Chapter 5

The inverseNyquist array design method

Professor N. MUNRO

Synopsis

The general problem of the design of multivariable control
systems is considered and the stability of multivariable
feedback systems is examined. The concept of 'diagonal dom-
inance' is introduced, and Rosenbrock's Inverse Nygquist Array
Design Method is developed. Methods of achieving diagonal
dominance are discussed and illustrated in terms of practical
problems.

5.1 Introduction

The design of control systems for single-input single-out-
put plant using the classical frequency response methods of
Bode, Nyquist and Nichols is well established. However, the
frequency fesponse approach of Nyquist has been extended by
Rosenbrock™ to deal with multi~-input nmulti-output plant where
significant interaction is present.

During the last decade, interactive computing facilities
have developed rapidly and it is now possikle to communicate
with a digital computer in a variety of ways; e.g. graphic
display systems with cursors, joysticks, and light-pens.
Egually, the digital computer can present information to the
user in the form of graphs on a display terminal or as hard-
copy on a digital plotter. The classical frequency-response
methods for single-input single-output systems rely heavily
on graphical representations, and Rosenkrock's 'inverse'
Nyquist array' design method for multivariable systems suit-
ably exploits the graphical output capakilities of the modern
digital computer system. Also, the increased complexity of
multivariable systems has made it necessary to employ inter-
active computer-aided design facilities, such as those >
developed at the Control Systems Centre, UMIST, Manchester®,
in order to estaklish an effective dialogue with the user.
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5.2 The Multivariable Design Problem

In general, a multivariable control system will have m in-
puts and % outputs and the system can be described by an 2xm
transfer function matrix G(s). Since we are interested in

feedback control we almost always have ¢ = m.

The uncontrolled plant is assumed to ke described by an
rational transfer function matrix G(s) and we wish to
determine a controller matrix K(s) such that when we close
the feedback loops through the feedback matrix F, as in
Figure 5.1, the system is stable and has suitably fast res-

ponses.

The matrix F is assumed diagonal and independent of s,

i.e.

F = diag {f} (5.1)

F represents loop gains which will usually be implemented
in the forward path, but which it is convenient to move into
the return path. In addition, the design will have high
integrity if the system remains stable as the gain in each

loop is reduced.

. e(s) u(s)
r(s) | K(s) G(s) y(s)

F(s)

Fig. 5.1

Let us consider the controller matrix K(s) to consist of

the product of two matrices Kp(s) and Ky i.e.

K(s) = K_(s) K

b a (5.2)
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where K4 is a diagonal matrix independent of s; i.e.

Kd = diag {ki}, i=1,...,m (5.3)

Then the system of Figure 5.1 can be re-arranged as shown in
Figure 5.2 where the stability of the closed-loop system is
unaffected by the matrix Kd outside the loop. For conven-
ience, we rename the matrix KdF as F. All combinations
of gains and of open or closed-loops can now be obtained by
a suitable choice of the fi, and we shall want the system
to remain stable for all values of the fi from zero up to

their design values.

e ol Ky Kp(s) G(s) y

KgF

Fig. 5.2

When f1 = 0 the first loop is open, and all gains in the
first loop up to the design value fld can be achieved by
increasing f1

The elements fi of F = diag {fi} can be represented by
points in an m-dimensional space which can be called the gain
space. That part of the gain space in which fi >0, 1=
l,...,m corresponds to negative feedback in all loops, and
is the region of most practical interest. The point
{fl,fz,...,fm} belongs to the asymptotically stable region
in the gain space if and only if the system is asymptotically
stable with F = diag {fi}.

Let
Q(s) = G(s)K(s) (5.4)



86

then the closed-loop system transfer function matrix H(s)

is given by

1 1

H(s) = (I+Q(s)F) Q(s) = Q(s)(I+FQ(s)) (5.5)
Consider the open-loop system
1 2
s+1 s+3

Q(s) = 1 1 (5.6)
s+1 S+1

Then if f1 = 10 and f2 = 0, H(s) has all of its poles
in the open left~half plane and the system is asymptotically
stable. However, for fl = 10 and f2 = 10, the closed-
loop system H(s) 1is unstable, as shown in Figure 5.3

f2

10— unstable

asymptotically
stable

Fig. 5.3

This situation could have been predicted by examining the
McMillan form of Q(s) which is
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1
{s+1) (s+3) 0 }
M(s) = ’ (5.7)
0 (S—l)
(s¥1)

where the poles of the McMillan form are referred to as the
"poles of the system" and the zeros of the McMillan form are
referred to as the "zeros of the system". If any of the
"zeros" of Q(s) 1lie in the closed right~half plane, then

it will not be possible to set up m high gain control loops
around this system.

Consider now the gain space for the system described by

s-1 5s+1
(s+1)%  (s+1)?
Q(s) = (5.8)
-1 s-1
(s+1)%  (s+1)?
which is shown in Figure 5.4 . Now, up to a certain point,

increase of gain in one loop allows increase of gain in the
other loop without instability. The McMillan form of this
latter system Qf{s) is

1
_— 4]
(s+1)2
M(s) = (5.9)
0 s+2
s+1

which implies that, despite the non-minimum phase terms in
the diagonal elements of Q(s), no non-minimum phase behav-
iour will be obtained with the feedback loops closed. It is
also interesting to note that this system is stable with a
small amount of positive feedback. However, this is not a
high integrity system, since failure of any one loop may put
the system into an unstable region of operation.



88

fy
10}
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asymptotically
4L stable
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-4 -2 0 2 4 6 8 10 11
=2
A=
Fig. 5.4
5.3 Stability
r * e u z
K(s) 6(s) —~ L(s)
F(s)
Fig. 5.5

Consider the system shown in Figure 5.5, in which all mat-
rices are mxm; this last condition is easily relaxed (see
Reference 1, p. 131 ff). Let Q = LGK, and suppose that

G arises from the system matrix

TG(s) UG(s)

gls) = g (s) W, () (5.10)
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and similarly for K(s), L(s), F{(s). For generality, we do
not require any of these system matrices to have least order.

The equations of the closed-loop system can then be written

as
, -
Ty Ux 0 EK
- - L] -
\Y WK Im 0 e
. _
6 0 T, U, 0 O 0 O 0 Eg 0
0 0 -Vg W 0 -I 0 0 'o -u 0
] T —
0o 0 0 0o T U 0 O 0 el =10 (5.11)
0o 0 o0 0 -v. W 0 -I '0 -y 0
0o 0 06 0 0 0 T, U,"'O ip 0
- [ -
0 I, 0 0 0 0 -Vo W, '-I z 0
________________ RN I PR ——
0o ¢ 0 o 0 ¢ 0 I 'O -v -z

Here the matrix on the left-hand side of equation (5.11) is
a system matrix for the closed-loop system shown in Figure

5.5, which we can also write as

Tk Uy
o - (5.12)
H

-V, W

The closed-loop system poles are the zeros of [TH(S)[, and
Rosenbrock has shown1 that

|Tg(s)] = |I_+Q(s)F(s)||Ty (s)|[Tg(s)||Ty(s)]|Tp(s)]
(5.13)
As the zeros of {TL{{TGIITK[]TF{ are the open-loop poles,

we need only the following information to investigate stab-

ility,

(1) The rational function lIm+Q(s)F(s)I

(ii) The locations of any open-loop poles in the
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closed right half-plane (crhp).

Notice that this result holds whether or not the sulsystems
have least order. If we apply Cauchy's theorem, (ii) can be
further reduced: all we need is the number Py of open-

loop poles in the crhp.

From equation (5.5)
1 veF| = |a(s)|/{H(s)] (5.14)

The Nyquist criterion depends on encirclements of a critical
point ky the frequency response locus of the system to indi-
cate stability. Let D be the usual Nyquist stability con-
tour in the s-plane consisting of the imaginary axis from
-JR to +jR, together with a semi-circle of radius R in the
right half plane. The contour D is supposed large enough to
enclose all finite poles and zeros of |[Q(s)| and |[H(s)],

lying in the closed right half plane.

Let |Q(s)| map D into ror while |H(s)| maps D into
FH. As s goes once clockwise around D, let FQ encircle
the origin NQ times clockwise, and let Ty encircle the
origin N times clockwise. Then, if the open-loop system

H
characteristic polynomial has P, 2zeros in the closed right

half plane, the closed-loop system is asymptotically stable
if and only if
Ny - NQ = Pg (5.15)

This form of the stability theorem is directly analogous to
the form used with single-input single-output systems, but
is difficult to use since |H(s)| is a complicated function

of Q(s), namely

[H(s)| = [Q(s)|/|1+QF]| (5.16)
Equation (5.5),

H(s) = (I+0(s)F) 1o(s)

shows that the relationship between the open-loop system
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Q(s) and the closed-loop system H(s) is not simple. How-
ever, if Q_l(s) exists then
1

H (s) = F +Q " (s) (5.17)

which is simpler to deal with. Instead of H_l(s) and
07 l(s) we shall write H(s) = H '(s) and &(s) = 9 t(s).
Then, the ﬁii(s) are the diagonal elements of H '(s). 1In

general, h;,(s) # h;i(s), where h;i(s) is the inverse of
the diagonal element hii(s) of H(s).

We shall, in what follows, develop the required stability
theorems in terms of the inverse system matrices. Also, we
note that if K(s) has been chosen such that Q(s) =
G(s)K(s) 1is diagonal and if F 1is diagonal, then we have m
single loops. However, several objections to this approach
can be made. In particular, it is an unnecessary extreme.
Instead of diagonalising the system, we shall consider the

much looser criterion of diagonal dominance.

5.3.1 Diagonal dominance1

A rational mxm matrix é(s) is row diagonal dominant on D
if

- m -
|qii(s)l > ‘zl |qij(s)l {5.18a)
Jj#i
for i = 1,...,m and all s on D. C(Column diagonal domin-

ance is defined similarly by

la;; ()] > . |§ji(s)| (5.18b)

i

W e~

3
3

The dominance of a rational matrix Q(s) can be determined
by a simple graphical construction. Let éii(s) map D
into fi as in Figure 5.6 . This will look like an
inverse Nyquist plot, but does not represent anything dir-

ectly measurable on the physical system. For each s on D
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draw a circle of radius

a;(s) = . lqij(s)[ {5.19)

i

ST

J
3

centred on the appropriate point of éii(s), as in Figure
5.6 . Do the same for the other diagonal elements of Q(s).
If each of the bands so produced excludes the origin, for
i=1,...,m, then é(s) is row dominant on D. A similar
test for column dominance can be defined by using circles of

radius

lay; ()] (5.20)
1

' m
d;(s) = .Z
#i

J
3

Fig. 5.6

5.3.2 Further stability theorems

If Q(s) 1is row (or column) dominant on D, having on it

no zero of |Q(s)| and no pole of &ii(s), for i = 1,...,m,
then let &ii(s) map D into I; and [6(s)| map D into
FQ. If fi encircles the origin ﬁi times and fQ encir-

~

cles the origin NQ times, all encirclements being clock-
wise, then Rosenbrock1 has shown that
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m -~
NQ = z N. (5.21)

A proof of this result is given in the Appendix.

Let Q(s) and H(s) be dominant on D, let &ii(s) map
D into rqi and letA hii(s) Tap D into Fhi' Let these
encircle the origin Nqi and N,; times respectively. Then
with P, defined as in (5.15), the closed-loop system is
asymptotically stable if, and only if,

m m
izl Nyj ~ i£1 Nyy = P, (5.22)

This expression represents a generalised form of Nyquist's
stability criterion, applicable to multivariable systems
which are diagonal dominant.

"

m a
For |ol, Ny = - izl Noi (5.23)

and since we are considering inverse polar plots stability
is determined using

NH - NQ = = Py + P (5.24)

where Pe = 0 for closed-loop stability.

Hence, N.-N. = p (5.25)

replaces the relationship used with direct polar plots, given
by equation (5.15).

5.3.3 Graphical criteria for stability

If for each diagonal element &ii(s), the band swept out
by its circles does not include the origin or the critical
point (—fi(O), and if this is true for i =1,2,...,m,
then the generalised form of the inverse Nyquist stability

criterion, defined by (5.25), is satisfied. In general,
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the éii(s) do not represent anything directly measurable
. .3
on the system. However, using a theorem due to Ostrowski

-1
i

nl(s) = h;i(s) - £, (5.26)

1

is contained within the kand swept out by the circles cen-
tred on éii(s), and this remains true for all values of
gain fi in each other loop j between zero and fjd
Note that hzi(s) is the inverse transfer function seen
between input i and output i with all loops closed. The
transfer function hi(s) is that seen in the ith loop when
this is open, but the other loops are closed. It is this
transfer function for which we must design a single-loop
controller for the ith loop.

The theorems above tell us that as the gain in each other
loop changes as long as dominance is maintained in the other
loops, h;i(s) will also change but always remains inside
the ith Gershgorin band. The band within which hj' (s) lies
can be further narrowed. If Q and H are dominant, and if

d. (s)
¢,(s) = max NS TS (5.27)
j |fJ+qJJ (S) I
j#i

then h;l(s) lies within a band based on éii(s) and def-

ined by circles of radius

ri(S) = ¢i(s)di(s) (5.28)

Thus, once the closed-loop system gains have been chosen

such that stability is achieved in terms of the larger bands,
then a measure of the gain margin for each loop can be deter-
mined by drawing the smaller bands, using the 'shrinking
factors' ¢i(s) defined by (5.27), with circles of radius
ry. These narrower bands, known as Ostrowski bands, also
reduce the region of uncertainty as to the actual location

of the inverse transfer function h;i(s) for each loop.
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5.4 Design Technigue

Using the ideas developed in the previous section, the
frequency domain design method proposed by Rosenbrock con-
sists essentially of determing a matrix Kp(s) such that
the product [G(s)KP(s)]_1 is diagonal dominant. When this
condition has been achieved then the diagonal matrix Kq(s)
can be used to implement single-loop compensators as required
to meet the overall design specification. Since the design
is carried out using the inverse transfer function matrix
then we are essentially trying to determine an inverse pre-
compensator ﬁp(s) such that Q(s) = ﬁp(s)@(s) is diagonal
dominant. The method is well suited to interactive graph-
ical use of a computer.

One method of determining ﬁp(s) is to build up the re-
quired matrix out of elementary row operations using a
graphical display of all of the elements of Q(s) as a
guide. This approach has proven successful in practice and
has, in most cases considered to-date, resulted in Kp(s)
being a simple matrix of real constants which can be readily

realized.

Another approach which has proved useful is to choose
ﬁp = G(o), if |G(o)| is nonsingular. Here again ﬁp(s)
is a matrix of real constants which simply diagonalizes the

plant at zero frequency.

For example, Figure 5.7 shows the inverse Nyquist array
(INA) of an uncompensated system with 2 inputs and 2 outputs

)

Fig. 5.7
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An inspection of this diagram shows that element 1,2 is
larger than element 1,1 at the maximum frequency considered,
and similarly element 2,1 is very much larger than element
2,2 over a wide range of frequencies . Thus, the open-loop
system is not row diagonal dominant, nor is it column dia-
gonal domina?t. However, by choosing ﬁp = G{o) the result-
ing INA of Q(jw) is shown in Figure 5.8 with the Gershgorin
circles for row dominance superimposed. Both éll and &22
are made diagonal dominant with this simple operation. The
dominance of element &22 of this array can be further
improved by another simple row operation of the form

R = R, * aRy (5.29)

where o = 0.5, in this case.

Fig. 5.8

A further approach, which is perhaps more systematic than
those mentioned above, is to determine K as the 'best',
in a least-mean-squares sense, wholly real matrix which most
nearly diagonalizes the system 6 at some frequency s = jw,
(Rosenbrockl and Hawkins4). This choice of K can be con-
sidered as the best matrix of real constants wﬁich makes the
sum of the moduli of the off-diagonal elements in each row



of 6

diagonal element at some

as small as possible compared
frequency
of the two forms of this
following paragraphs.

s

97

with the modulus of the
Jw.

The development

latter approach is given in the

Consider the elements &jk in some row j of é(jw) =
KG(jw), i.e.
-~ m ~
a4y (3u) izl Kyy 9y (30) (5.30)
mo,
= izl kyg (@ 43850 (5.31)
Now choose ijl'ﬁjZ""’ﬁjm so that
T la, Gol?
q., (jw) (5.32)
k
k=1 3
k#3

is made as small as possible subject

to the constraint that

T o-2
I k5, = 1 (5.33)
i=p It
Using a Lagrange multiplier, we minimize
¢, = Ko (o, #+38., ) "+x| = k%,
3 ko1 li=p 9% ik ik ‘ jo1 J4
k#3 (5.34)
NI -1
= k. k. +Ail=- k
k=1l|1li=1 ji “ik is1 ji 1k i1 ji
k#3
(5.35)
and taking partial derivatives of ¢j with respect to ﬁjz
(i.e. the elements of the row vector ﬁj), we get, on
setting these equal to zero,
e¢. { }‘ [ Z ] ;
—?l~ k k - 2xk.
3 31 izl ]1 ik ig1 ji Bik je
oo (5.36)
= 0 for £ =1,2,...,m
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Now writing
(3,

Aj = {al2
m
= L (g ¥ BB (5.37)
k=1
k#3
a k. = (k. (5.38)
an j ( ]2)
the minimization becomes
AKY - AkY = 0 (5.39)
i3 3
m ~ ~ ~
since kzl lqjk(jw)l2 = ijjk§
k#3 .
= AR.KT
i3
= 2 (5.40)

Thus, the design problem becomes an eigenvalue/eigenvector
problem where the row vector ﬁj' which pseudodiagonalizes
row J of Q at some frequency jw, 1is the eigenvector of
the symmetric positive semi~definite (or definite) matrix Aj

corresponding to the smallest eigenvalue of Aj .

Figure 5.9 shows the INA of a 4-input 4-output system
over the frequency range 0 + 1 rad/sec. Although the Gersh-
gorin circles superimposed on the diagonal elements show
that the basic system is diagonal dominant, the size of
thése circles at the 1 rad/sec end of the frequency range
indicate that the interaction in the system may be unaccept-
able during transient changes. Using the pseudodiagonalisa-
tion algorithm described above, at a frequency of 0.9 rad/
sec in each row, a simple wholly real compensator K can
be determined which yields the INA shown in Figure 5.10 .
Here, we can see that the size of the Gershgorin discs has
in fact been considerably reduced over all of the bandwidth

of interest.
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However, in general, we may choose a different frequency
w for each row of k, and it is also possible to pseudo-
diagonalize each row of é at a weighted sum of frequencies.
The formulation of this latter problem again results in an
eigenvalue/eigenvector problem (see Rosenbrockl).

Although this form of pseudodiagonalization frequently
produces useful results, the constraint that the control
vector ﬁj should have unit norm does not prevent the dia-

gonal term é. from becoming very small, although the row

33
is diagonal dominant, or vanishing altogether.
So, if instead of the constraint given by (5.33), we sub-

stitute the alternative constraint that
3. . (G = 1 (5.41
layy (3 )
then a similar analysis leads to

Ak - aE.XT = 0 (5.42)
33 133

where Aj is as defined by equation (5.37) and Ej is the

symmetric positive semidefinite matrix

- (3)
Ej = {eig }

= [“ij“zj+sijszj] (5.43)

Equation (5.42) now represents a generalized eigenvalue pro-
blem, since Ej can be a singular matrix, and must be solved

using the appropriate numerical method.

5.5 Conclusions

The inverse Nyquist array method offers a systematic way
of achieving a number of simultaneous objectives, while still
leaving considerable freedom to the designer. It is easy to
learn and use, and has the virtues of all frequency response
methods, namely insensitivity to modelling errors including

nonlinearity, insensitivity to the order of the system, and
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visual insight. All the results for inverse plots apply with
suitable changes to direct Nyquist plots (see Reference 1,
pp. 174-179). We can also obtain multivariable generalisa-
tions of the circle theorem for systems with nonlinear, time-
dependent, sector-bounded gainsl’s. Not only do the Gersh-
gorin bands give a stability criterion; they also set bounds
on the transfer function hii(s) seen in the ith loop as the

gains in the other loops are varied.

) Several further ways of determining Kp(s) such that

Q(s) 1is diagonal dominant are the subject of current re-
search (see Leiningers). However, several industrial multi-
variable control problems have already been solved using this

design method7'8’9’10.
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APPENDIX

To prove the result given by equation (5.21), we note that
by (5.18a and b) and the conditions of the theorem there is
no pole of éii on D, i,j =1,2,...,m, nor is there any
zero of 4;4 on p, i=1,2,...,m, because D is a com-
pact set and 955 0 on D. goreover, by Gersh?orin’s
theorem, there is no zero of |Q] on D. ©Let Q(a,s) be

the matrix having

q. . (s)

qii(u’S) ii

(5.44)

qj 4 (a,s) aqij(s). j#£i

where éii(s), éij(S) are the elements of Q(s) and
0 < a < 1. Then every element of é(a,s) is finite on D,

and so therefore is Ié(a,s) . Consider the function

8la,s) = M— (5.45)
igl qii(s)

which is finite for 0 <a <1 and all s on D, and which
satisfies 8(0,s) = 1. Let the image of D under g(1,°)

be T. Let the image of (0,1) wunder g(-,s) be Yg
Then Yg is a continuous curve joining the point B8(0,s) =1
to the point g{(l,s) on TI'. As s goes once round D, Yg
sweeps out a region in the complex plane and returns at last

to its original position.

Suppose, contrary to what is to be proved, that T encir-
cles the origin. Then the region swept out by Yg as s
goes once round D must include the origin. That is, there
is some «(0,1) and some s on D for which B8(a,s) = 0.

But the éii are all finite on D, so by (5.45) |Q(a,s)|=0.
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By Gershgorin's theorem this is impossible. Hence the num-
ber of encirclements of the origin by r 1is, from (5.45),

N, (5.46)

0 = N -
Ng

0 e~—g

i=1

which is (5.21).
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The Inverse Nyquist Array Design Method - Problems

P.1 A plant described by

1

s+1 0
G(s) = o 1
s-1
has arisen from a system with
2
]TGI = (s-1) (s+1)

If feedback is to be applied to this system through a feed-
back matrix F = diag{l,2}, determine whether or not the

resulting closed-loop system is stable.

Comment on cancellations occurring in the formulation of
G(s), and on the encirclements obtained in the resulting
INASs.

{Acknowledgement for this problem and its solution are
hereby made to Professor H.H. Rosenbrock of the Control
Systems Centre, UMIST.}

P.2 Given a system described by the transfer-function matrix

1 !
s+1 s+1
G(s) = .
1 1
s+2 5+2
(1) State one reason why the inverse systems G_l(s) and

H—l(s) are used in Rosenbrock's inverse Nyquist array
design method.

(i1) Sketch the inverse Nyquist array for G_l(s), and
comment on the diagonal dominance of the uncompensated
system.

(iii) Determine a wholly real forward path compensator K
such that the closed-loop system H(s), with unity
feedback, is decoupled.
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{iv) Introduce integral action into both control loops and
sketch the resulting root-locus diagrams for the final
loop-tuning of the compensated system.



