
Chapter 5

The inverseNyquist array design method
Professor N. MUNRO

Synopsis

The general problem of the design of multivariable control
systems is considered and the stability of multivariable
feedback systems is examined. The concept of 'diagonal dom-
inance1 is introduced/ and Rosenbrock's Inverse Nyquist Array
Design Method is developed. Methods of achieving diagonal
dominance are discussed and illustrated in terms of practical
problems.

5.1 Introduction

The design of control systems for single-input single-out-
put plant using the classical frequency response methods of
Bode, Nyquist and Nichols is well established. However, the
frequency response approach of Nyquist has been extended by
Rosenbrock1 to deal with multi-input multi-output plant where
significant interaction is present.

During the last decade, interactive computing facilities
have developed rapidly and it is now possible to communicate
with a digital computer in a variety of ways; e.g. graphic
display systems with cursors, joysticks, and light-pens.
Equally, the digital computer can present information to the
user in the form of graphs on a display terminal or as hard-
copy on a digital plotter. The classical frequency-response
methods for single-input single-output systems rely heavily
on graphical representations, and Rosenbrock's 'inverse'
Nyquist array' design method for multivariable systems suit-
ably exploits the graphical output capabilities of the modern
digital computer system. Also, the increased complexity of
multivariable systems has made it necessary to employ inter-
active computer-aided design facilities, such as those 2

developed at the Control Systems Centre, UMIST, Manchester ,
in order to establish an effective dialogue with the user.
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5.2 The lViultivariable Design Problem

In general, a multivariable control system will have m in-

puts and £ outputs and the system can be described by an &*m

transfer function matrix G(s). Since we are interested in

feedback control we almost always have £ = m.

The uncontrolled plant is assumed to te described by an

rational transfer function matrix G(s) and we wish to

determine a controller matrix K(s) such that when we close

the feedback loops through the feedback matrix F, as in

Figure 5.1, the system is stable and has suitably fast res-

ponses.

The matrix F is assumed diagonal and independent of sf

i.e.

diag {f } (5.1)

F represents loop gains which will usually be implemented

in the forward path, but which it is convenient to move into

the return path. In addition, the design will have high

integrity if the system remains stable as the gain in each

loop is reduced.

r(s)-
e(s)

j — — — - M s )
u(s)

F(s)

G(s) y(s)

Fig. 5.1

Let us consider the controller matrix K(s) to consist of

the product of two matrices K (s) and K-,, i.e.

K(s) = K (s) Kd (5.2)
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where Kd is a diagonal matrix independent of s; i.e.

= diag i = 1, . • . ,m (5.3)

Then the system of Figure 5.1 can be re-arranged as shown in

Figure 5.2 where the stability of the closed-loop system is

unaffected by the matrix K, outside the loop. For conven-

ience, we rename the matrix K^F as F. All combinations

of gains and of open or closed-loops can now be obtained by

a suitable choice of the f., and we shall want the system

to remain stable for all values of the

their design values.

from zero up to

Fig. 5.2

When = 0 the first loop is open, and all gains in the

first loop up to the design value

increasing f, .
"Id

can be achieved by

The elements f. of F diag {f^} can be represented by

points in an m-dimensional space which can be called the gain

space. That part of the gain space in which f^ > 0, i =

l,...,m corresponds to negative feedback in all loops, and

is the region of most practical interest. The point

{f.,f2,...,f } belongs to the asymptotically stable region

in the gain space if and only if the system is asymptotically

stable with F = diag {f i).

Let

Q(s) G(s)K(s) (5.4)



86

then the closed-loop system transfer function matrix H(s)

is given by

H(s) = = Q(s) (5.5)

Consider the open-loop system

Q.(s) =

1
s+1

1
s+1

2
i+3

1
s+1

(5.6)

Then if 10 and f2 = 0, H(s) has all of its poles

in the open left-half plane and the system is asymptotically

stable. However, for f1 = 10 and f2 = 10, the closed-

loop system H(s) is unstable, as shown in Figure 5.3 .

V

20

10 unstable

asymptotically
stable

10 20

Fig. 5.3

This situation could have been predicted by examining the

McMillan form of Q(s) which is
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M(s) =
(s+1)(s+3)

0

(5.7)

where the poles of the McMillan form are referred to as the

"poles of the system" and the zeros of the McMillan form are

referred to as the "zeros of the system". If any of the

"zeros" of Q(s) lie in the closed right-half plane, then

it will not be possible to set up m high gain control loops

around this system.

Consider now the gain space for the system described by

Q(s) =

s - 1
(s+1)2

- 1

5s+l
(s+1)2

s - 1

(s+1)' (s+1)'

(5.8)

which is shown in Figure 5.4 Now, up to a certain point,

increase of gain in one loop allows increase of gain in the

other loop without instability. The McMillan form of this

latter system Q(s) is

M(s) =

0

s+2
s+1

(5.9)

which implies that, despite the non-minimum phase terms in

the diagonal elements of Q(s), no non-minimum phase behav-

iour will be obtained with the feedback loops closed. It is

also interesting to note that this system is stable with a

small amount of positive feedback. However, this is not a

high integrity system, since failure of any one loop may put

the system into an unstable region of operation.
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-A -2

10

asymptotically
stable

8 10 f1

Fig. 5.4

5.3 Stability

K(s) G(s) L(s)

F(s)

Fig. 5.5

Consider the system shown in Figure 5.5, in which all mat-

rices are mxm; this last condition is easily relaxed (see

Reference 1, p. 131 ff). Let Q = LGK, and suppose that

G arises from the system matrix

PG(s) =

TG(s)

-VG(s)

OG(s)

(5.10)
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and similarly for K(s), L(s), F(s). For generality, we do

not require any of these system matrices to have least order.

The equations of the closed-loop system can then be written

as

TK
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0

0

0

0
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0

0

0

0

0

TG

-vG
0

0

0

0

0

UG

WG

0

0

0

0

0

0

0

0

TL

-vL
0

0

0

0

0

- I m

UL

WL

0

0

0

0

0

0

0

0

TF

~VF

o •
0 '

0 '

0 f

o •

~ I m '

U F '

W F f

0

0

0

0

0

0

0

-Jm

0 0 0

-e

iG
-u

-y

-z

-v

=

0

0

0

0

0

0

0

0

-z

(5.11)

Here the matrix on the left-hand side of equation (5.11) is

a system matrix for the closed-loop system shown in Figure

5.5, which we can also write as

TK

-VT. w,H J
(5.12)

The closed-loop system poles are the zeros of |TH(s)|, and

Rosenbrock has shown that

|TH(s) |lm+Q(s)F(s) | |TL(s) | |TQ(s) | |TR(s) | |Tp(s)

(5.13)

As the zeros of |T ||TG||TK||Tp| are the open-loop poles,

we need only the following information to investigate stab-

ility,

(i) The rational function |Im+Q(s)F(s)|

(ii) The locations of any open-loop poles in the
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closed right half-plane (crhp).

Notice that this result holds whether or not the subsystems

have least order. If we apply Cauchy's theorem, (ii) can be

further reduced: all we need is the number pQ of open-

loop poles in the crhp.

From equation (5.5)

|lm+QF| = |Q(s)|/|H(s)| (5.14)

The Nyquist criterion depends on encirclements of a critical

point by the frequency response locus of the system to indi-

cate stability. Let D be the usual Nyquist stability con-

tour in the s-plane consisting of the imaginary axis from

-jR to +jR, together with a semi-circle of radius R in the

right half plane. The contour D is supposed large enough to

enclose all finite poles and zeros of |Q(s)| and |H(s)|,

lying in the closed right half plane.

Let |Q(s)| map D into rQ/ while |H(s)| maps D into

r̂ ,. As s goes once clockwise around D, let r~ encircle
« Q

the origin N^ times clockwise, and let ru encircle the

origin NH times clockwise. Then, if the open-loop system

characteristic polynomial has pQ zeros in the closed right

half plane, the closed-loop system is asymptotically stable

if and only if
NH - NQ = p Q (5.15)

This form of the stability theorem is directly analogous to

the form used with single-input single-output systems, but

is difficult to use since | H ( S ) | is a complicated function

of Q (s), namely

= |Q(s)|/|I+QF| (5.16)

Equation (5.5),

H.(s) = (I+Q(s)F)"1Q(s)

shows that the relationship between the open-loop system
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Q(s) and the closed-loop system H(s) is not simple. How-

ever, if Q" (S) exists then

H"1(s) = F + Q"1(s) (5.17)

which is simpler to deal with. Instead of H""1 (s) and

Q"1(s) we shall write H(s) = H"1 (s) and Q(s) = Q*1 (s) .

Then, the h..(s) are the diagonal elements of H"1(s). In
" -1 -1

general, nii^s^ ^ hi i(s), where h^.fs) is the inverse of
the diagonal element h..(s) of H(s).

We shall, in what follows, develop the required stability

theorems in terms of the inverse system matrices. Also, we

note that if K(s) has been chosen such that Q(s) =

G(s)K(s) is diagonal and if F is diagonal, then we have m

single loops. However, several objections to this approach

can be made. In particular, it is an unnecessary extreme.

Instead of diagonalising the system, we shall consider the

much looser criterion of diagonal dominance.

5.3.1 Diagonal dominance

A rational mxm matrix Q(s) is row diagonal dominant on D

i f

|qii<s>| > I |q±i(s)| (5.18a)
1 1 j 1 3

for i = l,...,m and all s on D. Column diagonal domin-

ance is defined similarly by

ni
|q±i(s)| > I |qi±(s)| (5.18b)

The dominance of a rational matrix Q(s) can be determined

by a simple graphical construction. Let qi:L(s) map D

into f- as in Figure 5.6 . This will look like an

inverse Nyquist plot, but does not represent anything dir-

ectly measurable on the physical system. For each s on D
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draw a circle of radius

(5.19)

centred on the appropriate point of q..(s), as in Figure

5.6 . Do the same for the other diagonal elements of Q(s).

If each of the bands so produced excludes the origin, for

i = l,...,m, then Q(s) is row dominant on D. A similar

test for column dominance can be defined by using circles of

radius

di(s) =
m

I |q-(s) (5.20)

I
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Fig. 5.6

5.3.2 Further stability theorems

If Q(s)

no zero of

then let

?„. If f

is row (or column) dominant on D, having on it

10 (s) | and no pole of q . ^ s ) , for i = l,...,m

^(s) map D into r^ and |6(s)| map D into

^ encircles the origin N^ times and fQ encir-

cles the origin N^ times, all encirclements being clock-

wise, then Rosenbrock has shown that
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NQ = I N± (5.21)

A proof of this result is given in the Appendix.

Let Q(s) and H(s) be dominant on D, let qi±(s) map

D into r and let nii(s) m a P D into t Let these

encircle the origin N . and N, . times respectively. Then

with p Q defined as in (5.15), the closed-loop system is

asymptotically stable if, and only if,

m A m A

J i
 Nqi " J i

 Nhi = Po (5'22)

This expression represents a generalised form of Nyquist's

stability criterion, applicable to multivariable systems

which are diagonal dominant.

For |Q|, N Q = - I N q ± (5.23)

and since we are considering inverse polar plots stability

is determined using

NR - N = - p Q + p c (5.24)

where p = 0 for closed-loop stability.

Hence, Nn - N u = p^ (5.25)

y n o

replaces the relationship used with direct polar plots, given

by equation (5.15).

5.3.3 Graphical criteria for stability

If for each diagonal element qi;L(s), the band swept out

by its circles does not include the origin or the critical

point (-f.^,0), and if this is true for i = l,2,...,m,

then the generalised form of the inverse Nyquist stability

criterion, defined by (5.25), is satisfied. In general,
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the q..(s) do not represent anything directly measurable
1 1 3

on the system. However, using a theorem due to Ostrowski

h^(s) = h^(s) - f± (5.26)

is contained within the band swept out by the circles cen-

tred on q..(s), and this remains true for all values of

gain fi in each other loop j between zero and f-d .

Note that h7"f(s) is the inverse transfer function seen

between input i and output i with all loops closed. The

transfer function h.(s) is that seen in the ith loop when

this is open, but the other loops are closed. It is this

transfer function for which we must design a single-loop

controller for the ith loop.

The theorems above tell us that as the gain in each other

loop changes as long as dominance is maintained in the other

loops, h7.(s) will also change but always remains inside
—1

the ith Gershgorin band. The band within which h.̂  (s) lies

can be further narrowed. If Q and H are dominant, and if

d. (s)
<i>. (s) = max ^ (5.27)

3 |fi+qii(s)|
3 3D

then h^ (s) lies within a band based on q.^(s) and def-

ined by circles of radius

r±(s) = •i(s)di(s) (5.28)

Thus, once the closed-loop system gains have been chosen

such that stability is achieved in terms of the larger bands,

then a measure of the gain margin for each loop can be deter-

mined by drawing the smaller bands, using the 'shrinking

factors1 <$>±{s) defined by (5.27), with circles of radius

r^. These narrower bands, known as Ostrowski bands, also

reduce the region of uncertainty as to the actual location

of the inverse transfer function h7.(s) for each loop.
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5.4 Design Technique

Using the ideas developed in the previous section, the

frequency domain design method proposed by Rosenbrock con-

sists essentially of determing a matrix K (s) such that

the product [G(s)K (s)]" is diagonal dominant. When this

condition has been achieved then the diagonal matrix K^(s)

can be used to implement single-loop compensators as required

to meet the overall design specification. Since the design

is carried out using the inverse transfer function matrix

then we are essentially trying to determine an inverse pre-

compensator K (s) such that Q(s) = K (s)G(s) is diagonal

dominant. The method is well suited to interactive graph-

ical use of a computer.

One method of determining K (s) is to build up the re-

quired matrix out of elementary row operations using a

graphical display of all of the elements of Q(s) as a

guide. This approach has proven successful in practice and

has, in most cases considered to-date, resulted in K (s)

being a simple matrix of real constants which can be readily

realized.

Another approach which has proved useful is to choose

K = G(o), if |G(o)| is nonsingular. Here again K (s)

is a matrix of real constants which simply diagonalizes the

plant at zero frequency.

For example, Figure 5.7 shows the inverse Nyquist array

(INA) of an uncompensated system with 2 inputs and 2 outputs.

-i-
Fig. 5.7
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An inspection of this diagram shows that element 1,2 is

larger than element 1,1 at the maximum frequency considered,

and similarly element 2,1 is very much larger than element

2,2 over a wide range of frequencies . Thus, the open-loop

system is not row diagonal dominant, nor is it column dia-

gonal dominant. However, by choosing K = G(o) the result-

ing INA of Q(jw) is shown in Figure 5.8 with the Gershgorin

circles for row dominance superimposed. Both q,1 and q22

are made diagonal dominant with this simple operation. The

dominance of element q22 of this array can be further

improved by another simple row operation of the form

R2 = R2 + a Rl (5.29)

where a - 0.5, in this case.

Fig. 5.8

A further approach, which is perhaps more systematic than

those mentioned above, is to determine K as the 'best1,

in a least-mean-squares sense, wholly real matrix which most

nearly diagonalizes the system Q at some frequency s = ju>,

(Rosenbrock and Hawkins ). This choice of K can be con-
P

sidered as the best matrix of real constants which makes the
sum of the moduli of the off-diagonal elements in each row
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of Q as small as possible compared with the modulus of the

diagonal element at some frequency s = ju>. The development

of the two forms of this latter approach is given in the

following paragraphs.

Consider the elements q.^ in some row j of Q(jw) =

KG(jw), i.e.

(5.30)

(5.31)

Now choose rk j m so that

m

I
k=l

(5.32)

is made as small as possible subject to the constraint that

m
ji

(5.33)

Using a Lagrange multiplier, we minimize

m

k=l

(5.34)

m

l
k=l

m
I k . .a

i=l -*1 1

2 f m

li=l -*1 1

2
l- J ic..

i=l -31

(5.35)

and taking partial derivatives of 4> . with respect to k_.

(i.e. the elements of the row vector k.), we get, on

setting

—Y> — =

these

I
k^3

equal

f m
2'i-l

= 0

to zero,

^jiaik

for

a

SI =

• ̂  k j

)

- 2Xk..

(5.36)
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Now writing

and

m

J. (ctilk=l
ik6*k

(5.37)

(5.38)

the minimization becomes

m m

A.k. - xk^ = 0 (5.39)

since I |q1k<j«)
k=l

= X (5.40)

Thus, the design problem becomes an eigenvalue/eigenvector

problem where the row vector k., which pseudodiagonalizes

row j of Q at some frequency ju>, is the eigenvector of

the symmetric positive semi-definite (or definite) matrix A.

corresponding to the smallest eigenvalue of A. .

Figure 5.9 shows the INA of a 4-input 4-output system

over the frequency range 0 -> 1 rad/sec. Although the Gersh-

gorin circles superimposed on the diagonal elements show

that the basic system is diagonal dominant, the size of

these circles at the 1 rad/sec end of the frequency range

indicate that the interaction in the system may be unaccept-

able during transient changes. Using the pseudodiagonalisa-

tion algorithm described above, at a frequency of 0.9 rad/

sec in each row, a simple wholly real compensator K can

be determined which yields the INA shown in Figure 5.10 .

Here, we can see that the size of the Gershgorin discs has

in fact been considerably reduced over all of the bandwidth

of interest.
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F ig . 5.9

+ +

+ +

Fig . 5.10
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However, in general, we may choose a different frequency

a) for each row of K, and it is also possible to pseudo-

diagonalize each row of Q at a weighted sum of frequencies.

The formulation of this latter problem again results in an

eigenvalue/eigenvector problem (see Rosenbrock ).

Although this form of pseudodiagonalization frequently

produces useful results, the constraint that the control

vector k. should have unit norm does not prevent the dia-

gonal term q.. from becoming very small, although the row

is diagonal dominant, or vanishing altogether.

So, if instead of the constraint given by (5.33), we sub-

stitute the alternative constraint that

| q j : J O ) | = 1 (5.41)

then a similar analysis leads to

AjkT - AEjkT = 0 (5.42)

where A. is as defined by equation (5.37) and E. is the

symmetric positive semidefinite matrix

= [a. .a .+6. .3 .] (5.43)

Equation (5.42) now represents a generalized eigenvalue pro-

blem, since E. can be a singular matr:

using the appropriate numerical method.

5.5 Conclusions

blem, since E. can be a singular matrix, and must be solved

The inverse Nyquist array method offers a systematic way

of achieving a number of simultaneous objectives, while still

leaving considerable freedom to the designer. It is easy to

learn and use, and has the virtues of all frequency response

methods, namely insensitivity to modelling errors including

nonlinearity, insensitivity to the order of the system, and
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visual insight. All the results for inverse plots apply with

suitable changes to direct Nyquist plots (see Reference 1,

pp. 174-179). We can also obtain multivariable generalisa-

tions of the circle theorem for systems with nonlinear, time-

dependent, sector-bounded gains ' . Not only do the Gersh-

gorin bands give a stability criterion; they also set bounds

on the transfer function hi:L(s) seen in the ith loop as the

gains in the other loops are varied.

Several further ways of determining K (s) such that

Q(s) is diagonal dominant are the subject of current re-

search (see Leininger ). However, several industrial multi-

variable control problems have already been solved using this

design method7'8'9'10.
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APPENDIX

To prove the result given by equation (5.21), we note that

by (5.18a and b) and the conditions of the theorem there is

no pole of q.. on D, i,j = l,2,...,m, nor is there any

zero of q.^ on D, i = l,2,...,m, because D is a com-

pact set and q.. > 0 on D. Moreover, by Gershgorin's

theorem, there is no zero of |o| on D. Let Q(a,s) be

the matrix having

(5.44)

q . (a,s) = aq±. (s) , j / i

where q..(s), q..(s) are the elements of Q(s) and

0 JL a 1 *• Then every element of Q(a,s) is finite on D,

and so therefore is |6(a,s)|. Consider the function

( O f 8 ) = |Q(«,s)[ (5.45)

n q..(s)
1 X

which is finite for 0 <_ a <_ 1 and all s on D, and which

satisfies 3(0,s) = 1. Let the image of D under 6(1**)

be r. Let the image of (0,1) under $(',s) be y
s

Then y is a continuous curve joining the point $(0,s) = 1

to the point 3(l,s) on r. As s goes once round D, y

sweeps out a region in the complex plane and returns at last

to its original position.

Suppose, contrary to what is to be proved, that r encir-

cles the origin. Then the region swept out by y as s
s

goes once round D must include the origin. That is, there

is some a (0,1) and some s on D for which B(a,s) = 0.

But the q.^ are all finite on D, so by (5.45) |Q(a,s)|=0.
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By Gershgorin's theorem this is impossible. Hence the num-

ber of encirclements of the origin by r is, from (5.45),

m
0 = N - I N± (5.46)

±

which is (5.21).
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The Inverse Nyquist Array Design Method - Problems

P.I A plant described by

G(s) =

1
s+1

1
s-1

has arisen from a system with

|TG| = (s-Dts+i)'

If feedback is to be applied to this system through a feed-

back matrix F = diag{l,2}, determine whether or not the

resulting closed-loop system is stable.

Comment on cancellations occurring in the formulation of

G(s), and on the encirclements obtained in the resulting

INAs.

{Acknowledgement for this problem and its solution are

hereby made to Professor H.H. Rosenbrock of the Control

Systems Centre, UMIST.}

P.2 Given a system described by the transfer-function matrix

G(s) =

1
i+T

l
s+2

1
s+1

1

I+Z

(i) State one reason why the inverse systems G~ (s) and

H (s) are used in Rosenbrock's inverse Nyquist array

design method,

(ii) Sketch the inverse Nyquist array for G~ (s), and

comment on the diagonal dominance of the uncompensated

system,

(iii) Determine a wholly real forward path compensator K

such that the closed-loop system H(s), with unity

feedback, is decoupled.
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(iv) Introduce integral action into both control loops and

sketch the resulting root-locus diagrams for the final

loop-tuning of the compensated system.


