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ABSTRACT

A new criterion for closed-loop stability and the design of linear multivariable control systems is developed
using the inverse-Nyquist-array method and an Ostrowski theorem. Estimates of the gain margins in each
loop and bounds on the stable-gain space are obtained using the bands of Ostrowski circles superimposed on the
diagonal elements of the inverse Nyquist a r ray . The manner of application of this new approach is similar to
the way in which the bands of Gershgorin circles are used. The new criterion allows the diagonal dominance
requirements to be relaxed in one row or in one column of the inverse Nyquist array at each point on the D contour,
while still permitting the origin encirclements of the determinant of the inverse-transfer-function matrix to be
determined from those of its diagonal elements. As a consequence the estimated stability region is larger than
that obtained when strict dominance requirements are imposed.

LIST OF PRINCIPAL SYMBOLS

s = Laplace-transform variable
io = frequency variable
Q(s) = open-loop transfer-function matrix (t.f.m.)
G(s) = plant t.f.m.
K(s) = controller t.f.m.
H(s) = closed-loop t.f.m.
F(s) = transducer t.f.m.
m = number of plant inputs and outputs
9(s) , G(s), K(s), H(s) = inverses of Q(s), G(s), K(s), and H(s)
hjj(s) = ij th element of H(s)
k^ = controller gain in ith control loop
det | H (s) | = determinant of H (s)
A(s) = characterist ic polynomial

1 INTRODUCTION

The design of linear multivariable control systems can often
be simplified if the plant interaction is reduced to a level
whereby the important closed-loop system properties can be
deduced from the properties of the individual control loops.
Usually the most important requisite of control-system
design is closed-loop stability. In theory, the designer could
determine the region defined by all combinations of individual
loop gains for which the closed-loop system is asymptoti-
cally stable. Although it is often impracticable to determine
it precisely, let us call this region the stable-gain space.

When significant interaction is present, it is often difficult,
and may sometimes be impossible, to choose control loops
and single-loop gains so that the closed-loop system operates
satisfactorily with all loops closed. In these circumstances,
the inverse-Nyquist-array (i.n.a.) method1 and the concept
of diagonal dominance1 provide a criterion for designing
matrix compensation that may reduce interaction to a level
where the control-system design can be completed with
single-loop design concepts.1"4
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In this paper, a less stringent requirement than dominance is
developed using a theorem of Ostrowski.5 When the pertinent
conditions are satisfied, bands of Ostowski circles, which
have been used elsewhere4 ' 6 for another purpose, are used
to assess stability in a way similar to that used with the
bands of Gershgorin c i r c l e s 1 (i.e. diagonal dominance).
The estimated-gain margins exceed those obtained with
diagonal dominance, and hence they enlarge the estimate of
the stable-gain space.

2 MULTIVARIABLE FEEDBACK CONTROL SYSTEMS

Consider the feedback control system of Fig. 1. A convenient
notation is to denote the open-loop transfer-function matrix
(t.f.m.) by

Q(s) = G(s)K(s) (1)

where s is the Laplace-transform variable and K(s) is a
matrix controller. Similarly the closed-loop t.f.m. can be
denoted by

H(s) = {Im + Q(s)F(s)}"1Q(s) (2)

where I m is the m x m identity matrix and F(s) is a matrix
of transducer transfer functions and is usually a diagonal
matrix whose diagonal elements are equal to 1 or to 0. When
F(s) = I m , t h i s indicates that all feedback loops are closed.

The inverse t.f.m. of the closed-loop system is given by

K-Hs) = H(s) = F(s) + K(s)G(s) = {hjj(s)} (3)

The circumflex over a matrix signifies the inverse of that
matrix and the elements of the inverse matrix are denoted
in the same way.

In the i.n.a. method, the relationship

m

3 = 1

(4)

is of particular interest . When 0j(s) < 1 for all s on the
familiar Nyquist D contour1 and for i = 1, 2, . . . , m, then
H(s) is said to be row diagonally dominant.

3 DETERMINATION OF ORIGIN ENCIRCLEMENTS OI
DET|H(s)| USING OSTROWKI'S THEOREM

Consider the inverse Nyquist diagram of^h^(joj) and its band
of Gershgorin circles given in Fig. 2. If H(s) is row diagonal-
ly dominant, then these diagrams can be used to assess
closed-loop stabili ty.1"4 If Q(s) is open-loop stable, an
estimate of the stable-gain space can be deduced in the
form1* 4

0 umax = 1, 2, m (5)

where kj represents the controller gain in the ith control
loop and k j m a x is determined as outlined elsewhere.4
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An alternative approach can be developed from a result of
Ostrowski which is discussed by Marcus and Mine.5 Now let
s be a point on the Nyquist D contour. In our terminology,
if

Ihi±(s)I |hjj(s)| >( £ | h i k ( s ) |
k

i,j = 1, 2, . . . , m

p=l
p*j

Ihjp(s) |

(6)

Fig. 2
Inverse Nyquist diagram of h
Gershgorin circles

ivilh its band of

then det|H(s)| * 0. Now let 0j(s) be as defined in eqn.4,but
no longer restrict its value to be less than 1, which means
that dominance no longer must be satisfied. Further define

0i(s) = max 0j(s) i = l, 2, . . . , m

Assuming that neither |h}i(s)| nor lhjj(s)| are zero, then
expr. 6 can be restated as

(7)

which is a sufficient condition for the nonsingularity of
det|H(s)| at that particular point on the Nyquist D contour.
If expr. 7 is satisfied for each row of H(s), at all points on
the Nyquist D contour, then we assert that the encirclements1

of det|H(s)| are equal to the algebraic sum of the encircle-
ments of all the diagonal elements of H(s). The proof for
this assertion is based on the same reasoning used by
Rosenbrock in proving a similar result for the bands of
Gershgorin circles.3 Of^course, the same result can be ap-
plied to the columns of H(s). Once the encirclements of
det|H(s)| are known, closed-loop stability is determined by
the encirclement criterion.2

If H(s) is row diagonally dominant, then expr. 7 is automat-
ically satisfied; however the converse is not generally true.
As a consequence, the region containing all the values of
single-loop gains satisfying expr. 7 is larger than that ob-
tained with diagonal dominance as given in expr. 5. The

Fig. 3
Inverse Nyquist diagram of h
circles

with its band of Ostrowski

estimated gain margin associated with a particular loop will
also be larger than that determined by k i m a x in expr. 5.
The manner in which both bands of circles are used is very
similar; however there is an important difference between
the two. First consider the case where the Gershgorin circles
are used and a stable-gain space such as that defined in
expr. 5 is obtained. When all loop gains lie within the region
defined by expr. 5, estimated-gain margins for each loop
can be calculated using the bands of Gershgorin circles, and
hence these margins are independent of the gains in the
remaining loops. Now suppose that the Ostrowski condition
(expr. 7) is satisfied for all s on the D contour. In this case,
the value of (pi which helps increase the estimated gain
margin in the ith loop depends on the remaining values of 9.
This means that the estimated gain margin for each loop
depends on the gains in all the remaining loops.

The substance of these results is that an estimate of the
stable gain space can be determined with the bands of
Ostrowski circles. Here the requirement is that the plot of
each diagonal element of H(ju>) with its band of Ostrowski
circles should not enclose the critical point. This provides
a better estimate of the stable (and unstable) gain, space than
obtained previously.4 Of course there is still a region of
uncertainty; however, its size is smaller.

When the bands of Ostrowski circles are used, expr. 7 permits
one 0j to be greater than 1 at any one frequency. As the
phase crossover frequencies of each hji(ja>) will usually be
different, this may permit the 6i of two or more rows (or
columns) of H(ju>) to exceed 1 at their respective phase
crossover frequencies.

4.1 Application of Ostrowski bands

4 DETERMINATION OF STABILITY BOUNDARIES
USING THE OSTROWSKI BANDS

To illustrate the engineering significance of this result,
suppose that H(s) is row diagonally dominant and that the
closed-loop system is asymptotically stable by the conditions
of the multivariable encirclement theorem.1"3 Let Fig. 2
represent the plot of hjj(jo)) and its band of Gershgorin
circles. Further suppose that Fig. 3 represents the plot of
hjj(jw) upon which is centred a band of circles of radius
0i(jco)0i(ja>) | hij(joj) I. By convention these circles are known
as the band of Ostrowski circles. If the gain in the ith loop
is increased while satisfying l/$j > 0j > 1 for all s on the
D contour, it follows that

1 > j = 1, 2, . . ., m (8)

is satisfied for all s on the D contour and hence (pi6\ is less
than 1 the remaining m— 1 rows of H(ju>). This argument
means that an estimate of the maximum permissible gain in
the ith loop can be determined, when the gains in the remain-
ing loops are fixed at set values, by calculating the gain
margin associated with the band of Ostrowski circles super-
imposed on the inverse Nyquist plot of h^(jw).
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4.1.1 Example 1
As an example consider an open-loop stable, 2 x 2 multi-
variable system for which the inverse Nyquist diagrams of
h11(jcu) and h22(jw) and the bands of Gershgorin circles are
as shown in^Fig.4. The phase crossover frequencies for
h1;L(ju)) and h22(jo)) are to6 and co7, respectively. Now suppose
that the gains in each loop are such that the critical points
for the inverse Nyquist diagrams of h1]L(ju)) and h22(jw) both
lie on the bands of Gershgorin circles as indicated in Fig. 4.
As the bands of Ostrowski circles represented by the dashed
lines in Fig. 4 do not enclose the critical points, the system
remains stable and a conservative estimate of the gain
margin in each loop can be calculated with the gain in the
other loop fixed. Furthermore stability may still be assured
when both critical points lie within the bands of Gershgorin
circles, provided neither critical point lies within the cor-
responding band of Ostrowski circles. In the general case,
whenever a gain in one loop is changed, the radii of the
circles in all the remaining bands of Ostrowski circles must
be recalculated. If both loop gains were increased in the
example given in Fig. 4, then both bands of Ostrowski circles
must be reconstructed before checking for the enclosure of
the critical point.
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4.1.2 Example 2

The Ostrowski result can also provide useful information
when neither Q(s) nor H(s) can be made diagonally dominant.
For example,.consider the t.f.m.

Fig. 4
Inverse Nyquist diagrams of diagonal elements of H(ju>) for
a 2 x 2 system with Gershgorin circles drawn at the indicated
frequencies and Ostrowski circles shown near phase cross-
Over frequencies

Another way of approaching the stability boundary determin-
ation is suggested in a forthcoming book.10 When dominance
is satisfied in all the rows of H(s) and if the gain in one loop
is varied, the designer has essentially a single-loop situation
and he may treat the Ostrowski band for that loop as though it
were a single-loop inverse Nyquist plot if the band is nar-
row enough.10

(ii) The extent to which the Ostrowski bands improve the
estimated stable-gain space obtained with the bands of
Gershgorin circles depends on the particular system. In
Fig. 4, the gain in the first loop could be increased roughly
9%, while holding the gain in the second loop constant, before
the critical point touches the band of Ostrowski circles
associated with h^Cju)). In other systems, the improvements
could be significantly larger or smaller. In some cases, the
Ostrowski bands can be used when diagonal dominance can-
not be satisfied.

(iii) Experience has shown11 that these result are best used
in conjunction with interactive computer-aided-design and
graphic display facilities.12 In these circumstances the
designer can display and redisplay the i.n.a. diagrams and
the appropriate bands of circles until a satisfactory con-
troller has been designed.

As the bands of Ostrowski circles depend on the values of
9 in the other rows of H(jw), altering the gain in one loop
necessitates the recalculation of the Ostrowski bands before
looking at another loop. These calculations can be performed
automatically by a computer or they can also be performed
manually. In the latter case, the designer would have to
replot the Ostrowski bands for each change in the gain set-
tings.

(iv) The estimate of the stable-gain space determined from
the Gershgorin bands assumes the very simple form in expr.
5. Except in trivial cases, the estimate of the stable-gain
space using the Ostrowski result will require the calculation
of several points on its boundary. This is a straightforward
task for a 2 x 2 system and the graphical result is easily
presented. For larger systems, i.e. m » 3, the calculations
could be performed; however, graphical presentation would
involve the representation of multidimensional surfaces.
When m > 3, it may be more practical to think in terms of the
grain margin for one or several sets of gains as required.

G(s) =
1Ooo \0-01496(s

A(s) (0-0852(s + l'44)(s

100)
100)

95-15(s
124 -0(s

l;898)(s +10)
2-037)(s + 10)

(9)

A(s) = (s2 + 3-225s + 2-525)(s + 10)(s + 100)

which is the model of a 2-shaft gas-turbine jet engine.7'8 The
i.nva. of G(jwj is not diagonally dominant nor is the i.n.a.
of Q(jco) = KG(ju)) with the matrix compensation

K = (10)

In fact, it has been suggested elsewhere9 that it is impossible
to make both rows of Q(jco) = KG(ju>) satisfy the dominance
requirements when K is restricted to be a constant matrix.
This means that the origin encirclements1 of det|Q(s)| can-
not be deduced by just using the diagonal elements of the
array Q(JOJ) and the bands of Gershgorin circles; however, the
origin encirclements of det|Q(s)| can be deduced using the
array Q(jco) and the bands of Ostrowski circles. The control-
system design can be completed on this basis with the matrix
compensation given in eqn. 10, and this agrees with Mueller's
suggestion that the control loops should be interchanged.7

DISCUSSION

(i) When first introduced by Rosenbrock,4 the plots of
hii(jw) with their bands of Ostrowski circles were used to
determine bounds on the location of the diagonal elements
of the Nyquist array. As shown above, the bands of Ostrowski
circles can also be used for the assessment of stability in a
similar manner to the way that the bands of Gershgorin
circles are used.4 The stability information so obtained en-
larges the estimates of the stable (and unstable) gain space.
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6 CONCLUSIONS

The Ostrowski bands of circles can be used in a similar way
as the Gershgorin bands of circles to provide information
about closed-loop-system properties of multivariable con-
trol systems in terms of the gains in the individual control
loops. The estimate of the stable-gain^space obtained with
the Ostrowski bands is usually larger than that obtained with
Gershgorin bands of circles. As the estimates of gain mar-
gins are still conservative, these results are very useful
for design purposes.
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EFFECTS OF FLEXIBILITY ON A MOMENTUM-
STABILISED COMMUNICATION- SATELLITE ATTITUDE-
CONTROL SYSTEM

In their paper [Proc. IEE, 120, (5), pp. 613-619], Gething
et al. studied the effects of flexibility on momentum-
stabilised satellite attitude-control systems. Their method
of analysis, Likin's hybrid co-ordinates method, is suitable
for structually complex appendages; however, many of the
current and proposed solar arrays have a simplicity of
construction which suggests that, under rather bland assump-
tions, the continuous equations for simple beams and sheets
may prove tractable. For example, flexible arrays have
recently been modelledA as a spring-dashpot system mounted
on a rigid massless rod attached to the main body of the
satellite via a coil spring to simulate torsional effects.
Contrary to the authors' claim (Section 1), other investiga-
tors have studied the effects of flexibility on the attitude-
control systems of spin-stabilised satellites with flexible
and comparatively rigid appendages, and also on flywheel-
stabilised satellites8 and vehicles having long flexible
appendages stabilised by gravity gradient.0 Some general
appraisals of the effects of structural flexibility on control-
system performance have been madeD using existing data,
from which possible interaction problems are more readily
identified and dealt with. This avoids deficiences in struc-
tural-dynamic analysis and in the knowledge of the flight
environment and structural data.

Gething et al. (Section 3) consider only the lowest-modal
frequency of the flexible appendage. However, it has been
shown that, when using a linear feedback law, if the flexure
modal frequencies are well separated they are little affected
by the control gains associated with the rigid mode, and are
uncoupled from each other owing to a resonance pheno-
menon of each mode at its own loop frequency. If, in addition
to rate and proportional feedback, there are lags and leads,
associated with sensors and actuators in the control loop,
and if their time constants are small compared with the
period of the rigid mode loop, then they will have little effect
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on /off switch
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K3
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command
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spacecraft dynamics
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Fig. A

Generalised single-axis gyroless attitude controller
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upon it. However, for higher modes a critical frequency is
reached where positive feedback is obtained and the control
increases structural deflections rather than retarding them,
leading to instability of an otherwise stable mode.

Section 1 considers the effects of sensor dynamics and signal
noise as a secondary effect in the flexibility problem. How-
ever,I have shownF that, for the pseudorate pulse-frequency
controller used, random external disturbing torques and
sensor noise cause considerable variations in the limit-
cycle behaviour of the attitude- control system; for large-
variance noise, either a complete removal of limit cycling
with a strong probability of instability occurs, or a condition
of limit-cycle annuli is reached which prevents the con-
troller from reaching a condition of stable equilibrium. This
method,F called the stochastic describing function (a
generalisation of the ordinary describing function), is demon-
strated for the pseudorate satellite-attitude controller shown
in Fig. A. An illustration of the effects of Gaussian-distri-
buted noise on the self-oscillatory modes of this impulse
attitude controller is shown in the Nyquist plot of Fig. B,
where

G(p)H(p) =
2{1 - exp (-p)}

P2(P + 1)

represents the linear elements of Fig. 1, and N is the sto-
chastic describing function of the on-off switch with D = 1,
Ax = 0*25 and A2 = 0-125. From Fig. B it can be seen
that, as the sensor noise etc. variances increase, a limit-
cycle annuli condition is reached, with a deterioration in
stability. Thus noise is comparable with flexibility in the
stability of pulse-controlled attitude controllers. This is not
an entirely surprising result, since, at best, flexibility co-
efficients are only reasonable approximations (as in the
Apollo control service module) and are greatly affected by
random environmental factors such as solar radiation, and
the two problems of flexure and noise can be considered as
one. Thus the conclusions of Section 5 of utilising onboard
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