 shows the s-plane pattern of the original
system, the compensator (1+P) alone, and the com-

plete feedback system with compensators for one-

quarter period response.

DIGITAL COMPUTER CONTROL
All of the previous systems can be adapted directly

to digital computer control or periodically-sampled
systems. Eq. (5) is the scheduling of the input feedfor-
ward or input computer. Eq. (10) is the scheduling of
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Fig. 14.-(a) Original lightly-damped system, (b) Posicast compensa-
tor for one-quarter period, (c) Final compensated system.

the minor-loop feedforward or load-compensating com-

puter. The sampling period is Tr/2. In the special de-
generative case represented by (1), half-period response

can be achieved by setting T equal to both the half-
period of the oscillation and to the sampling period, but
this introduces problems in stability which are beyond
the scope of this paper. The general control represented
by (5) and (10) will yield a dead-beat response. In
general, Tr/2 should be several sampling periods for
good control without saturation problems.

ERROR COEFFICIENT RESTRICTIONS
This Posicast method of control can be applied to

systems which have specified positional, velocity, and
acceleration error coefficients. These coefficients are

usually designated as kp, kv, and ka, respectively. If,
in addition, the system has the unalterable components
of two resonant poles, we have five restrictions on the
system. To fulfill these five restrictions, the control de-
vice should convert a single-step input into five step
functions. The transfer function of the control device
would therefore be

1 + P- Ko + K E-sTr/4 + K2E-sTr/2 + K3,6-Tr3/4

+ K4e-sTr. (14)

To solve for the coefficients of this transfer function,
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Smith: Posicast Control of Damped Oscillatory Systems

which is the same as the scheduling of a periodically
sampled controller, one can start with the restriction
that the vector sum of the five transients excited by
these five steps must be zero. This yields
Kos49(-n±+i) + K1E30 (-n+j) + K2E20(-n+i)

+ K3e@(-r+i) + K4 = 0 (15)
where = /1 -~2 and 6 is the transient phase angle
corresponding to time Tr/4.
The arithmetic sum of the coefficients of (14) above

should equal one minus the reciprocal positional error
coefficient. The difference between the integral of unity
for time T, and the integral of the output of the con-
troller, that is the integral of (14) for a step input, should
be the reciprocal velocity error coefficient. In a similar
manner the difference between the double integral of
unity and the double integral of (14) for a step input
should be the reciprocal acceleration error coefficient.
Setting down these integral equations and simplifying
them will yield the following three restrictions:

Ko t K1 + K2+ K3+ K4= (1- 1/kp)
4Ko + 3K1 + 2K2 + K3 = 4(1 l/kvTr)

42Ko + 32K1 + 22K2 + K3 = 16(1 - 2/kaTr2). (16)

The real and the imaginary parts of (15) taken sepa-
rately are two independent equations. These 5 equations
are sufficient to solve for the complete schedule. This
method can be extended to the control of a pair of reso-
nant poles with any number of error coefficient restric-
tions.
The same technique can be applied to the control of a

complex system with fairly simple error coefficient re-
strictions. For example, a system could have one real
time constant and a pair of complex poles, and a zero
positional error for constant velocity would be desired.
The system real pole can be considered as an operator on
the input signal. The resultant condition to be imposed
is that there must be zero error for a delayed integral of
an input step, after time Tr.

CONCLUSION
A method of control has been developed which elim-

inates the necessity for adjusting a feedback control
system to have only highly damped resonant poles. It is
possible to obtain significantly greater speeds of re-
sponse, by adjusting the feedback system for maximum
frequency of oscillation, only lightly damped, but with a
reproducible and consistent closed-loop complex pole
location in the s plane. The method is analogous to the
race-break systems of nonlinear predictor controls, in
which a large positive pulse is applied initially, a large
negative pulse follows to reduce the derivative of the
output, and a third steady-state step is applied per-
manently. These three excitations are adjusted so that
the phasor sum of their phasor transients is zero after
the final excitation is applied. These excitations are a
mode of high-frequency control, and do not need to be
included within the characteristics of the feedback sys-
tem. Although this system contains nonminimum phase
elements, the over-all system is minimum phase, and
furthermore approaches a linear phase lag with fre-
quency, as the original resonant poles approach zero
damping. The waveshape reproduction is the best pos-
sible from any linear system with the restriction of a
fixed dynamic range, or the restriction of a maximum
permissible signal which will not drive the amplifiers or
transducers into the nonlinear region.
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