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Abstract
The inverse Nyquist array is a set of diagrams corresponding to the elements of the inverse of the
open-loop transfer function of a control system. A number of theorems are proved which show how this
array can be used to investigate the stability of multivariable control systems. The application of the
array to the design of such systems is illustrated.

1 Introduction
Though increasing attention is being given to the

design of multivariable systems, this has been a relatively
neglected subject. Many methods have been suggested, and a
survey is being compiled by MacFarlane.' Most of them,
however, suffer from three defects.

First, if they are specialised to single-loop systems, they
are generally less useful than the traditional methods.
Secondly, they usually make it difficult to include engineering
constraints such as a restriction on the phase advance pro-
duced by the controller. Thirdly, they tend to produce com-
plicated control schemes where simpler schemes would be
equally satisfactory.

For these reasons, there is room for alternative methods
such as the one presented here. It allows engineering con-
straints to be imposed, and in the single-loop case reduces
to the traditional methods. Its scope has yet to be determined,
but in examples it gives rise to simple and satisfactory control
systems. Work is actively proceeding to develop the method
further.

Fig.

Inverse Nyquist array
The system which will be considered first is shown in
: a more general system is suggested in Section 4. The

K(s) G(s)

Fig. 1
Multivariable control system
Vectors v, e, u and y all have m components

plant has the m x m transfer function matrix G(s), and the
controller is represented by an m x m matrix K(s). The
object is to find a suitable matrix K(s) which will ensure that
the closed-loop system meets certain performance speci-
fications.

It will be assumed that the elements of G(s) and K(s) are
rational polynomial functions of s, and that neither |G(.y)| nor
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\K(s)\ is identically zero. It will also be assumed that all the
zeros of \K(s)\ are in the open left halfplane; it has previously
been shown2 that right halfplane zeros in \G(s)K(s)\ give rise to
control difficulties, so that there will be no incentive to intro-
duce them in \K(s)\. Finally, it is assumed that the plant from
which G(s) arises is asymptotically stable before control is
applied, and that K(s) has all its poles in the open left half-
plane. These assumptions are valid in many situations of
practical interest.

The open-loop transfer function is

Q(s) = G(s)K(s) (1)

A notation for the elements of the inverse matrices G~],
K~l, Q~l etc. will be required; these matrices will be
written

K~l = K = & etc. (2)

The elements of the matrices will be represented, in the usual
way, by qu, qu etc. The cofactor of qu will be denoted by
Qij, and similarly for the other matrices. Notice that

(3)

(4)

in general. From Fig. 1,

y = GKe = Q(v - y) (5)

so that the closed-loop transfer function which relates y(s)
to v(s) is

and / / - ' = ff= lm +

• (6)

• (7)

For the purposes of design a more general result than eqn. 7
is desirable. Let only/; of the feedback loops from y be closed,
and let Fbe a matrix having all its entries zero except for unit
entries on the principal diagonal corresponding to those
loops which are closed. For example if m = 3, p = 2 and
the first and third loops are closed,

0 0
F= 10 0 0

0 0 1

Then from Fig. 1,

y = GKe = Q(v - Fy)

• (8)

(9)
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so that the transfer function relating y(s) to v(s) becomes

and (3
(10)

(11)

When F = 0, A = & while F= lm,R = fi.
The inverse Nyquist array (I.N.A.) is the set of m2 diagrams

representing the elements <7;/yto) of Q(J'OJ). The I.N.A. allows
the elements of RU<*>) to be obtained in an elementary way,
because f(j = q,j when / =£ j , fti = qn if the /th loop is open
and fjj = 1 + <ijj if the /th loop is closed. In the last case,

Fig. 2
Inverse

1/2 -1

A

q 21

Nyquist array corresponding to eqn

i

1

A

. 13

all that is needed is to shift the origin in the diagram for
(jjj to the point (—1, 0), when the new diagram represents f^.

As an example, let

4(1 + s) - 2
(1 + 2J)(3 + 2s) (1 + 2J)(3 + 2s)

-2 4(1 + s)
2s)(3 + 2s) 2J)(3

• (12)

which can arise from a second-order system, and let K = /2.
Then

(13)

and the I.N.A. is shown in Fig. 2.

2.1 Structure of controller
Since the objective is to design a suitable controller K(s),

it is desirable to know what structure is adequate to describe
a general K(s). It will be assumed that K(s) is a rational poly-
nomial matrix, with all its poles in the open left halfplane,
and that \K(s)\ # 0 and has all its zeros in the open left
halfplane. It is shown, in theorem 1 of Appendix 7, that
any such K(s) can be written as a product

K(s)=KaKb(s)Kc{s) : (14)

where the three matrices Ka, Kb(s) and Kc(s) have the following
properties:

(a) The matrix Ka is a permutation matrix. It therefore
represents a preliminary renumbering of the inputs to G,
which usually will be done so that the new input / affects
chiefly the output /. The inverse Ra of Ka is another permuta-
tion matrix.

(b) The matrix Kb{s) has determinant \Kb(s)\ = 1 and
represents a sequence of elementary column operations. Each
such operation consists of adding, to column y of the matrix Q
operated on, a multiple of OLJJ(S) by column /. Here a/y is a
rational polynomial function having as its denominator
either 1 or a polynomial with all its zeros in the open left
halfplane. The inverse Kb of Kb can be expressed as a corre-
sponding sequence of row operations. For example when
in = 3 the matrix

1 0 1/(1 H
= 10 1 0

0 0 1
• (15)

represents the addition of 1/(1 + s) times column 1 of Q to
column 3 of Q. Its inverse is

06)

which represents the subtraction, from row 1 of (3, of
1/(1 + s) times row 3 of Q.

(c) The matrix Kc(s) is diagonal, and its nonzero entries
have all their poles and zeros in the open left halfplane. If
Kc is written

(17)

the inverse Kc is

)} (18)

where k;(s) — kjx(s) and has all its poles and zeros in the
open left halfplane. Note that if |fc,Cso)| is large for some s0,
then |£,-Cso)| is small.

The structure which corresponds to eqn. 14 is illustrated
for m = 3 in Fig. 3. The matrix Kb(s) accomplishes a modifica-
tion of the interaction in the plant, while Kc(s) represents m

Fig. 3
Structure of multivariable control system resulting from eqn. 14

independent controllers. The m loops which contain the k,(s)
will be called the m principal loops. The importance of the
decomposition of K into Ka, Kb and Kc is that the successive
application of Ka, Kb and Kc is sufficient to generate the most
general K satisfying the conditions on K stated above. This is
not immediately obvious; e.g., if

K(s) =

(1 - s)
(1 + s)2

1
\ + s

+s

• (19)

the ordinary process of Gauss reduction3 leads to

1

J

1

+ s
— .9

0

1
1

1 + s
' - ^ o

(1 +
0

1

— s_

. . . . (20)

= {K'b{s)}K'c(s) (21)

but here both K'b and K'c have right halfplane poles. By the
procedure used in the proof of theorem 1, K can be put in
the alternative form

K(s) =

0

1 + s
+s (l +

0

0

(22)

There is, of course, no need to generate K in the form shown
in eqn. 14 if some other form commends itself. For example
it may be profitable to make the real part of Q diagonal at
some particular frequency o»0, which can be done by a matrix

K = {Re (23)

1930

if this exists. No matter how K is generated, however, it can
be put in the form of eqn. 14 provided that K satisfies the
initial assumptions. Subject to these assumptions, therefore,
there is no loss of generality in obtaining K by successive
choice of Ka, Kb and Kc.

The aim of the method to be presented is to find such Ka

and Kb{s) that the final stage, of finding Kc(s), can be
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done by the single-loop theory. If |G(^)| has all its zeros in
the open left halfplane, theorem 2 shows that Ka and Kb(s)
can be found so that G(s)KaKb(s) is diagonal. This has bsen
proposed4 as a possible design method, but it has two defects.

First, it often leads to relatively complicated controllers.
Secondly, when \G(s)\ has a zero in the right halfpfane, it
is shown in theorem 3 that generally no Ka and Kb(s) exist
(subject to the conditions imposed earlier) which will
make G(s)KaKb(s) diagonal; if Ke(s) is such that G(s)Ke(s) is
diagonal, theorem 4 shows that in general 1^(^)1 has a
zero in the right halfplane. This is known2 to be undesirable.
This second difficulty can be avoided by asking only that
G(s)KaKb(s) should be triangular, when the single-loop theory
can again be used. The first difficulty, that of unnecessary
complication, persists. We therefore wish to find a less severe
preliminary transformation [represented by Ka and Kb(s)]
which still allows the single-loop theory to be applied.

The procedure for generating Ka and Kh{s) will be developed
in terms of the inverse matrices Ka and Kb(s). These have
a simple interpretation in terms of their effect on the I.N.A.
The final stage is then to design controllers kj(s) for each of the
principal loops. If (5 (and therefore Q) had previously been
made diagonal or triangular, this final stage would also have
a simple representation in the I.N.A., as the diagonal elements
qn of Q, would then give conventional inverse Nyquist
diagrams for the m loops, and the corresponding design
methods are well known. If Q, is not first brought to diagonal
(or triangular) form, this design procedure is not immediately
available. This problem is therefore considered in Sections
2.2 and 2.3.

2.2 Loop transfer functions
When some of the principal loops are open and some

are closed, the transfer function between input u, and output
y, is

r,,(s) = Au{s)l\A(s)\ (24)

The inverse Nyquist diagram for this path is obtained from

s) (25)

which can be expanded to give

given plant. Because the plant is asymptotically stable and
K(s) has all its poles in the open left halfplane we may
assume that So is asymptotically stable. Let Sc be the closed-
loop system which results from feedback according to eqn. 9.
Define

d,(s) = (28)

and let D be a contour in the complex plane consisting of
the imaginary axis from —ya to +ja. and a semicircle of radius
a in the right halfplane. Here a is sufficiently large to ensure
that all finite poles and zeros of the functions of interest
(|fi|, \R\, qu, qu, ru, Fu) lying in the open right halfplane
are inside D, and all such poles and zeros on the imaginary
axis lie on D.

From theorem 6 of Appendix 7, the following sufficient
condition for the asymptotic stability of Sc is immediately
deduced. Suppose that qn(s) maps D into jp0/; i.e. p 0 / is the
inverse Nyquist diagram (completed in the usual way)
obtained from qn(s). Sc is asymptotically stable if the three
following conditions are fulfilled:

(a) For each loop j which is closed in Sc, pQj encircles the
point (—1, 0) the same number of times (in the same
direction) as it encircles the origin.

(b) For / = 1, 2, . . . , m and for all .v on D,

\qtt{a)\ - d,(s) >e>0 (29)

(c) For each loopy which is closed in Sc and for all s on D,

|fyy(*)| - dj{s) >€>0 (30)

The first of these conditions resembles the usual Nyquist
criterion for a single loop around a plant with transfer
function qyt\ The remaining conditions ensure that the
interactions are sufficiently small to allow stability to be
deduced from the diagonal elements q^- alone. As the criterion
is sufficient but not necessary, instability cannot be inferred
from the failure of the conditions. In conditions (b) and (c)
dj can be replaced throughout by

8/ = S \4jiis)\ • (31)

or alternatively

7 = 1
j

. (27)

Eqns. 26 and 27 are valid whether the /th principal loop is
open or closed.

If k is diagonal, eqns. 26 and 27 show, as expected, that
rTiX = ?u- T n e s a m e ' s t r u e when R is triangular. In both
cases, as is otherwise evident, the diagrams on the principal
diagonal of the I.N.A. can be used as conventional inverse
Nyquist diagrams to design the controllers in the principal
loops. In the general case, eqns. 26 and 27 can be used to
compute the correction to rn which gives r]~t

l. This will
entail the use of a computer, and will usually not permit
much insight into the nature of the Ka and Kb which will
bring the system to the desired form.

On the other hand, if the sum in eqns. 26 or 27 is sufficiently
small, we shall expect to be able to work with fn alone as
an approximation to ry.1. Section 2.3 gives a result of this
type. With its aid, the system can first be modified until the
sum in eqns. 26 or 27 is small enough to be safely neglected.
Then the design can be carried on using the fu as though they
were inverse Nyquist diagrams for separate loops. The remain-
ing effect of interaction can be found if desired from eqns. 26
or 27, or we may revert to simulation to finalise the design.
It should be noted2 that, at any frequency w0, a high enough
gain in all other loops except the /th will make the sum in
eqns. 26 or 27 negligible.

2.3 A multivariable stability theorem
Let So be the open-loop system consisting of a con-

troller with transfer-function matrix K(s) cascaded with the
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3 Examples
The design procedures to which the I.N.A. lends itself

will now be illustrated by two examples. The first is the system
having a transfer-function matrix G given by eqn. 12. The
I.N.A. is shown for kx = k2 = I in Fig. 2, and it is easily
verified that conditions (a), (b) and (c) of Section 2.3 are already
fulfilled for any kx > 0 and k2 > 0. Arbitrarily high gains
k{ and k2 can therefore be applied in each of the two prin-
cipal loops without instability.

The effect of applying a gain kx is to multiply qn and qn

by kx = k{~
x, and similarly for k2. Consequently, as kx and

k2 are increased, the system becomes more and more nearly
noninteracting. Eqn. 26 shows that the transfer function seen
between input v{ and output yx, when the second loop is
closed with gain k2 and the first is open, is

k2q22(s)

so that

ru
x{joi) = \ + ju) —

(32)

(33)

When k2 becomes large, this is approximately 1 + jco, which is
*7n(yo/). A similar result holds for the second loop when it
is open and the first loop is closed with kx large. In other
words, no attempt need be made to reduce the interaction by
elementary row operations on the I.N.A.; large gains kx and
k2 can be used without instability; and when high gains are
used the system behaves effectively as though it were non-
interacting, with each loop having transfer function .1/(1 + s).

This example is exceptional because there is no difficulty
in exerting control. Nevertheless, it illustrates the ability
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of the I.N.A. to suggest simple control schemes. Current
alternative methods for designing multivariable controllers
are the use of a state observer and either modal analysis5 or
optimal-control theory.6 Those methods would give a simple
answer for this example, but it would be easy to devise systems
of higher order, having similar G(J<*>), for which the I.N.A.
would suggest the same control scheme whereas the alter-
natives would suggest much more complicated schemes.

The second example is

2 -

(34)

s)2 (1 + s)2_\

which has been considered previously.2 The inverse of G is

-s) -3(2-s)

- (1 - 3s) 3(1
G(s) =

- 5 ) 1

- s)\ • • (35)

from which the I.N.A. shown in Fig. 4 is obtained.
An obvious first step in the design procedure is to bring

' -6

^12=912

A A

q22--g22

Fig. 4
Inverse Nyquist array for eqn. 35

(2(0) to diagonal form by premultiplying G(s) by the constant
matrix G~l(0) = G(0), which is nonsingular. [If G(0) were
singular, this would indicate that the inputs were badly chosen
for the given outputs, since it would then be impossible to
find inputs which would achieve arbitrarily chosen steady-
state outputs.) The result is

«M - <• +'>Li/j X
Tl + 3s -3s 1

= ( i + 4 2, 1-2J • • • •

21 r 3(1 -s) -3(2-sf

.1/3 1JL-0 -3s) 3(1 -

"1 + 3s -3s

2s

from which the I.N.A. of Fig. 5 is obtained. This shows that

(16)

(37)

Fig. 5
Inverse Nyquist array for eqn. 37
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qn satisfies condition (a) of Section 2.3 for all kx > 0. More-
over, the dx calculated from eqn. 28 shows that conditions (6)
and (c) will be fulfilled, so far as the first principal loop is
concerned, for kx > 0.

On the other hand, q2i has a zero at .y = i , and so at the
point (a, 0) on D,

1 + s
= ll - 2a| = 2a - 1 < 2a =

1 + s
(38)

showing that condition (b) is not fulfilled for the second loop.
To correct this, we may subtract a multiple of row 1 from
row 2. To achieve the desired effect, the multiplier must
exceed $, but must not exceed 1. Accordingly we choose
i, giving a new <5:

1 0in

-* 1JL
1 + 3s

+ 3s - 3

2s 1 -
(39)

• • (40)

The I.N.A. is shown in Fig. 6, and it follows from Section 2.3

Fig. 6
Inverse Nyquist array for eqn. 40

that the closed-loop system is stable for all kx > 0 and
A:2>0.

As kx and k1 are increased, the system now approximates
over an increasingly wide frequency band to a diagonal
system. At high enough frequencies interaction remains
important, and eqn. 26 gives, with the first loop open,

. ( 4 1 )

and with the second loop open,

''^'(s) = (1 + s)(\ + ^s) — •
3s{\

s)(\ + 3s)
. (42)

The design may therefore proceed on this basis, and com-
pensating networks may be used if desired in the two loops
to improve their response. The importance of the stability
theorem of Section 2.3 in permitting us to proceed in this
way will be clear. In a previously suggested method,2

resembling this in some respects, the assurance of stability
was absent.

The final matrix K is

K =

from which

u 3 -u
r-2 -6i

(43)

(44)

(45)

and (with a slight rearrangement) the system appears as in
Fig. 7. This system was simulated on an analogue computer,
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and the step responses for kx = 50 and k2 = 50 are shown
in Fig. 8.

An interesting point arises from the above procedure. If

Fig. 7
System corresponding to eqn. 45 as simulated

Fig. 8
Closed-loop responses of system in Fig. 7 with k\
a j>] for unit step in vi
b y2 for unit step in i'2

••-•- 50

the multiplier in eqn. 39 is reduced from | towards $, the
second time constant occurring in q22 is reduced, becoming
zero when the multiplier is $. The temptation to exploit this
should probably be resisted, because it clearly makes the
system more sensitive to variations in the form of G. More-
over, the response of the system can always be improved
by the use of compensating networks in the two principal loops.
Such considerations are easily incorporated in the present
method.

This second example is not a trivial one. The original
system, eqn. 34, allows four different single control loops
to be set up. All of these have nonminimum phase, and they
all present considerably more difficulty than either of the two
loops in Fig. 7. Attempts to set up two loops simultaneously
around the original system are equally unpromising. Yet only
a matrix of constant interconnections is needed, as in Fig. 7,
to allow two simultaneous loops of relatively good, and easily
improved, performance. The method described allows this
matrix to be obtained by a systematic procedure, which can
take account of engineering constraints.

4 Generalisations and further work
So far it has been assumed that the control action will

be exerted by the controller K preceding the plant. It has
been pointed out elsewhere2 that there is sometimes an
advantage in using the more general system illustrated in
Fig. 9. This is particularly true when \G(s)\ has right half-
PROC. ZEE, Vol. 116, No. II, NOVEMBER 1969

plane zeros, because the more general system may confine
the resulting difficulties to fewer loops.

There are two contexts in which Fig. 9 may apply. In many

Fig. 9
More general multivariable control scheme

industrial regulator problems, the matrix L may actually be
implemented; it will then most probably be restricted to be
independent of s. For example, if two temperatures are to be
controlled, it may be equally satisfactory to implement a
scheme which controls the sum and the difference of the two
temperatures. This may allow better control than a scheme
in which the two temperatures are themselves treated as the
controlled variables.

The matrix L may also be useful as a conceptual device,
even when it is not implemented physically. The transforma-
tion of Fig. 10 shows that the dynamic behaviour of the

v L-1 GKL L

Fig.10
Illustrating the matrix identity

multivariable closed-loop system can be analysed in terms of
LGK, even when the system which is implemented uses GKL.
Suppose, for example, that in the previous illustration the
difference (0, — 02) between the two temperatures could be
well controlled, while 0, + 02 could only be poorly controlled.
Then both 0t and d2 will in general contain some component
of #| + 62, and so will show poor response. However, if the
system is designed with Kalone, 0,, d2 and also 0, — 62 might
all show poor response. Then the component of any dis-
turbance affecting 0, — 92 would be less well controlled than
before. By designing in terms of LGK, and implementing
GKL, this possibility may be avoided.

It seems possible that the method illustrated by the
examples in Section 3 may allow the describing function to
be applied to multivariable systems. It may also be possible
to adapt root-locus techniques as an alternative to the inverse
Nyquist array. These are subjects for further study.

In the simple examples treated in Section 3, the modifica-
tion of 0, was carried out algebraically. If G(ja>) is obtained
by measurement, it will be necessary to compute (5(ya>)
numerically, frequency by frequency. This may also be the
simplest thing to do in more complicated examples when a
computer is used, even when G is given algebraically, because
the manipulation of polynomials in a computer is not easy
to organise.

It seems, therefore, that for practical applications it will
be.desirable to have computer facilities which will allow the
I.N.A. to be visually displayed. The effect of any proposed
operation on the I.N.A. could then be computed by the
machine and displayed, allowing the designer to assess its
effect. Without such facilities, the labour of implementing the
method would in many cases become excessive.
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7 Appendix

Theorem I
Let K(s) be a nonsingular rational polynomial matrix. Let
all the poles of K(s), and all the zeros of |tf(s)|, lie in the
open left halfplane. Then K(s) can be written as a product
KaKb(s)Kc(s) where

{a) Ka is a permutation matrix
(b) Kb(s) is the product of elementary column operations,
each consisting of the addition of a multiple a/y-(s) of
column / to column j ; a,,- is a rational polynomial function
having all its poles in the open left halfplane
(c) Kc(s) is a nonsingular diagonal matrix. All the poles
and all the zeros of the principal diagonal elements of Kc(s)
lie in the open left halfplane.

Proof
Let pfe) be the least common multiple of the denominators

of the /th column of K(s). Clearly each/>,($) has its zeros in the
open left halfplane. In the polynomial matrix K(s) diag{,p(.s)},
let D^s) be the greatest common factor of elements in
the first column. Let D2{s) be the greatest common factor
of all 2 x 2 minors formed from the first two columns. In
general, let Dj(s) be the greatest common factor of all / x /
minors formed from the first / columns. It follows from the
Laplace expansion of a determinant that Dj{s) divides
Di+X, i = 1, 2, . . . , m — 1. Then because a zero of Dm(s)
is a zero of \K(s)\ or of a Pj(s), it follows that each Dj(s)
has all its zeros in the open left halfplane.

Multiply the first column of K(s) by pi(s)lDx(s). The result-
ing column will have polynomial entries with no. common
factor. Using a known procedure,7 the first column can
therefore be reduced to the form (ob 0, 0, . . . , 0)r, where
a i is a nonzero constant, by successive operations of the
following types

(i) transpose two rows
(ii) add to row / a multiple by
is a polynomial in 5.

of row j , where a/y(.s)

These operations do not change the greatest common factor
D2(s) of 2 x 2 minors formed from the first two columns.
It follows that if the second column is multiplied by p2(s)
the elements in positions (2, 2), (3, 2), . . . , (m, 2) are then
polynomials with highest common factor D2{s)/Di(s). Divide
the resulting second column by D2(.s)/£>|(.s) to give m — 1
polynomial elements with no common factor other than 1. As
before, reduce this (m — l)-vector to the form (a2,0,0,... ,0)r

by row operations of the two types applied to the last
m — 1 rows. The element in position (1, 2) is a rational
polynomial function. Add a suitable multiple of row 2 to
row 1 to reduce the element (1, 2) to zero. This does.not
affect the element (1, 1), so that the matrix now has the form

0

0

0
T\ (s)

T2(s)_

where 7", is 2 x (w — 2), and T2 is (m — 2) x (w — 2).
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Proceeding in this way, the matrix can be reduced to the
form diag (a,). Write D0(s) = 1, and put

KAs) = diag (46)

The above argument shows that

Kd(s)K(s)Kr{(s) = Im (47)

where Kd(s) is a matrix generated by row operations of the
types
(a) transpose two rows
(6) add to row / a multiple by a/y(.s) of row j , where a/7(.s) is
a rational function of s having as denominator either 1, or
one of the polynomials DJDQ, D2/DU . . . , DmlDm_i.

Each of these two types of operation has an inverse which is of
the same type. Moreover if Ke represents a transposition of two
rows, and A^a row operation described by (b) above, it is easy
to see that KfKe = KeK'f, where K'f is a (different) matrix of the
same type as Kf. For example

1
0
0

0
1
0

«I2~|

0

1 J

=

"0
1

_0

•o

1
0

0
0
1

a 1 2

0
1

1]
0

oj
1
0
0

o o n n o o
1 0 0 0 1 0
o i oj |_o a12 i

. (48)

Further, a row operation of type (b) above is represented by a
matrix such as the last matrix in eqn. 48. When operating on
the right of another matrix this represents a column operation
of the type used to define Kb(s). By virtue of these remarks
Kd~

l(s) can be written as a product KaKb(s), where Ka, Kh(s)
have the properties stated in the theorem. Eqn. 47 then gives

K(s) = KaKb(s)Kc(s)

which completes the proof.

(49)

Theorem 2
Let G(s) be a nonsingular rational polynomial matrix. Let

all the poles of G(s), and all the zeros of |C(J) | , lie in the
open left halfplane. Then Ka and Kh(s) can be found, defined
as in theorem 1, such that G(s)KaKb(s) is nonsingular,
diagonal, and has all the poles and zeros of its principal
diagonal elements in the open left halfplane.

Proof
Interchanging the roles of rows and columns in the proof

of theorem 1, it follows that G(s) can be written

G(s)=Gc(s)Gh(s)Ga (50)

Here Ga is a permutation matrix; Gh(s) represents the product
of elementary row operations each consisting of the addition
of a multiple of rowy by OL;J(S) to row /, where a/;- is a rational
polynomial function having all its poles in the open left half-
plane; and Gc(s) is nonsingular, diagonal, and with all the
poles and zeros of its principal diagonal elements in the open
left halfplane. The choice

Kh{s)=Gb\s)

gives the desired result.

(51)

(52)

Theorem 3
Let G(s) satisfy the conditions in theorem 2, except that

\G(s)\ has one or more zeros in the closed right halfplane.
Then Ka and Kh(s) can be found, defined as in theorem I,
such that G(s)KaKb(s) is triangular (upper or lower as
desired). In general G{s)KaKb(s) cannot be made diagonal.

Proof
Let Pj(s) be the least common multiple of the denominators

of the /th row of G(s). Each Pj(s) has its zeros in the open
PROC. IEE, Vol. 116, No. II, NOVEMBER 1969



left halfplane. In the polynomial matrix diag [PJ(,S)]G(S), let
Dj(s) be the greatest common factor of all / x / minors
formed from the first / rows and put D0(s) = 1. Let

Dt(s) = D (53)

where Dn(s) has all its zeros in the open left halfplane and
D!r(s) has all its zeros in the closed right halfplane. It follows,
from the Laplace expansion of a determinant, that Du(s)
[resp. Dir(s)] divides D,+ lJ(s) [resp. Di+lr(s)], i= I, 2,
. . . , m — \.

Multiply the first row of G(s) by p{(s). The resulting row
has polynomial entries with greatest common factor D{(s).
Using a known procedure,7 the first row can therefore be
brought to the form {a{D{(s\ 0, 0, . . . , 0}, where ax is a
nonzero constant, by successive operations of the types

(a) transpose two columns
(b) add to column j a multiple by a,y(.y) of column /, where
ctjj(s) is a polynomial in s.

These operations do not change the greatest common
factor D2(s) of the 2 x 2 minors formed from the first two
rows. Multiply the second row by p2(s). The elements in
positions (2, 2), (2, 3), . . . , (2, m) are then divisible by
D2{.s)jD\(s). By operations of the two types described above
the last m — 1 elements in the second row can be brought
to the form {a2D2(s)\DK(s\ 0, 0, . . . , 0}. Now

D2l(s) D2r(s)
Du(s) Dlr(s)

• • • ( 5 4 )

so that a multiple [by a rational polynomial expression having
as denominator the polynomial D2i(s)/Du(s)] of column 2 can
be subtracted from column 1 in such a way that the degree
of the elements in position (2, 1) is less than the degree of
the polynomial D2r(s)lDir(s).

Proceeding in this way we generate a lower triangular
polynomial matrix Tx(s). As in the proof of theorem 1, it
follows that

G(s) = (55)

where Gu is a permutation matrix; Gb{s) is a product of
column operations, each consisting of adding a multiple
(by a rational polynomial expression having its poles, if any,
in the open left halfplane) of one column to another; and
Tt(s) = [TJJ(S)] is a lower triangular polynomial matrix in
which the degree of T^S) when / > j is less than the degree
of Dlr(s)/D,_ltr(s). Setting Ka = G~] and Kh(s) = G-b\s),
it follows that

G{s)K(lKh(s) = T(s) (56)

where 7"(.y) is a lower triangular matrix. With minor changes
in the proof, an upper triangular matrix can be generated.

That reduction to diagonal form is not generally possible
when Ka and Kh{s) &ve as defined in theorem 1 is shown
by the example

(1 + s)2 I + 2s

. • rk
Attempt to find K(s) such that

1 -

C(s)K(s) =

• (57)

(1 + S)2 1 + 25

1
0

1 + s
k22{s)

• (58)

is diagonal. Then it follows that k2\(s) = 0» ar>d

Consequently

\K(s)\ = kn(s)k22(s) = - ku
(I + 2s){\ - s)

(59)

(60)

No choice of kn(s) and kl2(s) with left halfplane poles can
avoid a factor 1 — s in \K(s)\. But with the definition of
theorem 1, \Ka\ = ± 1 and \Kb(s)\ = 1, so that K(s) cannot
be represented by KaKb(s).

Theorem 4

Let G(s) be as in theorem 3. Find Ka and Kb(s) as in that
theorem so that eqn. 56 is true. Then T(s) may be diagonal.
If not, let Ke(s) be any nonsingular rational polynomial matrix
having all its poles in the open left halfplane and such that
G(s)Ke(s) is diagonal. Then \Ke(s)\ has at least one zero in
the closed right halfplane.

Proof
Assume T(s) is lower triangular. We have

G(s)KaKb(s){Kb- \s)K~ <Ke(s)}

= T(s)Kf(.s) = D(s) . .

where D(s) = [d/jis)] and K,(s) = [K,J(S)]. Hence

Kf(s) = T-l(s)D(s)

and so Kf(s) is lower triangular. It is also nonsingular, and
has all its poles in the open left halfplane.

If T(s) is not diagonal, there is a tu(s) having a zero in the
closed right halfplane, and a ttj(s) ^ 0 with / > j such that

tij+iis) = tiJ+2(s) = . . . = /,,,_,(j) = 0 . (63)

Then in eqn. 61

0 = d u { s ) = tij(s)Kjj(s) + f n ( s ) K , j ( s ) . . . . ( 6 4 )

and so

(61)

(62)

It follows from the proof of theorem 3 that

Pits)

and tjj(s) = -U—

.(j)/D#-..,?r(j)} . (66)

(67)

where TJJ(S) is an element of Tt(s). Because the polynomial
Dir(s)fD;_]%r(s) has all its zeros in the closed right halfplane
and exceeds r^s) in degree, it follows from eqn. 65 and the
properties of Kjj(s) and the Dji(s) that KJJ(S) has a zero in the
closed right halfplane. Consequently |tf/(.y)| has a zero there,
and by eqn. 61 and the properties of Ka and Kb(s), so does
|ATe(j)|. The proof holds, with minor changes, if T(s) is
upper triangular, and it is exemplified by eqn. 60.

Theorem 5
Let a system SQ be described by a set of linear ordinary

differential equations with constant coefficients, and after
Laplace transformation with zero initial conditions let its
equations be

ro?)z(.y) = 6 / ( J M J )

As) = ^(J)2(J) W(s)e(s)

(68)

(69)

where T(s), U(s), V(s) and W(s) are polynomial matrices,
respectively r x r, r x m, m x r, and m x m, let | T(s)\ # 0.
Let So be asymptotically stable and let its transfer function
matrix be Q(s) = V(s)T-\s)U(s) + W(s), where \Q(s)\ has
no zero on any finite part of the imaginary axis. Let feedback
be applied to So according to the equation

e(s) = v(s) — Fy(s) (70)

where Fis as defined in Section 2, so that the transfer function
matrix of the resulting system Sc is R(s) = {Im+Q(s)F}~xQ(s).
Let D be a contour consisting of the imaginary axis from
— /a to + / a and a semicircle of radius a in the right halfplane.
Here a is large enough to ensure that every finite pole or
zero of \Q\, \R\, qu, qu, ru and ru (i,j = 1, 2, . . . , m), which
is in the open right halfplane lies within D, and every finite
imaginary pole or zero of these functions lies on D. Let
Q(s)
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(resp. |$(s) |) map D into r o (resp. f 0 ) and let
(resp. \R(s)\) map D into P c (resp. pc). Then Sc is
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asymptotically stable if and only if \R(s)\ (resp. \fl(s)\) has
no pole (resp. zero) on any finite part of the imaginary axis
and Fc (resp. pc) encircles the origin as often in a clockwise
(resp. counterclockwise) direction as Fo (resp. p0).

Proof

The system of eqns. 68-70 can be written

-V(s)
0

U(s) 0
W(s) - (71)

so that Sc is asymptotically stable if and only if the roots of

T(s) U(s) 0
V(s) W(s) - / „
0 /„, F

= 0 . . (72)

are all in the open left halfplane. Similarly, on putting F = 0
in eqn. 72, it follows from the known asymptotic stability of
50 that all the roots of

T(s) U(s) 0
V(s) W(s) -I
0 0

. . . (73)

. . . . (74)

lie in the open left halfplane.
From eqn. 71

-z(s)l f 0
e(s)\ = P~i(s)\ 0

and because

y(s) = R{s)v(s) (75)

it follows that \R(s)\ is the minor, formed-from the elements
o f P ~ l ( s ) i n r o w s r + m + \ , r + m + 2 , . . . , r + 2 m a n d
columns r + m + 1, r + m + 2, . . . , r + 2m. By a known
result,8 this is

T(s) U(s)
V(s) W{s)

T{s) U(s) 0
V(s) W{s) -I
0 /„, F

(76)

The corresponding formula for |Q(.s)|, which has been given
previously,9 is obtained by putting F = 0 in eqn. 76 and after
simplification is

\Q(s)\ =
T(s) U(s)

- V(s) W{s)
• (77)

Let \R(s)\ have zc finite zeros and pc finite poles in the closed
right halfplane, and let \Q(s)\ have z0 finite zeros and p0
finite poles there. Since | T(s)\ has all its zeros in the open left
halfplane, it follows that pQ = 0, and zQ is the number of
zeros of

T(s) U(s)
W(s)

in the open right halfplane. This expression has no imaginary
zeros because \Q(s)\ has no finite imaginary zeros. Com-
parison of eqns. 72 and 76 now shows that Sc is asymptotically
stable if and only if

zc ~ Pc — z0 = ZQ ~~ (79)

By eqn. 76, \R(s)\ has no finite zero on the imaginary axis.
If it also has no finite pole on the imaginary axis, it follows
that zc — pc is the number of clockwise circuits of Yc about
the origin. Also z0 — p0 is the number of clockwise circuits
of Fo about the origin. The system Sc is therefore asymp-
totically stable if and only if \R(s)\ has no finite pole on
the imaginary axis and Fc, Fo make the same number of
clockwise circuits of the origin. The corresponding statements
in terms of \fi(s)\, p c and p0, follow at once.

Theorem 6
Let the contour D be as defined in theorem 5, and let

the element qn(s) of Q(s) map D into fOi. Similarly let
rn(s) map D into pc / . Let p0, and pc / encircle the origin
nQi times and nci times respectively (the counterclockwise
direction being taken as positive). Define dj(s) [resp. 8,(s)] by

7 = 1
j

in

= S

(80)

(81)

Then if 50, Sc are as defined in theorem 5, a sufficient con-
dition for the asymptotic stability of Sc is that the following
conditions are fulfilled

m m

(a) S "o/ = S "a

(b) For all s on D and for / = 1, 2, . . . , m,

\QH(S)\ - dj(s) > e > 0{resp. \qu(s)\ - 8j(s) > e >0}

(c) For all s on D and for / = 1, 2, . . . , m,

|r,-/Cs)| — dj(s) > e > 0{resp. |r(;Cy)| — 8,(5) > e > 0}

Becauseqn(s) = 6,-/(*)/|6(*)|, it follows from the properties
of Q(s) that ^,-;(J) has no finite imaginary pole. Also by con-
dition (6), qu(s) has no finite imaginary zero. Let (2(0, s) be
the matrix having elements

jll; I !=K* ,•*,•} (82»
where Q(s) = [<7;/s)] is the matrix defined in theorem 5, and

in

0 < 0 < 1. The function |$(0, .s)| = II Î -Cy)! has no finite

pole or zero on the imaginary axis; let it map D into p p .
Also | (2(1, .y)| = iGCs)!"1 has no finite pole or zero on the
imaginary axis, by the properties of Q(s). It maps D into p0-
If .y0 is a point on D, the function \Q,{6, so)\ of 6 defines a
continuous curve y joining a point on p p to a point on p 0 .
As .s0 traces out D, starting from sQ = 0, so y sweeps out a
region of the complex plane, and returns at last to its initial
position.

Assume, contrary to what is to be proved, that p^ and
p 0 do not encircle the origin the same number of times. Then
the region swept out by y includes the origin; i.e. there is
some 9 and some s on D for which | Q(6, s)\ = 0. This implies
that Q(9, s) has a zero eigenvalue, which is impossible by
Gershgorin's theorem3 and condition (b) of the theorem.
Therefore p 0 makes the same number of circuits of the

(7g) origin as pp, which is S/70/ because ^(0, s) is diagonal.

In the same way, rn(s\ which is either qr,{s) or 1 + qn(s),
has no finite pole on the imaginary axis. Also by condition (c),
rn(s) has no finite zero on the imaginary axis. Therefore
in

n|r/y(.s)| has no finite imaginary pole or zero. Further,
1 = 1

\R(s)\ = \F + Q(s)\ has no finite imaginary pole by the
properties of Q(s): it has no finite imaginary zero by con-
dition (c) and Gershgorin's theorem. Hence, as before, the

m

number of circuits of the origin by p c is E/JC/. It follows
/=i

from condition {a) of the theorem, that p 0
 a r | d f c make the

same number of circuits about the origin, and it has already
been seen that \R{s)\ has no finite imaginary zero. By
theorem 5, Sc is therefore asymptotically stable.

A corresponding theorem with Q, R etc., in place of (),
R etc., can be stated, but it seems to be less useful.
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