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Abstract

The paper describes and critically assesses, in the light of recent advances, the sequential return difference method
for the computer-aided design of linear multivariable control systems. In this method, a sequence of single-loop
designs, using classical procedures, yields a multivariable design satisfying various criteria such as stability, disturb-
ance attenuation, low interaction and integrity.

1 Introduction

Rosenbrock, in a pioneering paper,1 redirected attention to
extending the immensely successful classical design procedures to
multivariable problems. This paper proposed a powerful design
technique, based on the inverse Nyquist array, for designing linear
multivariable systems, but also provided a useful theoretical basis and
a substantial impetus for further studies in this area. The subsequent
developments include the important work by MacFarlane and his
colleagues2 on the characteristic locus method as well as the sequential
return defference method3~s discussed here.

The design objectives considered in these papers include the
following:

(a) stability
(b) insensitivity to parameter variations
(c) insensitivity to external disturbances (and possibly complete

rejection of specific types of disturbances)
(d) low interaction
(e) loop by loop implementability
if) integrity (maintenance of stability in the face of component

change or failure)
(g) controller simplicity.

Different applications will assign different priorities to these objectives
and hence make different trade offs. It is desirable to have a design
method which is flexible enough to concentrate on some objectives
and ignore others. For example, integrity in the face of sensor failure
may well require a reduction in performance (e.g. an increase in
sensitivity to external disturbances); if the latter is judged to be more
important, the designer should be free to disregard the former.

2 Design objectives

It is desirable to specify the design objectives quantitatively.
To do this we must specify the system being considered; this is shown
in Figs. 1 and 2. Thus we consider the regulator problem (the problem
of regulating available outputs), and assume initially (for simplicity)
that the plant transfer function G(s) and controller transfer function
Gc(s) are square (m x m). R(s)= G(s)Gc(s) is the loop transfer-
function matrix and T(s)£l + R(s) is the return difference. Let r
denote the desired output, d the disturbance,!/ the input to the plant,
y the output of the plant and e ^ r —y the error. All these quantities
are vectors of dimension m. Let the complete open-loop system (plant
and controller) have the following state vector description:

x — Ax + Be

y = Cx +d
0)
(2)

We can express the transfer function R (s) (from e to y) in terms of
(A,B, Q as follows:

R(s) = C(sI-AylB

The open-loop characteristic polynomial is

po(s) = det (si -A)

(3)

(4)
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Fig. 1
Closed-loop system
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The closed-loop system satisfies eqns. 1 and 2 with e replaced by
r —y, and hence has the state vector description

x = (A -BQx + Br-Bd

y = Cx + d

The closed-loop characteristic polynomial is

pc(s) = det (si -A + BC)

The closed-loop transfer from r to y is

H(s) = T-i(s)R(s) = R(s)T-l(s)

where

T(s) = I + R(s)

The closed-loop transfer function from d toy is

Hd(s) = r - ' (s)

(5)

(6)

(7)

(8)

(9)

(10)

The system described above has two limitations. Not all control
problems require regulation of the measured outputs; an example
of this arises in the control of turbofans.6 A second limitation arises
from the fact that there may be more outputs than inputs; how these
extra outputs may be employed is discussed later.

We are now in a position to express the design criteria quantitat-
ively.

(a) Stability
The closed-loop system is (asymptotically) stable if the zeros of pc(s)
lie in Q (the open left half of the complex plane Q. It follows from
eqns. 4 and 7 (proofs of all results stated in this paper are given in
References 3,4 and 5) that

det = pc(s)/Po(s) (11)

Since the zeros of pc(s) are the zeros of det [T(s)], stability of the
closed-loop system can be assessed in the usual way from the Nyquist
locus of det [T(jaj)]. Thus if the open-loop system is stable, all the
zeros of pQ(s) lie in Q], then the closed-loop system is stable if the
locus of det JT(/co)] does not encircle the origin. More accurately,
let the contour D consist of the imaginary axis, indented to avoid any
zeros of po(s) on this axis, and a semicircle in the right halfplane,
large enough to include all zeros of Po(s); then the image of D under
det [T(s)] encircles the origin clockwise Nc —No times, where Nc is
the number of zeros of pc in D and No the number of zeros of p0 in
D.

(b) Insensitivity to parameter variation
Owing to variation in parameters, let R(s) vary by 5R(s), and let
8H(s) denote the corresponding lst-order variation in H(s). Then it
can be shown that

\\SH(s)H-l(s)\\ < tl3— (12)

Hence the effect of parameter variations on H(jio) in the frequency
band [0,o>i] is small if

||r-'(/cj)|| < 1, for all u G [ 0 , U | ] (13)
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Fig. 2
Equivalent closed-loop system
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(c) Insensitivity to external disturbances
It follows from eqn. 10 that the effect of the disturbance on the
output is very much reduced in the frequency band [0, coi ] if eqn. 13
is satisfied.

Sometimes complete rejection (at all outputs) of a class of
disturbances [in the sense that e(0~*0 as f->°°] is required. A
common example is the suppression of a constant disturbance which
can be achieved in the single-variable case by employing integral
action. In the multivariable case, a (scalar) disturbance is completely
rejected if the closed-loop system is stable and 0(s) is a factor of the
numerator polynomial of T~l (s), i.e. if

= [l/pc(s)]\P(s)N(s)] (14)

where N(s) is a polynomial matrix, and |3(s) is a polynomial whose
zeros are those poles of d(s) (the Laplace transform of d) which lie in
Cr, the closed right half of the complex plane C. Thus a constant
disturbance is rejected in the multivariable case if the return difference
has the form

[sN(s)] (15)

(d) Low interaction-
The condition given by eqn. 13 is satisfied if the loop transfer
function R(s) is large (i.e. feedback is tight) in the sense that

\\R-l(Ju)\\ < 1, for all coe[0,co,]

If eqn. 16 is satisfied then

//(/co) = / for all coG [0,co,]

(16)

(17)

so that tight feedback automatically ensures low interaction at low
frequencies.

As co-*-00, /?(/co)-»-0 (our system is strictly proper) so that
r(/co)->-/ and //(/co)-*-/? (/co). Therefore, low interaction at high
frequencies requires that Gc be chosen so that/?(/co) is approximately
diagonal at these frequencies.

(e) Loop by loop implementability
If the design procedure is such that the system is stable with loops
1 , . . . , / closed (and the remaining loops open), for i = 1 ,2, . . . , m,
then it is possible to implement the controller by closing, in sequence,
loops 1,2,... ,m rather than closing all the loops simultaneously.

(f) Integrity
Let Ta (s) denote the return difference under fault a, and let A
denote the set of possible faults. Then the closed-loop system is stable
under all fault conditions if the Nyquist loci of det [T(jcj)] and det
[7"* (/co)] for all a EA, satisfy the usual encirclement criterion.

Summarising, the overriding objective of stability is satisfied if, and
only if, det [7t(/co)] satisfies the appropriate encirclement criterion.
The performance objectives (b), (c) and (d) are met at low frequencies

lir-'C/w)!! < 1, for all coG[0,co,]

3 Sequential return difference method

It is obviously desirable to restrict the poles of the controller
Gc(s) to lie in Q. It can be shown that, as the feedback becomes tight
[more precisely as a-»• °°, where/? (s) = a/? (s), and/? (s) is nonsingular],
the finite zeros of pc(s) tend to the zeros of det/? (s) {or det [K(s)] }.
Hence it is also desirable to restrict the zeros of det [Gc (s)] to lie in
Q. Rosenbrock1 has shown that any nonsingular rational Gc(s)
satisfying these pole-zero conditions has the representation

Gc(s) = PK(s)F(s)

where P is a column- permutation matrix (equivalent to relabelling of
the inputs), K(s) is a unimodular matrix (representing a sequence of
elementary column operations), and F(s) a nonsingular diagonal
rational matrix {F(s) = diag [/, (s),.. . ,fm (s))}. Because (modulo a
sign change) det (P) = 1 and det [K(s)] = 1, we have

det [Ge(s)] = det [F(s)] (19)

so that only F affects the poles and zeros of det [Gc (s)]. Hence
(bearing in mind the limitations of our system description), the
designer must choose suitable values for-P, K and F.

Most of the design methods separate the design into two phases;
first, the choice of P and K to satisfy various criteria, e.g. diagonal
dominance in the inverse Nyquist array (i.n.a.) method, 'equalisation'
of single-loop transfer functions in the sequential return difference
(s.r.d.) method, or 'high-frequency alignment' in the characteristic
locus (cJ.) method, although the c.l. method has a prior stage of
compensation employing feedback of extra outputs and does not
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restrict F to be diagonal. Let us assume initially that P and K have
been chosen and examine the design of F. We can then return to the
design of/3 and K.

u
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Fig. 3
Structure of controller

3.1 Design of F

Let Q(s)kG(s)PK(s) denote the forward-path transfer
function. Clearly, R(s) = Q(s)F(s) (see Fig. 3). The sequential return
difference method proceeds as follows:

) is chosen (using classical single-loop design techniques) so
that the scalar return difference /, (s) defined by

h(s) = \+A(s)qn(s) (20)

is satisfactory [^(/co) has a sufficiently large magnitude in the
range [0, coj to satisfy the performance requirement, and the
Nyquist locus of /i(/co) satisfies the Nyquist criteria to ensure
stability].

(ii) Loop 1 is then closed, yielding the system S1,, and the modified
forward-path transfer function Ql(s) is calculated. By virtue of
of eqn. 1, the system 51, (with loop 1 closed) is stable.

(iii)/2(s) is then chosen so that the scalar return difference t2(s)
(seen on.breaking loop 2) defined by

= l+f2(s)ql
2l(s) (21)

is satisfactory (since Si is stable, stability of S2, the system with
loops 1 and 2 closed, is ensured if the Nyquist locus of ̂ i(/co)
does not encircle the origin).

(iv) Loop 2 is then closed, yielding the (stable) system S2, and the
modified transfer function Q2(s) calculated etc.

In general, suppose loops 1 to i — 1 have been closed and the forward-
path transfer function Q'~l(s) of 5",_, has been obtained. Then /)(s)
is chosen so that:

'ul(s) (22)

is satisfactory. Q'(s) is then calculated using

if> = i or s = i

* ' » = qir;sl(s)-fi(s)qi
tr,l(s)q'C,l(s)ltt(s) otherwise (23)

In a practical computer-aided procedure, Q'(s) would be calculated at
a set of frequencies (s =/coi, /co2 • • • A^AT) "sing eqn. 23 or directly
from the specification of 5,-_,. However, algebraic formulas for up-
dating Ql are given in References 4 and 5. Let F{(s) ̂  diag [/ /(s) , . . . ,
fi(s), 0, . . . , 0] and T,(s) £ / + Q(s)F,(s). Then as shown in Ref-
erences 3 and 5, Q'(s) = TJ1 (s)Q(s) and

det[7K*)] = det [r, . , (s)] t,(s)

(18) so that

det [r,(s)] = I I tj(s),i =

(24)

(25)

Hence det [T(s)] = fl tj(s), so that the number of encirclements of

the origin by the Nyquist locus of det [7*(/co)] is equal to the sum of
the encirclements by the Nyquist loci of t\(/co), t2Q'co),... , tm(joi).

If the above steps can be carried out successfully, then the
resultant system Sm has the following properties:

(a) It is stable since the Nyquist locus of det [r(/co)] satisfies the
required encirclement criterion.

(b) It attenuates the effect of parameter variations and external dis-
turbances in [0, co! ] , since for co S [0, coi ]

\\T-lVu>)\\ =

(26)
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(c) It is loop by loop implementable, since S\, S2,..., Sm are all
stable.

(d)lt is stable for the following fault conditions: simultaneous
opening of loops 2 — m, or loops 3 — m, o r . . . , or loop m.

A disturbance d is completely rejected, at all outputs, if the denomi-
nator of each f((s) has |3(s) as a factor [where j3(s) is a polynomial
whose zeros are the unstable poles of the Laplace transform of d].
Thus a constant disturbance (Ld = c/s) is completely rejected if each
fi(s) has s in the denominator (integral action).

To achieve integrity against other fault conditions (parameterised
by a), it is necessary to choose ft, for each /, so that not only is tt(s)
satisfactory (in the sense defined above), but also the return dif-
ference tf(s) satisfies the Nyquist criterion for stability, for all fault
conditions a in A.

3.2 Design of P and K

The procedure for designing F is simple, and, apart from the
initial choice of P and K, one often used in practice. However, the
method will only succeed if the transfer functions qn(s),q22^), •. •,
(/"•'(s) 'seen' in designing loops 1, 2 , . . . ,m are satisfactory (e.g.
have no zeros in Cr). Conditions under which there exists a P and K
such that <7/f'(s), / = , . . . ,m, are satisfactory have been established
by Rosenbrock. Let the plant transfer function G(s) be nonsingular
and rational, and let all the poles of G(s) and zeros of det [G(s)] lie
in C\. Then there exists a permutation matrix P and a compensation
matrix K(s) {where det [K(s)] = 1} such that Q(s) = G(s)PK(s) is
nonsingular and diagonal, and whose elements have all their poles and
zeros in Q. Since, in this case, feedback around the /th loop does not
affect any other loop, it follows that q\Jl (s) = qa(s), i = 1 , . . . , m,
and hence that q'ul(s), i— 1 , . . . , m, are all satisfactory. In practice,
of course, one hopes to achieve satisfactory transfer functions with a
PK simpler than one which makes Q diagonal.

Another useful result is the following. If feedback is tight in the
band [0, w , j , then {since det [Q(s)] = det [Q(s)] det [PK(s)] =
det [G(s)]}we have

det = det

(27)

for all co G [0, CO! ] . Thus, if det [G(s) has zeros in Cr relatively close
to the origin, so will some of the transfer functions q'u^s); in this
case it is not possible to have m tight loops. However, if G satisfies
Rosenbrock's conditions, satisfactory transfer functions are achieved
if P and K are chosen suitably; the task of A" is to distribute det
[C(/co)] suitably between the loops.

As an example consider

G(s) =
1-s (1/3 - s )

2-s \-s
(28)

If PK = I, then <7,, 00 = 0 -s)l(s + I)2 and it is not possible to
choose /, so that the first loop is tight [because qu(s) has a zero in
Cr]. However

det[G(s)] = (l/2)(s I)4 (29)

so that in principle there exists a PK such that qn and q\2 are
satisfactory. In fact, with

PK =
1

- 2

then

Q(s) =
[(1/3) + s (1/3) -s

1 -s

(30)

(31)

Clearly qxi(s) is satisfactory. Making use of eqns. 27 and 29 we
obtain

q\2(s) = det [£(*)]/«„ (s)

which is also satisfactory. This approximation is valid at low fre-
quencies.

At high frequencies, Qi (s), Q2(s),. . . , Qm(s) all approach Q(s) so
that, for our example, qxi(s) = (1/3 + s)/(s + I)2 has an asymptotic
phase lag of TT/2, and q22(s)= (1 ~s)/(s+ I)2 has an asymptotic
phase lag or 3TT/2. Without compensation, Q(s) = G(s), so qti (s) =

570

(1 —s)/(s + I)2 and q22(s) = <7u(s) both have asymptotic phase lag
of37r/2.

If G(s) satisfies Rosenbrock's conditions, and m = 2, then only P
and K(s) need to be chosen to make qn(s) satisfactory. Tight feed-
back in the first loop will then automatically make qhis) satisfactory,
since at low frequencies q\2(s) = det [G(s)]/qu(s). An extension to
this procedure for m > 2 is described in Reference 5.

It must be admitted, however, that this procedure for choosing
K(s) is not particularly simple. Hence it is appropriate to ask whether
precompensation techniques employed in alternative design procedures
(which must implicitly satisfy similar requirements) can be used in
s.r.d. Recent work7 on multivariable root loci appears relevant. G(s)
can be expanded in inverse powers of s as follows:

G(s) = (l/s)G1+(l/s2)G2

Similarly

Q(s) = (l/s)Q1+(l/s2)Q2

(33)

(34)

If Qx is nonsingular and F(s) = a/, then as <*-• °°, the finite closed-
loop poles of H tend to the zeros of det [Q(s)] = det [G(s)], and the
remaining m closed-loop poles tend to the zeros of det (si — a<2i)-
Hence, if Gx is nonsingular and PK(s) - G\' so that Q\—I, then the
m, unbounded closed-loop poles tend to —a, a lst-order pattern. If
Qx = 0 but Q2 = I, then F(s) = OLI together with compensator
PK(s) = G2

l results in a system with 2m unbounded closed-loop
poles tending to j3{ ± jy/a (where the offset /?,-, 1 = 1 , . . . , m, is easily
calculated) as a->°°, i.e. a 2nd-order pattern. Of course more
complicated patterns may occur. Thus, if Gx is singular and G2 is
nonsingular, the asymptotic pattern will be a combination of 1 st-
and higher-order patterns.

The situation can be re-examined in the frequency domain.
Returning to our example, it can be seen that the sum of the asymp-
totic phase lags seen in designing each loop is 2>it if no compensation is
employed, and 2TT if the compensator defined by eqn. 30 is used. But
,// the compensator were such that Q(s) is approximately diagonal or

m
triangular at high frequencies, then [since Y\ qu(s) = det Q(s) if Q(s)
is diagonal or triangular] it follows that the sum of the asymptotic
phase lags would equal the asymptotic phase lag of det [Q(jto)]. In
our example, the asymptotic phase lag of det [Q(jco)] is 37r/2 (which
is lower than both the previous values). Hence an obvious objective of
the precompensator would be to ensure that the sum of the asymptotic
phase lags of qH(j<jS), i = 1 , . . . , m, is equal to the asymptotic phase
lag of det [Q(jco)], confirming the desirability of MacFarlane's high
frequency alignment.

To illustrate this consider our example. Expanding in inverse
powers of s yields

G(s) = - I
7/3

(35)

Clearly Gx is singular, so we cannot set PK(s) equal to the inverse of
Gx. However, with

PK(s) =
- 1

0 - 1
(36)

{so that det [PK(s)] = + 1} we obtain

Q(s) = G(s)PK(s)

1 - 3 2/3L (37)

so that the asymptotic phase lag of qu(s) is n/2 and of q22(s) is n,
yielding a total lag of 37r/2. Hence, asymptotically this compensator
superior to the preceding two. With this compensator

s - 1 2/3

s - 2 1
(38)

Because qXx(s) has a zero in Cr, s.r.d. requires that loop 2 (which has
an asymptotic phase lag of n) be designed first. Suppose (for illustrative
purposes) we choose f2(s) = a(s + a), then (for large a) t2 (s) = 1 +
<722(s)/2(0 = (s2 + ots + a.2)l(s + I)2 , which is satisfactory. Closing
the second loops yields q]x(s) (the transfer function seen in designing
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loop 1) where

= qn(s)-f2(s)q2l(s)ql2(s)/t2(s)

l J

has an asymptotic phase lag of TT/2 and is relatively simple to handle.

3.3 Additional outputs

Suppose the plant has an output (vector) z in addition to the
output y which is to be regulated. These outputs can be combined
withy to give an effective output./, where

y'{s) = y(s) + L(s)z(s) (40)

(the overbar denotes Laplace transform) in such a way that the
resultant (square) forward-path transfer function G'(s) is superior to
G(s). [If the transfer function from u to z is Gz(s), then the transfer
function from u to y is G'(s) = G(s) + L(s)Gz (s).] By superior, we
mean that the Nyquist locus of det [G'(s)] is better (e.g. has less
phase lag) than that of det [G (s)]. To evaluate the effect of incorpor-
ating a single extra observation, let z be a scalar, Gz(s)=gz"(s) a row
vector (dimension m) of rational functions, and restrict L(s) to be a
real column vector /. Then

(41)

(42)

det.

= det [G(s)] det [/+ G~i(s)lgl(s)]

= det[G(5)][l+^T(5)G-'(s)/]

Thus, in our example, if

and

= [3(/2 - / , ) 5 2 +(3/, - / 2 + 1)5 + 1]/(5 + 1)

(43)

which becomes (5+1) with /, =2/3 and l2 = 1, providing useful
extra phase shift. Indeed, G'(s) becomes.

and

G'(s) = [1/(5+ I)2]

det[G'(5)] =

1-5/3 1/3-5

2 1 - 5
(44)

(45)

which has an asymptotic phase lag of only n (compared with 37r/2)
which can be shared among the two loops with proper high-frequency
compensation.

Expanding in inverse powers of s yields

G'(s) =
- 1 / 3 - 1

0 - 1
(46)

which is nonsingular so that high-frequency compensation is simplified.
Indeed improvement of high-frequency compensation provides a
useful guide to the choice of L(s).

If z is a vector rather than a scalar, each component can be treated
in turn as above. Effectively, L is chosen to add suitable zeros to det
[C(5)]; in our example, det [G'(s)] = (s + 1) det [G(s)].

3.4 Critique of s.r.d.

Any method can be criticised if it forces the design to achieve
more objectives than are required for the particular application,
since satisfaction of the additional objectives is achieved at the
expense of the main objectives. Both the s.r.d. and the inverse Nyquist
array methods can be criticised from this point of view if integrity is
not required; the former because it requires stability of the sub-
systems Si, S2,... ,Sm, and the latter because it requires integrity
against any sensor failure.

A second, important criticism of the s.r.d. method is that design is
an iterative process, and it is unlikely that the first choice of
compensator PK(s) and feedback controller F(s) will be satisfactory.

4 Improved s.r.d. design procedure

The first criticism of the s.r.d. method (requiring stability of
the subsystems 5, ,S2,... ,Sm) can be removed by assessing stability
from the locus of det [T(jcS)] [or, equivalently, from the sum of the
encirclement of the origin by the loci of ^( /CJ) , t2(jcj),. . . , tm (jcS)].
The second criticism (that it provides no satisfactory means for
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refining the first design) arises from limitations on the initially
proposed computational procedure, wherein each scalar return dif-
ference ti(s) (/= 1 , . . . , m} was examined in turn. This was done
because the original program"1 s was algebraic in nature, and
employed algebraic formulas in Reference 5 to calculate the forward-
.path transfer function Ql(s) of S1, i= 1,. . . ,m, sequentially [the
formulas show how to calculate Ql(s) given Q'"1 (s) and/)(&)]. A bad
choice for, say, f3(s) might result in an unsatisfactory ^ ( s ) , and no
method for correcting this was given.

Modernca.d. methods store a (state space) model of the current
system (plant plus controller); using the model, the loci of ti(jui),
i = 1 , . . . , m, and of det [T(jcS)] can be simultaneously displayed to
the designer, and the effect of any parameter changes [in P, K(s) or
F(s)] on all of these loci can be easily observed. With this facility, the
s.r.d. method can be improved as follows. We assume that additional
outputs have already been incorporated as described in Section 3.3.

Relabel inputs (equivalent to choosing/*) and outputs, and let G(s)
denote the resultant transfer function. Choose the real matrix Kh

(high-frequency compensator) so that the asymptotic zeros of det
[/ + aG(s).Kh] as a-*00 (i.e. the nonfinite closed loop poles with
F=af) are satisfactory. [Recall that the finite closed-loop poles tend,
as a->•(), to the/eros of G(s).] If G(s) is uniform so that G(s) =
(l/sk)Gk +(l/5fe + I)Gfe + 1 + , . . . , where Gk is nonsingular then
Kh =Gki will suffice; if not, more ad hoc methods, such as Mac-
Farlane's alignment procedure, may be employed. (The crux of the
problem is that if (7(5) is not uniform, a polynomial, rather than a
scalar matrix, is needed to diagonalise or triangularise G(s), and a
typical compromise between simplicity and effectiveness is involved).
Our initial controller has K(s) = Kh and F(s) = al, where a suitable
magnitude for a has to be guessed. The initial value of Q(s) is
G(s)K(s) = G(s)Kh.

The loci of f,(/co) [or q\{ ' (jco)ft(joS)), i = 1 , . . . ,m, and det
[T(/cx))] corresponding to the current design are displayed. The
design objectives are simply to ensure that f,-(/co) [or q'^ ' (/CJ)/)(/CO)] ,
/ = 1 , . . . , m, have sufficiently large magnitudes in the band [0, co, ] ,
and that the locus of det [T(J'OJ)] obeys the appropriate Nyquist

m

criterion {since det [T(s)] = FI /,-(s), the effect of parameter changes
in F(s) on det [r(s)] can be easily predicted}. A typical design
proceeds by setting f{(s) [fi(s) = a in the initial design] equal to a
conventional single-loop controller, such asa,(l +sPi)/s ora,(l +sPi)l
(1 +57,), / = 1,. . . , m, and choosing the coefficients (at, f}h yt) so
that t{(Jcj), i = 1,. . . , m, and det [TQ'CJ)] satisfy the above criteria.
[Since F(s) is diagonal, the asymptotic properties of the nonfinite
closed-loop poles are preserved; e.g. if G, is invertible,/fh = G\x, and
at = (1 + s(ii)/s, then the nonfinite closed-loop poles tend to — a,/?,,
—<x2&2, • • • ,~°lmPm> i-e- t 0 t n e r o o t s °f det [5/ —diag(a1/31'
a202,..-.amPm)] a s a , - * ° V = 1 , . . . ,m.)

The closed-loop system can now be examined by inspecting the
frequency or step response of the closed-loop system, whose transfer
function is H(s) = Qm(s)F(s). At this stage, it may be noted that
interaction in the closed-loop system (which is low at low frequencies
due to tight feedback, and at high frequencies due to Kh) may be too
high at intermediate frequencies. Further compensation Km(s)
[setting K(s) = KhKm (5)] such that det [Km (5)] = 1 (at least asymp-
totically as 5 -* °°) may be introduced to reduce interaction (such a
Km(s) may be obtained as a sequence of elementary column
operations).

To illustrate the procedure consider an unstable chemical reactor2

described by

A =

1-38

-0-5814

1067

. 0048

0

-0-2077

-4-29

4-273

4-273

0

5-679 0

1136 - 3 1 4 6

1136 0

C

6-715

0

-6-654

1-343

=
0

0

1

-5-676

0-675

5-893

- 2 1 0 4 .

1 - 1

0 0
B =

The eigenvalues of A are 006318, 1-991, - 5 0 6 7 , -8-66, and the
zeros ofG(s) are -1-192, -5-039.
Also

G, = CB =
0

5-679

-3-146

0
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so the system is uniform, of 1st-order. For our initial design, set

and
F(s) = 10/

The Nyquist criteria for det [r(/co)] is satisfied with this design and
the closed-loop eigenvalues are —1-53 ±/-44 and —14-3 ±/19. How-
ever, the loop gains are not tight, within (0) = 1 96 and q^iO) = 0-43
resulting in a closed-loop transfer function at zero frequency given by

f 1-35 0-9 1

[ - 0 0 9 079 J

which shows considerable offset and interaction. Since the asymptotic
behaviour is lst-order,no difficulty in increasing loop gain is expected,
so F(s) is changed to

F(s) = (1/5)
120(s+l)

0

0

60(s + 1)

higher gain being introduced in loop 1 because of the larger offset in
loop 1 (35% compared with 21% in loop 1), and the larger interaction
indicated in hl2(s) compared with h2i(s). The resultant system is
satisfactory, the step responses settling within 1 s; interaction is also
low, the peak interaction being less than 2-5% on output 1 and less
than 0-75% on output 2. The complete controller has a transfer
function

Gc(s) = GhF(s)

= [(*+!)/»]
38-24

10-57

0

Because of the widely differing phase angles in the elements of G(s),
it was not profitable to attempt to reduce interaction using a scalar
matrix Km.

5 Conclusion

We have outlined the sequential difference method, but have
also taken advantage of recent developments in the design of multi-
variable control, in particular the work of MacFarlane and his
colleagues, to critically assess this method and suggest various
improvements. The amended version naturally now bears certain
similarities to the characteristic locus method, the major difference
being that attention is focused on the (real) transfer functions
q'u i (s)/i0), i = l , . . . , m , rather than on the eigenvalues of Q(s).
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