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Robustness with Observers

J. C. DOYLE, STUDENT MEMBER, IEEE, AND G. STEIN, MEMBER, IEEE

Abstract—This paper describes an adjustment procedure for observer-
based linear control systems which asymptotically achieves the same loop
transfer functions (and hence the same relative stability, robustness, and
disturbance rejection properties) as full-state feedback control implemen-
tations.

1. INTRODUCTION

The trouble with observers is that they tempt us, through the ex-
pediency of state reconstruction, to assign undue generality to control
results proven only for the full-state feedback case. An example is the
recent robustness result of Safonov and Athans [1]. This result shows
that multivariable linear-quadratic optimal regulators have impressive
robustness properties, including guaranteed classical gain margins of —6
dB to + co dB and phase margins of +60° in all channels. The result is
only valid, however, for the full-state case. If observers or Kalman filters
are used in the implementation, no guaranteed robustness properties
hold. In fact, a simple example has shown that legitimate LQG con-
troller-filter combinations exist with arbitrarily small gain margins in
both the positive and negative dB direction [2].

In light of these observations, the robustness properties of control
systems with filters or observers need to be separately evaluated for each
design. Moreover, because such evalnations can come up with em-
barrassingly small margins, a “design adjustment procedure” to improve
robustness would be very desirable. The present paper provides such a
procedure. We show that while the commonly suggested approach of
“speeding-up” observer dynamics will not work in general, alternate
procedures which drive some observer poles toward stable plant zeros
and the rest toward infinity do achieve the desired objective. In effect,
full-state loop transfer properties can be recovered asymptotically if the
plant is minimum phase. This occurs at the expense of noise perfor-
mance.

The principal results of the paper are summarized in Section II, where
we introduce and interpret certain transfer function properties of ob-
server-based control systems, and in Section III, where we develop the
“adjustment procedure.” A simple example which illustrates these results
is given in Section IV.
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II. TrANSFER FUNCTION PROPERTIES OF OBSERVER-BASED
CONTROLLERS

We consider the general multivariable control loop illustrated in Fig.
1. The plant is an nth order linear system, both observable and controlla-
ble, with m inputs, p=m outputs, and no transmission zeros [3] in the
right half-plane. The control law consists of two transfer function
matrices H(s) and H,(s). H, is driven either with full-state feedback
[Fig. 1(a)] or with an nth order observer [4] which reconstructs the state
in the usual asymptotic sense [Fig. 1(b)]. It is clear that this overall
control loop includes linear-quadratic-Gaussian controllers as special
cases. It also allows dynamic elements such as integrators and lag
elements which may be required in more realistic control situations.

This configuration also applies to nonsquare plants for which the
number of controls m is not equal to the number of measurements p. For
the case m <p, simply augment the original control vector with (p—m)
more components which are not driven by the controllers (e, H =
[H{ * 0]). Columns of the B matrix for these added components must,
of course, be selected to introduce no unstable transmission zeros. For
the case m>p, select any p-dimensional subset of controls for which
there are no right half-plane transmission zeros. Then the loop transfer
properties which are established in this paper apply to this p-dimensional
subset of control loops, with the remaining (11— p) loops closed.

A dashed line is shown in both Fig. 1(a) and (b) in order to distinguish
between elements of the loop which are part of the controller and those
which are part of the plant. Since we design and implement the con-
troller, there is relatively little uncertainty associated with it, whereas
there may be significant differences between the actual plant and its
model. The loop transfer functions which we examine for robustness,
below, are then taken with respect to the loop breaking point X, at the
control signal interface between these two sets of elements. Very mislead-
ing robustness results can be obtained for alternate loop breaking points,
for example point X X. This is also shown below.

The following properties can be established for the above two control-
loop implementations.

Property 1: The closed-loop transfer function matrices from command
r to state x are identical in both implementations.

Property 2: The loop transfer function matrices from control signal ¥’
to control signal # (loops broken X X) are identical in both implementa-
tions.

Property 3: The loop transfer functions from control signal #” to
control signal &’ (loops broken at point X) are generally different in the
two implementations. They are identical if the observer dynamics satisfy

K[{I+C(sI-4)"'K]"'=B[c(s1-4)"'B]™" (0

for all values of the complex variable 5. The 4, B, and C’s above are
plant matrices and X is the observer gain.

The first two of these properties are very well known [5], [6]. They can
be easily verified by noting that the transfer functions from ' to x and
from # to x are identical because the nominal error dynamics of the
observer are not controllable from »’. Hence, the error dynamics are not
excited by inputs 7 to the closed-loop system or by inputs ' to the
system with loop broken at point X X.

The first two properties are also the source of much of the temptation
surrounding observers, however. We see that input/output properties are
the same and even certain loop transfer functions are the same. The
latter promise equal relative stability properties, equal tolerance to
uncertainties (robustness), and equal disturbance rejection properties.
What more could we ask for?

The problem, of course, is that the loop transfer properties are the
same at point X X, inside our own control implementation where only
masochists would insert significant uncertain elements or disturbances.
According to Property 3, equal loop transfer characteristics are not
obtained at the control signal interface to the plant, point X, where
nature gets to insert uncertainties and disturbances. It is at this point
that robustness properties must be measured, and, as seen in [2], it is
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Fig. 1.

(a) Full-state feedback implementation. (b) Observer-based implementation.

here that observer-based implementations can fall well short of our
objectives.

The fact that loop transfer functions will in general be different at
point X follows by noting that, unlike before, the observer error dy-
namics do get excited in response to inputs #” with loops open at X. The
more interesting fact is that such differences are avoided if (1) holds.
This latter result is apparently not as well known, so a simple derivation
is given in Appendix A. It is important because it offers a way to adjust
observers so that full-state loop transfer characteristics are recovered at
point X. In particular, suppose the observer gains are parameterized as a
function of a scalar variable ¢. Let this function, K(g), be selected such
that as g—oo

LI @

for any nonsingular matrix W, Then (1) will be satisfied asymptotically
as g—»00. The resulting observer error dynamics will have limiting poles
given by roots of the polynomial

Y(s)=det(sI — A)det[ I+ gC(sI— A) 'BW]. 3)

P of these roots will tend toward the P finite transmission zeros of the
plant, ie., the zeros of polynomial

Y(s)=det(sI— A)det[C(sI— A) "' B]

which are stable by assumption, and the rest will tend to infinity. It is
clear from this that the commonly suggested approach of making all
roots of the error dynamics arbitrarily faster is generally the wrong thing
to do.

III. AnN OBSERVER-ADJUSTMENT PROCEDURE

Equation (2) defines the required limiting characteristics of an adjust-
ment trajectory K(q) which changes arbitrary initial nominal observer
gains, K(0), with poor robustness properties into better gains asymptoti-
cally. We still need to define details of such trajectories.

A basic requirement for every point of an adjustment trajectory is
stability of the observer error dynamics. Clearly, if we violate this
requirement, overall closed-loop stability is also lost. (Note that this does
not mean that the net compensator within the dashed lines of Fig. 1(b)
needs to be stable.) One way to assure stable error dynamics is to restrict
the observer to be a Kalman filter for some set of noise parameters. That
is, let

K(g)=Z(g)C™R™! 4
with 2(g) defined by the Riccati equation
AZ+ZAT+ (@ —-ZCTRICE=0. 5)
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As usual we take 0=0Q7 >0 and R=R7 >0 with (4,0 '/?) and (C,4)
stabilizable and observable, respectively. For Kalman filters, these
matrices represent given process noise and measurement noise intensi-
ties. Here they are treated more freely as design parameters which we
can select to suit broader purposes. In particular, let

0(9)=Qo+¢°BVBT (6)

R=FR, ™

where Q, and R, are noise intensities appropriate for the nominal plant,

and V is any positive definite symmetric matrix. With these selections,

the observer gain for g=0 corresponds to the nominal Kalman filter

gain. However, as ¢ approaches infinity, the gains are seen from (5) to
satisfy

KRKT

7
To show this formally, (5) with weights (6) can be divided by 4° yielding

A(%)+(q )AT+ Q°+BVBT (‘ZEZ)CTR‘IC(%)=O. )

_BVBT. ®)

It then follows from [5, p. 307] that

(%)
— -0 as g—oo
q

(10

whenever the transfer function C(s/—A)~'B has no right half-plane
zeros. Consequently,

b
qz(?)CTR‘lc(—qE;)aBVBT (11)

and (8) is established. Solutions of (8) must necessarily be of the form

%K—)BV'/Z(R 1/2)=1 (12)

where ¥'/2 denotes some square root of V, ie., (¥/3)7V/2=V and
similarly, R /2 is some square root of R. Since (12) is a special case of
(2), it follows that the adjustment procedure defined by (4)—(7) will
achieve the desired robustness-improvement objective.

Note that the second term in (6) can be interpreted as extra process
noise added directly to the control input of the plant. Within the
constraints of Kalman filter mathematics, such “fictitious noise” is a
natural mechanism to represent uncertainties at this point of the control
loop. It is nice to know that the resulting filter design actually responds
with a corresponding robustness improvement. Note, however, that
arbitrary increases of the existing noise matrix (ie., @=(1+4%Q, or
addition of arbitrary full rank noise process (ie, Q= Qp+ ¢*’W with
W= W7 >0) which are often suggested as other intuitive robustness
improvement methods, will not in general produce the desired effect.
This point is illustrated with an example in Section 1V.

Finally, we note that the use of Kalman filter equations in the
adjustment procedure is not fundamental. The filters merely provide a
convenient way to define a X(g) function which assures stability along
the entire adjustment trajectory and has the desired limiting behavior (2).
Any other procedure (pole placement, for example) with the same
properties could be used as well. We emphasize, however, that both
stability along the trajectory and asymptotic behavior must be achieved.
Hence, such “obvious™ choices as

K(q)=4gBW

will only work for special systems which are stabilizable with high gain
static output feedback alone. The Kalman filter choice (4), in contrast,
works for all controllable, observable, minimum phase plants.

IV. A~ EXAMPLE

To illustrate the observer properties and adjustment procedure above,
consider the following example.
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Fig. 2. Nyquist diagram of the optimal filter and observer.

Plant:
R
y=[2 1lx+9 (14)
with E(€)= E(n)=0; E[ZnE(n]=E[n(On(n)]=8(—1).
Controller:
u=[-50 —10]x+[50]. (15)

The plant in this example is a (harmless) stable system with transfer
function

Pisy=—S¥2
o) G+DG+3) "

The controller happens to be a linear-quadratic one, corresponding to
the performance index

J=fo°°(x THTHx+u?)dr 7

with
H=4V5[v35 1]
It places the closed-loop regulator poles at
s=—7.0x;20.

A Nyquist diagram (polar plot of the loop transfer function at point X)
for the full-state design is given in Fig. 2. Gain margin is infinite in both
directions and there is over 85° phase margin. The design is then
implemented using a Kalman filter for the given noise parameters. The
Nyquist plot for the resulting observer-based controller is also shown in
Fig. 2. Oops... less than 15° phase margin.

In an effort to improve this margin, one adjustment to the filter that
could be made is to speed it up. So, we can try moving the filter/ob-
server poles to the left in a second-order Butterworth pattern. For the
filter /observer poles at —22+17.86/ one gets the third Nyquist plot in
Fig. 2. As can be seen, the results are less than satisfactory. Not only are
the margins disappearing (now less than 10°) but the loop bandwidth has
increased (crossover has gone from approximately 12 to 40 rad/s).

Unless we are trying to design an explosive device, this is clearly
undesirable. It gets worse as the filter gets faster. In fact, it can be shown
that the margins go asymptotically to zero for large gains, while the loop
bandwidth goes to infinity. The present example is not a pathological
one, either. Similarly, undesirable characteristics for fast filters are
obtained with most systems.

When the observer adjustment procedure of Section III is applied to
the same example, much more pleasing behavior is obtained. Following
(6)—(7), we let the process noise covariance matrix be

o=(_¥)as —sn+2(%)0 v as)
We then increase g from zero until a reasonable compromise between
noise performance and robustness is achieved. Some results of this
process are summarized in Fig. 3 and Table I. Fig. 3 shows Nyquist
diagrams for ¢°= 100, 500, 1000, and 10 000. Margins improved with
essentially no change in bandwidth as the modified loop transfer func-
tion tends toward full-state optimal. Noise performance is summarized
in Table I for the same set of g values. As expected, the error covariance
of the adjusted filter with respect to the original noise increases markedly
with g. However, there was not the same deterioration in state covari-
ance.

Table I also documents other parameters associated with these design
points—poles of the error dynamics, margins, and filter gains. Note in
particular that the filter poles tend toward the plant zero and toward
infinity, as required by (3).

This adjustment procedure was also successfully applied to reconstruc-
tion of measured outputs after sensor failures for the A7-D aircraft [8].
In this application the optimum Kalman filter produced an unstable
system when tested in hybrid simulation over the aircraft’s flight en-
velope. After attempts with “ad hoc™ fictitious noise adjustment proce-
dures failed the method discussed here successfully stabilized the system.
Also, the resulting error covariance properties remained close to the
optimum values,

V. CONCLUSIONS

This paper illustrates some of the difficulties one can get into by
relying on observers for state reconstruction. We have concentrated on
robustness properties. In general, these will be poorer for observer-based
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Fig. 3. Nyquist diagrams of the ficticious noise design procedure.

TABLE I
SUMMARY OF EXAMPLE
FILTER GAIN PHASE ERROR STATE FILTER
POLES MARGIN MARGIN COVARIANCE COVARIANCE GAIN
db deg E [(x-Q)(x-Q)T] E(xxT)
Optimal 97 -163 22 -613 30
LQG Design -7+2j - 6.75 15
-163 277 | -613 2070 -50
Fast Filter Adjust- 6280 -12200 130 -613 720
ment Procedure -22¢17.93 - .98 10
-12200 23800 | -613 8520 -1400
Fictitious Noise -4.3 107 -184 236 -613 26.8
Adjustment Procedure -7.73 19
a2 = 100 -13.1 -184 319 | -613 1810 -40.2
2 -2.9 163 -301 268 -613 20.4
qQ° = 500 -10.9 33
-24 =301 564 | -613 1500 -17.7
2 103 -2.5 204 -385 285 -613 16,7
q -13.9 42
-33 -385 743 | -613 1360 -1.9
e = 10t -2.1 290 -570 317 -613 6.9
= -37 74
-100 -570 1170 | -613 1200 84.6

implementations than for full-state implementations. For minimum
phase systems, however, full-state robustness can be recovered asymptot-
ically provided it is done correctly. Fast observers are not in general
correct. A “fictitious noise” adjustment procedure was suggested which
is correct.

The apparent practical value of this procedure is that it gives a simple
way of trading off between noise rejection and margin recovery. When

g=0, the filter will be optimal with respect to the “true” (as modeled)
system noise. As g increases the filter will do a poorer job of noise
rejection but the closed-loop stability margins will improve. Hopefully, a
satisfactory compromise can be found through the adjustment of the
single parameter 4. We stress that margin recovery occurs at point X in
Fig. 1, at the control signal interface to the outside world. Asymptoti-
cally, the full-state and observer-based implementations will have the
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same tolerance to disturbances and uncertain elements inserted at this
point. While point X 1is clearly a physically important one (more
important than point X X, certainly), engineers who may wish to test
robustness at still other points in the control loop should recognize that
the recovery results may not be applicable there. If such other points are
judged more important than X, a slight generalization of the adjustment
procedure may be used to ensure margin recovery, as outlined in
Appendix A.

The suggested adjustment procedure is essentially the dual of a sensi-
tivity recovery method suggested by Kwakenaak [7]. The latter provides
a method for selecting the weights in the quadratic performance index so
that full-state sensitivity properties are achieved asymptotically as the
control weight goes to zero. In this case, however, closed-loop plant
poles instead of observer poles are driven to the system zeros, which can
result in unacceptable closed-loop transfer function matrices for the final
system.

APPENDIX A
DERIVATION OF PROPERTY 3

Referring to Fig. 1(a), the transfer functions from control signal #” to

states x (with loop broken at point X) are given by
x=®Buy" (A1)

where & =(sI —A4)~!. The corresponding transfer functions from #” to x
in Fig. 1(b) are

#=(®~ 1+ KC)~ (B« + KC®Bu") (A2)
=[®—®K(I+COK) 'C®]|(Bu'+ KC®Bu")
=®[B(CPB) ™' - K(I+C®K) '|CO®Bw

+®[K(I+ CPK) ']COBu". (A.3)

We now note that (A.3) is identical to (A.1) if (1) is satisfied. Hence, all
control signals based on % in Fig. 1(b) (e.g., w'=— H,H,x) will have
identical loop transfer functions as the corresponding controls based on
x in Fig. 1(a) (i.e., &' = — H,H,x). This completes the derivation.

We close with the final observation that the equivalence of (A.1) and
(A.3) is a property which can be achieved for other loop breaking points
in the plant instead of point X. Consider an arbitrary point Y with
variables p(dim(y)=m), and let »” denote inputs at point Y with the
loop broken at Y. Then a full state implementation has the transfer
functions

x=0Y(Bu+ F") (Ad)

where @! is the transfer matrix (s/—A4")~!, modified from ® by the
broken loops. F is the control input matrix for point Y. The correspond-
ing observer-based implementation has the transfer functions

i=[(@) "+ KC] T '[Bu+ Fo+ KCOY(But Fv")].  (AS)
Following steps analogous to (A.2)—(A.3), this reduces to
x=®By
+![ F(COF'F)™ ' - K(I+CO'K)™ " |CO'F?
+0![ K(I+CO'K) ™' |Co'Fy. (A.6)

We again note that (A.6) is identical to (A.4) if the following modified
statement of (1) is satisfied:

K(I+C®K) '=F(C®'F)™\. (A7)

Hence, all loop transfer functions based in x in the observer-based
implementation will be identical to loop transfer functions based on x in
the full-state implementation. Like (2), (A.7) can be satisfied asymptoti-
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cally by a “fictitious noise” adjustment procedure whenever the broken
loop system

x=Ax+ Fv"
y=0Cx

is controllable, observable, and minimum phase. Note, however, that
asymptotic satisfaction of (A.7) will generally preclude satisfaction of (1).
Hence, we can recover margins at point X or point ¥ but not at both
points simultaneously.
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Some Relations Satisfied by Prime Polynomial
Matrices and Their Role in Linear Multivariable
System Theory

P. J. ANTSAKLIS, MEMBER, IEEE

Abstract—A number of relations which are satisfied by prime poly-
nomial matrices are derived and then used to study the polynomial matrix
equation BG,+ G,4 ="V and to parametrically characterize the class of
stabilizing output feedback compensators.

I. INTRODUCTION

The concept of right (left) primeness of two polynomial matrices, a
generalization of the primeness of two polynomials, is one of the most
important concepts of linear multivariable system theory because it is
directly related to the concepts of controllability and observability [8],
[11]. It is known that to any two minimal dual factorizations B,(s)4; '(s)
and A ~'(s)B(s) of a transfer matrix 7(s), i.e., T=B,;4] '=A "B, corre-
spond four polynomial matrices X(s), Y,(s), X(5), and Y(s), which
satisfy X 4,4+ Y,B,=7 and AX+BY=1 [8], [11]. When these (non-
unique) matrices are being used in the literature, they are usually
supposed to have been derived independently, by some process, and they
do not satisfy any other relations than the above. If X}, Y}, X, and Y are
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