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ABSTRACT

The concept of Hankel matrices of Markov parameters associated with two
polynomials is generalized for matrices. The generalized Hankel matrices of Markov
parameters are then used to develop methods for testing the relative primeness of two
matrices A and B, for determining stability and inertia of a matrix, and for construct-
ing a class of matrices C such that A + C has a desired spectrum. Neither the method
of construction of the generalized Hankel matrices nor the methods developed using
these matrices require explicit computation of the characteristic polynomial of A (or
of B).

I. INTRODUCTION

Given two polynomials f(x) and g(x), the degree of g(x) being less than
or equal to that of f(x), the quantities s,, i = —1,0,1,2,..., defined by

R(x)=_giﬂ=s_1+ff+i+...

flx) 2

x

are called Markov parameters associated with R(x), and the symmetric
matrices Hg, = (s;, ;) are known as Hankel matrices of Markov parameters.
The use of Hankel matrices of Markov parameters in computing the Cauchy
index I” X R(x) and determining the criterion of stability are well known
[1,2,8]. In a recent paper [7], the author has shown how these matrices can
be employed to obtain information on the location of zeros of a polynomial
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inside a half plane and the unit circle and has given a criterion for aperiodic-
ity of a polynomial using these matrices.

Since these problems are basically the eigenvalue or eigenvalue related
problems for companion matrices associated with f{x) and g(x), and the
reduction of an arbitrary matrix to its companion form is numerically an
unstable process [13], it is natural to investigate how, given two matrices A
and B, Hankel matrices of Markov parameters can be constructed without
actually computing the characteristic polynomials of A and B.

In this paper, given an arbitrary matrix A of order m and a Hessenberg
matrix B of order n (n < m), a family of symmetric matrices H,p is con-
structed, which can be considered as generalized Hankel matrices of Markov
parameters, in the sense that included as a special case in the family is the
Hankel matrix of Markov parameters associated with f(x)= det(x] — A) and
a suitably chosen polynomial g(x) constructed from the characteristic poly-
nomial of B.

The matrix H, g is then used to develop methods for testing the relative
primeness of A and B, for determining the stability (in fact the inertia) of A
(or B), and for constructing matrices C such that A+ C has a desired
spectrum £. A recent theorem of the author (Theorem 4 in [7]) is derived as a
special case of the inertia method. The paper also contains a simple algorithm
for constructing solutions of the matrix equation AX = XA, and a result on
controllability which might be of independent interests.

Neither our method of construction of the matrices H, z nor the methods
developed using H, require the explicit computation of the characteristic
polynomial of A (or of B).

Since our interest in Hankel matrices is mainly in their applications to the
eigenvalue related problems, the assumption that one of the matrices, (namely,
the matrix B) is a Hessenberg matrix is not unrealistic at all, because an
arbitrary matrix can be transformed to a Hessenberg matrix by similarity, and
there exist efficient and numerically stable algorithms (e.g., Householder’s
method [13], Givens’s method [9]) for doing this. Furthermore, one can
assume that the transformed Hessenberg matrix has nonzero codiagonal.
Indeed, the appearance of a zero element on the codiagonal reduces the
problem of the original matrix to problems of lower order, each involving a
Hessenberg matrix with nonzero codiagonal (for more precise statements, see
Section V on applications). A Hessenberg matrix with nonzero codiagonal is
called an unreduced Hessenberg matrix. An unreduced Hessenberg matrix
can further be reduced to one having 1’s along the codiagonal by a diagonal
similarity. Such a matrix is called a normalized Hessenberg matrix. A method
for reducing an unreduced lower Hessenberg matrix A to a normalized one
without explicitly computing the transforming diagonal matrix appears in {6].
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II. SOME LEMMAS

In this section, we establish a few lemmas which will be used later. In the
following e; stands for the ith column of an identity matrix.

A pair of matrices (A, B), where A is of order n and B is of order n X m,
is controllable if the n X nm matrix C(A, B)=(B, AB, A%B,...,A" 'B) has
rank n.

Lemma 1. Let A be a n X n matrix and b be a column vector such that
(AT, b) is controllable. If X satisfies the equation

AX = XAT, (2.1)
then X is nonsingular iff (A, Xb) is controllable.
Proof. Assume first that X is nonsingular. Then
rank(Xb, AXb, A’Xb,...,A""'Xb)
= rank(Xb, XA™b, X(AT)’D,...,X(AT)" "'b)
~ rank| X (b, A7b, (AT)’b,...,(AT)" " 'b)|.

Since X is nonsingular and (A’, b) is controllable, it follows that (A, Xb) is
controllable.

Next, let (A, Xb) be controllable. Then
n = rank(Xb, AXb, A°Xb, ..., A" Xb)
= rank( Xb, XAh, X(AT)’b, ..., X(A")" " 'b)
~ rank| X(b, Ab,(AT)’,....(A7)""'b)].
Since (AT, b) is controllable, it follows that X is nonsingular. [ |

Lemma 2. Let A =(a;;) be a normalized lower Hessenberg matrix, i.e.,
a1 =1foralli=1.2,...,n,and a;; = 0 whenever j > i+ 1. If x}, x,5,...,x

n
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are the n successive columns of a matrix X satisfying (2.1), then

(i) x; can be chosen arbitrarily,
(if) x4 through x, satisfy the recursive relations

X, = Ax, — Zaijxj, i=1,2,...,.n—1. (2.2)
i=1

Proof. The equation (2.1) is equivalent to the systems of equations
i
A, =x,+ Y oayx;,  i=12,..,n-1, (2.3)
j=1
and

Ax,=a,X, t A%+ -+ +a,,%x,. (2.4)

The recursive relations (2.2) and (2.3) are the same. Also, substituting x,
through x,, successively from (2.3) in (2.4), it is easy to see that

Y(A)x, =0,

where ¥(x) is the characteristic polynomial of A. In fact, it can be shown [4]
that

%01 = ¥i(A)x,;,

where ¥,(x) is the characteristic polynomial of the submatrix of A consisting
of the first i rows and i columns and ¥, (x)= ¥(x). Since by the Cayley-
Hamilton theorem ¥(A)= 0, x, can be chosen arbitrarily. |

Remark. Since (A7, ¢, ) is controllable, by Lemma 1 we conclude that if
A is a normalized lower Hessenberg matrix, then a solution of (2.1) is
nonsingular iff (A, Xe; = x,) is controllable.
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LemMma 3. Let M =(m;) be a normalized lower Hessenberg matrix, and
¢,(x) be the characteristic polynomial of the submatrix of M consisting of the
last i rows and i columns. Then

¢Ic+1(A) __.(A - mn-k,n—k)d’k(k) - mn—k+1,n—k¢k~l(}\)

- mn—k+2,n—k¢k—2(A) -t T mn,n—k(bo(’\)’
where ¢(A)=1.

Proof. Similar to the one given in Wilkinson [13, p. 411]. [ ]

II1. AN INERTIA THEOREM

The inertia of a matrix A is defined to be an integer triple In(A)=
(m(A),»(A),6(A)), where m(A), »(A), and 8(A) are respectively the num-
bers of eigenvalues of A with positive, negative, and zero real parts. A matrix
A of order n is called a stable matrix iff In(A)= (0, n,0). A direct method for
computing the inertia of a normalized Hessenberg matrix appears in [3]. A
similar method using a generalized Hankel matrix of Markov parameters is
presented in this paper. The proposed method is as efficient as the method in
[3]. The following inertia theorem will be needed later.

Treorem 1 (Carlson and Schneider [5)). Let A be an n X n complex
matrix with §( A) = 0, and let X be a nonsingular hermitian matrix such that
XA + A*X is positive semidefinite. Then In(A) = In(X).

IV. CONSTRUCTIONS OF GENERALIZED HANKEL MATRICES OF
MARKOV PARAMETERS

Let A be a matrix of order m, and B= (b, ;) be a normalized lower
Hessenberg matrix of order n (n < m).

Step 1. Choose column vectors b and ¢ such that (A, b) and (A7, ¢) are
controllable.
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Step 2. Construct a matrix V having the columns v,, v,,...,0, defined by

Op1 ™ — (A+ bnnl)vn’

Up_2= — (A + bnfl,n—ll)vn—l - hn,n~lvn’

U1 = = (A + byl )vy = byty— -+ = b0,
Step 3. Compute
r=Av;+ b0, +byv,+ -+ +b,v,. (4.0)
Step 4. Construct H, z having the following properties:

AH, ;= H, AT, (4.1)
H,pgc=r. (4.2)

Different choices of the vectors b and ¢ will yield different matrices H 5.
These matrices will be called generalized Hankel matrices of Markov parame-
ters (see the discussion for a special case). Since A is nonderogatory [the
existence of the vector b such that (A, b) is controllable implies that A is
nonderogatory], by a result of Taussky and Zassenhaus [12] the matrices H, 4
are symmetric. In particular, if A is a normalized or unreduced lower
Hessenberg matrix, then one member of the family H,; can be obtained by
choosing the first column as r, [since (A7, ¢,) is controllable and H,ze, = r]
and generating the remaining columns using the recursive relations (2.2) of
Lemma 2.

A SpeEcIAL Case. Let

o 1 o0 O 0
0 0 1 o0 0

A= --------------------- (4‘3)
0O 0 0 O 1
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and
0 1 0 0 0 0
0 . 0 L 0 e U 0 . .
B=10"0"""0 "o 0 1
bl —bz b3 _b4 (_l)n_2bn—l ( l)n_lbn

be the companion matrices of two polynomials f(x) and g(x) respectively.
Choose

0
0 1
: 0
b= : and c=e;=| - |.
X 0
(-1)"'s—1

Then H, g is the Hankel matrix of Markov parameters associated with
f(x)=det(xI —~ A) and g(x)=(—1)"det(x + B).

Proof. First, note that (A, b) and (A7, ¢) are controllable. In this special
case, it is an easy computation to see that

=~ [A+(-)" 'BI]b

U,
0
0
=(-1D" - |,
(-1 0
§1
So
0,_s=~Av, +(-1)""%p_ 0,
0
0
=(_1n\""
=(-1 s
So
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In general,
0
0
n—i+1l 0
Un—i =( - 1) S—l
So
Si-1
Thus
S-1
So
v,=| 51 |,
Sn-2
and
0 So
0 S
r=bv, + Av, = b, : + 52
O .
-1
(-1)" s, a;$_ |+ ayso+ - +a,s, s
So
5
_| s _
= .2 —H“‘,ge1
Sn-l

(using the recursive relations between the coefficients of Hy,; see [8, p. 214]).

Since a Hankel matrix of Markov parameters H, satisties H,, A = ATH,
(7], where A is the companion matrix of f(x) defined by (4.3), and from
Lemma 2 it follows that a solution of (2.1) is uniquely determined by its first
column, the matrix H, 5 in this special case must be the Hankel matrix H,,.
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V. APPLICATIONS

A. Determination of Relative Primeness of Two Matrices
Let A, B, H, g, and r be the same as in Section IV,

THEOREM 2. The following are equivalent:

() (A, r) is controllable;

(ii) H,g is nonsingular; and

(iii) A and — B are relatively prime (i.e., A and — B do not have an
eigenvalue in common).

Proof. The equivalence of (i) and (ii) follows from Lemma 1. To prove
the equivalence of (i) and (iii), we proceed as follows: We first prove that

Un—i =¢i( - A)on’

where ¢,(x) is the characteristic polynomial of the submatrix of B consisting
of the last ¢ rows and i columns. The proof is by induction.
The relation is obvious for i=1and i=2. Fori =1,

[ —(A+bnnl)vn

= ¢l( - A)vn'
Fori=2,
Dn~2 = (A + bn~1,n—lI)(A + bnnl)vn - bn,n—- 1Vn
= ¢2( - A)Dn'

Assume that the relation is true for all values of i =1,2,...,k; then

O, 1= —(A+ bn-—k,n—kl)un—-k - bn—k+1,n—k0n—k+1“ T bn,n—kvn

= —=(A+b, D)o ~A)o, = b, ;1 b — A)v,

n,n—kvn

=¢is1(—A)o,  (by Lemma3).
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The induction is now complete.
Thus

r=Av, + b0, +byv,+ -+ +b,0,
=b, 0, + by 191( = A)v, + b, 5 155(— A)v,
+ - +(A+b o, (- Ay,
=¢.(—A)v, (by Lemma 3).
So
rank(r, Ar, A%,...,A" " r)
= rank(¢,( — A)v,, Ag,(— A)v,, A%,(— A)v,,...,A" ¢.(— A)v,)

= rank[¢,( — A)(v,, Av,, A%,,...,A" ', )]

[observe that ¢,(— A), being a polynomial in A, commutes with A and its
various powers).

Since (A, v, = b) is controllable, it follows that (A, r) is controllable iff
¢,( — A) is nonsingular. The nonsingularity of ¢,( — A) again implies that A
and — B do not have an eigenvalue in common, because the eigenvalues of
¢, (— A) are (—1)" ;‘=1()\i +ay), i=1,...,n, where A, A,,..., A, are the
eigenvalues of A, and |, ¢, ..., t, are the eigenvalues of B. |

Theorem 2 suggests two tests of relative primeness of A and — B:

Test 1. Compute the vector r given by (4.0) and then test the controlla-
bility of the pair (A, r).

Test 2. Form the symmetric matrix H, g given by (4.1) and (4.2) and test
for its nonsingularity.

Since our algorithm for constructing solutions of (2.1) is restricted to
Hessenberg matrices, implementation of Test 2 requires that both matrices A
and B be decomposed into lower Hessenberg forms, whereas to implement
test 1, only the matrix B needs to be so decomposed. Furthermore, construc-
tion of H,, requires computation of r anyway. Thus Test 1 is more direct
and efficient than Test 2.
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In Test 2, if either A or B or both have zeros on their superdiagonals, they
can always be partitioned in the form

A, 0 0 - 0

A={Ay Ap 0 - 01, (5.1)
A,,l . .A,.)Z. . .A.p.s ....... Am,
B, O 0

B=|By By - 0] (5.2)
Bqqungq

where A;; (i=1,...,p) and B;; (j=1,...,q) are unreduced lower Hessen-
berg matrices. Each matrix A,; and B, are then further reduced to normal-
ized forms, and the test is applied successively to the pairs (A}, By;),...,

(A1 By )i (Aggs Bieeos(Agg, Buydsee 5 (A, Bi)y(A s Bog)se o o(A s BL).

In Test 1, if B has one or more zeros on its superdiagonal, it is then
partitioned in the form (5.1) and the test is applied to (A, B,)),
(A, By),...(A, B,,).

B. Computation of the Inertia and Stability of a Matrix
Let A be a normalized lower Hessenberg matrix.

Step 1. Construct H, , choosing ¢ = e,.
Step 2. Form

S=VH,,.
Then
TaEOREM 3. Whenever S is nonsingular, it is symmetric. Furthermore,
0(A)=0 and In(A)=1In(S). In particular, A is stable iff S is negative
definite.
Proof.
= AVH,,+VAH, ,
=(AV+VA)H,,. (5.3)
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It readily follows from the construction procedure that AV + VA is a matrix
whose first column is r and all other columns are zero. So, from (5.3), we get

AS+SA"=relH,,=H, e,e]H,,=N. (5.4)

The matrix N is clearly symmetric and positive semidefinite. The nonsingular-
ity of § implies that H, , is nonsingular, and by Theorem 2, we then have that
A and — A do not have an eigenvalue in common. This implies that

(1) S is an unique solution of (5.4) and therefore symmetric; and
(2) 6(A)=0.

Application of the inertia theorem of Carlson and Schneider to (5.4) yields the
desired result. [ ]

REMARKS.

(i) For different choices of the vector b, the above procedure will yield
different H , ,, thus yielding a family of symmetric matrices S, ,, the inertia of
each of which will determine the inertia of A.

(ii) After decomposition into lower Hessenberg form, if there are one or
more Zero elements on the superdiagonal, then A should be partitioned in the
form (5.1), each A,; should be reduced further to normalized form, and the
above procedure should be applied successively to each A,;, i =1,...,p.

A special case is the derivation of the Routh-Hurwitz-Markov theorem
(Theorem 4 in [7]). In case A is the companion matrix defined by (4.3)
associated with a polynomial f(x)=x"—-a,x" ' —--- —a,x—a,, and b=
v, is chosen to be

0

0
b= : R

0
(-D" s,

where
fl-x) So | S1
=5  +2+L+...

)y TR e
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then H is the Hankel matrix of Markov parameters associated with R(x)=
fl~x)/f(x), and the matrix S can be easily recognized as the matrix H,
defined by (13) in {7]. Therefore, Theorem 4 of [7] follows as a special case of
our theorem and we have a very short and simple proof of this theorem.

ConjecTure. Since the choice of B = A in the construction procedure of
H, ; has produced an algorithm for computing the inertia of A, it is reason-
able to conjecture that other suitable choices of B (mainly as functions of A)
might lead to procedures for eigenvalue separation of A in other regions of the
complex plane. For example, in case A is invertible, the choice of B= A~1
should give a constructive procedure for solving the unit circle problem (the
problem of counting the numbers of eigenvalues inside and outside the unit
circle). The recent works of Gutman and Jury [10] and of Jury and Ahn [11]
are relevant to a solution of this conjecture and might very well be the
hunting grounds for a way to choose B for a specified region.

C. Constructions of Matrices C Such That A + C Has a Desired Spectrum

Given a matrix A of order n and a set of n numbers ©, here we consider
the problem of finding a matrix C such that A + C has the spectrum . This
problem is very closely related to a well-known important problem known as
the pole assignment problem in mathematical control theory. We present a
solution of the problem using the inverse of a generalized Hankel matrix,
whenever the inverse exists.

Let A be a normalized lower Hessenberg matrix.

Step 1. Choose a matrix B, any normalized lower Hessenberg matrix
such that the spectrum of — B is the set ©; in particular, B can be chosen as
an upper triangular matrix with its diagonal as the set —, 1’s along the
superdiagonal, and the rest of the entries zeros.

Step 2. Form H, g, and assume that it is nonsingular.

Step 3. Compute S= H V.

Step 4. Form F = RS™!, where R= AV + VB and C = H, ;F.

Then

TueoreM 4. AT — C has the spectrum Q.

Proof.  First of all, we prove that S is nonsingular. Since S = H, AV, all we
have to show then is that V is nonsingular. But the controllability of (A, b)
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implies this. For, the equations in Step 2 of Section IV can be written as

v,_1=—Av,~ b, v, = — Av, + 1,0,

vn—2=(A+b I)(A+bnn1)vn—bn,n—lvn

n—1,n-1
= szn +(bn—l‘n~l+ bnn)AUn +(bn—l,n~lbnn - bn,n'l)vn

= A%, + ty3 Av, + t50,,

v, =(- l)nﬂlA"_lvn + -+t Av, 0,
Thus, we have

(v"’vn-l’”"vz’vl)=(vn’Avn) szns-.-,Anﬁlvn)

Loty ty - fin

0 —1 tyn - ton
xlo o 1 . b

0 0 o (-t

Since (A, b = v,) is controllable, it follows that V is nonsingular.
Next,

ATS + SB= ATH, 3V + H, VB
=H AV + H, VB
(since AH, 5 = H, 5 AT, and H,, 4 is nonsingular)
= H,}(AV+VB)=HjR.
Then,
AT —C= A"~ H;\F = AT — H; RS~

i

AT — (ATS + SB)S~!
= —SBS~1.

The theorem is now proved. a
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Remark. If H, g turns out to be singular, by Theorem 2 we immediately
conclude that there is an eigenvalue of A in €. In fact, it is easy to see that if
the nullity of H,; is p, then € will contain exactly p eigenvalues of A.
Therefore, in practice, the above procedure for constructing a matrix C such
that AT~ C has the desired spectrum can always be made to work by
choosing a suitable shift,

APPENDIX. SYSTEM THEORETIC INTERPRETATIONS
OF SOME RESULTS

Let p(x) and g(x) be two relatively prime polynomials with real coeffi-
cients, the degree of g(x) being greater than that of p(x). Then the triple
(A, b, c) is a minimal realization of p(x)/q(x) if

A well-known result in linear systems theory on minimal realization is:

A triple (A, b, ¢) is a minimal realization of R(x) iff (A, b) is controllable
and (c”, A) is observable (that is, (AT, ¢) is controllable).

Theorem 2 in this paper asserts that the generalized Hankel matrix H, ; is
nonsingular iff (A, r), where r is defined by (4.0), is controllable. Also, H , is
constructed under the assumption that (¢, A) is observable. Thus, it follows
immediately from the above result that:

TaEOREM 5. (A, r,c) is a minimal realization of c™(xI — A) ™ 'r iff H,p
is nonsingular.

Next, we assume that (A, r,c) is a minimal realization of ¢7(xI — A) 'r.
Then, since (4.1) and (4.2) hold, it follows from a result of B. D. O. Anderson
[1, Theorem 3] that:

THEOREM 6.  The signature of H,y, is the Cauchy index of ¢T(xI — A)~'r.

REMaRk. Theorem 6 was pointed out to the author by an anonymous
referee, who also remarked that this result could possibly be used to clarify
some of other conclusions of the paper. That is true. However, a better system
theoretic interpretation of the vector r would be needed to do this.
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