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‘Abstract

Recent results in the dyadic representation of system interactions are
used to derive a systematic approach to the manipulation and compensation
of the characteristic loeci of a system described by the NxN transfer
function matrix G(s), using rational transfer function approximations to
the characteristic loci. The approach is thought to strengthen the link
between single-input and multivariable control system design techniques by
releasing well-known classical compensation techniques for application to

multivariable systems.
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1. Introduction

(1,2)

-In recent papers the dyadic description of the interaction structure
of a plant described by an NxN transfer function matrix G(s) has been applied
to the analysis and synthesis of feedback control.systems for a class of nuclear
reactor spatial instabilities. ' 1In such cases the approach has several
important advantages_
(a) If G(s) is a dyadic t}ansfer function matrix, a dyadic description
of system interaction structure makes possible the determination of
a simple controller structure which decouples the output modes of
the system, The N modal loops can then be designed independently
using single-loop design concepts.
(b) The interpretation of the magnitude, form, and frequency dependence
of the piant dyadic structure is an important link between the
physical insight available into process dynamics and the theoretical
frequency domain analysis. Such information can provide estimates
of the effect of modelling errors on the final closed-loop design(3?
and a technique for synthesizing fail-safe feedback control systemsa’z).

(4)

that similar considerations can alleviate

(5) (6)

It has been demenstrated

difficulties arising in the application of SRD and INA design techniques.

Despite their relevance to reactor control system design, dyadic and
approximately dyadic structures represent only a subclass of possible physical

systems. This paper extends the previous results using a combination with the

(8)

general principles of the characteristic locus design method and recent

(7)

results on the general dyadic representation of system interactions to
propose a straightforward approach to the modification and compensation of
general éystem characteristic loci. The bésic theoretical ideas are described
in section 2 where it is shown that an interplay between the concepts of modal

(2,7) (8) (9)

decoupling and characteristic loci and the use of Gershgorn's theorem
enables the exact allocation of the characteristic loci at a particular frequency

and the approximation of the loci in the vicinity of that point by rational
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polynomial transfer functions. An illustrative example is described in
section 3.

Finally, in section 6, an analytic solution is obtained for a simple
class of multivariable feedback control problems. This solution is used as

a conceptual aid in section 3.°

2. Dyadic Expansion, Modal Decoupling and Characteristic Loci

Consider a unity negative feedback configuration for the control of a
system described by the NxN transfer function matrix G(s). Let K(s) be the
NxN forward path controller and D the usual Nyquist contour in the complex

(8) that the

plane, traversed in the clockwise direction. It is well known
ratio of the system closed-loop characteristic polynomial to the system open-
loop characteristic polynomial is given by the determinant of the return-

difference matrix T(s) = I+G(s)K(s). If {tk(s)}lsksN are the eigenvalues of

G(s)K(s), then

[T =

L=~

(1 + tk(s)) s L33

k=1

Defining the image of D under tk(s) to be the kth characteristic locus(g) then,
if P, is the number of right-half-plane zeros of the open-loop characteristic

polynomial, the closed-loop system is stable if, and only if,(8> |

o, = -p _ <. (2)

where o, is the number of clockwise encirclements of the kth characteristic
locus about the (-1,0) point of the complex plane.

The above result has been used to formlthe basis of the characteristic
locus method for multivariable feedback control systems design(s). The
approach regards the design objective as the gain and phase compensation of
the characteristic loci of the original plant G(s) by the choice of a suitable

controller K(s). Unfortunately, as there is no general formula giving the
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eigenvalues of the product of two matrices as a function of the eigenvalueé of
the individual matrices, the systematic choice and modification of K(s) to
produce the required loci compensation is a major practical problem. The aim

of this section is to provide a framework for a systematic approach to the

(7)

solution of this problem using' recent results on the dyadic representation

of system interactions. The problem is regarded in three stages,
(i) The choice of a controller K(s,ml) such that the eigenvalues of

G(S)K(s,ml) take specified values at s = iw For practical

1"
purposes, both G(s) and K(s,ml) are assumed to be analytic at

s = iwl and non-singular.

(ii) The systematic investigation of the effects of a particular choice
of controller K(s,wl) on the characteristic loci in the vicinity of
8 = imi, and the use of such information in the choice of suitable

compensation elements in K(s,ml).

(iii) By repeating (i) and (ii) at selected frequencies W1 sWosenes W the
controller matrix
%
K(s) = % K(s,w.) i 03D
j1 ]

will produce the desired characteristic loci provided that each term
K(s,wj) dominates the summation in the vicinity of s = iwj.
An important practical aspect of the approach is the facility of obtaining
rational scalar transfer function approximations to the system characteristic

loci, valid in the vicinity of the frequency point of interest. It is

considered that this feature strengthens the link between single and multivariable

design concepts by releasing the well-known single-variable compensation

techniques for application to multivariable systems.

2.1 Manipulation of Characteristic Loci at a Given Frequency

Consider the problem of the choice of a controller K(s,wl) such that the

A solution is

eigenvalues of G(S)K(s,wl) take specified values at s = iwl.



- 4 -

obtained below using the concepts of dyadic expansion and modal decoupling(7),

Consider the case when ]G(im1)| # 0 and the matrix G(—iml)c“l(iml) has a

. . (0
1 t of en tors i P o
complete set of eigenvector {ak(ml)}lsksN revious results imply that,
N +
G(lwl) = I hk(lml)ak(pl)ﬁk (wl) : ‘ o wnikh)
k=1
. ¥ + )
where {hk(lwl)}1Sk$N are non-zero complex numbers and {ak(ml)sk (mf}lsksN is a

set of linearly independent dyads which are real or exist in complex conjugate

. (7 : : .
pairs. In general {ak(ml)}lsksN are not the eigenvectors of G(lwl) and

{hk(lwl)}lSRSN are not the eigenvalues, However, defining
N
() = {I o ()B ()t (5)
Kplug g0 1By 8y
k=1
then 7 (w,) is real and non-singular and (K_(w ))-1 (W) = I implies that
7 Byl Kplug)) K, Gy Uaky
Igj, ksN,
B, @K (w)da (w,) = 8 (6
: wy KD wyley (W) = ik v (6)

and hence, 1gfgN,

) . +
G(lwl)KD(wl)al(ml) hk(lml)uk(wl){ﬂk (ml)KD(wl)aE(wl)}

|
™=

k=1

]

hl(iwl)ug(wl) ’ v wsid ¥

That is, {uk(wl)}lsksN and {hk(lml)}lsksN are thg elgenvectors and eigenvalues

(1,2)

of G(iwl)KD(ml). In previous papers physical considerations lead to the

term modes for the vectors {uk(ml)} and, in view of equation (7), the choice
of controller KD(ml) is termed modal decoupling and KD(ml) a decoupling matrix
at the ffequency W, .

1

Suppose that the desired values of the characteristic loci at s = iml are

Qysdysersly. A suitable controller matrix K(s,ml) is obtained using modal-

decoupling to be the dyadic transfer function matrix(z)



e Bl s
N
z

K(s,wl) = KD(wl) kj(s,wl)aj(wl)vj+(ml) s CBD

i=1
+ )
where {Yj (ml)}lsjsN are vectors such that, 1gj, <N
Twe, @) = § ‘ . (9)
Ty g aBg M L K28

{kj(s,ml)} are scalar rational polynomial transfer functions such that

lsjgN
kj(lwl,ml) = qj/hj(lwl) : s ¢ CEO)
and, for 1lgjgN, if aj(ml) = ag(wl) then
kj(s,m ) = kE(S’wl) for all s sioem CLL)

invatiance ot

. ‘ , + . .
Equation (11), together with the/&ak<m1)6k (wl)}lsk$N under complex conjugation,
ensures that K(E,ml) = K(s,ml) everywhere in the complex plane. Equations
(7)=-(10) indicate that

G(iwl)K(iml,ml)ag(wl) = G(iwl)KD(ml) _i

J kg Goop o oy )4y, " )Dey ()

1

= 6wy K (W ) {a, /by (o)) b, ()

qpe, (W) lgasN , .. (12)

so that {qz}lsisN are the eigenvalues of G(lml)K(lwl,wl) as required and the

modes {al(ml)} are the eigenvectors.

1g2gN
As the structure and orders of the compensation networks {kj(s’ml)}1<j<N
are unspecified except for the constraints of equations (10) and (11), the

matrix K(s,ml) is obviously non-unique. A technique for using these degrees

of freedom in the compensation of the characteristic loci in the vicinity of

5 = iml is described in the next section.
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2.2 Manipulation of Characteristic Loci in a Frequency Interval

Although the manipulation of the characteristic loci at a given frequency
is of some practical interest, the technique is limited without an assessment
of the effect of a particular choice of K(s,ml) on the characteristic loci in
the vicinity of s = iwl, and a method for using tﬁis information to choose

suitable forms for the compensation networks {kj(s,wl)} An approach to

1gjgN’
the solution of this problem is described in this section.
It is convenient to manipulate G(S)K(s,ml) into a more amenable form by

defining

T(w,) = Exl(wl), a, () 5eee, aN(wl)J .- (13)

and noting from equations (8) and (9) that

T () 6()K(s,u )T (w)) = H(s,u )diaglk (s,0,)..,k (5,00} ... (14)
where

H(s,w,) = ‘T_l(wl)G(S)KD(wl)T(ml) ey LL5)
is a transfer function matrix with rational polynomial elements. The common

denominator of the elements of H(s,ml) is simply the common denominator of
elements of G(s), In general the coefficients in the numerator polynomials
of H(s,wl) are complex, but, if {aj(wl)}lsjsN are real vectors, all such
coefficients are real numbers.

As eigenvalues are invariant under similarity transformation, the
characteristic loci of G(s)K(s,ml) are identical to the characteristic loci of
H(s,ml)diag{kj(s,ml)}. Also the eigenvalues of H(s,ml)diag{kj(s,ml)} are
equal to the eigenvalues of diag{kj(s,ml)}H(s,wl). Using this information, an
estimaté of the effect of a particular set of compensation elements {kj(s,ml)}
on the characteristic loci can be obtained by applying Gershgorins theorem(g) to
equation (14). That is, the eigenvalues of G(s)K(s,ml) lie in the union of the

clqsed discs Bj(s,wl) of centre Hjj(s,ml)kj(s,ml) and radius dj(s,ml) where
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dj(s,wl) = ij(s,wl)| iij ]Hji(s,w ), (row estimate) ...(l6)

or

]

dj(s,ml) |kj(s,w1)| z |Hij(s,wl)| s (column estimate)...(17)

i#]
Also, from equations (7) and (15), it follows that H(s,wl) is diagonal at
8§ = iwl with eigenvalues Hjj(iwl,wl) = hj(iwl). Hence, from equations (14),

(16) and (17) G(lml)K(lwl,wl) has eigenvalues Hjj(lwl,wl)kj(lml,ml) and
dj(iml,wl) = 0 : 1 &3 <N vax C18)

so that the Gershgorin circles at the point s = iwl have zero radius. A

graphical representation of these ideas is given in Fig. 1 for a case of N = 2.
The above analysis intuitively suggests that, in the vicinity of the point
s = iwl where (equation (18)) the Gershgorin circles are small, the diagonal

terms {Hjj(s,ml)kj(s,wl)} will be reasonable approximations to the

1sjgN

characteristic loci {tj(s)}1<. of G(s)K(s,ml) in the sense that

\J$N
tj(S) & Bj(s,wl) 5 lsjsN , v wnTLE)
and the fractional error, lgjgN,
t.(s) - H..(s,w,)k.(s,w d, (s,w
[£3(8) — By 500k ()| . j o) ... (20)
{Hjj(s,ml)kj(s,ml)r [Hjj(s,wl)kj(s,MITT

is small. With these assumptions, equations (16) and (17) indicate that the
fractional error is independent of the chosen compensators {kj(s’ml)}lsjsN and
hence that the validity of the loci approximations depends only on the extent
to which H(s,wl) is diagonally dominant in the vicinity of s = iml.
The intuitive approach described above can be applied directly to the
assessment of the effect of a particular choice of {kj(s,ml)} on the characteristic

loci of G(S)K(S,wl) in the vicinity of s = iwl by an analysis of the products

. . . ’ .
Hjj(s,wl)kj(s,wl), 1g¢jgN.,  Also, bearing in mind that Hjj(s,wl), 1<jgN, are
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rational polynomials in s, the approach provides an intuitive but systematic
approach to the choice of compensation elements {kj(s,wl)} by the application
of single-variable techniques (e.g. pole-zero analysis) to each approximation
Hjj(s,wl) in turn. An example illustrating the épproach is given in section 3.
It is important to note that the characteristic loci of G(S)K(s,ml) do not,

in general, satisfy relation (19). For example, consider the matrix

10 101
s 5 w21
4 1
which has eigenvalues 8.7 and 2.3. This implies that the error bounds of

equation (20) can be over optimistic. However, if the process of compensation
in the vicinity of s = iwl is regarded as an attempt to equalize the loci
Hjj(s,iwl)kj(s,iwl) in that region, a consideration of perfect compensation, i.e.

HRE(S,lwl)kg(s,lwl) = Hjj(s,lml)kj(s,lwl), 15j, 2<N, and application of

Gershgorins theorem indicates that, for lgjgN,

}tj (s) - Hjj(s,wl)kj (s,wl)l
]Hjj(s,ml)kj(s,wle

dj(s,wl)
IHjj(s,wl)k(s,wl)]

g max
C1gisN

«es (22)

i.e. the uncertainty in the position of the actual characteristic loci can be
reduced by the very act of system compensation, In such cases, relation (19)
can be regarded as a feasible assumption for practical applications.

Finally the size of the frequency interval over which the approximation is
sensibly valid is an importané consideration in practical applications. This
will vary with the choice of Wy and the complexity of the interaction structure
of the system under consideration. However, the example of section 3 and
previous experience with applications of the technique of dyadic approximation(l’z)

imply that it can be large enough to make the approach a useful addition to

already available multivariable control-systems-design aids.
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2.3 An Approach to Multivariable-Control-Systems Design

Based on the analysis of sections 2.1 and 2.2, the following procedure is
suggested for the systematic manipulation and compensation of open-loop system

characteristic loci. The controller is based upon the form

K(s) = K(s,wp) s C23)

I 1=

p=1

where Wyseeesy are distinct frequencies at which it is desired to manipulate
the system characteristic loci. For theoretical purposes it is assumed that

the term K(s,mk) dominates the summation in the vicinity of s = iwk and hence

that compensation achieved in this region is largely unaffected by subsequent

design exercizes in other frequency intervals. For practical purposes the

W \

and wz

choice of & = 2, w as representative high and low frequencies respectively,

1

and K(s,wl), K(s,wz) as lead-lag and integral terms respectively should satisfy

this assumption.

STEP ONE: Choose distinct frequencies w, > w, > .. > W

1 2 at which compensation

2
of the characteristic loci is required. Set j = 1.

STEP TWO: Using the results of sections 2.1 and 2.2 calculate the decoupling
matrix KD(mj) and transformation T(mj). .Hence calculate the transfer
function matrix (eqn. (1l5)) H(s,mj).

STEP THREE:Using the rational polynomials {HRR(S’wj)kZ(S’mj)}ISESN as
approximations to the system characteristic loci in the vicinity of
g = iwj, use single-loop design concepts to choose compensation
networks kp(s,mj), 1g<psN, so that the products pr(s,mj)kp(s,mj),
1<pgN, have the required properties in that region. Calculate
K(s,wj) from eqn. (8).

STEP FOUR: Compute the characteristic loci of G(s) % K(s,mp) to check that the

p=1
desired loci characteristies have been obtained in the vicinity of

CQmPensquﬂ al
g = imj and also that/the frequencies W »W s unaﬂkcked.

20t 2¥y-1
STEP FIVE: If j = & set the controller to be as in equation (22). If j<&,

- replace j by j+l1 and go to step two.
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The application of the above procedure is illustrated in the next

section using an example.

3 Illustrative Example

Consider a system with input-output relations defined by the transfer

function matrix,

32.6+165+2.1552 9.4+4s+1.ls2

1
G(S) = AN . L (24)
8(s) |6 244s41.0582 Sehata~
where
A(s) = (s+1)(s+2) (s+3) <. . (25)

As interactive effects in the system transient response are dominated by
the intermediate to high frequency response characteristics of the system(S),

attention is initially focused on this region, Choosing w, = 8.0, and

1

applying the procedure of section 2.3, the eigenvectors of G(—iB)Ghl(iS) are
- T T
@ = [1 0", o@® = [1 1] ... (26)
The procedure of section 2.1 yields the decoupling matrix,

=13.4 13.4
KD(B) = ves (27)
13.4 20.6

and hence, by equations (13) and (15),

1 —268-160.85—13.452 153.8+2.452

H(s,8) = 50s)

ssa(28)

—60.7—0.9532 102+136$+34s2

which is a matrix of rational polynomial transfer functions with real
coefficients. Note that the off-diagonal terms are zero at s = i8, as
expected.

-The diagonal terms are
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_ -—13.4(s+10)
Hll(S,S) = TE:ITTE:ES*- sy, L2 0

and

_ 34.0
H22(S,8) = TE:ET | w30}

a

Plots of the frequency responses of these transfer functions are shown in
Figure 2, together with the actual characteristic loci of G(S)KD(8). It s
seen that the diagonal terms are good approximations to the loci at high
frequencies and quite acceptable approximations at low frequencies. Typical
Gershgorin circles (based on row estimates) are also plotted in the frequency
interval lgw<+= and it can be seen that the characteristic loci of G(S)KD(S)
are contained within the band defined by the circles. The fractional errors
(equation (20)) are less than 0.5 at all frequencies greater than 1.0 and
hence we can have reasonable confidence in the effect of compensation elements
in this frequency range.

Using the diagonal terms (eqns (29),(30)) as rational transfer function
approximations to the characteristic loci, elementary single-variable concepts
indicate that, to ensure stability of the closed-loop system for arbitrarily
high gains, the loci Hll(iw,S) must be rotated through 180 degrees. Introducing
some phase advance into Hll(s,S), the above considerations suggest compensation

networks of the form

I A C2
k]_ (S)S) = kl (S+10) e e (31)
- and k2(5,8) = k2 w32 )
where kl and k2 are positive real numbers, That is
: 13.4k,
Hll(S,S)kl(S,S) TEI?T* ...(33)
34,0k

2
H22(S,8)R2(S,8) = Gy e (34)
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Comparing these forms with the analysis of section 6 indicates that, if
. -kt 2 s

responses of the approximate form l-e are required in each loop, then an

intuitive estimate of the gains kl,kz can be obtained by solving the linear

simultaneous equations,

3+ 13.4k1 = k wie s (35)

2 + 34.Ok2 = k owiw (30
Choosing k = 20, for example,

k = 1.3 k = 0,53 «oe (37)

1 2

and hence the high frequency controller factor (equation (8)) is set equal to

_13.4 = 0
(s+1)
K(s,8) = -1,3 20 1 -1] + 0.53 0 1] ...(38)
{10 13.4\‘ 35.0 !

The characteristic loci of G(s)K(s,8) are given in Fig. 3 together with the
frequencies responses Hjj(s,B)kj(s,S), j = 1,2,for comparison. The desired
compensation of the characteristic loci has been achieved with high accuracy

at high frequencies, and with quite acceptable accuracy for intermediate
frequencies w 3z 1.0. The closed-loop system is, in fact, asymptotically stable
and the design procedure could be terminated by the choice of controller

K(s) = K(s,8) (eqn (38)). However, the systems responses to step inputs

shown in Fig. 4 indicate that the steady state errors and interaction effects
are significant. Figure 3 indicates that these could be reduced by increasing
the overall gain of the system, or equivalently increasing the value of k in
‘equations (35) and (36). For example, taking k = 50,

k.l = 3.5 » kz == 1-4 ---(39)

The system responses to step inputs for this case are shown in Fig. 5. The

high frequency controller factor K(s,8) now becomes,



s 13 -
-13.4 0
(s+1)
K(s,8) = =3.5-231) 1 -1 + 1.4 01 v (40)
(s+10) 13.4 [ 1 35.0 [ tl

The residual steady state error and interaction effects can now be removed by
the use of integral action. This can be aqhieved quite simply by applying
the procedure of section 2.3 in a frequency interval representative of low
frequency dynamics. However, low frequency closed-loop dynamic responses are
insensitive to the precise form of the compensation elements provided high
controller gains are used and the system.is closed-loop stable(s). An adequate
integral action can be obtained by using the technique of section 2.1 to
manipulate the characteristic loci at a representative low frequency. For
example, taking w, = 0.5 and applying the procedures of section 2.1, the
eigenvectors of G(in.S)G_l(iO.S) are
=0.23 0.99
ul(O.S) = . , a2(0.5) = s s L)

0.97 0.17 :
The decoupling matrix is

0.476 -1.06

(0.5) = § %5 (42)
KD =0 77 3.85

and the eigenvalues of G(i0.5)KD(0.5) are

hl(iO.S) = 1.0 + 10,075

h, (10.5) 1.0 - 10,72 - voo (43)

n

Choosing kl(s,O.S), k2(5,0.5) to be pure integrators k3/s, k4/s respectively,

the gain of the eigenvalues of G(s)K(s,0.5) is equalized by setting,

|k3hl(i0.5)| = |k,h,(i0.5) | ' | v s o L4LY

= 1.5 <o (45)
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The precise values of k3, k4 can now be chosen by a parametric analysis of the
characteristic loci of G(s){K(s,8) + K(s,0.5)}. However, bearing in mind that
the integral term will have only a small effect on the high frequency loci of
G(s)K(s,8), the form of Fig. 3 and equations (43) indicate the desired low

frequency compensation can only be achieved by using positive values of k, and

4
k3. From equations (8) and (45) the controller integral term becomes
k, |0.476 -1.06](1.02 -0.11
K(S,O.S) = ‘S_
-0.77  3.85[[-0.08  1.48
k, [0.57  -1.62]
= — oo (46)

-1.09 S'TSJ

Trial and error simulation using a controller of the form (eqns (46),(40))
K(s) = K(s,8) + K(s,0.5) s s &7

leads to a choice of k4 = 30.0. The transient responses for this final design
are given in figufe 6.

In summary, the use of dyadic expansions provides an approach to the
synthesis of a feedback controller for the given system, by a systematic
manipulation of the characteristic loci at high and low frequencies. System
compensation is achieved very easily at high frequencies by approximating the
system characteristic loei by the diagonal elements of the transfer function
matrix H(s,8) (eqn 28) and applying well-known single-input compensation
procedures. . Low frequency control is obtained by using the method of section

2,1 to balance the gains of the characteristic loci at a frequency of w = 0.5.

Fine tuning of the controller is then achieved by simulation studies.

4. Conclusions
The paper presents a practical approach to the systematic manipulation of
system characteristic loci for application to multivariable feedback control

systems design. The technique has the ability to exactly manipulate the loci
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at a given frequency point and to assess the effect of chosen compensation
networks in the vicinity of that point. This is achieved by the use of
rational transfer function approximations to the system characteristic loci
which are exact at the frequency of interest and in error at other frequencies
to an extent defined by Gershgorins theoreﬁ. This feature strengthens the
link between single-input and multivariable control design procedures by
releasing well-known single-variable compensation techniques for application
to multivariable systems. The systematic nature of the appfoach is illustrated
by an example where it is demonstrated that the use of rational approximations
provides direct insight into suitable compensation networks.

As an aid to the analysis of section 3, an analytical solution is obtained
in section 6 to a simple, but conceptually useful, class of multivariable

control problems.
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6. Appendix
This appendix presents an approach to the design of a unity feedback

control configuration for a system described by the NxN dyadic transfer function

matrix(7)
o +
G(s) =" I g.(s)a.B. «eo (48)
sod ii
J
where, 1lgjgN,
. a,
gi(s) = —lnmj ; o (49)
non=-Zere
{bj}lsjsN is a set of real poles, {aj}lsjsN is a set of/real numbers and
{a.8.+} . is a set of linearly independent,real,frequency independent dyads.
373 "lgjsN

Applying the procedure of section 2, suppose that KD(ml) is a decoupling
matrix for the system, then

N a,

_ . +
G(s)K,(w,) I o %73 ... (50)
j=1 i
where‘{yj}1<j<N is a set of vectors such that
R
+ "
Yj o = 6J K 13, kgN : «ae (51)
(7)

Noting that aj(ml) = uj, 1g5jgN, then equations (14),(15), (50) and (51) give

TﬂgﬁﬂKﬂkﬂngTTwaz &Qaihﬁgwhcu/@fbpg s 3 w(52)

\$Ssﬂ



...17_

Suppose that responses of the approximate form 1-e_kt are required from each
channel and choose K(s,wl) to be a proportional controller where kj(&fﬂz kj,
1g¢jgN and

b. + k.a. = k 5 1gjgN 2. (53)

N .
K(s,wl) = KD(wl) i —l omr.+ | cos (54)

(I + G(s)K(s,w,)) TG(s)K(s,w.) + = ol BN
S4RNE a4 La5e el b g juil s+k aJYJ s
N k=b
- . i *
- i s sﬂﬁg i K “ij s (55)

j=1

i.e. the closed-loop system is represented by a single-scalar transfer function
multiplying a constant matrix (dependent upon the choice of k) which represents
closed~loop interaction effects and steady-state error.
A suitable choice for k can be obtained by noting that
N  k-b. N
1im 2 SR o.Y. = I (the unit matrix) e (56)
‘ k 1]
ke j=1
so that interaction effects decrease as the desired speed of response increases.
This implies that k should be much greater than the maximum of |bj|’ 1gj<N,
The ?hysical relationship between K(s,wl) and the plant G(s) can be

obtained by noting that

N N
KD(ml) = | i o.B. } = i U.v. s sk 3 1)
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. .
. : E 5. = 9.
where {¢J}1$JSN are vectors such tha BJ ¢£ 632 and hence that (eqns 54,51)

N k=b. £
K(s,o;) = I —L gy, ves (58)
i a. J 3
j=1 i
That is,
N
K, = lim K 'K(sjo) = I a ‘yy.* e (59)
Also, defining
N -
G, = lim s G(s) = I a,o.B. e (60)
e ju1 3473
then (eqn 59)
N
8 = I o tuy.t = k. co . (61)
ke j=1 J J'1] =

i.e., for large k, the designed controller tends to diagonalize the plant at
high frequencies. Such a controller has been previously used intuitively(S}.
Thé above analysis provides some theoretical justification for the approach.
In summary, a theoretical approach has been presented to the design of a
simple, but conceptually useful, class of multivariable feedback control
problems. As illustrated by the example in section 3, the analysis can be
an intuitive aid to the design of systems which approximate to this form at
high frequencies. Finally, the form of the transfer functions (eqn (49)) and
the ease with which a controller can be designed imply that the system can be
regarded as a multivariable generalization of the classical first order system,
The analysis of more general structures coula be a useful aid in practical

application of multivariable control theory.
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