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The Characteristic Locus Design Method" 
La M6thode Caract6ristique de Design de Lieu 

Die Methode des Entwurfes des charakteristischen Ortes 
MeTo~ pacqeTa xaparTepacTI~ecro~ ~a3OBO~ TpaerTopmI 

A. G. J. M A C F A R L A N E t  and J. J. BELLETRUTTI+ + 

Multivariable feedback systems may be designed using a technique which is a vector 
generalisation of  the classical frequency-response methods introduced by Bode and 
Nyquist. 

Summary--The classical work of Nyquist and Bode on the 
frequency-response analysis of scalar feedback systems leads 
to flexible and useful design procedures because it enables 
the conflicting requirements of stability and accuracy to be 
handled simultaneously via a single form of system represen- 
tation-the open-loop frequency response function of a 
complex variable. State-space methods derive their elegance 
and power from the systematic exploitation of the algebraic 
and geometric properties of linear vector spaces. The basic 
idea underlying the Characteristic Locus Method developed 
here is the combination of the essence of these two ap- 
proaches by exploiting the properties of linear vector spaces 
defined over base fields of functions of a complex variable. 
What then emerges is a general vector feedback theory in 
which the classical Bode-Nyquist technique is a special case, 
and from which a frequency-response based design technique 
called the Characteristic Locus Method is developed. 

I. INTRODUCTION 

BODE [1] and NYQUIST'S [2] classical work on the 
frequency-response analysis of  scalar (single-input, 
single-output) feedback systems led to a flexible 
and useful design technique because it enabled the 
conflicting requirements of  stability and accuracy 
to be handled simultaneously via a single form of  
representation--the open-loop frequency-response 
function of  a complex variable. State-space 
methods derive their elegance and power from the 
systematic exploitation of  the algebraic and geo- 
metric properties of  linear vector spaces. The basic 
idea underlying the methods developed here is the 
combination of  the essential features of  these two 
approaches. This is done by introducing and 
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exploiting the properties of  linear vector spaces 
defined over base fields of  functions of  a complex 
variable. What then emerges is that the classical 
Bode-Nyquist  theory is essentially the special 
scalar case of  a completely general vector theory. 
Furthermore, this theory is constructed around a 
few basic and well-established algebraic and geo- 
metric properties of  linear operators. 

Apart from its intrinsic interest, there are two 
important reasons for the development of  such an 
approach. 

(i) It provides a useful technique for the design 
of  a wide range of  practical multivariable con- 
trollers for industrial plants described by a limited 
amount  of  experimentally obtained data. 

(ii) It provides a bridge between the recently 
developed state-space methods used in optimal 
multivariable control [3] and optimal multivariable 
filtering [4] and the well-established classical 
frequency-response methods [5] hitherto largely 
restricted to single-input single-output systems. 

2. FUNDAMENTAL FEEDBACK RELATIONSHIPS 

The multivariable feedback configuration which 
most often arises in control studies is shown in 
Fig. 1 where 

r(s) -----vector of  reference input transforms, of  
order m 

e(s) ----vector of  error transforms, of  order m 
u(s) -----vector of plant input transforms, of  order l 
y(s) -----vector of  output transforms, of  order m 
K(s) = l x  m matrix of controller transfer func- 

tions 
G(s)-----m x I matrix of plant transfer functions 
H(s)----m x m matrix of feedback-transducer 

transfer functions 
Im ----m x m identity matrix 

575 
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FIG. 1. Multivariable feedback system. 

The closed-loop transfer function matrix R(s) 
for this system may be written in the form 

R(s)----[I,~ + G(s)K(s)H(s)]- lG(s)K(s). (2-1) 

Suppose that in Fig. 1 all the feedback loops are 
broken at y(s), and that a signal transform vector 
0t(s) is injected at this point. Then it is easily seen 
that the returned signal transform vector is 

- G(s)K(s)H(s)et(s) 

so that the difference between injected and returned 
signals is given by 

where 

[I., + G(s)K(s)H(s)]et(s)-----Fy(s)~t(s) (2-2) 

Fy(s) =Im + G(s)K(s)H(s) (2-3) 

The corresponding return-difference operators 
then become 

F.(s) =I ,  + T.(s) (2-8) 

Fe(s) = I,,, + T~(s). (2- 9) 

An application of SCHUR'S formulae for par- 
titioned determinants [7] show that 

det Fy(s)=det F.(s)=det Fe(s). (2-10) 

In terms of these return difference matrices, 
simple algebraic manipulations give the following 
equivalent forms for the closed-loop system 
transfer function matrix relating y(s) and r(s): 

R(s) = F ;  1 (s) G(s)K(s) 

= G(s)F2 l(s)K(s) 

= G(s)K(s )F;  ~(s). (2-11) 

It is convenient to denote the product G(s)K(s) 
which occurs repeatedly in treatments of this 
standard configuration by 

Q(s)~-G(s)K(s) (2-12) 

is a square matrix defined as the system return- 
difference matrix [6] measured at the output side of 
the plant. This is a natural generalisation of the 
scalar return-difference quantity defined by BODE [1] 
The matrix 

Ty(s) ~ G(s)K(s)H(s) (2-4) 

is defined as the system return-ratio matrix 
measured at the output side of the plant. This 
again generalises BODE'S [1] corresponding scalar 
quantity. It then follows that 

Fy(s)=Im + Tr(s). (2-5) 

The above "loop-breaking" approach to the 
definition of return-ratio and return-difference 
quantities need not be restricted to the system 
output vertex y(s). For instance, if the feedback 
loops were broken at the points corresponding to 
the signals u(s) and e(s) respectively, and the above 
analysis repeated, the results would be 

T,(s)=K(s)H(s)G(s)=return.ratio matrix for 
plant input vertex. (2-6) 

Te(s)=H(s)G(s)K(s)=return-ratio matrix for 
system error vertex. (2-7) 

and to call Q(s) the system open-loop transfer 
function matrix. 

3. BASIC COMPLEX VARIABLE RELATIONSHIPS 

Our objective is to devise frequency-response 
methods with which to attack the problem of 
analysing the stability and performance of feed- 
back systems and, in particular, to develop design 
techniques for the standard configuration shown 
in Fig. 1. Furthermore, we wish these techniques 
to be natural generalisations of the classical Bode- 
Nyquist approach. Since this is essentially based 
on transform and complex variable theory, the 
key step which must be taken is to set up appro- 
priate links between complex variables and matrix 
representations of linear operators. The required 
approach emerges naturally from the fact that, 
when transform methods are used in the analysis 
of multivariable feedback systems, one is im- 
mediately confronted by vectors and matrices 
whose elements are functions of a complex variable 
s. Thus we are dealing with quantities which we 
may formally define in the following way. 

(i) A vector-valued function of a complex 
variable, x(s) say, is a mapping 

X($) " r_~_.~r~m 
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from the set of complex numbers ~ into the set of  
complex vectors, c~m. 

(ii) A matrix-valued function of a complex 
variable, G(s) say, is a mapping 

tion, this aspect of their behavior is not further 
considered here. 

If  the vector space ~ '  is equipped with an inner  
product defined by 

G(s): Cg~M(q¢) 

from the set of complex numbers ~ into the set of 
matrices over the field of complex numbers, 
M(~). I f  G(s) is square, and det G(s) vanishes for 
every value of s, G(s) is said to be identically 
singular. I f  det G(s)~0, then an inverse G-l(s)  
can be computed in the usual way for every value 
of s for which det G(s) does not vanish. 

For every specific value sle~, a square m x m 
matrix function of a complex variable s, G(sl) say, is 
a matrix having complex number entries. It thus 
has a set of eigenvalues {g~(sl): i=1,  2, . . . , m} 
such that 

g~(sl)e~ i= l ,  2 . . . . .  m (3-1) 

and a corresponding set of eigenvectors {wi(sl): 
i =  1, 2 . . . . .  m} such that 

WI(Sl)F,(~ m i = 1, 2 . . . . .  m. (3-2) 

Put simply, the eigenvalues of a matrix function of 
a complex variable are themselves functions of a 
complex variable, and the corresponding eigen- 
vectors are vector-valued functions of  a complex 
variable. 

The situation can however be looked at from a 
much more general point of view. Algebraic 
functions of a complex variable s form a field; put 
crudely, this means that we can carry out the 
standard forms of arithmetical manipulation with 
transfer functions, just as we do with real or com- 
plex numbers. This aspect of complex variable 
theory has been studied in great depth, culmin- 
ating in WEYL'S famous text [16]. A good intro- 
duction to the more mathematical aspects of this 
concept has been given by SPRINGmt [17]. 

It is sufficient for our present purposes simply to 
state the fact that it is a direct consequence of this 
that the eigenvalues of a square matrix G(s) whose 
elements are rational functions in s will lie in the 
field of algebraic functions of the complex variable 
s. These complex functions eigenvalues will be 
called characteristic transfer functions, in order 
to avoid over-use of the term eigenvalue, and the 
corresponding eigenvectors called characteristic 
directions. In general, of  course, such quantities will 
be irrational and must consequently be discussed, 
as by WEa'L and SPRIN~m~, in the context of 
Riemann surfaces [16, 17]. Since we shall only be 
concerned with their frequency response evalua- 

(x, y ) =  ~ ~y~ (3-3) 
i= l  

for all x, y8C~,m it is called a unitary space [8]. In 
this last expression, £1 denotes the complex con- 
jugate of x t, and this convention in inner product 
definition is needed to ensure that the inner product 
is non-degenerate, that is that: 

(x, x )=0  if and only if x=0 .  

With the inner product so defined, it is now 
possible to perform geometrical investigations in a 
resulting metric space using the natural metric 

Ilxll=4(x, x)  (3-4) 

In particular, the angle between x, ys~ m can be 
defined via 

I(x, Y)I (3-5) cos 0= Ilxll Ilyll 

giving a measure of angle with all the properties 
required for straightforward geometrical oper- 
ations in the complex vector space. 

4. PERFORMANCE ANALYSIS 

Any useful design procedure for multivariable 
feedback systems must aim at securing a suitable 
compromise between four conflicting objectives: 
stability, integrity, interaction and accuracy. In 
order to do this, appropriate techniques for the 
analysis of the above system properties must be 
established. Since these properties are essentially 
concerned with closed-loop phenomena, and since 
the proposed design method is to be based on the 
frequency-response behaviour of system charac- 
teristic transfer functions and characteristic vectors, 
a set of appropriate open-loop to closed loop 
relationships between these important quantities 
must first be obtained. 

Let the m x m open-loop transfer function Q(s) 
matrix have a set of distinct characteristic transfer 
functions and associated linearly independent 
characteristic vectors denoted respectively by qi(s) 
and wt(s) for i =  1, 2 . . . . .  m. Form the identically 
non-singular matrix 

W(s) = [wt(s)wz(s ) . . . Wm(S)] (4-1) 
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and invert it to give 

V(s) = w -  l ( s )  = 

t 
VI(Sj  

¥2(S~ 

t Ym(S~ 

(4-2) 

where the symbol t denotes transposition so that 
{v~(s)} are the rows of V(s). Then standard 
algebraic relationships give that Q(s) may be 
expressed in the form 

Q(s)=W(s)[diag {qi(s)}lV(s). (4-3) 

criterion defining closed-loop stability is originally 
due to PoPov [10] and is 

CLCP 
det F(s)= - -  (4-8) 

OLCP 

where F(s) is the system return-difference matrix, 
which from relationship (2-10) can represent any of 
the corresponding quantities introduced in Section 2, 
and CLCP and OLCP are respectively the system 
open-loop and closed-loop characteristic poly- 
nomials which include all zeros associated with 
unobservable and uncontrollable modes. Since 
such modes are unaffected by feedback, the factors 
of OLCP and CLCP associated with such modes 
will cancel when det F(s) is formed. 

Let the characteristic transfer functions of the 
return-ratio matrix T(s) be t~(s) (note that these are 
simply qi(s) when H(s)=Im) for i=  1, 2 . . . . .  m. 
Then 

Alternatively, Q(s) may be expressed in the dyadic 
form 

Q(s)= ~ q~(s)wid~(s). (4-4) 
i = 1  

For unity feedback systems, with H(s)=Im, the 
closed-loop transfer function matrix as given in 
equation (2-I) may be written as 

R(s) =[I,, + Q(s)] - 1Q(s) (4-5) 

from which it can readily be shown that 

R(s)=W(s)[diag {qi(s)/1 +q,(s)}]V(s) (4-6) 

or, in dyadic form, that 

R(s)= ~ [ q~(s) ] l+q~(s) (4-7) 

Thus, for the case of unity feedback, the charac- 
teristic transfer functions of the open and closed- 
loop systems are respectively qi(s) and [q~(s)/ 
l+q~(s)] for i----1, 2 . . . . .  m. In addition, the 
characteristic vectors for both the open and closed- 
loop systems are the same, namely w~(s), i =  1, 2, 
. . . .  m. This interesting generalisation of the 
corresponding basic result for scalar feedback 
systems plays a vital role in the performance 
analysis which follows. 

det F(s) = det [I m + T(s)] 

= f i  [1 + t,(s)]. 
i----1 

(4-9) 

Let the ti(s) map the usual Nyquist contour into 
the set of m characteristic loci denoted by h(jog), 
i=1, 2 . . . . .  m. Then it may be shown [11, 12] 
that, if Po is the number of right-half-plane zeros 

in OLCP, and ~ na is the net sum of clockwise 
i = l  

encirclements of the critical point ( - 1 ,  0) in the 
complex plane contributed by the characteristic 
loci of T(s), the closed-loop system is stable if and 
only if 

~, na = -Po (4-10) 
i = l  

where clockwise encirclements are counted positive 
corresponding to a clockwise traversal of the 
Nyquist contour. The encirclement theorem is 
still valid when any rhp zeros of OLCP are uncon- 
trollable and/or unobervable. However, it will 
then be impossible in practice to attain the required 
number of encirclements for closed-loop stability. 

The above encirclement theorem can be used to 
great advantage in determining system closed- 
loop stability boundaries. More specifically, let 
the return-ratio matrix for a given system be T(s). 
Now apply a gain of k to each loop so that the 
return-ratio matrix for the modified system is 

Tt(s ) =kT(s). (4-11) 

4.1. Stability 
The fundamental multivariable stability theorem 

from which we will develop an encirclement 

The characteristic loci corresponding to Tt(s ) are 
equal to those of T(s) scaled by the factor k. In 
the complex plane then, the stability of the new 
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system is quickly determined by applying the 
encirclement theorem to the original system 
characteristic loci with (-X/k, 0) as the critical 
point. It is then a simple matter to find the hmiting 
gain factor k which preserves overall stability, 
when applied to each loop. Viewed in graphical 
terms the theorem then defines a stability boundary 
along the line k~=k, i=1, 2, . . . , m in an m- 
dimensional gain space. This argument is easily 
extended to define other lines in the gain space 
such as the line corresponding to k~=ohk, i= 1, 2, 
. . . .  m where the ~t i are constants and k~ is the 
gain in the ith loop. This is done by simply post- 
multiplying T(s) corresponding to k = c q =  1 by the 
matrix diag {Ctl} and applying the encirclement 
theorem in the usual way to the resulting charac- 
teristic loci. Here the critical point is again 
(-X/k, 0). In theory, the stable operating region 
for all possible combinations of loops gains can be 
determined, a facility which can prove extremely 
useful in studies of the control of nonminimum 
phase systems. 

4.2. Integrity 
A multivariable feedback system is said to be of 

satisfactory integrity if it remains stable under all 
combinations of a stipulated set of failure con- 
ditions. The set of primary concern includes output 
transducer, error-monitoring channel and actuator 
failures. Clearly, any design technique aimed at 
devising feedback controllers for practical systems 
must incorporate a check for stability when such 
component breakdowns occur. Consequently, the 
following results have been established [11]. 

To ensure integrity against failure of the output 
transducer in loop j say, the characteristic loci of 
the principal sub-matrix of the return-ratio matrix 
Ty(s), obtained by deleting row j and column j, 
must satisfy a Nyquist-type stability criterion, as 
defined by equation (4-10). For the case of simul- 
taneous transducer failure in two or more loops, the 
above result is applied with respect to the principal 
sub-matrix of Ty(s) obtained by deleting those rows 
and columns whose index numbers coincide with 
the failed loops. In general then, integrity against 
transducer failures in a// possible combinations of 
loops is assured when the characteristic loci of all 
the principal sub-matrices of Ty(s) satisfy the 
encirclement theorem previously established. 

For integrity against actuator and error- 
monitoring channel failures, similar considerations 
to those above apply to T,(s) and T,(s) respectively. 
For the special case when H(s)=Im, T,(s)=Ty(s) 
so that integrity against transducer failures auto- 
matically insures integrity in the face of error- 
monitoring channel failures. Note that it is 
virtually impossible in practice to achieve integrity 
under all combinations of the above failure con- 

ditions [11]. However, the results do provide 
guidance for improving the integrity situation and 
so play a vital role in the design procedure o f  
Section 5. 

4.3. Interaction 
The general term interaction is used here to 

denote the body of relationships influencing the 
way in which a reference input r~(s), applied to 
input i, affects the set of outputs {yj(s): j #  i}. In 
general, the designer will aim at ensuring that only 
one specific output y~(s) reponds to r~(s) and all 
the other outputs yj(s),j#i, remain sufficiently 
small to satisfy some performance criterion 
imposed in the design specification. 

Consider the characteristic dyadic expansion of 
the closed-loop operator R(s) given by equation 
(4-7) and evaluated for s=flo. This is 

R(jto)=i=~l [ qi(J~°) .qw,(/o~)v~(jto). (4-12) 
1 + qt(jw) J 

Now suppose that, at some frequency o h 

[qMo~,)l>>l, i=1, 2 . . . . .  m. (4-13) 

Then 

R(j(a3~ ~ w~to3Vl(joh)=I= (4-14) 
i = 1  

and the closed-loop system is clearly noninter- 
acting at this frequency. Condition (4-13) can 
usually be met at low frequencies by ensuring that 
high characteristic gains are imposed. Thus, at 
low frequencies, interaction can be suppressed to 
any required amount by ensuring that the moduli of  
all the characteristic loci are sufficiently large. 

At high frequencies however, condition (4-13) 
cannot be met because of stability restrictions which 
in fact invariably require that. 

Iq,(j~oh)[,~ 1, i = 1 ,  2 . . . . .  m (4-15) 

at the high angular frequency o9 h. Then from 
equation (4-12) 

R(jcoh)--' ~ qi(jcoh)Wi(jCOh)V~(jCOh)----- Q(jcoh) 
t = 1  

(4-16) 

which means that any high-frequency cross- 
couplings in Q(flo) will pass straight through to 
R(ja~) despite the action of the feedback. It follows 
from this that one available method of suppressing 
high frequency interaction is to ensure that Q(s) 
approaches diagonal form as [sl--*oo. Another 
more effective method arises from geometrical con- 
siderations in that one can attempt to align the 
characteristic direction set of Qfjto) with the 
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standard basis set To. show how this approach 
works, apply a reference input rj(/og) to input j so 
that 

r(ja))=rj(jo))ej (4-17: 
where ej is a standard basis vector, the j th column 
of a unit matrix of appropriate order• If  it were 
the case that wj(jog)=ej so that the system output 
vector 

y(j09) = R(jog)r(j09) 

= r j(jo~)R(jog)w j(jog) 

=rj(jo))[ q-i(Jm) ~ej 
11 + q j(jog) 3 

(4-18) 

then only element yj(jog) would respond to input 
rj(jog). Thus a convenient measure of  alignment is 
the angle, as a function of frequency, between the 
vectors wj(jog) and the vectors ej for j=- 1, 2 . . . .  , m. 
This is given by equation (3-5) for j =  I, 2 . . . . .  m 
a s  

0 (jco~-I(wj(jco), e j) I (4-19) COS j : - -  - -  

IlwJ( ,o)ll 
where wj(jog) is that characteristic direction which 
produces the minimum Oj(jog) at frequency o). Thus 
if 0j(jog) is sufficiently small at high frequencies, 
interaction effects arising from thej th  input will be 
correspondingly small. It is important to note 
however that this requirement is equivalent to 
making Q(jog) diagonal only when all the 0j are in 
exact alignment with standard basis vectors. This 
means therefore that small misalignment angles 
need not necessarily arise from a Q(jco) which is 
nearly diagonal or diagonal dominant. An excellent 
example of this is the system 

Q(s )=0 .99 ( s+ l )  - 9  99-9 

which produces Ol(jo))=O2(fio)=5.7 deg at all 
frequencies. From the above criterion the feed- 
back system is essentially noninteracting although 
Q(s) is not diagonal dominant. Further discussion 
of  this is given in [9]. 

In summary, an assessment of interaction over 
the frequency range of  system operation can be 
made on the basis of an inspection of  both the 
characteristic loci and the characteristic directions. 
The simplest way to do this is via logarithmic 
plots where IqJUog)l vs ~o and Oj(jo)) VS O9 are plotted 
for all j .  

4.4. Accuracy 
In a general sense, accuracy can be loosely 

defined as the degree to which actual system out- 
puts follow desired system outputs. That is we 

wish to have 

y(s) ___ r(s), s=jog. (4-20) 

As shown in the discussion on interaction, con- 
dition (4-20) can be satisfied at low frequencies 
providing 

I l, i =  1, 2 . . . . .  m. (4-21) 

The system accuracy will be high providing the 
moduli of  the characteristic loci are suitably large 
at low frequencies. 

As will now be shown, it is possible to establish 
upper and lower bounds on closed-loop accuracy 
at any frequency. For the system in Fig. 1, 

e(jog)=F- x (jo))r(jog). (4-22) 

Thus we have 

II J °)ll  et(-Jog)~t(-J°))~(Jog)e(J°)) (4-23) 
Ilr(j o)ll et(-jm)e(flo) 

where l~(jog)=F-l(jog). This last expression may 
obviously be used as a measure of  accuracy for a 
multivariable feedback system. Since the matrix 
l~'(-jo9)i~(j~) is positive definite Hermitian for 
each value of  a~, its eigenvalues will be real and 
positive. Denoting these eigenvalues by 

i = ] ,  2 . . . . .  m }  

and invoking the standard Courant-Fisher rain- 
max relationships for Hermitian matrices [13] gives 

rain/~(j¢o) ~< e'(-jo~)l~'(-jo~)~(jog)e(jo~) 
et(-jo9)e(jo~) 

~< max/~( jw) .  (4-24) 
l 

Combining expressions (4-24) and (4-23) 

II j,o)ll m a x  I~,(jm) (4-25) 
• I I r ( jo))H , 

where the quantities/~i(Jog) are the positive square 
roots of the eigenvalues of 1)'(-fio)l~(jo9) and are 
usually called the singular values of  F(jo~) [14]. 

Taking the overall percentage error of the 

closed-loop system to be II 0"° )ll ×100 per cent 
I I r( jo9)l l  

gives the minimum and maximum possible errors 
to be min /~i(Jog)x 100 per cent and max/~(jo~) 
x 100 per cent at any frequency o~. 

Using Browne's theorem [14] and noting that 
the characteristic loci of  l~(fio) for H(s)=I~, are 
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{1/[1 +q~(jto)]: i=1, 2 , . . . ,  m} gives 

m~n #~(Jc°) ~< I ' "  1 + q~(jco) 1 .1 ~< max #~(jco) i (4-26) 

where each Ks(s) has a specific task to handle during 
the sequential synthesis. The number of sub- 
controllers needed to produce K(s), denoted above 
by p,will of course be different for different problems. 

so that the moduli of the characteristic loci of 
l~(jto) are always bounded by the singular values of 
l~(jto). The last expression again verifies that if all 
the [q~(jo~)[~>l high accuracy will ordinarily be 
obtained. 

5. CHARACTERISTIC LOCUS METHOD 

In the last section it was shown how the four 
conflicting properties of stability, integrity, inter- 
action and accuracy could be analysed using 
appropriate sets of system characteristic loci and 
characteristic directions. This, coupled with the 
desire to extend the Bode-Nyquist approach to the 
multivariable case, leads to the following design 
philosophy--the designer of multivariable con- 
trollers should strive to attain a required closed-loop 
stability and performance specification by appro- 
priate manipulations of sets of open-loop 
characteristic loci and characteristic directions. In 
order to simplify the following discussion, unity 
feedback (i.e. H(s)=Im) is assumed; then the 
transition from open-loop to closed-loop charac- 
teristic loci and characteristic directions is straight- 
forward as described in Section 4. Now the entire 
design effort may be focused on the synthesis of the 
forward path controller matrix, K(s), which along 
with the plant transfer matrix G(s), is assumed to be 
square. It should be noted that non-square systems 
are currently under investigation and it is hoped that 
they will be discussed in a future paper. 

The main forms of manipulation which must be 
performed via K(s) includes: 

(i) Modifying the phases of appropriate sets 
of characteristic loci in order to achieve 
acceptable stability and integrity; 

(ii) aligning the characteristic directions at 
high frequencies and balancing the gains 
the characteristic of loci at low frequencies 
in order to get acceptable interaction; 

(iii) injecting gain into the phase-compensated 
and aligned system in order to achieve a 
satisfactory overall performance. 

It is thus obvious that the final system controller, 
K(s) has many criteria to satisfy simultaneously. 
This strongly suggests that K(s) be designed as the 
cascaded combination of several sub-controllers, 
Ks(s), so that 

P 

K(s) = I'[ Ks(s) (5-1) 
i = 1  

FIG. 2. The design strategy. 

Before looking in detail at some of the more 
useful forms of controller factors, Ks(s), it will be 
helpful at this stage to outline the design process or 
strategy which makes use of this proposed con- 
troller factorisation in such a way as to satisfy 
stability, integrity, interaction and accuracy require- 
ments. This design procedure is summarised in the 
flow diagram shown in Fig. 2 to which the following 
comments apply: 

(i) Controller design is separated into four 
distinct phases whose order depends on the 
relative importance of each system property. 
For instance, as shown in the figure, closed- 
loop stability is given the highest priority, 
followed by high integrity and so on. 

(ii) Poor closed-loop stability margins are 
attributed to either poor integrity or severe 
interaction, or a combination of both, so 
that no compensating K~(s) need be 
designed during the stability phase. This 
means that if there is initially instability, 
the implementation of controllers which 
achieve satisfactory integrity and inter- 
action properties automatically ensure 
overall stability. 

(iii) The method is an iterative one and, like 
any usual engineering design technique, 
alternates continuously between the steps 
of system analysis and design decision until 
the final specifications are met. 
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(iv) 

(v) 

The final controller K(s) emerges as the 
product of the individual factors Ks(s), so 
that it is the cumulative effect of the Ks(s) 
which produces the required overall control 
action. 
It is assumed that all the calculations and 
graphics required to assess system properties 
are performed by a digital computer with 
graphic display facilities. This then allows 
the designer to analyse the effects of each 
K~(s) by inspection and thus to concentrate 
entirely on controller synthesis. 

The flow diagram of Fig. 2 provides a guiding 
framework within which any of a large number of 
specific types of controller factor Ks(s), can be used 
to achieve the required objectives at each phase of 
the design process. For practical reasons, each 
Ks(s) should be as simple as possible; in particular 
Kt(s) should be synthesised as much as is practicable 
from wholly constant factors. For obvious reasons, 
all the dynamical elements of Ki(s) must be rational 
functions in s, and det Ks(s) must be identically non- 
singular. Furthermore, all poles of Ks(s) should lie 
in the open left-half plane. Finally, det K,(s) must 
not have any right-half plane zeros if non-minimum 
phase difficulties are to be avoided. Listed below 
are several types of controller factors which provide 
considerable assistance in achieving desired mani- 
pulations of the systems characteristic loci and 
characteristic directions. 

(b) 

Ks(s ) = 

0 . . . . . . . . . . .  0 

1 L 

I 

- - - 1  kjk(s) . . . C 

I I 

I I 

I 

I 

(5-3) 

where the off-diagonal entry kjk(S ) is also a 
rational function in s having all its poles in 
the open left-half plane. The way in which 
these factors modify the system charac- 
teristic loci has been discussed elsewhere 
[11] and so will not be repeated here. It 
will suffice to say that they are particularly 
useful in improving integrity where only 
sub-systems are to be modified, and in 
reducing interaction by diminishing the 
magnitudes of the off-diagonal elements of 
G(s). 

(ii) Scalar matrix controller 

(i) Elementary transformation matrix con- 
trollers 

( a )  

K , ( s ) =  klj(s) 

0 

0 

1 

1 

(5-2) 

Ks(s)=k(s)I  m. (5-4) 

This controller has the special property 
of multiplying the plant characteristic loci 
by the scalar k(s) while leaving the 
characteristic directions unaltered. 

(iii) Permutation matrix controller 

K # ) = [ e l  . . • e ~ _ l e p e q + ~  . . .  

% -  1 % % +  x • • • e,,,] (5 -5 )  

where p ) q  and ej is the j th column of 
I,,. This controller has the effect of inter- 
changing columns p and q of G(s), and is 
used in the initial design phase when, for 
some specific technical reason, such as to 
improve integrity, it is required that the 
inputs to G(s) be reordered. 

where the diagonal element kjj(s) is a 
rational function in s with all its poles and 
zeros in the open left-half plane. 

(iv) d.c. plant inverse controller matrix 

K s ( s ) = G -  x(0).  (5-6) 
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This controller diagonalises the plant at 
d.c. and therefore has the effects of: 

(a) aligning the plant characteristic 
directions with the standard basis vectors 
at d.c., thereby removing any d.c. inter- 
action; 

(b) normalising the characteristic loci 
by assigning a gain of one to each locus at 
d.c. This makes it easier to meet low 
frequency performance specifications for 
cases where some of the plant charac- 
teristic loci are large at d.c. and others 
relatively small. 

(v) Matr& P.L controller 

K,(s) = Kr + K_~ (5-7) 
S 

where Kr and K, are m x m non-singular 
matrices of constants so that Ki(s) is a 
matrix generalisation of the scalar P.I. 
controller. Following ROSENBROCK [15] 
the controller may be designed by putting 

K~=KocD1 (5-8) 

(vi) 

diagonal elements in each row of G(s)KOo 
become arbitrarily small relative to the 
diagonal elements as Isl oo. 

This form of matrix P.I. controller 
therefore performs the following set of 
functions: 

(1) it eliminates steady-state error and 
low frequency interaction by virtue of the 
integral action since; 

Iq,(s)l>> 1 as Isl- 0; 

(2) it reduces high frequency interaction 
by ensuring that Q(s)=G(s)Ki(s)  ap- 
proaches diagonal form as [s[~oo. It 
therefore tends to align the characteristic 
vectors with the standard basis vectors at 
high frequencies. 

Eigenvalue adjustment controller matrix 
Given a plant whose dyadic form at one 
specific frequency, o I , is 

G= ~g~wi~ (5-13) 
i = l  

K6=KoD2 (5-9) then the controller 

where Ko and KOo respectively diagonalise 
the system at zero and very high frequen- 
cies. The diagonal matrices D2 and D1 
are used to allow an appropriate amount 
of freedom in adjusting the weighting 
between zero and infinite frequencies in 
each column of G(s)Ki(s ). 

An obvious choice for Ko is 

K=  ~ qiw,Vl (5-14) 
i=lgi 

is a matrix of complex numbers such that 
the product GK has the same eigenvectors 
as G but has a new desired set of eigen- 
values {gk}. Now, determine a Ki(s) such 
that 

Ko=G-~(0). (5-10) Ki(flol)=K. (5-15) 

To find KOo, multiply gi(s), i.e. row i of 
G(s), by s p~ where the integer p~ is chosen 
so that as Isl--,oo no element of sp'gi(s) 
tends to infinity and not every element 
tends to zero. Now define the row vector. 

bi = lim sP'gi(s). (5-11) 
8-cO0 

Repeat the above procedure for all the 
remaining rows of G(s) and then assemble 
the vectors bi, i=1,  2 . . . . .  m into a 
matrix B. Then 

Koo=B -1 (5-12) 

(vii) 

Thus a Ki(s) designed in this way will 
have the property of shifting the charac- 
teristic loci of G(s) to any desired location 
at one specific frequency without changing 
the characteristic vectors. The elements of 
this controller can usually be easily 
realised by phase advance or phase 
retard networks. In this case the con- 
troller is somewhat complicated. 

Eigenvector adjustment controller matrix 
The idea behind the synthesis of this 

form of controller factor is similar to the 
previous case except that 

Reflection on the above operations will 
show that the magnitudes of the off- 

K =  ~ g j (G-qj )~  (5-16) 
j = l  
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where {lj} is the set of desired character- 
istic directions at specific frequency co I 
and {tt} is the set of reciprocal eigen- 
vectors. Again, finding a Ki(s) so that 
K~(flol)=K has the effect of changing the 
characteristic directions of G(s) at a 
specific frequency to any desired location 
without affecting the characteristic loci. 
The same rules apply for the realisation of 
this controller as for K;(s) in (vi). 

The last two controllers would in general be 
used at high frequencies to improve closed-loop 
stability margins and reduce interaction respec- 
tively. 

6. DESIGN EXAMPLE 
The system considered here as an illustrative 

example of the method is a pressurised flow-box, 
an important part of most modern paper-making 
machines. A state-space model for the system 
obtained by linearisation about the steady-state is 
given by [9] 

d F"(')l 
• ,L h(t) J 

= [ - 0 . 3 9 5  0.01145] FH(t) 4 
--0"011 0 L h(t) J 

F Fu,(ol 
+ L 0"000966 ~ L u2(t) J 

(6-1) 

Y'(t'l=rH(t)] (6-2, 
y2(t) J Lh(t) 

where the system outputs are flow-box liquid level, 
h(t), and total head of stock, H(t). The inputs u~(t) 
and u2(t) are respectively stock inflow and air 
inflow, both of which enter the flow-box through 
valves whose dynamics are not included in the 
above model. 

The open-loop characteristic polynomial is given 
by 

OLCP=det ( s I -  A) 

=(s+0-3949)(s+0.32 x 10 -3) (6-3) 

so that po=O and closed-loop stability follows if 
and only if 

2 

nt/=0. (6-4) 
i = 1  

The transfer function matrix is given by 

G(s) = (sI-- A)- 1B 

[ 0.03362 
S+0.3949 

9.66 x lO-4s + 1.17 x 10 .5 

~(s) 

1.03s 1 ~(s) 
-0.01141. 

~(s) 

(6-5) 

where 

~(S)=S2+0.395s+ 1.26 x 10 -4. 

"90.6 -80 -/.0 

jlm 

L0 

~Re 
0 

(6-6) 

-0'.1 

jim 

)wl 

FIG. 3. Characteristic loci of G(s). 

Entering the design cycle of Fig. 2 the charac- 
teristic loci of G(s), shown in Fig. 3, reveal that 
for equal gains in each loop (i.e. kl=-k2=k), the 
stability condition (6-4) is satisfied providing 

k< 1/90.6=0.0111. (6-7) 

Clearly, these stability margins are extremely small 
and an attempt to improve the situation leads us 
to enter the integrity phase where stability in the 
face of loop failures, i.e. transducer failures, is 
analysed. Using the results of Section 4, system 
stability when loop 1 fails, i.e. k 1 =0, is guaranteed 
if element 22 of G(s) satisfies the Nyquist stability 
criterion. Thus, using any of the classical methods, 
it is easily shown that the system with loop 1 open 
and loop 2 closed is stable for the loop gain values 

kl =0, k2<0.0111. (6-8) 

Applying the same argument to failure in loop 2 
produces the stability condition 

k /=0,  k 1 t>0. (6-9) 

The above results show that lack of suitable 
stability margins is primarily due to poor integrity 
when loop 1 is open as indicated in Fig. 4. To 
remedy this situation, a type (a) elementary trans- 
formation matrix controller factor 

, ,[0 0]  610, 
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k2 

0.0111 - - - - / /  . . . .  -s,3b,;- 

/ 
/ ~ k l  =k2-o.o111 

,/k,.o 
Fro. 4. Stable operating region. 

T k~ 

is used to change the sign of the feedback round 
g22(S) without affecting gll(s). This now produces 
the stability margins 

k l ~ - O ,  k 2 ~ O  (6-11) -,~o' 

and 

k2~---0, kl~>O (6-12) 

and defines 

Q z (s) = G(s)K 1 

0"03362 
s + 0.3949 

9.66 x 10-%+ 1.17 x 10 -5 

=(s) 

- 1.03s 

• (6-13)  
0.01141 

~( s )  

Returning to the stability phase to see if K~ has 
improved overall stability with all loops closed 
gives 

2 

na=O for kt =k2=k)O (6-14) 
f = l  

m 

a8 ~ =" \ ~:0- 

0g (/7 

w I 
Fro. 5. Characterist ic loci  o f  QI(s). 

0't- 

m 

upon inspection of the characteristic loci of Ql(s) 
shown in Fig. 5. From these results, it can safely 
be assumed that stability will be maintained for all 
combinations of loop gain between zero and arbit- 
rarily high values. 

db 

t ' O ~  Iq 1 IJtu) l 

I 0~01 \ Oll "~iO lO-jO 10~0 

\ 
l q2tJw}l 

deg 

I.S 

30 

15 

O 
e:;O,~. \ 

; ~ r ,p 'N Io~ loop 

FIG. 6. Interaction analysis for Ql(s). 

tO 

UO 

Having successfully dealt with the stability and 
integrity phases of the design process, attention is 
now turned to interaction. Figure 6 shows plots of 
the angular misalignment of the characteristic 
directions of Ql(s) vs frequency. From an inspec- 
tion of these plots, it is concluded that interaction 
problems are present at both low and high fre- 
quencies. Furthermore, general performance 
characteristics at low frequencies are not expected 
to be good since Iq2(jo ) I < 1. Thus a reasonable 
indication for choice of the next controller factor 
K2(s) is the matrix P.I. controller K2(s)-----Ko~D 1 
+KoD2/s. Selecting 

DI=  I%1 0 1 1 x 10 - 4  , D 2 = I 2  (6-15)  

#yes 

K2(s )  = 

11"72 
$ 10"3 

0.012 0.011 
- 9 . 6 6 -  ~ 0.3362+ 

S S 

(6-16) 
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where K~ and Ko are determined according to the 
procedure laid down in the previous section. This 
gives 

Q2(s)=Q l(s)K2(s). (6-17) 
db 

O ~ . ,  0;1 1;0 10;0 LU 

"~-0 

so that the overall controller becomes 

K(s)=K1K2(s)K3 

117"2 
1030 

0"12 1. 
96.6 + - -  33.62 - - -  S S 

(6-19) 

The transient responses for unit step changes in 
total head H(t) and level h(t) are shown in Fig. 9 
where it is seen that the closed-loop responses are 
fast and that interaction is negligible. 

j im 

deg / 

15 

, 0 J ~ ,  ~ 1 . 0 .  100 u., 

I 

FIG. 7. Interaction analysis for Q2(s). 

Repeating the interaction analysis with Q2(s) 
produces the plots in Fig. 7 where it is seen that 
interaction is now negligible. Checking the 
characteristic loci of Q2(s), shown in Fig. 8, 
reveals that system stability is not impaired by the 
addition of K2(s). The same comment is valid for 
integrity. All that now remains is to adjust the 
overall closed-loop performance by tuning the 
design values of loop gain. This is done on the 
basis of the diagonal elements of Q2(s) and pro- 
duces 

01 K3 = 100 

Hit) 
I 

f 

o 0:2 o;4 o.'B ' o.'8 1:0 ~' 

h(t) 

I t (see) D 
0 0?2 0:/. 0"5 0:8 1"0 

-200 

-l.O0 

P 

......I q 1(J w) 

5~0 ~Re 

- 2 O0, ' /L.. 

q2 (j~ul ~ . ~  
/ .. ~i .... -?~q 

/ i t !  
L . . . . . .  _L-zJ 

FIG. 8. Characteristic loci of Q2(s). 

iIm 

FI2 

1-51; 

Hill 

1 z Z 6 ~ fo  ' 

t ts~c~ 

=R~ 

FIG. 9. Transient responses for compensated system. 
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Before dosing the discussion of the pressurised- 
flow-box, the effects of the control valve dynamics, 
previously ignored, may be considered, the purpose 
being to determine if the controller K(s) which has 
just been devised can, with slight modifications, 
adequately control the more accurate system model 

G'(s)=G(s)Gv(s) (6-20) 

so that the overall controller now becomes 

K'(s)=K(s)Kv(s ). (6-23) 

The transient responses for unit step changes in 
total head and level are shown in Fig. 10 and are 
seen to be quite acceptable. If better responses 
were desired then the full design procedure could 

H{tl 

H[t) 

ot- 
h ( l ~  

6 12 1'B 2(. :3"0 =' 

o 

l hlt l  

L 6 a ( 0  • 

Z, fi 8 "t {sec..) P 
0 fi 12 

t lsec ) 

18 2~ 3b " 

FIG. 10. Transient responses for compensated system. Including valve dynamics. 

where the extra plant factor 

6 , ( s )  = 

R 

1 
0 

l+5s  

1 
0 

1 +2s 

(6-21) 

accounts for the valve dynamics. By slight modi- 
fications is meant the addition of single-loop con- 
trollers chosen to compensate the diagonal elements 
of G'(s)K(s). Such an investigation is of great 
interest since it will show if the previously designed 
controller K(s) is a robust controller capable of 
handling large changes in system dynamics. It is 
easy to see that the inclusion of valve dynamics can 
seriously affect the behaviour of the system, since 
both valve time constants are of the same order of 
magnitude as the fastest time constants associated 
with the poles of G(s). 

Following the above procedure leads to the 
incorporation of the phase-advance controller 
factor 

K,(s) = 

1 +0.2s  
i-+ O.02s 

m 

0 

0.5(1+2s) 

(1 + 0-2s) 

(6-22) 

be carried through for the complete model in which 
valve dynamics were included right from the start. 

7. CONCLUSIONS 

The work outlined above indicates that it should 
be possible to develop, for multivariable feedback 
systems, approaches which are natural general- 
isations of the classical Bode-Nyquist methods for 
the frequency-response analysis and design of 
scalar systems. Since the general multivariable 
problem is very complex, a fully-developed design 
technique capable of handling problems of arbitrary 
dimension in a completely systematic way will 
require a great deal of further development. Never- 
theless, it is felt that the procedure described 
represents an encouraging step in the right direction. 
As it stands, it should give a flexible and useful 
design tool which may prove helpful for a range of 
practical industrial problems where plant data is 
available in an experimentally measured form from 
which the required frequency responses may be 
calculated. The technique described is not inherently 
limited by the dimensions of the system transfer 
function matrix. It is currently being investigated 
on systems of higher dimension than that of the 
simple illustrative example, and it is hoped to 
report on this work in a future paper. The chief 
problem to be overcome in an extension to much 
higher, say greater than 4, dimensions will lie in 
the need to devise algorithms which allow a 
computer to generate suitable controller factors. 



588 A . G . J .  MACFARLANE and J. J. BELLETRUTTI 

The work described differs from state-space 
approaches in that its prime motivation is to extend 
the Bode-Nyquist frequency-response approach. 
Nevertheless, much of the mathematical apparatus 
is the same, using linear vector space theory which 
appears to be the natural tool for all multivariable 
problems. It differs from the frequency-response 
approach of ROSENBROCK [15] in using loci which 
are direct generalisations of Nyquist loci, rather 
than approximating bands within which such loci 
lie. It differs from the approach of MAYN~ [19] in 
its strong emphasis on and exploitation of the 
geometrical structure of the linear vector space 
operators involved in the analysis. The links with 
state-space approaches, and a fuller discussion of 
other frequency-response methods have been given 
in [12]. The multivariable feedback problem is too 
complex for any one approach to serve all purposes. 
Hopefully however it has been shown that the 
combination of complex variable theory with the 
methodology of linear vector spaces has a great 
deal to offer in this area. 

[18] D. C. YOULA: On the factorisation of rational matrices. 
IRE Trans. Inform. Theory IT-7, 172-189 (1961). 

[19] D. Q. MAYNE: The Design of Linear Multivariable 
Systems. Preprints of the 5th IFAC Congress, Paris, 
Part 4a, Paper No. 29.1 (1972). Also Automatica 9, 
201-207 (1973). 

Rfsum~-L 'ouvrage  classique de Nyquist et Bode sur 
l'analyse de r6ponse de fr6quence de syst~mes r6troactifs 
scalaires m6ne h des proc6dures de design souples et utiles 
car il permet de manipuler simultan6ment les demandes 
oppos6es de stabilitd et de pr6cision par une repr6sentation de 
syst6me de forme unique-- la  fonction de r6ponse de fr6q- 
uence /t boucle ouverte d'une variable complexe. Des 
m6thodes d'espace d'6tat d6rivent leur 616gance et leur 
puissance de l'exploitation syst6matique des propri6t6s 
alg6briques et g6om6triques d'espaces de vecteurs lin6aires. 
L'id6e fondamentale de la M6thode Caract6ristique de Lieu 
d6veloppde iciest la combinaison des id6es principales de ces 
deux abordages en exploitant les propri6t6s d'espaces de 
vecteurs lin6aires d6finis sur des domaines de base de fonc- 
tions d'une variable complexe. Ce qui 6merge est une 
th6orie g6n6rale de r6troaction de vecteur dans laquelle le 
technique classique Bode-Nyquist est un cas sp6cial, et de 
laquelle une technique de design fond~e sur la r6ponse de 
fr&tuence est d6velopp6e et connue sous le nom de M6thode 
Caract6ristique de Lieu. 
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Zusammeafassung--Das klassische Werk von Nyquist und 
Bode fiber die Frequenzganganalysis von skalaren Rtickkopp 
lungssystemen ffihrt zu flexiblen und ntitzlichen Entwurfs- 
sprozeduren, weil es ermSglicht, die einander widersprech- 
enden Erfordernisse von Stabilittit und Genauigkeit fiber 
eine einzige Form der Systemdarstellung - ntimlich die 
Frequenzfunktion einer komplexen Variablen des aufges- 
chnittenen Kreises - zu behandeln. Zustandsraum-Methoden 
leiten ihre Eleganz und Kraft aus der systematischen Erfors- 
chung der algebraischen und geometrischen Eigenschaften 
linearer Vektorrtiume her. Die Grundidee der hier entwick- 
elten Methode des charakteristischen Ortes liegt in der 
Kombinat ion dieser beiden Approximationen durch Aus- 
nutzung der Eigenschaften linearer Vektorr~iume, die tiber 
Grundfelder von Funktionen einer komplexen Variablen 
definiert sind. Was sich dann ergibt, ist eine allgemeine 
Vektor-Riickkopplungstheorie, yon der die klassische Bode-  
Nyquist-Technik ein Spezialfall ist und aus der eine auf dem 
Frequenzgang basierende Technik, die sogenannte Methode 
des charakteristischen Ortes, entwickelt wurde. 

Pe31oMe---H3 xnaccH~ecKo~ pa6OTbl HafiKBHCTa rt I~O~3, 
HOCB~nIIeHHOi~ aHaJIH3y cranspHofi CHCTeMbI C o6paTHO~ 
CB~13bIO BbITeKaeT FH6Ka~I H HOJIe3Hall pacc~eTaas npoRe/Lvpa. 
OHa aonyqaeTc~ B pe3y~TaTe TOrO, qTO KOH~YnlKTHble 
Tpe6OBaHHfl yCTOI~qHBOCTH II TOqHOCTH MO)I(HO O~HoBpeMe- 
HHO yqI, ITblBaTb C nOMOI.~blO e]~HHOI~ ~OpMbI ilpe~cTaB.rlel-ll~l 

- "IaCTOTHOfl dpyHXl~ttrl I<oMn2iexcHoro nepeMeaHoro an~ 
pa3OMKHyTO~ llenFl. 

MeTO}~I~I dpa3oBbIX npocTpaHCTB noJIy~aloTol MOmHblMH 
H H3~II32HI,IMH B pe3y$IbTaTe CHCTeMaTllaiecKoro llcrIoJI/a30B- 
anna aare6parmecKnx n reoMeTpn~ieeifnx CBO~CTB nanellnbrx 
BeKTOpHI, IX IIpocTpaHCTB. OCHOBHa~ n:le~ p a a a r l T o r o  
3~ecB MeTo~a ~a3oBoI~ TpaeKTopllll  3 a r m o q a e T c ~  B o6~e~- 
IIHeHHrl Cyll~eCTBa 3THX ~ByX IIO/IXO,~OB n y reM HCHOJIb3OBa- 
HIt~I CBOI~CTB 2IHHel~rl~IX BeKTOpttMX n p o c  TpaHCTB, o n p e ~ c a -  
~eMbIX Ha OCHOB rIOM MHOTXeCTBe d~yl~Rai~ KoMnfle KcHoro 
nepeMeHnoro. B pe3yymTaTe nony~aeTcR o6nlaa TeopR~ 
BeKTOpHO~ o6paTHOl~ CBg3H B KOTOpO~ KJIaCCh"qeCIC'H~ MeTO~ 
Bo~a-Hai~cBncTa RB/IReTcg OCO6BIM cny,~aeM ~ ~3 KOTOpOi~ 
Bt~IBO~PITCH MeTO~ Ha3BaHI~Ifi MeTO~OM xapalcTep~ICTn,~ec- 
~oH ~pa3oBoH TpaerTopn~. 


