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ABSTRACT 

The concept of Hankel matrices of Markov parameters associated with two 
polynomials is generalized for matrices. The generalized Hankel matrices of Markov 
parameters are then used to develop methods for testing the relative primeness of two 
matrices A and B, for determining stability and inertia of a matrix, and for construct- 
ing a class of matrices C such that A + C has a desired spectrum. Neither the method 
of construction of the generalized Hankel matrices nor the methods developed using 
these matrices require explicit computation of the characteristic polynomial of A (or 
of B). 

I. INTRODUCTION 

Given two polynomials f(x) and g(x), the degree of g(x) being less than 
orequaltothatof f(x),thequantities si, i= -1,0,1,2,..., definedby 

R(x) = $f 
x 

=,_,+~+?L+ . . . 

are called Markov parameters associated with R(x), and the symmetric 
matrices Z-& = (si+ j) are known as Hankel matrices of Markov parameters. 
The use of Hankel matrices of Markov parameters in computing the Cauchy 
index 1: z R(r) and determining the criterion of stability are well known 
[1,2,8]. In a recent paper [7], the author has shown how these matrices can 
be employed to obtain information on the location of zeros of a polynomial 
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inside a half plane and the unit circle and has given a criterion for aperiodic- 
ity of a polynomial using these matrices. 

Since these problems are basically the eigenvalue or eigenvalue related 
problems for companion matrices associated with f(x) and g(x), and the 
reduction of an arbitrary matrix to its companion form is numerically an 
unstable process [13], it is natural to investigate how, given two matrices A 
and B, Hankel matrices of Markov parameters can be constructed without 
actually computing the characteristic polynomials of A and B. 

In this paper, given an arbitrary matrix A of order m and a Hessenberg 

matrix B of order n (n < m), a family of symmetric matrices HAB is con- 
structed, which can be considered as generalized Hankel matrices of Markov 
parameters, in the sense that included as a special case in the family is the 
Hankel matrix of Markov parameters associated with f(x) = det( xl - A) and 

a suitably chosen polynomial g(x) constructed from the characteristic poly- 
nomial of B. 

The matrix HAB is then used to develop methods for testing the relative 
primeness of A and B, for determining the stability (in fact the inertia) of A 
(or II), and for constructing matrices C such that A + C has a desired 
spectrum f2. A recent theorem of the author (Theorem 4 in [7]) is derived as a 
special case of the inertia method. The paper also contains a simple algorithm 
for constructing solutions of the matrix equation AX = XAr, and a result on 
controllability which might be of independent interests. 

Neither our method of construction of the matrices HAB nor the methods 

developed using HAB require the explicit computation of the characteristic 

polynomial of A (or of B). 
Since our interest in Hankel matrices is mainly in their applications to the 

eigenvalue related problems, the assumption that one of the matrices, (namely, 
the matrix B) is a Hessenberg matrix is not unrealistic at all, because an 
arbitrary matrix can be transformed to a Hessenberg matrix by similarity, and 
there exist efficient and numerically stable algorithms (e.g., Householder’s 
method [13], Givens’s method [9]) for doing this. Furthermore, one can 
assume that the transformed Hessenberg matrix has nonzero codiagonal. 
Indeed, the appearance of a zero element on the codiagonal reduces the 
problem of the original matrix to problems of lower order, each involving a 
Hessenberg matrix with nonzero codiagonal (for more precise statements, see 
Section V on applications). A Hessenberg matrix with nonzero codiagonal is 
called an unreduced Hessenberg matrix. An unreduced Hessenberg matrix 
can further be reduced to one having l’s along the codiagonal by a diagonal 
similarity. Such a matrix is called a normalized Hessenberg matrix. A method 
for reducing an unreduced lower Hessenberg matrix A to a normalized one 
without explicitly computing the transforming diagonal matrix appears in [6]. 
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II. SOME LEMMAS 

In this section, we establish a few lemmas which will be used later. In the 
following e, stands for the ith column of an identity matrix. 

A pair of matrices (A, B), where A is of order n and B is of order n X m, 
is controllable if the n~nm matrix C(A,B)=(B,AB,A2B,...,A”-‘B) has 
rank n. 

LEMMA 1. Let A be a n x n matrix and b be a column vector such that 
(A*, b) is controllable. Zf X satisfies the equation 

AX = XA*, (2-I) 

. 
then X is nonsingular iff (A, Xb) is controllable. 

Proof. Assume first that X is nonsingular. Then 

rank( Xb, AXb, A2Xb,. . . ,A”-‘Xb) 

Since X is nonsingular and (A*, b) is controllable, it follows that (A, Xb) is 
controllable. 

Next, let (A, Xb) be controllable. Then 

n = rank(Xb, AXb, A2Xb,. . . , A”-‘Xb) 

Since (A*, b) is controllable, it follows that X is nonsingular. n 

LEMMA 2. Let A = (ai j) be a normulized lower Hessenberg matrix, i.e., 

aii+l = 1 for all i = 1,2 ,..., n,andaij=Owheneoerj~i+1.Zfx,,r2,...,x, 
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are the n successive columns of a matrix X satisfying (2.1), then 

(i) x1 can be chosen arbitrarily, 
(ii) x2 through x, satis& the recursive relations 

‘i+l = Axi - i aijxi, i = 1,2 ,...,n-1. (2.2) 
j=l 

Proof. The equation (2.1) is equivalent to the systems of equations 

Axi =x~+~+ i aiixj, i = 1,2,...,n - 1, (2.3) 
j=l 

and 

Ax, = anlxl + an2x2 + . . . + annx,. (2.4) 

The recursive relations (2.2) and (2.3) are the same. Also, substituting x2 
through x, successively from (2.3) in (2.4), it is easy to see that 

\k(A)x,=O, 

where ‘P(x) is the characteristic polynomial of A. In fact, it can be shown [4] 
that 

xi+l =‘I$(A)x,, 

where ‘Pi(x) is the characteristic polynomial of the submatrix of A consisting 
of the first i rows and i columns and ‘k,(x) = q(x). Since by the Cayley- 
Hamilton theorem ‘k(A) = 0, x1 can be chosen arbitrarily. w 

REMARK. Since (AT, er) is controllable, by Lemma 1 we conclude that if 
A is a normalized lower Hessenberg matrix, then a solution of (2.1) is 
nonsingular iff (A, Xe, = xi) is controllable. 
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LEMMA 3. Let M = (mij) be a rwnnulized lower Hessenberg matrix, and 
c#+( x) be the characteristic polynomial of the s&m&ix of M consisting of the 
last i rows and i columns. Then 

@k+N =(A - m,-k,,-khO) - mn-k+l,n-k+k-l(U 

- mn-k+2,n-k+k-2(~) - * *. - mn,n-k+oO(A)T 

where +“(A) = 1. 

Proof. Similar to the one given in Wilkinson [13, p. 4111. n 

III. AN INERTIA THEOREM 

The inertia of a matrix A is defined to be an integer triple In(A) = 
(q(A), v(A), 6(A)), where r(A), v(A), and 6(A) are respectively the num- 
bers of eigenvalues of A with positive, negative, and zero real parts. A matrix 
A of order n is called a stable matrix iff In(A) = (0, n,O). A direct method for 
computing the inertia of a normalized Hessenberg matrix appears in [3]. A 
similar method using a generalized Hankel matrix of Markov parameters is 
presented in this paper. The proposed method is as efficient as the method in 
[3]. The following inertia theorem will be needed later. 

THEOREM 1 (Carlson and Schneider [5]). Let A be an n X n complex 
matrix with S(A) = 0, and let X be a nonsingular hermitian matrix such that 
XA + A*X is positive semidejinite. Then In(A) = In(X). 

IV. CONSTRUCTIONS OF GENERALIZED HANKEL MATRICES OF 
MARKOV PARAMETERS 

Let A be a matrix of order m, and B = (bij) be a normalized lower 
Hessenberg matrix of order n (n < m). 

Step 1. Choose column vectors b and c such that (A, b) and (AT, c) are 
controllable. 
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Step 2. Construct a matrix V having the columns ‘~)i, vs, . . . , q, defined by 

v,=b, 

un-l= -(A+ b,,Z)v,, 

q-z = - (A + b,m 1,n-1Z)v,-l -bn,.-lu,, 

vl= -(A+b,,Z)v,-b,,v,-... -bn2v,. 

Step 3. Compute 

r = Av, + b,,u, + b,,v, + . * . + bnlu,. (4.0) 

Step 4. Construct HAB having the following properties: 

AHAB = HABAT, (4.1) 

HABc = r. (4.2) 

Different choices of the vectors b and c will yield different matrices HA*. 
These matrices will be called generalized Hankel matrices of Markov parame- 
ters (see the discussion for a special case). Since A is nonderogatory [the 
existence of the vector b such that (A, b) is controllable implies that A is 
nonderogatory], by a result of Taussky and Zassenhaus [12] the matrices H,, 
are symmetric. In particular, if A is a normalized or unreduced lower 
Hessenberg matrix, then one member of the family HAB can be obtained by 
choosing the first column as ri [since (AT, ei ) is controllable and H,,e, = r ] 
and generating the remaining columns using the recursive relations (2.2) of 
Lemma 2. 

A SPECIAL CASE. Let 

‘0 1 0 0 *.. 0 

0 0 1 0 *.. 0 
A= . . . . . . . . . . . . . . . ...*.. 

0 0 0 0 ... 1 
a, a2 us a4 ‘.. a, 

(4.3) 
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Land 

lo 1 0 0 **. 0 0 
0 0 1 0 ... 0 0 

\ 
B= b . . . . d...b . . . . d.“l: *........ d . . . . . . . . . . i . . . . 

\bl -b, b, - b4 .‘. (-1)“-2b,_l (-l)“-lb,, 

be the companion matrices of two polynomials f(x) and g(x) respectively. 
Choose . 

b= 

I \ 

and c=e,= 

,(-1)“~‘s-1 

‘1’ 
0 
* . 

,O, 

Then HAB is the Hankel matrix of Markov parameters associated with 

f(x)=det(xZ-A) and g(x)=(-l)“det(xZ+B). 

Proof. First, note that (A, b) and (AT, c) are controllable. In this special 
case, it is an easy computation to see that 

v~_~= - A+( -1) [ “-‘b,,Z]b 

I 0 ’ 
0 

=( -1)” ; , 

S-1 

SO 

q2= -Au,_,+( -1)n-2b,_lu, 

0 \ 
0 

q-l)“-’ ,i, . 

SO 

Sl 1 
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In general, 
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ThUS 

S-1 

so 
vl= Sl 

s n-21 

and 

1 0 
0 

r = blv, + Au, = b, 

,(-l)[ilr, 
srl 
Sl 

= s2 
= Hfg% 

\%-l/ 

/ so 
81 

+ 82 

\ UISml + a2so + . . . + ans,,_2 

(using the recursive relations between the coefficients of Hfg; see [8, p. 2141). 
Since a Hankel matrix of Markov parameters Hfg satisfies HfgA = ATHfg 

[7], where A is the companion matrix of f(x) defined by (4.3), and from 
Lemma 2 it follows that a solution of (2.1) is uniquely determined by its first 
column, the matrix HAB in this special case must be the Hankel matrix Hfg. n 
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A. Determination of Relative Primeness of Two Matrices 
Let A, B, HA*, and r be the same as in Section IV. 

THEOREM 2. The following are equivalent: 

(i) (A, r) is controllable; 

(ii) HAB is nonsingular; and 
(iii) A and - B are relatively prime (i.e., A and - B do not have an 

eigenvalue in common). 

Proof. The equivalence of (i) and (ii) follows from Lemma 1. To prove 
the equivalence of (i) and (iii), we proceed as follows: We first prove that 

V n-i=+i( -A)‘,, 

where &(x) is the characteristic polynomial of the submatrix of B consisting 
of the last i rows and i columns. The proof is by induction. 

The relation is obvious for i = 1 and i = 2. For i = 1, 

q-1’ -(A+bJ)v, 

= +,( - Ah,. 

For i = 2, 

v”_a = (A+ b,- l,.-lZ>(A+b,.Z)v,-b,,,--,v, 

=%d -A)+ 

Assume that the relation is true for all values of i = 1 2 9 ,***, k; then 

0,-k-l = - CA + bn-k,n-kz)un-k - bn-k+l,n-k’-‘-k+l- . *. - bn+$+, 

= -CA+ bn-k,n-kz)+k( -Ah -bn-k+l,n-&-I( - A)v, 

- . . . - bn,.-A 

= +k+l( - Ah (by Lemma 3). 
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The induction is now complete. 
Thus 

r = Au, + b,,u, + b,,w2 + . . . + bnlun 

+ ... +(A+ b,,I)$~m,( - A)u, 

= $,,( - Ah (by Lemma 3). 

SO 

rank(r,Ar,A2r ,..., A”-%) 

= rank[+,,( - A)(D,,, AU,, A20,,,...,A”-‘~n)] 

[observe that $“( - A), being a polynomial in A, commutes with A and its 
various powers]. 

Since (A, u, = b) is controllable, it follows that (A, r) is controllable iff 
+n( - A) is nonsingular. The nonsingularity of &( - A) again implies that A 
and - B do not have an eigenvalue in common, because the eigenvalues of 
$I”,( - A) are ( - l)“IIy=,(xi + pj), i = l,..., n, where h,, A, ,..., h, are the 
eigenvalues of A, and pr, pz,. . . , p,, are the eigenvalues of B. W 

Theorem 2 suggests two tests of relative primeness of A and - B: 

Test 1. Compute the vector r given by (4.0) and then test the controlla- 
bility of the pair (A, r). 

Test 2. Form the symmetric matrix HAB given by (4.1) and (4.2) and test 
for its nonsingularity. 

Since our algorithm for constructing solutions of (2.1) is restricted to 
Hessenberg matrices, implementation of Test 2 requires that both matrices A 
and B be decomposed into lower Hessenberg forms, whereas to implement 
test 1, only the matrix B needs to be so decomposed. Furthermore, construc- 
tion of HAB requires computation of r anyway. Thus Test 1 is more direct 
and efficient than Test 2. 
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In Test 2, if either A or B or both have zeros on their superdiagonals, they 
can always be partitioned in the form 

/ 
11 0 0 *.. 

A= A,, A, 0 ‘.. 
. . . . . . . . . . . . . . . . . * 
A 

Pl 
A,e A,, ... 

B=~:I ] 

B,, 0 ... 0 

B B,, . . . 0 , 
. . . . . . . . . . . . . 8 . . 

B ql Bq2 ... Bqq 

0 \ 
O , . . . 

A 
PP ! 

(5.1) 

(5.2) 

where Aii (i = l,..., p) and Bij (j = l,..., q) are unreduced lower Hessen- 
berg matrices. Each matrix Aii and Bjj are then further reduced to normal- 
ized forms, and the test is applied successively to the pairs (A,,, Bll),..., 

(A,,,B,,);(A,,,B,,),..., (A,, B,,);. . . ; (A,,, B,,MA,,, 4x4,. -. &,,J&J 
In Test 1, if B has one or more zeros on its superdiagonal, it is then 

partitioned in the form (5.1) and the test is applied to (A, B,,), 
(A, &),...(A, I&). 

B. Computation of the Znertia and Stability of a Matrix 
Let A be a normalized lower Hessenberg matrix. 

Step 1. Construct HAA choosing c = e,. 
Step 2. Form 

S = VH,,. 

Then 

THEOREM 3. Whenever S is nonsingular, it is symmetric. Furthermore, 
6(A) = 0 and In(A) = In(S). In particular, A is stable iff S is negative 
definite. 

Proof. 

AS + SAT = AVH,, + VHAAAT 

= AVH,, + VAH,, 

= (Av+vA)H,,. (5.3) 
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It readily follows from the construction procedure that AV + VA is a matrix 
whose first column is r and all other columns are zero. So, from (5.3), we get 

AS + SAT = reTHAA = HAAeleFHAA = N. 

The matrix N is clearly symmetric and positive semidefinite. The nonsingular- 
ity of S implies that HAA is nonsingular, and by Theorem 2, we then have that 
A and - A do not have an eigenvalue in common. This implies that 

(1) S is an unique solution of (5.4) and therefore symmetric; and 
(2) 6(A) = 0. 

Application of the inertia theorem of Carlson and Schneider to (5.4) yields the 
desired result. n 

REMARKS. 

(i) For different choices of the vector b, the above procedure will yield 
different HAA, thus yielding a family of symmetric matrices SAA, the inertia of 
each of which will determine the inertia of A. 

(ii) After decomposition into lower Hessenberg form, if there are one or 
more zero elements on the superdiagonal, then A should be partitioned in the 
form (5.1), each Aii should be reduced further to normalized form, and the 
above procedure should be applied successively to each A i i, i = 1, . . . , p. 

A special case is the derivation of the Routh-Hurwitz-Markov theorem 
(Theorem 4 in [7]). In case A is the companion matrix defined by (4.3) 
associated with a polynomial f(x)= X” - a,x”-’ -. . . - a,x - a,, and b = 
v,, is chosen to be 

where 

f(-) ____,+s,+s,+ . ..) 
f(x) x x2 
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then H is the Hankel matrix of Markov parameters associated with R(x) = 

f( - x)/f(x), and th e matrix S can be easily recognized as the matrix H,‘,, 
defined by (13) in [7]. Therefore, Theorem 4 of [7] follows as a special case of 
our theorem and we have a very short and simple proof of this theorem. 

CONJECTURE. Since the choice of B = A in the construction procedure of 
HAB has produced an algorithm for computing the inertia of A, it is reason- 
able to conjecture that other suitable choices of B (mainly as functions of A) 
might lead to procedures for eigenvalue separation of A in other regions of the 
complex plane. For example, in case A is invertible, the choice of B = A - ’ 
should give a constructive procedure for solving the unit circle problem (the 
problem of counting the numbers of eigenvalues inside and outside the unit 
circle). The recent works of Gutman and Jury [lo] and of Jury and Ahn [ 111 
are relevant to a solution of this conjecture and might very well be the 
hunting grounds for a way to choose B for a specified region. 

C. Constructions of Matrices C Such That A + C Has a Desired Spectrum 
Given a matrix A of order n and a set of n numbers P, here we consider 

the problem of finding a matrix C such that A + C has the spectrum Q. This 
problem is very closely related to a well-known important problem known as 
the pole assignment problem in mathematical control theory. We present a 
solution of the problem using the inverse of a generalized Hankel matrix, 
whenever the inverse exists. 

Let A be a normalized lower Hessenberg matrix. 

Step 1. Choose a matrix B, any normalized lower Hessenberg matrix 
such that the spectrum of - B is the set Q; in particular, B can be chosen as 
an upper triangular matrix with its diagonal as the set - 52, l’s along the 
superdiagonal, and the rest of the entries zeros. 

Step 2. Form HAB, and assume that it is nonsingular. 
Step 3. Compute S = H;jV. 
Step4. FormF=RS-‘,whereR=AV+VBandC=HiiF. 

Then 

THEOREM 4. AT - C has the spectrum 52. 

Proof. First of all, we prove that S is nonsingular. Since S = Hi,‘V, all we 
have to show then is that V is nonsingular. But the controllability of (A, b) 
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implies this. For, the equations in Step 2 of Section IV can be written as 

on-l= - Au, - b,,,u, = - AU,, + t,,v,, , 

V .-z=(A+b,-,,.-,I)tA+b,,Z)V,-b,,.-,V, 

=A2V,+(b,-l,.-,+b,,)AV,+(b,-l..-lb,,-b,,,-l)V, 

= A%, + t,Au, + t,,v,, , 

v1 = ( - 1) “-‘A”-‘v,+ ... +t2nAun++ln~n. 

Thus, we have 

( V*,~,_1,..., ~~,~~)=(25,,Au,,A~u~,...,A”-~u~) 

11 t12 t,, * * * t In 
0 - 1 t23 . . * t 2n 

x0 0 1 ... t 3n 

. . . . . . . . . . . . . . . . . . . . . . 

\o 0 ... 0 (-1)” 
-1 

Since (A, b = vn) is controllable, it follows that V is nonsingular. 
Next, 

AT!3 + SB = ATH,-;V + H,-;VB 

= H,-;AV + H,-;VB 

( since AHAB = HABAT, and HAB is nonsingular) 

= Hi;(AV+VB)= H,-;R. 

Then, 

AT-C=AT-H~B1F=A*-H~~RS-’ 

=AT-(ArS+SB)S-’ 

= -SBS-‘. 

The theorem is now proved. 



GENERALIZED HANKEL MATRICES 153 

REMARK. If HAB turns out to be singular, by Theorem 2 we immediately 
conclude that there is an eigenvalue of A in Q. In fact, it is easy to see that if 
the nullity of HAB is p, then P will contain exactly p eigenvalues of A. 
Therefore, in practice, the above procedure for constructing a matrix C such 

that AT - C has the desired spectrum can always be made to work by 
choosing a suitable shift. 

APPENDIX. SYSTEM THEORETIC INTERPRETATIONS 
OF SOME RESULTS 

Let p(x) and 9(x) be two relatively prime polynomials with real coeffi- 
cients, the degree of 9(x) being greater than that of p(x). Then the triple 
(A, b, c) is a minimal realization of p( x)/9( x) if 

w = 4(x) 
PC’) = +.I - A) -lb. 

A well-known result in linear systems theory on minimal realization is: 

A triple (A, b, c) is a minimal realization of R(x) iff (A, b) is controllable 
and (cT, A) is observable (that is, (AT, c) is controllable). 

Theorem 2 in this paper asserts that the generalized Hankel matrix HAB is 
nonsingular iff (A, r), where r is defined by (4.0), is controllable. Also, HAB is 
constructed under the assumption that (c’, A) is observable. Thus, it follows 
immediately from the above result that: 

THEOREM 5. (A, r, c) is a minimal realization of cT(xZ - A)-% iff HAB 
is nonsingular. 

Next, we assume that (A, r, c) is a minimal realization of cT(rZ - A))$. 
Then, since (4.1) and (4.2) hold, it follows from a result of B. D. 0. Anderson 
[l, Theorem 31 that: 

THEOREM 6. The signature of HAB is the Cauchy index of cT(xZ - A)-%. 

REMAFIK. Theorem 6 was pointed out to the author by an anonymous 
referee, who also remarked that this result could possibly be used to clarify 
some of other conclusions of the paper. That is true. However, a better system 
theoretic interpretation of the vector r would be needed to do this. 
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