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Abstract
Bode's concepts of return difference and return ratio are shown to play a fundamental role in the analysis
of multivariable feedback control systems. Matrix transfer functions are regarded as operators on linear
vector spaces over the field of rational functions in the complex variable s. The eigenvalues of such operators
are identified as characteristic transfer functions. The corresponding characteristic frequency responses
provide a simple and natural link between classical single-loop design techniques and multivariable-system
feedback theory. These concepts then serve as a unifying thread in a coherent and systematic discussion of
multivariable-feedback-system design techniques.

List of principal symbols
s, z = complex variables

F(s) = return-difference matrix
det F(s) = return-difference determinant

T(s) = return-ratio matrix
Q(s) = matrix whose elements are rational

functions in s, see also below
Q(s) = inverse of matrix Q(s)

det Q(s) — determinant of matrix Q(s)
|det Q(s)\ = modulus of complex number

det Q(s)
G(s) = matrix of plant transfer functions
K(s) = matrix of controller transfer func-

tions
Q(s) = G(s) K(s)
R(s) = closed-loop transfer-function mat-

rix
G(s), K(s), R(s) = inverses of G(s), K(s), R(s)

u = plant input
y — plant output

p(s), ix(s), v(s), y(s) = eigenvalues of matrices over the field
of rational functions in s; char-
acteristic transfer functions

<a, /?«>, (y, Qy) — quadratic forms in input and output
2, f ) = minor formed from rows /,,

oin d c o l u m n s ku

matrix B
= cofactor of rtJ in R

1 Introduction
The concepts of return difference and return ratio have

been shown by Bode1 to be of fundamental importance in the
study of feedback systems. The purpose of this paper is to
show that the appropriate generalisation of these concepts to
the multivariable case is equally fundamental to multiple-loop
feedback control studies, and gives a valuable unification of
all the known techniques in the analysis of linear multi-
variable feedback control.

2 Return-difference and return-ratio
matrices
For the feedback control system of Fig. 1, let

r(s) = m x 1 matrix of reference input transforms
e(s) = m x 1 matrix of error transforms
y(s) = m X 1 matrix of plant output transforms
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u(s) = r x 1 matrix of plant input transforms
K(s) = r x m matrix of controller transfer functions
G(s) = m x r matrix of plant transfer functions
H(s) = m x m matrix of feedback-transducer transfer func-

tions.
A"0), G(s) and H(s) are matrices over the field of rational

K(s) u(s) G(s)

H(s)

y(s)

Fig. 1
Vector feedback system

functions in the complex variable s. (The algebraic implica-
tions of this are discussed in Section 8.)

The closed-loop-system transfer-function matrix is given by

R(s) = {Im + G(s)K(s)H(s)}- lG(s)K(s) . . . (1)

Suppose all the feedback loops are broken as shown in

-J
K (s) G(s)

H(s)

Fig. 2
Calculation of return difference

Fig. 2, and a signal transform vector a(^) is injected at
point a. The transform of the signal returned at a' is then

-G(s)K(s)H(s)a(s)

and the difference between injected and returned signals is thus

{lm + G(s)K(s)H(s)}a(s) = F(s)*(s)

where F(s) = {Im + G(s)K(s)H(s)} (2)

is defined as the system return-difference matrix. This is a
natural generalisation of the scalar return-difference quantity
introduced by Bode.' The matrix

T(s) = G(s)K(s)H(s) (3)

is defined as the system return-ratio matrix, so that we have

: jm + j(s) (4)
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This, again, is a natural generalisation of the equivalent scalar
concept introduced by Bode.

Matrix generalisations of Bode's work have been applied to
linear networks by Tasny-Tschiassny.18

3 Fundamental relationships between open-
loop and closed-loop behaviour
Using arguments given by Rosenbrock,2 and by Hsu

and Chen,12 it can be shown that (as in Appendix 15.1)

det F(s) =
closed-loop characteristic polynomial
open-loop characteristic polynomial

(5)

This is the fundamental equation relating open- and closed-
loop behaviour in multiple-loop control systems.

4 Complex-plane mapping criterion for
multiple-loop system stability in terms of
return-difference matrix
Assume that the system is open-loop stable. The open-

loop characteristic polynomial will then have no zeros in the
closed right half complex plane. Thus it follows from eqn. 5
that the closed-loop characteristic polynomial will not vanish
in the closed right-half complex plane if, and only if, det F(s)
does not vanish in the closed right half complex plane. Let D
be a contour in the complex plane consisting of the imaginary
axis from —j a to +j a and a semicircle centred on the origin
of radius a in the right halfplane. Further, let a be large
enough to ensure that every zero and pole of det GK(s) and
det R(s) which is in the open right halfplane lies within D.

Suppose D maps into a closed curve T in the complex plane
under the mapping det F(s). Then the system is closed-loop
stable if no point within D maps on to the origin of the
complex plane under the mapping det F(s).

Thus the system is closed-loop stable if V does not enclose
the origin of the complex plane. If |det F(s)\ —»• 1 as |$| -> oo,
then, taking a as arbitrarily large, we can conveniently refer
to F as the locus detF(/co). This gives the multiple-loop
Nyquist-type criterion for stability shown in Fig. 3.

Im

critical
point locus of

det F(juu)
for a stable
system

uu increasing
Fig. 3
Simple multivariable Nyquist criterion

Let the eigenvalues of F(s) be {pj(s): j = 1, 2, . . ., m};
the algebraic implications of this are discussed in Section 8.
We then have that

det F(s) = II pj(s) (6)

Therefore, det F(s) will not vanish for any s enclosed by D if
none of{pj(s):j = 1, 2 , . . . , m) vanish for any s enclosed by D.
Let D map into A,- in the complex plane under {pj(s): j = 1,
2, . . ., m). Then Y will not enclose the origin of the complex
plane if none of Ay enclose the origin of the complex plane for
j — 1, 2, . . . ., m. Thus the system will be stable with all loops
closed if none of Ay enclose the origin of the complex plane
for/ = 1, 2 , . . ., m. We thus have the following result.

Fundamental stability property of complex-plane loci of the
return-difference matrix eigenvalues: The system is closed-loop
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stable if all the eigenvalue loci pyO'w) for j = 1, 2, . . ., m
satisfy the Nyquist criterion as illustrated in Fig. 4.

This criterion can equally well be stated in terms of the
return-ratio matrix. Since

F(s) = Im + T(s)

the eigenvalues of F(s) and T(s) are simply related via the

uu=O Re

uuincreasing

locus of p j i)w) for
a stable system

Fig. 4
Extended Nyquist criterion for characteristic frequency responses

eigenvalue-shift theorem.17 This shows that, if {vj(s): j = 1,
. . . ., m) are the eigenvalue of T(s), then

Pj(s) = 1 + VyO) j = 1, 2, . . ., m (7)

In terms of the return-ratio matrix, therefore, we simply get
(as in the scalar case) a unit shift in the location of the critical
point. The system is thus closed-loop stable if all the eigen-
value loci Vjijoo) for j = 1, 2, . . ., m satisfy the Nyquist
criterion as illustrated in Fig. 5.

Im

(-I.O).

7
critical
point

uu-oo uu=O Re

a) increasing

locus of typical v
for a stable system

Fig. 5
Change in critical point

A consideration of the behaviour of det F{s) along the
imaginary axis in the complex plane shows that Chen's alter-
native return-difference stability criterion13 for scalar systems
is simply extended to the multiple-loop case. In what follows,
however, we will use the more familiar Nyquist type of fre-
quency-response-stability criterion.

5 Sensitivity of closed-loop-system
behaviour in terms of return-difference
matrix
Bode's classical studies1 involved the characterisation

of sensitivities, as well as stability, in terms of return dif-
ferences. The fundamental sensitivity relationship may be
generalised to the multivariable case as follows:

Let G(s)K(s) = Q(s) (8)

Then the closed-loop transfer-function matrix is given by

R(s) = {Im + QisWis)}-^) (9)

Inverting both sides of this equation gives, where R(s) and
Q(s) are invertible,

R~Ks) - Q~Ks){Im + Q(s)H(.s)}

\ (10)
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Suppose, owing to small changes in system-parameter values,
that the forward-path transfer-function matrix Q(s) is per-
turbed to Q(s) + 8Q(s), and that R(s) is correspondingly
perturbed to R(s) + 8R(s). Then, from eqn. 10, we have

{R(s) + 8R(s)}~1 = {Q(s) + 8Q(s)}~x + H(s) . (11)

Expanding the inverses in series now gives

R- l(s) + R~2(s)8R + . . . = H(s) + Q~\s) + Q~2(s)8Q+ . . .

Using eqn. 10 and neglecting terms of higher than first order
in 8R and 8Q then leads to

R~\s)8R = Q~\s)8Q (12)

Multiplying both sides of eqn. 12 by R and substituting for
R on the right-hand side from eqn. 9 then gives

R~\s)8R(s) =

so that

(13)

which is the matrix generalisation of Bode's scalar equation
(in our notation)

dR
dlnR _ JR_ _l_
~dln~Q~ dQ ~F

Q

(13a)

6 Complex-plane mapping criterion for
multiple-loop-system optimality in terms
of return-difference matrix5

Suppose a controller input is to be manipulated in such
a way that the performance index

(14)

is minimised for a plant having state-space equations

dx
—r=Ax + Bu
dt
y=Cx (15)

where (A, C) is an observable pair. The corresponding
optimal-control action is given by6

« = -R~lBTPx (16)

where P is the unique positive definite solution of the steady-
state matrix Riccati equation6

-PA- ATP + PBR~lBTP = CTQC (17)

(This is the 'negative-feedback convention' form of the
Riccati equation.) Let the optimal-feedback matrix corre-
sponding to this value of P be denoted by

K= R~XBTP (18)

We now wish to link the preceding discussion of multiple-
loop feedback theory to optimal control theory by first
expressing the matrix Riccati equation in terms of the return-
difference matrix and then deducing the properties of the
eigenvalue loci and determinantal loci of F(s) for the optimal
case. This requires some fairly involved juggling with the
matrix Riccati equation along the lines introduced by
Kalman in his original treatment7 of the frequency response
of a single-loop optimal system.

First, add sP to and subtract sP from the left-hand side of
eqn. 17. This gives

P(sl - A) + (-si - = CTQC - PBR~XBTP (19)

Now multiply both sides of eqn. 19 on the left-hand side by
BT(-sI - AT)-X and on the right by (si - A)~]B.

This gives

Br(-sl - AT)~*PB + BTP(sI- A)~XB
= BT(-sI- A^-iCTQCW- A)~lB

- BT(-Is - AT)~lPBR-{BTP(sI- A)~XB . (20)
PROC. IEE, Vol. 117, No. 10, OCTOBER 1970

Rearranging the terms in eqn. 20 and adding R to both sides
gives

BT(-sI- A^-tCTQCW- A)~XB + R

= R + BT(-sI - AT)~lPB + BTP(sI - A)~XB

+ BT(-sI- A^-tPBR-WPisI - A)~lB

. . . . (21)

Consider the right-hand side of eqn. 21. We have

R + BT(-sI - A^PB + BTP(sI - A)~lB

+ BT(-sI- A^iPBR-tBTPW - A)~XB

= R + RR~xBTP(sI- A)~XB + BT(-sI- At)-XB

+ BT(-sI- AT)-lPBR-lRR-lBTP(sI-

= R + RK(sI - A)~lB + BT(-sI - A7)-

+ BT(-sI - A^-WRKisI- A)~XB

= {/ + BT(-sI - A7)-^7}^ + RK(sI - A)~lB}

= {I + BT(-sI - A^K^Ril + K(sl - A)~lB}

= FT(-s)RF(s) . . . . (22)

where F(s) is the return-difference matrix for the optimally
controlled feedback system.

The left-hand side of eqn. 21 can be written as

GT(-s)QG(s) + R

where, as usual, G(s) is the plant transfer-function matrix.
The steady-state matrix Riccati equation thus leads to the
following equation relating Q, R, G(s) and the optimal return-
difference matrix:

FT(-s)RF(s) = R + GT(-s)QG(s) (23)

in which Q, is a positive definite and ft a positive semidefinite
matrix.

Now let w(s) be an eigenvector of F(s) corresponding to the
eigenvalue p(s). We then have

F(s)w(s) = P(s)w(s) (24)

wT(-s)FT(-s) = p(-s)w(-s) . . . . (25)

Multiply both sides of eqn. 23 on the left by wT(—s) and on
the right by w(s). Then we have

wT(-s)Rw(s) + wT(-s)GT(-s)QG(sMs)

= wT(-s)FT(-s)RF(s)w(s)

= p(-s)wT(-s)Rp(s)w(s)

= p(—s)p(s)wT(—s)RH>(s)

= \p(s)\2wT(— s)Rw(s) whenj=ya» . . (26)

When both R and Q are positive definite, we deduce from
eqn. 26 that

\p(s)\2wT(-s)Rw(s)> wT(-s)Rw(s)>0

for all s = joj.

Thus \p(s)\ > 1 for all s = JOJ

(27)

(28)

This extremely interesting result, first obtained by Cumming,*
means that Kalman's criterion7 for the optimality of single-
loop systems in terms of the frequency response of the return
difference generalises to the multiple-loop case via the
eigenvalues of the return-difference matrix, each of which
satisfies the criterion for a single-loop system, just as in the
stability case.

From eqn. 28 we immediately obtain the frequency-response
criteria for optimality:

\PJU<J»)\ j = 1, 2, . . ., m

0< oo

* CUMMING, S. D. c : Private communication

(29)
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where, as before, {pj(s): j = 1,2,..., m) are the eigenvalues of
F(s). Thus, using the fact that

= n Pj(s) . . .
7 = 1

we obtain the criterion for optimality

|detf(ya>)| > 1 for all o>

(30)

(31)

These results have the graphical interpretations shown in
Figs. 6 and 7, namely that the complex-plane plots of

Im

forbidden region
for optimality

circle of
unit radius

critical point
for stability

locus of det F(juu)
for optimal system

Fig. 6
Necessary condition for optimality satisfied by return-difference
determinant

Im

critical point
for stability,

unit disc is forbidden
egion for optimality

locus of p j(juu)
for optimal system

ia> increasing

Fig. 7
Necessary condition for optimality satisfied by characteristic fre-
quency-response loci

|detF(/co)| and |/D,(y6o)| must not penetrate the interior of the
unit disc. These results enable a direct comparison of optimal
and nonoptimal designs to be made in terms of frequency-
response plots.

7 Use of return-difference matrix to generate
modal control action
The eigenvalue-shift techniques of modal control8 can

be easily derived from the determinant of the appropriate
return-difference matrix.

The transfer-function matrix for a plant having, as state-
space equations, eqns. 15 is

G(s)=C(sI-A)-iB (32)

Now, suppose that the system /* matrix eigenvalues A1?
A2,. . ., Aw are distinct. Let U be a matrix whose columns are
the system A matrix eigenvectors, V be a matrix whose rows
are the reciprocal eigenvectors of A and A be a diagonal
matrix of eigenvalues Ab . . ., A,,. Then

UV = a unit matrix (33)

UAV=A (34)
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and it follows that

G(s) = CUisI - A)~lVB (35)

If we have complete freedom over the measurement of state
variables, we may put

C = V

and thus obtain

(36)

Using this transfer-function matrix in eqns. 2 and 5 gives

n (s - 7i)
det {Im + {si - A)-»VBK(s)H(s)} = ' _ . (37)

j

where y,- and Ay denote the set of closed-loop and open-loop
characteristic frequencies, respectively.

If we put

K(s)H(s)=fd1 (38)

the outer product of an n x 1 matrix / and a 1 x n matrix
dT, then simple determinantal manipulations give

+dT(sI- A)~lBVf =
- yd

• . (39)

This gives a set of equations from which dT may be calculated
for a specified / to give any desired closed-loop eigenvalue
positions. It shows that the resulting loop gains are directly
proportional to the eigenvalue shifts imposed. The chief
implication of this result is that it shows that arbitrary closed-
loop frequency locations can be achieved, given access to all
the system states. The technique of altering characteristic
frequencies in this way is called modal control.8 The argu-
ment may easily be extended to the case where the system
A matrix has repeated eigenvalues.

8 Algebraic and vector-space relationships
in terms of which design techniques may
be discussed
The most important aspect of the discussion so far is

that it shows that the properties of the eigenvalues of the
matrices F(s) and T(s) hold the key to the generalisation of
classical frequency-response design techniques to the multi-
variable case. The algebraic and physical aspects of these
eigenvalues are thus now examined in more detail, followed
by a discussion of design techniques.

All the matrices considered here, namely G(s), K(s), H(s),
T(s), F(s) and Im, are matrices over the field of rational
functions. They may therefore be discussed within the frame-
work of the theory of general linear operators on vector spaces
over fields,9'10 and thus in terms of transformations of basis
sets, eigenvalues, eigenvectors etc. In general, the eigenvalues
of a matrix of rational functions (regarded as an operator on
a finite-dimensional vector space over the field of rational
functions) may not lie in the field of rational functions. They
may, for example, be irrational functions. This difficulty is
overcome by following the standard algebraic practice9 of
defining a suitable extension field within which the field of
rational functions is imbedded. The transfer-function matrices
are then regarded as representing operators on vector spaces
over the extension field. In practice, any eigenvalue p(s) in this
extension field may be approximated to, to any required
degree of accuracy, by a rational function, just as any real
irrational or transcendental number may be arbitrarily well
approximated to by a real rational fraction number. For
engineering purposes of visualisation, this extension field may
be heuristically thought of as the field of all possible transfer
functions arising from root-solving operations on poly-
nomials whose coefficients are rational-fraction transfer
functions. Actual calculations carried out for analysis or
design purposes will normally be carried out for specific sets
of values of the complex variable s; the operations considered
then reduce to operations over the field of complex numbers.

The m-dimensional vector spaces over the field of rational
PROC. IEE, Vol. 117, No. 10, OCTOBER 1970



functions in s which have thus been introduced can be
thought of as spaces in which reside m-dimensional vectors of
signal transforms, each transform (or vector component)
being a rational fraction in s. An operator on the space, such
as Q(s), will convert one vector of signal transforms, such as a
system-input transform set, into another vector of signal
transforms, such as a system-output transform set. If w(s) is
an eigenvector of Q(s) with corresponding eigenvalue q(s),
then

(KsMs) = q(sMs) (40)

which means that the action of Q(s) on w(s) is such that every
transform component of w(s) is multiplied by the same scalar
transfer function q(s). This is the equivalent of the familiar
'vector stretching by a scalar multiplier' for the case of a
linear vector space over the real number field. q(s) can be
thought of as a characteristic transfer function with an
associated characteristic frequency response #(yo>). The analy-
tical studies of previous Sections show that the m character-
istic frequency responses associated with the return-difference
and return-ratio matrices completely describe the system
behaviour from the stability and optimality points of view.
These characteristic loci are thus the key to a systematic and
unified discussion of the multivariable control problem.

8.1 Controller closed-loop behaviour in terms of
characteristic loci
Let the eigenvalues of the matrix Q(s), defined in

eqn. 8, be q\(s), q2(s), . . ., qm(s), and suppose that they are
distinct in the extension field. [If they are not distinct, an
arbitrarily small set of perturbations in the elements of Q(s)
will make this so.] Let a corresponding set of eigenvectors be
wy(s), M>2CS), . . ., wm(s). From standard algebraic theory,10 this
vector set will constitute a basis for a linear vector space of
dimension m over the field of rational functions. Define a
matrix W(s) by

W(s) = [wi(s)w2(s). . . H'm(j)] . . . . (41)

Since the vectors Wi(s) through wm(s) are linearly independent,
W(s) is invertible, and we have

fV-\s)Q(s)W(s) = diag [q{(s)q2(s) . . . qm(s)}

= AQ(s)say (42)

Let
n.,7"

W~\s) = V(s) =

v T ( s )

(43)

where vj(s), . . ., v^(s) are the rows of V(s).

Then V(s)Q(s)W(s) = A<3(s)

W(s)A%)V(s) = Q(s)

and the system closed-loop transfer-function matrix R(s) may
be written in the form

R(s) = {Im + fV(s)AQ(s)V(s)H(sj}-lW(s)AQ(s)V(s)

. . . . (44)

and we have

if - ' (5)= W(s){A°(s)}-lV(s) +H(s) . . (44a)

and, putting s = ja> to discuss frequency response,

R-l(jco) = WUOJ){AQUCO)}-1VUOJ) + H(JOJ) . (45)

Suppose that, at some specific frequency a)lt all the eigen-
values of QU'co) have arbitrarily large modulus. Then all the
elements of AG(yco,) will be arbitrarily large, and we shall have

This leads to the important conclusion that arbitrarily good
control action will be exercised over any frequency range over
which the moduli of all the eigenvalues of QU'co) are arbi-
trarily large.
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Conversely, suppose that, at some other specific frequency
u>h, all the eigenvalues of QijoS) have arbitrarily small modu-
lus. Then all the elements of A°(ycuA) will be arbitrarily small
and we will have

R-\jcoh) ~ Q-x(Ju>h)

R(ju)h) ~ Q(Ja)h)

For any form of design procedure to achieve a multivariable
feedback control, two sets of conditions must be satisfied by
the eigenvalues of

(a) The moduli of all the eigenvalues of G(/a>) must be
large over any frequency range for which it is desired to
exercise good control. Specifically, all the eigenvalues of
(7(0) must be large if good control action is required at
d.c. and very low frequencies.

(b) To satisfy the closed-loop-stability criteria of Nyquist type
imposed on the characteristic frequency-response loci, all
the eigenvalues of Q{joi) must have small moduli at high
frequencies.

Now consider the response, under feedback control, of a
system satisfying both these conditions to a set of step changes
in the reference inputs. Thus, let the reference input-trans-
form vector be

(46)

where f is a vector whose elements are real constants. The
above arguments on the behaviour of /f(yo)) at low and high
frequencies, together with use of the final-value and initial-
value theorems of Laplace transform theory, then enable us
to infer the initial and final values of system-controlled outputs
under feedback control as

= <2(oo)r

y(oo) =

(47)

(48)

8.2 Commutative controller
The general problem of multivariable-feedback-

control-system design can now be looked on in terms of
choosing the controller matrix K(s) so that the eigenvalues of
the matrix G(s)K(s) have certain prescribed properties. This
is the viewpoint taken in the general discussion of design
techniques given in the following Section. The crux of the
design is choosing the individual elements of K{joi) to achieve
the desired modification of the characteristic loci of (7(yo>);
this is difficult since little is known about the location of the
eigenvalues of the product of two matrices in terms of the
eigenvalues of the individual matrices which are multiplied
together. One particular situation may be handled, however,
in a simple way; namely that in which the two matrices
commute, and therefore have a common set of eigenvectors.10

This leads to the theoretical concept of what may be called
a commutative controller. A commutative controller would be
designed by synthetising m classical single-loop controllers
in the eigenframework of the plant transfer-function matrix,
and then 'transforming back' to the original reference basis
to get the required controller matrices.

Let yi(s),. .., ym(s) be the eigenvalues (characteristic trans-
fer functions) of the plant transfer-function matrix G(s), with
a corresponding, eigenvector set w{(s), . . ., wm(s), and asso-
ciated matrices W(s), V(s) as defined by eqns. 41 and 43. For
a commutative controller, the eigenframework of G(s) and
Q(s) will be the same. G(s) can then be expressed in dyadic
form as

G(s) =
y = i

Let K(s) =

m

and H(s) = 2 "lisMsyv

(49)

(50)

(51)

T h e n G ( s ) K ( s ) = ^ W j ( s ) y j ( S ) k j ( s ) v ' . ( s ) . . . . ( 5 2 )

2 0 4 1



since

f\ if / = j

, O i f / # y • • • •

as we have

V{s)W{s) = Im

Simple manipulations then give

R(s) = {Im + G(s)K(s)H(s)}-lG(s)K(s)

(53)

(54)

= W(s)A(s)V(s)

where

A(s) = diag

and J T ( J ) = W($){diag *,(

(55)

(56)

(57)

(58)

From eqn. 55, it follows that

R(s) 2y=i
j = /m as Ay -> oo y = 1, . . .,

if fy(.y) = 1 and J = 1, 2, . . ., m.

The above relationships exhibit the idea of the commutative
controller. In simple physical terms, the transformation of
basis to the plant eigenframework means expressing general
signal-transform vectors as linear combinations of those
vectors [the eigenvectors of G(s)] to which the plant appears
as a set of simple single scalar transfer functions, namely the
characteristic transfer functions or eigenvalues yj(s). In this
basis, we would try to carry out m single-loop designs to choose
the set of single-loop controllers kj(s) and feedback operators
hj(s), and finally transform back to obtain the actual controller
K(s) and feedback operator H(s) by means of eqns. 57 and 58.

9 General discussion of multivariable-
feedback-control-system design
techniques
We now have available all the material required to

give a unified and systematic discussion of linear multi-
variable-control-system design techniques. The stability and
optimality characteristics of the m characteristic frequency-
response loci serve as the link between classical single-loop
frequency-response methods and multivariable-system design
techniques.

9.1 Noninteracting control techniques

In the so-called noninteracting controller-design tech-
nique,15 H(s) is taken to be a diagonal matrix and the controller
matrix K(s) is chosen so that G(s) K(s) is diagonal. It follows
immediately that R(s) is diagonal; hence the name noninter-
acting control. The noninteracting control is achieved by
making the open-loop transfer-function matrix Q(s) diagonal,
i.e. 'noninteracting'. Since Q(s) and H(s) are diagonal, it
follows that the return-difference and return-ratio matrices
are diagonal and thus their diagonal elements are, trivially,
the appropriate characteristic transfer functions. The design
problem therefore reduces to the design of m 'uncoupled'
single-loop controllers. The disadvantages of this technique
are

(i) Much of the design freedom in choosing the elements of
K(s) is used up in making G(s) K(s) diagonal, leaving
little room for manoeuvre in compensating for the result-
ing characteristic frequency-response loci.

(ii) The forms of characteristic frequency-response loci
achieved by this simple diagonalisation procedure often
require considerable compensation to give a satisfactory
form of closed-loop response. It has been shown by
Rosenbrock14 that this procedure suffers a considerable
disadvantage when det G(s) has right-halfplane zeros, the
technique then giving poor or unstable control.
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9.2 Modal-control techniques8

Section 7 shows how, given access to all the states of a
system described in state-space terms, a linear proportional-
feedback controller may be built up which places the system
closed-loop state-space eigenvalues in any desired position.
The disadvantages of the use of this algorithm as a design
technique are

(a) It leads to a simple proportional controller, and gives no
guidance as to the choice of dynamic compensating ele-
ments.

(b) No means are provided for correlatingclosed-loop transient
response (which involves the zeros of all the transfer
functions concerned) with the positions achieved for the
poles of the closed-loop transfer functions.

(c) Linear combinations of system states (the system modes)
are controlled, and not the states themselves. In certain
circumstances, this can lead to a situation where the
modally controlled system has poor disturbance-rejection
properties, and relatively large disturbances of states occur
even with high loop gains in the controller.

9.3 Optimal-control techniques
The discussion of Section 6 shows that the char-

acteristic frequency-response loci of an optimal proportional-
feedback controller have infinite gain margin and at least 60°
phase margin. This follows from simple geometrical conse-
quences of the fact that the characteristic loci do not penetrate
the unit disc surrounding the critical point in the complex
plane. The disadvantages of the optimal-control approach are
therefore:

(i) It requires access to all the system states,
(ii) It provides gain margins far in excess of these actually

required for stability,
(iii) It offers no means of providing dynamic compensation.

Reflection on the mechanism of operation of an optimal
controller in terms of its characteristic frequency-response
loci will show that the accession of all system states is what
gives the degree of phase advance required to achieve the
arbitrarily high gain margins of the optimal characteristic
frequency-response loci.

9.4 Commutative-controller technique
The commutative-controller technique is at first sight a

conceptually appealing one, since it operates directly on the
eigenvalues which control the feedback system behaviour. It
has, however, several severe disadvantages:

(a) The eigenvalues of G(s) will normally be irrational. This
leads to severe computational difficulties which are only
partially alleviated by approximation of the irrational
quantities by rational functions in s.

(b) At high frequencies, the stability considerations become
paramount, and the eigenvalue moduli must be made
small. As shown in the discussion leading up to eqn. 47,
the closed-loop response immediately after a transient
input is largely determined by Q(s). This means that the
transient response of the closed-loop system cannot be
completely controlled by designing a set of m scalar
systems as in Section 8.2.

If Q(s) has significant off-diagonal terms at high frequencies,
interaction terms cannot be suppressed by the design of m
scalar systems which specify the eigenvalue behaviour. This is
simply because the stability requirements reduce high-fre-
quency gain to the point at which high-frequency cross-
couplings cannot be suppressed. The only straightforward way
to eliminate such interaction is to make Q(s) of diagonally
dominated form, as discussed below.

9.5 Eigenvalue-locator controller techniques

A practicable approach to the design problem is to use
methods of approximately locating the eigenvalues of T(s)
and F(s) without carrying out a spectral analysis. Such
techniques offer a very promising line of development, and
are considered in detail in the following Section.
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10 Eigenvalue-locator design techniques
The simplest approach to the frequency-response

design of a multiple-loop dynamically compensated feedback
control system is to use the frequency-response locus
det F(jco). The disadvantage of using this locus for the design
of compensators is that it changes size and shape with every
change in every element of the controller matrix K(j'co). We
would like to be able to do design syntheses which exploited
the properties of the m characteristic frequency-response loci
without having to calculate them in detail. The results
established in this Section give the conditions under which this
may be done. They will be called indirect multiple-loop
complex-plane stability criteria, since they enable us to infer
the stability of the complete system with all feedback loops
closed from the stability of a set of m single-loop frequency-
response loci which are not the characteristic frequency-
response loci.

10.1 Indirect multiple-loop stability criterion in terms of
return-difference matrix F(s)

Let s trace out the contour D described in Section 4. If:
m

0) \fM > S \fM ' = 1, 2, . . . . in . . (59)
7 = 1

for all s on D,
(ii) none of F, (/ = 1, 2, . . ., m) enclose the origin of the
complex plane, where

D maps into F,- under //,-($) / = 1, 2, . . ., m . (60)

the system is stable with all feedback loops closed.
A system satisfying both exprs. 59 and 60 will be said to be

diagonal-dominated.

Proof of indirect stability criterion: The proof depends on
establishing the fact that exprs. 59 and 60 automatically ensure
that the locus F obtained by mapping D under det F(s) does
not enclose the origin. This is done by exploiting the two facts
that

(a) det F(s) is the product of the eigenvalues of F(s)
(b) the eigenvalues of a matrix lie in the union of its set of

Gershgorin discs.4

The eigenvalues of F(s) are {pj(s): j = 1, 2, . . ., m) and we
have

detF(j)= (61)

The eigenvalues pft) are contained in the union of Gershgor-
in discs for F(s), which are the set of circles4 having centres

f,,(s) i= 1,2,..., m

and radii

.Sl
1

'"= 1,2,...,m

Consider the Gershgorin-disc set generated by moving along
the imaginary axis part of the contour D defined in Section 4

critical point

radius = I

locus of fjj(juj) envelope of
Gershgorin-circle
set for centre
lOCUS Of fjj(jUD)

Fig. 8
Indirect stability criterion
If the diagonal-dominance condition is satisfied, no circle can sweep over the origin

PROC. IE.S, Vol. 117, No. 10, OCTOBER 1970

for the particular element/j/O'co) as shown in Fig. 8. Gershgo-
rin's theorem ensures that every eigenvalue locus p/Joi) lies
within the union of envelopes of the type illustrated in Fig. 8.
It follows from this line of argument that exprs. 59 and 60
ensure that none of the loci A,- defined in Section 4 can en-
close the origin of the complex plane. It then immediately
follows from the argument in Section 4 that the system is thus
stable with all loops closed if exprs. 59 and 60 are satisfied.

10.1.1 Restatement in terms of return-ratio matrix T(s)

Since fu(s) = 1 + tu(s) / = 1, 2 m (62)

and fij(s) = tij(s) j = 1, 2 , . . ., m and j =£ i

the indirect stability criterion may be expressed in terms of the
return-ratio matrix T(s). In these terms it is most conveniently
expressed in the following way. If

(0 + tn(s)\ > S \t^s)\ i = 1, 2, . . ., m . (63)

for all s on D
(ii) all tn(joj), / = 1, 2, . . ., m, satisfy Nyquist's stability
criterion with critical point at (—1,0), then the system is
stable with all loops closed.

10.1.2 Dual statement of results

Since the eigenvalues of a matrix and its transpose are
equal, Gershgorin discs may be constructed for either row
sums or column sums of off-diagonal elements.4

Thus exprs. 59 and 63 may equally well be replaced by
m

|/«W| > S \fM

for all s on D.

10.2 Rosenbrock's stability theorems in terms of det
Q(s) and det R(s) and their inverses

For reasons of convenience in relating open- and
closed-loop responses, it is often found useful to work in terms
of Q(s) and R(s) rather than F(s). It follows from eqns. 1, 2
and 8 that

det F(s) =
det Q(s)
det R(s)

(64)

and so stability criteria can be generated in terms of det Q(s)
and det R(s). These criteria have the further great advantage
that they can easily be re-expressed in terms of inverse map-
pings in the complex plane which, as shown in a later Section,
are of great utility in the proposed design methods. In terms
of det Q(s) and det R(s), Rosenbrock has proved the follow-
ing stability theorem.2

10.2.1 Rosenbrock's stability theorem

Let det Q(s) map the contour D into Fo and let
det/?(j) map D into Fc. Then the system is closed-loop
stable if, and only if, det R(s) has no pole on any finite part
of the imaginary axis and Fc encircles the origin as often,
in a clockwise direction, as Fo.

Alternative statement: It is often convenient to work in
terms of inverse matrices, as will be seen later. If

Q~l = Q (65)

R~l = R (66)

then the theorem may be stated in the following equivalent
way.

Let det Q(s) map D into Fo and let det R(s) map D into Fc.
Then the system is closed-loop stable if, and only if, det R(s)
has no zero on any finite part of the imaginary axis and Pc

encircles the origin as often in an anticlockwise direction as TQ.
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10.2.2 Rosenbrock's indirect-stability theorem

In designing the controller, we frequently wish to
arrange things so that the stability of the whole closed-loop
system can be inferred from a consideration of the frequency-
response characteristics of a set of m principal loops, where
the principal loop transferences are the diagonal terms of the
return-ratio matrix or open-loop-gain matrix. The stability
theorem just given can be used to derive a result of this type.
Since inverse matrices are most used in the design techniques
based on these results, the alternative statement of the
theorem in terms of inverse matrices is used. It is convenient
to first derive some preliminary results.

10.2.2.1 Origin encirclements of det Q(s)

Let det Q(s) map D into To and qn(s) map D into
Po/ 0' — 1» 2, . . ., m). Let the number of anticlockwise
origin encirclements of r 0 be n0 and of r o / be nOi ( / = 1,
2, . . ., m). Then, if

m

2 \qu(s)\
7=1
Ji

. . (67)

m

or if \qM > S \4jt(s)\ i = 1, 2, . . ., m . . (67a)

for all s on D,
m

"0 = 2 "0/ (68)

Proof: Let {vj(s):j = 1, 2 , . . . , m) be the eigenvalues of QCy).
Then the eigenvalues {vj(s)} lie within the union of Gershgorin
discs for Q(s) which are circles with centres lying on T0l with

m m
radii 2 \4ij(s)\ or, alternatively, 2 I?;/(•?)!> as illustrated for a

7=i 7=1
1*1 J*>

typical locus in Fig. 9. Exprs. 67 and 67a ensure that the

Imi

ri:

radius=Z | q j j {s) |

>h
Fig. 9
Alternative indirect stability determination
If the diagonal-dominance condition is satisfied, no circle can sweep over the
origin

envelope path swept out by the set of discs never covers the
origin. Thus the loci traced out by the eigenvalues i>j{s) are
trapped within a union of paths of the sort swept out by the
discs in Fig. 9. It follows from this that

m

2 nQi = sum of origin encirclements for all vJs)

Now det Q(s) = U vXs) (69)
7 = 1

so that

n0 = sum of origin encirclements for all vj(s)

and thus

= 2 "0/
1

(7°)
10.2.2.2 Origin encirclements of det R(s)

Let det R(s) map D into fc and rn(s) map D into
t^ci(i = 1 , 2 , . . . , m). Let the number of anticlockwise origin
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encirclements of F c be nc and of fc/ be nci(i = 1, 2, . . ., m).
Then, if

or if

. . . (71)

\?ii(s)\>£\fJi(.s)\ i = l , 2 , . . . , w . . . (71a)

Mi

for all s and D,

(72)

The proof is exactly as for det Q(s).

10.2.3 Statement of indirect-stability theorem

A sufficient condition for closed-loop stability is that
the following three criteria are satisfied:

(i) 2 »0i = 2 nci
i=\ »=i

(ii) For all s on D and for i = 1, 2, . . ., m
m m

\4ti(s)\ > 2 | ^ ) | or \qii(s)\ > 2 \qn

l*i j*i

(iii) For all s on D and for / = 1, 2, . . ., m

(73)

• (74)

2I
7=1

|
7=1

Proof: From the preliminary results established for the origin
encirclements of det Q(s) and det R(s) we see that, if conditions
(ii) and (iii) are satisfied, condition (i) implies that f"0 and Fc
encircle the origin in an anticlockwise direction the same
number of times.

The result then immediately follows from Rosenbrock's
stability theorem.

10.3 Relationships between inverse transfer-function
matrices for open- and closed-loop systems
Consider the system shown in Fig. 1. If, as before, we

put
G(s)K(s) = Q(s)

then the closed-loop transfer-function matrix is

R(s) = { I n t + Q ( s ) H ( s ) } - i Q ( s ) . . . . ( 7 6 )

so that

R~Ks) = Q-l(s){Im + Q(s)H(s)}

= Q~Ks) + H(s) (77)

and, putting R~l = R, Q~l = Qwe obtain

R(s) = Q(s) + H(s) (78)

Eqn. 78 is of great importance in design work, since it shows
that the inverse transfer-function matrices for open- and closed-
loop operation are related in a simple way. For frequency-
response plots where H is a diagonal matrix of real con-
stants

ruO'<») = $//(/«) + hu J — !» 2, • • ., rn

rrfja) = quUo>) i^J /,/ = 1, 2,. . ., m (79)

and thus inverse frequency-response loci are obtained by a
simple horizontal shift in the complex plane (which may be
zero) for the change from open-loop to closed-loop working.

10.4 Relationships for R(s) between the inverses of the
elements and the elements of the inverse

The system closed-loop transfer-function matrix is

R(s) = {Im + G(s)K(s)H(s)}-i G(s)K(s) . . (80)

If the moduli of the diagonal elements of K (for some specified
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region in the complex plane) all become large, then the moduli
of all the elements of G(s)K(s)H(s) will (in the same sense)
become large, and thus

{Im + G(s)K(s)H(s)}^G(s)K(s)H(s) . . (81)

so that

. R->{G(s)K(s)H(s)}-lG(s)K(s) =

Thus, if H(s) is a diagonal matrix,

R -» a diagonal matrix

• • (82)

. . . . (83)

so that

ru(s) i = 1, 2 , . . . , m (84)

Thus, when sufficiently high values of static gain exist in all
loops, and for sufficiently low frequencies, ?,-,•($) approximates
to rjjX(s). This means that we can use the diagonal elements of
R(s) as an approximation to the inverses of the elements of
the closed-loop transfer-function matrix R(s), and thus, via
eqn. 78, we can use the elements of Q(s) to design for a
desired closed-loop response in terms of inverse Nyquist plots
for the diagonal elements of R(s) which define the system
behaviour with the m principal loops closed.

For these reasons the relationship is required, in the
general case, between the inverses of the elements of R(s) and
the elements of the inverse. Standard matrix formulas give

so that

det R(s)

det R(s)

. . . (85)

(86)

Expanding det R(s) by the /th column gives

Substituting eqn. 87 in eqn. 86 then gives

Alternatively, det R(s) may be expanded by the /th row to
obtain

rr
l(s) = f..(s) + y P-(s)—'-^ (89)

10.5 Inverse mappings and inverse Nyquist diagrams
The discussion in Sections 10.3 and 10.4 has shown

that the properties of Q and R are of great importance
in design studies, and we are thus led to consider inverse
mappings in the complex plane.

The complex plane mapping z->z' where

(90)

will be called an inversion. Since

and arg z' = — arg z (92)

it is equivalent to a reflection in the real axis followed by a
further reflection in the unit circle where 'reflection' is inter-
preted to ensure that eqns. 90 and 92 are satisfied. Since the
inversion mapping is conformal, any stability condition
deduced from a locus in the complex plane may be equally
well deduced from the corresponding locus in the inverse
plane. In particular, the Nyquist diagram and inverse Nyquist
diagram are related as shown in Fig. 10. Gain margin and
phase margin are related to the inverse Nyquist diagram as
shown, and encirclement criteria for stability are easily
translated from one diagram to the other.
PROC. 1EE, Vol. 117, No. 10, OCTOBER 1970

10.6 Simple interpretation of Rosenbrock's indirect-
stability criteria in the inverse Nyquist diagram
It has been shown above that, if Q(s) and R(s) are

diagonal-dominant, then, for mappings of the contour D, the

Im

circle of unit radius

inverse
Nyquist
diagram

uuincreasing _

Nyquist
diagram

Fig. 10
Inverse Nyquist diagram

origin encirclements of the determinants of Q(s) and R(s) are
equal to the sums of the encirclements by the mappings of
their principal diagonal elements. ^

It has been further shown that Q(s) and R(s) are related in
such a simple way, namely by eqn. 78, that the properties of
the diagonal elements of R(s) can be immediately deduced
from those of Q(s). We would thus expect, in the majority of
situations of practical importance, to be able to deduce the
stability for situations in which Q(s) is diagonal-dominant by
an inspection of the inverse Nyquist plots <7/,C/ci>) (/ = 1,
2, . . ., m).

Suppose neither det G(s) nor det K(s) has any right-half-
plane zeros. Then neither will det Q(s), since

det Q(s) = det G(s) det K(s) (93)
In these circumstances, for a diagonal-dominated R(s), a

Im

circle of
unit radius

Re

uuincreasing

unit shift in
loci means
unit shift in
critical point

increasing

Fig. 11
Use of inverse loci
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sufficient criterion for stability is that qn(jaj){i = 1, 2, . . ., m)
all satisfy a simple inverse Nyquist stability criterion with
respect to the normal critical point (—1,0). This is illustrated
by Fig. 11.

With H = Im,

PaUo) — 1 + GaiJoj) i = 1, . . ., m . . (94)

Thus, if the origin of the complex plane always lies to the left
of r,-,(/co) as a> increases from 0 -> oo, the critical point
(—1,0) will always lie to left of <7/,(/co) as co increases from
0-» oo for / = 1, 2, . . ., m, as is illustrated in Fig. 11.

10.7 Outline of Rosenbrock's inverse-Nyquist-array
design technique2

The essence of the material contained in the last few
Sections is that if the open-loop transfer-function matrix is
diagonal-dominated, the m principal loops can be designed
using single-loop frequency-response techniques. Further-
more, it is useful to work in terms of inverse transfer functions
in inverse Nyquist diagrams, since open- and closed-loop
behaviour can then be related in a simple and efficient way.

Let the controller K(s) be synthetised in three successive
stages, which will be enlarged on below, so that

K(s) = KaKb(s)Kc(s) (95)

Thus Q(s) = {G(s)KaKb(s)Kc(s)}-1

= Kc(s)Kb(s)KaG(s) (96)

and R(s) = H + Kc(s)Kb(s)KaG(s) (97)

where, as previously, K denotes the inverse of K.

10.7.1 Inverse Nyquist array2

The set of m2 loci in the complex plane corresponding
to the entries of G(ja>) is called the inverse Nyquist array.

The design method proposed by Rosenbrock2 starts with
eqn. 97. Ka is a combination of permutation operations such
that, from the controller viewpoint, the /th input is regulated
from the /th output for / = 1, 2 , . . . , m, and scaling operations
such that inputs and outputs are related by convenient units.

A suitable Ka is selected, and Kb(s) is chosen to make Q(s)
diagonal-dominant. It is now possible to determine the
system closed-loop stability from the diagonal entries of
QO'co) alone.

The final stages of the design process are concerned with
choosing the elements of the diagonal matrix Kc(s) which
synthetises the m principal control loops. This can be done
using conventional single-loop inverse-Nyquist-diagram
techniques. As explained in Section 10.4, if the loops all
have a sufficiently high gain, Pjj(jto) is a good approximation
to rr.l(ja)) over frequency ranges for which high gains are
present in all the loops, and so the actual closed-loop be-
haviour can be shaped at this stage in the design by shaping
ru(jto) i = 1, . . ., m. Eqns. 88 and 89 can then be used for a
check on the closed-loop response using the final values of
K(/co) entries over the full operating-frequency range of the
system.

10.8 Extension of return-difference stabijity theorem to
nonlinear case via describing-function techniques

If nonlinearities are present which can be represented
by describing functions,11 then, under suitable conditions, the
stability results of Section 10.1 can be extended to deal with
nonlinear system stability.

Consider the system of Fig. 12 where nx(ax), n2{q2), . . .
«m(ajare frequency-independent describing functions for the
set of nonlinearities shown. Suppose the plant frequency-
response matrix G(jto) is such that, as in the usual describing
function hypothesis,11 each plant output may be accurately
represented by its first harmonic. Thus a sinusoidal vector
input to the controller frequency-response matrix K(jto)
produces a sinusoidal response at the plant output.

For a sustained oscillation of frequency co and of constant
amplitudes a{, a{,..., am at the inputs to the nonlinearities, we
shall have

G(jto)N(a)K(jto)H = —Im (98)
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where N(a) = diag {^(at), n2(a2),..., nm(am)} . . (99)

so that we shall have

{/„, + G(jco)N(a)K(MH} = 0

and thus

or detF(a,/co) = (101)

where K(a,jco) is the appropriately evaluated return-dif-
ference matrix and a is a vector with elements au a2, . . ., am.

Fig. 12

Describing-function system

Im

Fig. 13

Instability criterion for nonlinear system

We now argue heuristically that no oscillation will exist if
there is no (a, co) such that det F(a,/to) vanishes; i.e. such
that there is no a for which the corresponding locus det F(a,
jto) passes through the origin as shown in Fig. 13.

Now put

F(a, s) = G(s)N(a)K(s)H} (102)

and suppose that the following conditions are satisfied:

(i) F(a, s) is diagonal-dominated for all a and for all s on
the contour D.

(ii) None of fu(a, Jto) for / = 1, 2,. .., m enclose the origin of
the complex plane.

Then, by a straightforward extension of the argument used in
the linear case, there will be no value of a so that det F(a,Ju>)
vanishes.

Put

T(a; s) = G(s)N(a)K(s)H (103)

If none of the fu(a, /co) for / = 1,2,.. ., in enclose the origin
of the complex plane, then none of the diagonal elements /,-,(«,
jto) enclose the usual critical point (—1 +/0) in the complex
plane. This, however, is simply the usual describing-function
stability criterion for the m principal loops considered as
individual single loops.11 Thus, if condition (i) above is
satisfied, and the m principal loops are stable by the usual
describing-function method for single loops considered one
at a time, the nonlinear system of Fig. 12 will be stable with
all loops closed.
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11 Discrete-time systems
The complex-plane analysis and design techniques

developed in the above Sections for continuous-time systems
may be extended to deal with discrete-time systems. Most of
the extensions are very straightforward, since the algebraic
relationships involved are essentially the same.4

Discrete-time return-difference and return-ratio matrices
are defined exactly as for the continuous-system case.

plane. This gives the discrete-system multiple-loop complex-
plane mapping criterion for stability shown in Fig. 16.

r ) g ( z ) • K(z) u(z ) . G(z)

H(z)

y(z)

Fig. 14
Discrete vector feedback system

For the feedback control system of Fig. 14 let

r(z) = m x 1 matrix of reference input z transforms
e(z) = m x 1 matrix of error z transforms
y{z) = m x 1 matrix of plant output z transforms
u(z) = r x 1 matrix of plant input z transforms

K(z) = r x m matrix of controller discrete-time transfer
functions

G(z) = m x r matrix of plant discrete-time transfer functions
H(z) — m x m matrix of feedback transducer discrete-time

transfer functions

The closed-loop-system discrete-time transfer-function matrix
M(z) is given by

M(z) = {Im + G(z)K(z)H(z)}-lG(z)K(z) . . (104)

= F-\z)G(z)K(z) (105)

where F(z) = {/„ + G(z)K(z)H(z)} (106)

is the system discrete-time return-difference matrix. A
discrete-time return-ratio matrix T(z) may be defined as

T(z) = G(z)K(z)H(z) (107)

so that

F(z) = T(z) (108)

The fundamental relationship between open-loop- and closed-
loop-system behaviour is derived in Appendix 15.1 and is

closed-loop characteristic polynomial
open-loop characteristic polynomial

11.1 Complex-plane mapping criterion for discrete-time
multiple-loop-system stability in terms of the
return-difference matrix

Since (in Appendix 15.1) we have assumed that the
system is open-loop stable, the open-loop characteristic
polynomial will have no zeros outside the unit disc in the
complex plane. (By the unit disc in the complex plane is
meant the interior of the disc bounded by the circle of unit
modulus in the complex plane.) Thus, it follows from eqn. 109
that the closed-loop characteristic polynomial will not vanish
outside the unit disc in the complex plane if, and only if,
det F(s) does not vanish outside the unit disc in the complex
plane. Let D be the contour in the complex plane shown in
Fig. 15. This consists of a unit-modulus circle and a circle of
radius a, both centred at the origin of the complex plane,
joined by a double path along the real axis as shown. Further,
let a be large enough to ensure that every zero and pole of
det Q(z) and det R(z) which lies outside the unit disc in the
complex plane lies within D.

Suppose D maps into a closed curve Y in the complex plane
under the mapping det F(z). Then the system is closed-loop
stable if no point within D maps on to the origin of the
complex plane under the mapping det F(z).

Thus the system is closed-loop stable if Y does not enclose
the origin of the complex plane. If |det F(z)\ -> 1 as \z\ -» oo,
then, taking a as arbitrarily large, we can conveniently refer
to F as the mapping of the unit-modulus circle in the complex
PROC. LEE, Vol. 117, No. 10, OCTOBER 1970

Im

Fig. 15
Test contour in zplane

Im

det F(z) for stable
system |z| = I, z on
unit circle

Fig. 16
Simple discrete-system stability criterion

Let the eigenvalues of F(z) be {/>y(z):y = 1, 2, . . . , m}. We
then have that

det F(z) =
7 = 1

(U0)

Therefore, det F(z) will not vanish for any z enclosed by D if
none of {pj(z):j = 1, 2, . . ., m} vanish for any z enclosed by
D. Let D map into Ay in the complex plane under {pj(z):
y = l , 2 , . . . , m}. Then Y will not enclose the origin of the
complex plane if none of Ay enclose the origin of the complex
plane for/ = 1, 2, . . ., m. Thus the system will be stable with
all loops closed if none of Ay enclose the origin of the complex
plane ioxj — \,2, . . ., m, giving the following result.

11.1.1 Fundamental stability property of complex-plane
loci for discrete-time system return-difference-
matrix eigenvalues

The system is closed-loop stable if all the eigenvalue
loci Pjiz), when z runs round the unit-modulus circle in the

Im

Re

P:(z) for stable system

z on unit circle

Fig. 17
Characteristic frequency response for discrete system
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complex plane, satisfy the mapping criterion illustrated in
Fig. 17.

This criterion can be equally well stated in terms of the
return-ratio matrix. Since

F(r) = / m + r ( * ) (I l l )

\f{vj(z):j = 1, 2, . . ., m) are the eigenvalues of T(z), then

Pj(z) = 1 + vj(z) y = l , 2 , . . . , m . . (112)

In terms of the return-ratio matrix, therefore, we simply obtain
a unit shift in the location of the critical point.

11.2 Extension to discrete-time case of indirect stability
theorems and design techniques
The concepts of diagonal-dominance in indirect

stability theorems, and of ideal commutative control, may
now be extended to the discrete-time case in an obvious way.
As in the case of single-loop theory, the unit-modulus circle
in the complex plane plays the role in the discrete-time case
which is played by the imaginary axis in the continuous-time
case.16

12 Conclusions
The return-difference and return-ratio matrices play

a central role in multivariable-feedback-control theory.
Regarding matrix transfer functions as operators on linear
vector spaces over the field of rational fractions in s leads to
the concept of characteristic transfer functions which are the
eigenvalues of such operators. The corresponding character-
istic frequency responses then provide a simple and natural
link between classical single-loop techniques and multi-
variable-control theory. This concept then serves as a unify-
ing thread in a coherent and systematic discussion of multi-
variable-feedback-system design techniques.
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15 Appendix
15.1 Fundamental relationship between open-loop- and

closed-loop-system behaviour

The continuous-time system relationship given by
eqn. 5 may be deduced by means of the arguments presented
by Rosenbrock2 and Hsu and Chen.12 The proof given by
Rosenbrock is adapted here to derive the relationship for the
discrete-time case:

Let G(z)K(z) = GO)

and H(z) = H

(113)

(114)

where H is a diagonal matrix of real constants, and consider
the system shown in Fig. 18. Q{z) is thus the discrete-time

ro(z) iCi:\ e(z)
•J

0(z)

H

Fig. 18
Simplified discrete system

transfer-function matrix of the cascaded controller and plant,
and there is no dynamic action in the feedback transducers.

Let the system in the box with discrete-time transfer-func-
tion matrix Q(z) be such that its behaviour is defined by the
discrete-time transformed equation set

X(z)q(z)=U(z)e(z) (115)

y(z) = V(z)q(z) + JV(z)e(z) (116)

where X(z), U(z), V(z) and W(z) are polynomial matrices.
Eqns. 115 and 116 can be thought of as constituting a physical
description of the process, and would be obtained by taking
ztransforms of the difference equations defining the physical
behaviour of plant and controller. From eqns. 115 and 116,
we obtain

Q(z)= V(z)X-1(z)U(z)+ Wiz) . . . (117)

e(z) = r[z) - H(z)y(z) (118)

In what follows, we assume that det Q(z) has no zero on any
finite part of the unit circle in the complex plane, that det X(z)
is not identically zero (i.e. zero for all values of z), and that
the system represented by eqns. 115 and 116 is asymptotically
stable.

From eqns. 115, 116 and 118, we have

xiz) uiz) o ir-<z(z)
-Viz) Wiz) - / J eiz) | =

so that, for closed-loop behaviour,

eiz) \=
" Xiz) Viz) 0
-Viz) Wiz) -/,„

where the matrix

0

is given by

1

0

riz).

0

o
0 I (120)

riz).

(121)

xiz) uiz) on
Pciz)= \-Viz) Wiz) - / „ . . . . (122)

0 Im H\

PROC. IEE, Vol. 117, No. 10, OCTOBER 1970



Since all the constituent matrices out of which Pc(z) has been
assembled are polynomial matrices, Pc(z) will be a poly-
nomial matrix. It follows from this that a necessary and
sufficient condition for the closed-loop system to be stable is
that all the roots of the equation

det Pc(z) = 0 (123)

lie in the interior of the unit disc in the complex plane.
Written out in full, eqn. 123 is

det
X(z) U(z) 0

-V(z) W{z) -Im\ = 0
0 lm H

. . (123a)

and thus the open-loop situation, which is obtained by putting
the feedback matrix H = 0, gives

f X(z) U(z) 0 1
det - V(z) W{z) -Im = det X(z) = 0

0 L 0
(124)

Since the open-loop system is asymptotically stable (by as-
sumption), all the roots of eqn. 124 will lie in the interior of
the unit disc in the complex plane.

Let the discrete-time transfer-function matrix for the
closed-loop system be R(z), so that

y(z) = R(z)r(z) (125)

In the manipulations which follow, it is helpful to use a
formula which gives the minors of an inverse matrix in terms
of the minors of the original matrix, and this formula is
accordingly quoted here.

Minors of inverse-matrix formula: If B = A~x the minors B
are expressible in terms of the minors of A as follows:

B
kxk2

. . . i \
ktk-j.. . k ,

M'2 ln-

, 1 2 . . . « x
\\2...n)

where ix < i2 < ... </p and /{ < i2 < . . . < /^_p

(126)

and k{ < k2

p { 2

. • . <kp and k{ < k'2

form complete sets of indices 1, 2, . . . , « .
An inspection of eqns. 120, 121 and 125 shows that R(z) is

obtained from P~}(z) by striking out the first r + m rows and
columns of P~ '(z). Therefore det R{z) is the minor formed
from the elements of P~ !(z) in rows {r + m + 1 ) . . . (r + 2m)
and columns (r + m + 1) . . . (r + 2m). Eqn. 126 then
gives

+ m + 1). . . (r + m + m)) -
. . . (r + m)

f-12 . . . r + 2m
U2. . . r + 2m )

(127)

so that

I" X(z) U(z) 1
det _ v , v ^ / x

det /?(z) = L ^ z ; ^ ^ J . . . (128)
f X(z) U(z) 0 I

det - V{z) Wiz) -Im
L 0 Im H]

Since the open-loop system is obtained by putting H = 0, we
can obtain det Q(z) from det R(z) by putting i / = 0 in eqn.
128. This gives

f Xiz) U(z)l
det\-V(z) W(z)\

det Qiz) = detjrfr) (129>

Now the block diagram of Fig. 18 shows that

so that

det Riz) = [det {/„, + <Kz)H}-l]{tet Q(z)} . (131)

= det 7de+gQ(U ° 3 2 )

since the determinant of an inverse is the inverse of the deter-
minant.

Thus, expressing the return-difference matrix as usual in
the form F(z), we have

F(z) = {/„ + Q(z)H} (133)

and thus

*»")-sS ™
Now the characteristic equations of the open- and closed-
loop systems are given by

det Pciz) = closed-loop characteristic equation . (135)

det X(z) = open-loop characteristic equation . (136)

Dividing both sides of eqn. 129 by the corresponding sides of
eqn. 128 gives

det Q(z)_ det Pc(z)
det Riz) d&tXiz) U ;

Thus, using eqns. 134, 135 and 136, we have

z)

closed-loop characteristic polynomial
open-loop characteristic polynomial

. . . . (138)

This is the fundamental equation relating the open- and
closed-loop behaviour of discrete-time multiple-loop control
systems. The above argument applies, with the obvious
minor modifications, to the continuous-time case.
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