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The Characteristic Locus Design Method”

La Méthode Caractéristique de Design de Lieu
Die Methode des Entwurfes des charakteristischen Ortes
Merop pacyera xapakTepUCTHYECKOH (ha30BOH TpaeKTOpHH

A. G. J. MACFARLANEY and J. J. BELLETRUTTI]

Multivariable feedback systems may be designed using a technique which is a vector
generalisation of the classical frequency-response methods introduced by Bode and

Nyquist.

Summary—The classical work of Nyquist and Bode on the
frequency-response analysis of scalar feedback systems leads
to flexible and useful design procedures because it enables
the conflicting requirements of stability and accuracy to be
handled simultaneously via a single form of system represen-
tation—the open-loop frequency response function of a
complex variable. State-space methods derive their elegance
and power from the systematic exploitation of the algebraic
and geometric properties of linear vector spaces. The basic
idea underlying the Characteristic Locus Method developed
here is the combination of the essence of these two ap-
proaches by exploiting the properties of linear vector spaces
defined over base fields of functions of a complex variable.
What then emerges is a general vector feedback theory in
which the classical Bode-Nyquist technique is a special case,
and from which a frequency-response based design technique
called the Characteristic Locus Method is developed.

1. INTRODUCTION

Bope [1] and Nyquist’s [2] classical work on the
frequency-response analysis of scalar (single-input,
single-output) feedback systems led to a flexible
and useful design technique because it enabled the
conflicting requirements of stability and accuracy
to be handled simultaneously via a single form of
representation—the open-loop frequency-response
function of a complex variable. State-space
methods derive their elegance and power from the
systematic exploitation of the algebraic and geo-
metric properties of linear vector spaces. The basic
idea underlying the methods developed here is the
combination of the essential features of these two
approaches. This is done by introducing and
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exploiting the properties of linear vector spaces
defined over base fields of functions of a complex
variable. What then emerges is that the classical
Bode-Nyquist theory is essentially the special
scalar case of a completely general vector theory.
Furthermore, this theory is constructed around a
few basic and well-established algebraic and geo-
metric properties of linear operators.

Apart from its intrinsic interest, there are two
important reasons for the development of such an
approach.

(i) It provides a useful technique for the design
of a wide range of practical multivariable con-
trollers for industrial plants described by a limited
amount of experimentally obtained data.

(ii) It provides a bridge between the recently
developed state-space methods used in optimal
multivariable control [3] and optimal multivariable
filtering [4] and the well-established classical
frequency-response methods [5] hitherto largely
restricted to single-input single-output systems.

2. FUNDAMENTAL FEEDBACK RELATIONSHIPS

The multivariable feedback configuration which
most often arises in control studies is shown in
Fig. 1 where

r(s) =vector of reference input transforms, of
order m

e(s) ==vector of error transforms, of order m

u(s) =vector of plant input transforms, of order /

y(s) =vector of output transforms, of order m

K(s)=Ixm matrix of controller transfer func-
tions

G(s)=m x ] matrix of plant transfer functions

H{s)=mxm matrix of feedback-transducer
transfer functions

I, =mxm identity matrix
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F1G. 1. Multivariable feedback system.

The closed-loop transfer function matrix R(s)
for this system may be written in the form

R(9)=[L, + G()K()H(s)] 'G(s)K(s).  (2-1)

Suppose that in Fig. 1 all the feedback loops are
broken at y(s), and that a signal transform vector
a(s) is injected at this point. Then it is easily seen
that the returned signal transform vector is

— G(s)K(s)H(s)a(s)

so that the difference between injected and returned
signals is given by

(L, + GKESH(S)]a(s)=Fy(s)als)  (2-2)
where

F,(s)=I,+ G(s)K(s)H(s) (2-3)

is a square matrix defined as the system refurn-
difference matrix [6] measured at the output side of
the plant. This is a natural generalisation of the
scalar return-difference quantity defined by BoDE [I]
The matrix

T,(s)=G(s)K(s)H(s) (2-4)

is defined as the system return-ratio matrix
measured at the output side of the plant. This
again generalises BODE’s [1] corresponding scalar
quantity. It then follows that

F,(5)=L,+T,s). (2-5)

The above “loop-breaking” approach to the
definition of return-ratio and return-difference
quantities need not be restricted to the system
output vertex y(s). For instance, if the feedback
loops were broken at the points corresponding to
the signals u(s) and e(s) respectively, and the above
analysis repeated, the results would be

T (5)=K(s)H(s)G(s) =return-ratio matrix for
plant input vertex. (2-6)

T (s)=H(s)G(s)K(s)=return-ratio matrix for
system error vertex. (2-7)

The corresponding return-difference operators
then become

F(9)=1,+Ts) (2-8)

Fo(s)=1,+Tjs). (2-9)

An application of SCHUR’s formulae for par-
titioned determinants [7] show that

det F (s)=det F (s)=det F (s). (2-10)

In terms of these return difference matrices,

simple algebraic manipulations give the following

equivalent forms for the closed-loop system
transfer function matrix relating y(s) and r(s):

R(s)=F; '(s)G(s)K(s)
= G(s)F, ' (s)K(s)

=G(s)K(s)F, '(s). @11

It is convenient to denote the product G(s)K(s)
which occurs repeatedly in treatments of this
standard configuration by

Q(s)=G(s)K(s) (2-12)
and to call Q(s) the system open-loop transfer
function matrix.

3. BASIC COMPLEX VARIABLE RELATIONSHIPS

Our objective is to devise frequency-response
methods with which to attack the problem of
analysing the stability and performance of feed-
back systems and, in particular, to develop design
techniques for the standard configuration shown
in Fig. 1. Furthermore, we wish these techniques
to be natural generalisations of the classical Bode—
Nyquist approach. Since this is essentially based
on transform and complex variable theory, the
key step which must be taken is to set up appro-
priate links between complex variables and matrix
representations of linear operators. The required
approach emerges naturally from the fact that,
when transform methods are used in the analysis
of multivariable feedback systems, one is im-
mediately confronted by vectors and matrices
whose elements are functions of a complex variable
s. Thus we are dealing with quantities which we
may formally define in the following way.

(i) A vector-valued function of a complex
variable, x(s) say, is a mapping

x(s): 6™



The characteristic locus design method 571

from the set of complex numbers € into the set of
complex vectors, €™.

(ii) A matrix-valued function of a complex
variable, G(s) say, is a mapping

G(s): €-M(¥)

from the set of complex numbers ¥ into the set of
matrices over the field of complex numbers,
M(¥%). If G(s) is square, and det G(s) vanishes for
every value of s, G(s) is said to be identically
singular. If det G(s)#0, then an inverse G~ !(s)
can be computed in the usual way for every value
of s for which det G(s) does not vanish.

For every specific value s,¢%¢, a square mxm
matrix function of a complex variable s, G(s,) say, is
a matrix having complex number entries. It thus
has a set of eigenvalues {g,(s,): i=1, 2, ..., m}
such that

g(5)e€ i=1,2,...,m (3-1)

and a corresponding set of eigenvectors {w(s,):
i=1,2,...,m} such that

w(s)e€™ i=1,2,...,m. (3-2)

Put simply, the eigenvalues of a matrix function of
a complex variable are themselves functions of a
complex variable, and the corresponding eigen-
vectors are vector-valued functions of a complex
variable.

The situation can however be looked at from a
much more general point of view. Algebraic
functions of a complex variable s form a field; put
crudely, this means that we can carry out the
standard forms of arithmetical manipulation with
transfer functions, just as we do with real or com-
plex numbers. This aspect of complex variable
theory has been studied in great depth, culmin-
ating in WEYL’s famous text [16]. A good intro-
duction to the more mathematical aspects of this
concept has been given by SPRINGER [17].

It is sufficient for our present purposes simply to
state the fact that it is a direct consequence of this
that the eigenvalues of a square matrix G(s) whose
elements are rational functions in s will lie in the
field of algebraic functions of the complex variable
5. These complex functions eigenvalues will be
called characteristic transfer functions, in order
to avoid over-use of the term eigenvalue, and the
corresponding eigenvectors called characteristic
directions. In general, of course,such quantities will
be irrational and must consequently be discussed,
as by WEYL and SPRINGER, in the context of
Riemann surfaces[16, 17]. Since we shali only be
concerned with their frequency response evalua-

tion, this aspect of their behavior is not further
considered here.

If the vector space €™ is equipped with an inner
product defined by

xv)= 3 5, (33)

for all x, ye®™ it is called a unitary space [8]. In
this last expression, X; denotes the complex con-
jugate of x;, and this convention in inner product
definition is needed to ensure that the inner product
is non-degenerate, that is that:

(x, x)=0 if and only if x=0.

With the inner product so defined, it is now
possible to perform geometrical investigations in a
resulting metric space using the natural metric

Ix]|=V(x, x). (3-4)

In particular, the angle between x, ye¢™ can be
defined via

cos 0= I(x, y)I (3-5)

Il ]

giving a measure of angle with all the properties
required for straightforward geometrical oper-
ations in the complex vector space.

4. PERFORMANCE ANALYSIS

Any useful design procedure for multivariable
feedback systems must aim at securing a suitable
compromise between four conflicting objectives:
stability, integrity, interaction and accuracy. In
order to do this, appropriate techniques for the
analysis of the above system properties must be
established. Since these properties are essentially
concerned with closed-loop phenomena, and since
the proposed design method is to be based on the
frequency-response behaviour of system charac-
teristic transfer functions and characteristic vectors,
a set of appropriate open-loop to closed loop
relationships between these important quantities
must first be obtained.

Let the m x m open-loop transfer function Q(s)
matrix have a set of distinct characteristic transfer
functions and associated linearly independent
characteristic vectors denoted respectively by g,(s)
and w(s) for i=1, 2, ..., m. Form the identically
non-singular matrix

W(E=[W(S)W2(s) . - . Wn(s)] 1)
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and invert it to give

vi(s)
va(s)

V(s)=W"(s)= (4-2)

Vin(S)

where the symbol ¢ denotes transposition so that
{vi(s)} are the rows of V(s). Then standard
algebraic relationships give that Q(s) may be
expressed in the form

Q(s)=W(s)[diag {g/(s)}]V(s). (4-3)

Alternatively, Q(s) may be expressed in the dyadic
form

Q= ¥, amve). @4

For unity feedback systems, with H(s)=I,, the
closed-loop transfer function matrix as given in
equation (2-1) may be written as

R(s5)=[L,+Q(s)] ' Q(s) 4-5)
from which it can readily be shown that
R(s)=W(s)[diag {g,(s)/1 +q(H}V(s) (4-6)

or, in dyadic form, that

=3 —gﬁ)-— w,(s)vi(s). 4-7
””ié[um@]‘)‘) @
Thus, for the case of unity feedback, the charac-
teristic transfer functions of the open and closed-
loop systems are respectively g,(s) and [g(s)/
14g.s)} for i=1, 2, . . ., m. In addition, the
characteristic vectors for both the open and closed-
loop systems are the same, namely w,(s), i=1, 2,

. , m. This interesting generalisation of the
corresponding basic result for scalar feedback
systems plays a vital role in the performance
analysis which follows.

4.1. Stability
The fundamental multivariable stability theorem
from which we will develop an encirclement

criterion defining closed-loop stability is originally
due to Porov [10] and is

CLCP )
det F(s)= —— 4-8
(s) OLCP (4-8)

where F(s) is the system return-difference matrix,
which from relationship (2-10) can represent any of
the corresponding quantitiesintroduced in Section 2,
and CLCP and OLCP are respectively the system
open-loop and closed-loop characteristic poly-
nomials which include all zeros associated with
unobservable and uncontrollable modes. Since
such modes are unaffected by feedback, the factors
of OLCP and CLCP associated with such modes
will cancel when det F(s) is formed.

Let the characteristic transfer functions of the
return-ratio matrix T(s) be #,(s) (note that these are
simply ¢,(s) when H(s)=1,) for i=1, 2, . .., m.
Then

det F(s)=det [I,,+T(s)]

- [T+ (4-9)

Let the #,(s) map the usual Nyquist contour into
the set of m characteristic loci denoted by ¢,(jw),
i=1, 2, ..., m. Then it may be shown [11, 12]
that, if p, is the number of right-half-plane zeros

in OLCP, and ) n, is the net sum of clockwise
i=1

encirclements of the critical point (—1, 0) in the
complex plane contributed by the characteristic
loci of T(s), the closed-loop system is stable if and
only if

N

By=—Do (4'10)

i=1

where clockwise encirclements are counted positive
corresponding to a clockwise traversal of the
Nyquist contour. The encirclement theorem is
still valid when any rhp zeros of OLCP are uncon-
trollable and/or unobervable. However, it will
then be impossible in practice to attain the required
number of encirclements for closed-loop stability.
The above encirclement theorem can be used to
great advantage in determining system closed-
loop stability boundaries. More specifically, let
the return-ratio matrix for a given system be T(s).
Now apply a gain of k£ to each loop so that the
return-ratio matrix for the modified system is

T, (s)=kT(s). 4-11)
The characteristic loci corresponding to T,(s) are

equal to those of T(s) scaled by the factor k. In
the complex plane then, the stability of the new
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system is quickly determined by applying the
encirclement theorem to the original system
characteristic loci with (“!/k, 0) as the critical
point. It is then a simple matter to find the limiting
gain factor k£ which preserves overall stability,
when applied to each loop. Viewed in graphical
terms the theorem then defines a stability boundary
along the line k,=k, i=1, 2, ..., m in an m-
dimensional gain space. This argument is easily
extended to define other lines in the gain space
such as the line corresponding to k;=o;k, i=1, 2,

. , m where the a; are constants and k; is the
gain in the ith loop. This is done by simply post-
multiplying T(s) corresponding to k=a;=1 by the
matrix diag {«;} and applying the encirclement
theorem in the usual way to the resulting charac-
teristic loci. Here the critical point is again
("'/k, 0). In theory, the stable operating region
for all possible combinations of loops gains can be
determined, a facility which can prove extremely
useful in studies of the control of nonminimum
phase systems.

4.2. Integrity

A multivariable feedback system is said to be of
satisfactory integrity if it remains stable under all
combinations of a stipulated set of failure con-
ditions. The set of primary concern includes output
transducer, error-monitoring channel and actuator
failures. Clearly, any design technique aimed at
devising feedback controllers for practical systems
must incorporate a check for stability when such
component breakdowns occur. Consequently, the
following results have been established [11].

To ensure integrity against failure of the output
transducer in loop j say, the characteristic loci of
the principal sub-matrix of the return-ratio matrix
T,(s), obtained by deleting row j and column j,
must satisfy a Nyquist-type stability criterion, as
defined by equation (4-10). For the case of simul-
taneous transducer failure in two or more loops, the
above result is applied with respect to the principal
sub-matrix of T,(s) obtained by deleting those rows
and columns whose index numbers coincide with
the failed loops. In general then, integrity against
transducer failures in all possible combinations of
loops is assured when the characteristic loci of all
the principal sub-matrices of T,(s) satisfy the
encirclement theorem previously established.

For integrity against actuator and error-
monitoring channel failures, similar considerations
to those above apply to T,(s) and T (s) respectively.
For the special case when H(s)=I,, T (s)=T,(s)
so that integrity against transducer failures auto-
matically insures integrity in the face of error-
monitoring channel failures. Note that it is
virtually impossible in practice to achieve integrity
under all combinations of the above failure con-

ditions {11]. However, the results do provide
guidance for improving the integrity situation and
so play a vital role in the design procedure of
Section 5.

4.3, Interaction

The general term interaction is used here to
denote the body of relationships influencing the
way in which a reference input r,(s), applied to
input i, affects the set of outputs {y;(s): j#i}. In
general, the designer will aim at ensuring that only
one specific output y,(s) reponds to r(s) and all
the other outputs y(s),j#i, remain sufficiently
small to satisfy some performance criterion
imposed in the design specification.

Consider the characteristic dyadic expansion of
the closed-loop operator R(s) given by equation
(4-7) and evaluated for s=jw. This is

CmT o) T
RGo)= $ [m]w;ow)viow). @12)

Now suppose that, at some frequency w,

IQi jo)|>1,i=1,2,...,m. (4-13)
Then
R(jo)~ ¥ wijovijo) =L, (4-14)

and the closed-loop system is clearly noninter-
acting at this frequency. Condition (4-13) can
usuaily be met at low frequencies by ensuring that
high characteristic gains are imposed. Thus, at
low frequencies, interaction can be suppressed to
any required amount by ensuring that the moduli of
all the characteristic loci are sufficiently large.

At high frequencies however, condition (4-13)
cannot be met because of stability restrictions which
in fact invariably require that.

(4-15)

at the high angular frequency w, Then from
equation (4-12)

|qi(jwh)l<1, i=1,2,...,m

R(jw,)~ i gjopwioviio) = Q)
(4-16)

which means that any high-frequency cross-
couplings in Q(jw) will pass straight through to
R(jw) despite the action of the feedback. 1t follows
from this that one available method of suppressing
high frequency interaction is to ensure that Q(s)
approaches diagonal form as |s|—>oo. Another
more effective method arises from geometrical con-
siderations in that one can attempt to align the
characteristic direction set of Q(jw) with the
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standard basis set To. show how this approach
works, apply a reference input r(jw)to input jso
that

r(jw)=rjow)e; 4-17,
where e; is a standard basis vector, the jth column
of a unit matrix of appropriate order. If it were
the case that w(jw)=e; so that the system output
vector

y(jw)=R(jo)r(jw)
=r{jo)R(jo)w(jw)

=r(jw _‘Iﬁf_“’)_]e. 4-18
i )[qu(jw) 7 (4-18)
then only element y;(jw) would respond to input
r(jw). Thus a convenient measure of alignment is
the angle, as a function of frequency, between the
vectors w;(jw) and the vectors e; for j=1, 2, ..., m.
This is given by equation (3-5) for j=1,2, ..., m
as

ij(jw), ej)f

008 00 =" ol

4-19)

where w;(jw) is that characteristic direction which
produces the minimum 6 (jw) at frequency w. Thus
if 0;(jw) is sufficiently small at high frequencies,
interaction effects arising from the jth input will be
correspondingly small. It is important to note
however that this requirement is equivalent to
making Q(jw) diagonal only when all the 8, are in
exact alignment with standard basis vectors. This
means therefore that small misalignment angles
need not necessarily arise from a Q(jw) which is
nearly diagonal or diagonal dominant. An excellent
example of this is the system

g 9 9
A= 556 1D] -9 99-9]

which produces 6;(jw)=0,(jw)=5-7 deg at all
frequencies. From the above criterion the feed-
back system is essentially noninteracting although
Q(s) is not diagonal dominant. Further discussion
of this is given in [9].

In summary, an assessment of interaction over
the frequency range of system operation can be
made on the basis of an inspection of both the
characteristic loci and the characteristic directions.
The simplest way to do this is via logarithmic
plots where |g,(jw)| vs » and 8,(jw) vs w are plotted
for all j.

4.4. Accuracy

In a general sense, accuracy can be loosely
defined as the degree to which actual system out-
puts follow desired system outputs. That is we

wish to have

Y($)~r(s), s=jw. (4-20)
As shown in the discussion on interaction, con-
dition (4-20) can be satisfied at low frequencies
providing
la(jw)|>1, i=1,2,...,m.  (421)

The system accuracy will be high providing the
moduli of the characteristic loci are suitably large
at low frequencies.

As will now be shown, it is possible to establish
upper and lower bounds on closed-loop accuracy
at any frequency. For the system in Fig. 1,

e(;0)=F"!(jo)r(jw). (4-22)
Thus we have
”e(.’w)" z _ et( “']w)Ft( —]CO)F(]Q))e(jCl)) (4_23)
[rGe)|*~ &(—jw)e(jo)

where F(jw)=F'(jw). This last expression may
obviously be used as a measure of accuracy for a
multivariable feedback system. Since the matrix
F'(—jo)R(jw) is positive definite Hermitian for
each value of w, its eigenvalues will be real and
positive. Denoting these eigenvalues by

{W(w): i=1,2,..., m}

and invoking the standard Courant—Fisher min—
max relationships for Hermitian matrices [13] gives
e(—jo)F(~jo)R(jw)e(jw)
e'(—joe(jo)
<max pf(jw). (4-24)
i

min pf(jw)<

Combining expressions (4-24) and (4-23)

min (o)< 109 < max i) (a25)
i IrGe)]

where the quantities y,(jw) are the positive square

roots of the eigenvalues of F*(—jw)F( jw) and are

usually called the singular values of F(jw) [14].
Taking the overall percentage error of the

closed-loop system to be ”e(J-_f)—)ﬂ %100 per cent
)

gives the minimum and maximum possible errors

to be min y,(jw)x 100 per cent and max uyjw)
x 100 per cent at any frequency w.

Using Browne’s theorem [14] and noting that

the characteristic loci of F(jw) for H(s)=I,, are
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{1/[1 +q,(jw)): i=1, 2, ..., m} gives

min 1)< | o | <max wio) @20

1+g,(jw) i

so that the moduli of the characteristic loci of
F(jw) are always bounded by the singular values of
F(jw). The last expression again verifies that if all
the ]q,-( jw)]>1 high accuracy will ordinarily be
obtained.

5. CHARACTERISTIC LOCUS METHOD

In the last section it was shown how the four
conflicting properties of stability, integrity, inter-
action and accuracy could be analysed using
appropriate sets of system characteristic loci and
characteristic directions. This, coupled with the
desire to extend the Bode—Nyquist approach to the
multivariable case, leads to the following design
philosophy—the designer of multivariable con-
trollers should strive to attain a required closed-loop
stability and performance specification by appro-
priate manipulations of sets of open-loop
characteristic loci and characteristic directions. In
order to simplify the following discussion, unity
feedback (i.e. H(s)=I,) is assumed; then the
transition from open-loop to closed-loop charac-
teristic loci and characteristic directions is straight-
forward as described in Section 4. Now the entire
design effort may be focused on the synthesis of the
forward path controller matrix, K(s), which along
with the plant transfer matrix G(s), is assumed to be
square. It should be noted that non-square systems
are currently under investigation and it is hoped that
they will be discussed in a future paper.

The main forms of manipulation which must be
performed via K(s) includes:

(i) Modifying the phases of appropriate sets
of characteristic loci in order to achieve
acceptable stability and integrity;

(ii) aligning the characteristic directions at
high frequencies and balancing the gains
the characteristic of loci at low frequencies
in order to get acceptable interaction;

(iii) injecting gain into the phase-compensated
and aligned system in order to achieve a
satisfactory overall performance.

It is thus obvious that the final system controller,
K(s) has many criteria to satisfy simultaneously.
This strongly suggests that K(s) be designed as the
cascaded combination of several sub-controllers,
K(s), so that

K(s)= q K(9) (5-1)

where each K;(s) has a specific task to handle during
the sequential synthesis. The number of sub-
controllers needed to produce K(s), denoted above
by p,will of course bedifferent for different problems.

o Find
QLCP. P,

Stability phase

Integrity phase

High No

Integrity Design

; ®©
Yes

Interaction phase
Low

Interaction

?
Yes

FiG. 2. The design strategy.

Before looking in detail at some of the more
useful forms of controller factors, K,(s), it will be
helpful at this stage to outline the design process or
strategy which makes use of this proposed con-
troller factorisation in such a way as to satisfy
stability, integrity, interaction and accuracy require-
ments. This design procedure is summarised in the
flow diagram shown in Fig. 2 to which the following
comments apply:

(i) Controller design is separated into four
distinct phases whose order depends on the
relative importance of each system property.
For instance, as shown in the figure, closed-
loop stability is given the highest priority,
followed by high integrity and so on.

(ii)) Poor closed-loop stability margins are
attributed to either poor integrity or severe
interaction, or a combination of both, so
that no compensating Ky s) need be
designed during the stability phase. This
means that if there is initially instability,
the implementation of controllers which
achieve satisfactory integrity and inter-
action properties automatically ensure
overall stability.

(iii) The method is an iterative one and, like
any usual engineering design technique,
alternates continuously between the steps
of system analysis and design decision until
the final specifications are met.
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(iv) The final controller K(s) emerges as the
product of the individual factors Ky(s), so
that it is the cumulative effect of the K(s)
which produces the required overall control
action.

(v) It is assumed that all the calculations and
graphics required toassesssystem properties
are performed by a digital computer with
graphic display facilities. This then allows
the designer to analyse the effects of each
K (s) by inspection and thus to concentrate
entirely on controller synthesis.

The flow diagram of Fig. 2 provides a guiding
framework within which any of a large number of
specific types of controller factor K,(s), can be used
to achieve the required objectives at each phase of
the design process. For practical reasons, each
K (s) should be as simple as possible; in particular
K (s) should be synthesised as much as is practicable
from wholly constant factors. For obvious reasons,
all the dynamical elements of K;(s) must be rational
functions in s, and det K (s) must be identically non-
singular. Furthermore, all poles of K(s) should lie
in the open left-half plane. Finally, det Ky(s) must
not have any right-half plane zeros if non-minimum
phase difficulties are to be avoided. Listed below
are several types of controller factors which provide
considerable assistance in achieving desired mani-
pulations of the systems characteristic loci and
characteristic directions.

(i) Elementary transformation matrix con-
trollers

() o m

K(s)= k; j(s)

1
L .

(-2

where the diagonal element kj;(s) is a
rational function in s with all its poles and
zeros in the open left-half plane.

(b)

(if)

(iii)

(iv)

K(s)= 0-——1ky(s) ...0 (53)

where the off-diagonal entry k;,(s) is also a
rational function in s having all its poles in
the open left-half plane. The way in which
these factors modify the system charac-
teristic loci has been discussed elsewhere
[11] and so will not be repeated here. It
will suffice to say that they are particularly
useful in improving integrity where only
sub-systems are to be modified, and in
reducing interaction by diminishing the
magnitudes of the off-diagonal elements of
G(s).

Scalar matrix controller

K,()=k(s)L,. (5-4)
This controller has the special property
of multiplying the plant characteristic loci
by the scalar k(s) while leaving the
characteristic directions unaltered.

Permutation matrix controller

Ki(s)=[e; ... e 1€€541 -

- &) (5-3)

where p)g and e; is the jth column of
I, This controller has the effect of inter-
changing columns p and g of G(s), and is
used in the initial design phase when, for
some specific technical reason, such as to
improve integrity, it is required that the
inputs to G(s) be reordered.

d.c. plant inverse controller matrix

K,(s)=G "~ 1(0). (5-6)
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This controller diagonalises the plant at
d.c. and therefore has the effects of':

(a) aligning the plant characteristic
directions with the standard basis vectors
at d.c., thereby removing any d.c. inter-
action;

(b) normalising the characteristic loci
by assigning a gain of one to each locus at
d.c. This makes it easier to meet low
frequency performance specifications for
cases where some of the plant charac-
teristic loci are large at d.c. and others
relatively small.

Matrix P.I. controller

K,

K(s)=K,+ 57
s

where K, and K, are mxm non-singular
matrices of constants so that K,(s) is a
matrix generalisation of the scalar P.I.
controller. Following ROSENBROCK [15]
the controller may be designed by putting

K,=K,D, (5-8)

K;=K,D, (5-9)
where K, and K respectively diagonalise
the system at zero and very high frequen-
cies. The diagonal matrices D, and D,
are used to allow an appropriate amount
of freedom in adjusting the weighting
between zero and infinite frequencies in
each column of G(s)K(s).
An obvious choice for K, is
K,=G~1(0). (5-10)
To find K, multiply g(s), i.e. row i of
G(s), by s” where the integer p; is chosen
so that as |s|—>oc0 no element of sPg(s)
tends to infinity and not every element
tends to zero. Now define the row vector.

.= lim sPis.
b; slggs 'g{(s)- (5-11)

Repeat the above procedure for all the
remaining rows of G(s) and then assemble

the vectors b;, i=1, 2, .. ., minto a
matrix B. Then
K, =B . (5-12)

Reflection on the above operations will
show that the magnitudes of the off-

(vi)

(vii)

diagonal elements in each row of G(s)K,,
become arbitrarily small relative to the
diagonal elements as |s|— 0.

This form of matrix P.I. controller
therefore performs the following set of
functions:

(1) it eliminates steady-state error and
low frequency interaction by virtue of the
integral action since;

lgi(s)|>1 as |s|-0;

(2) it reduces high frequency interaction
by ensuring that Q(s)=G(s)K(s) ap-
proaches diagonal form as |s|»co. It
therefore tends to align the characteristic
vectors with the standard basis vectors at
high frequencies.

Eigenvalue adjustment controller matrix
Given a plant whose dyadic form at one
specific frequency, w,, is

G= z FAAA (5-13)
i=1
then the controller
K=Y Bigy (5-14)

is a matrix of complex numbers such that
the product GK has the same eigenvectors
as G but has a new desired set of eigen-
values {g;}. Now, determine a K(s) such
that
K,(jo,)=K. (5-15)
Thus a K,(s) designed in this way will
have the property of shifting the charac-
teristic loci of G(s) to any desired location
at one specific frequency without changing
the characteristic vectors. The elements of
this controller can usually be easily
realised by phase advance or phase
retard networks. In this case the con-
troller is somewhat complicated.

Eigenvector adjustment controller matrix

The idea behind the synthesis of this
form of controller factor is similar to the
previous case except that

K= 'z_"‘, g, (G )¢, (5-16)
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where {l;} is the set of desired character-
istic directions at specific frequency w,
and {t,;} is the set of reciprocal eigen-
vectors. Again, finding a K (s) so that
K, (jw;)=K has the effect of changing the
characteristic directions of G(s) at a
specific frequency to any desired location
without affecting the characteristic loci.
The same rules apply for the realisation of
this controller as for K,(s) in (vi).

The last two controllers would in general be
used at high frequencies to improve closed-loop
stability margins and reduce interaction respec-
tively.

6. DESIGN EXAMPLE
The system considered here as an illustrative
example of the method is a pressurised flow-box,
an important part of most modern paper-making
machines. A state-space model for the system
obtained by linearisation about the steady-state is
given by [9]

a[H® [ -0395 0011457 [HQ)
3l wo |7 —0011 o h(t)
003362 1:0387 [u,(0)

+[0-000966 0 J [u:(t)] €1

»1() [H(t)

= 6-2

[yz(r)] (t) (6-2)

where the system outputs are flow-box liquid level,

h(t), and total head of stock, H(¢). The inputs u,(t)

and u,(t) are respectively stock inflow and air

inflow, both of which enter the flow-box through

valves whose dynamics are not included in the
above model.

The open-loop characteristic polynomial is given

by
OLCP=det (sI—A)

—(s+0-3949)(s +0-32x 1073)  (6-3)

so that p,=0 and closed-loop stability follows if
and only if

_i 1y =0. (6-4)

The transfer function matrix is given by

G(s)=(I-A)"'B

003362 1-03s
5403949 «(s)
| 966 x1074s+117x10"5  —0-01141
a(s) a(s)
(6-5)

where
a(s)=s2+0-3955+1-26 x 10~ *. (6-6)
L0
/Qﬂjw)
20
Re
-90.6 -80 -40 [
itm
I Re
~01 ot
/

Fi1G. 3. Characteristic loci of G(s).

Entering the design cycle of Fig. 2 the charac-
teristic loci of G(s), shown in Fig. 3, reveal that
for equal gains in each loop (i.e. k;=k,=k), the
stability condition (6-4) is satisfied providing

k{1/90-6=0-0111. (6-7)

Clearly, these stability margins are extremely small
and an attempt to improve the situation leads us
to enter the integrity phase where stability in the
face of loop failures, i.e. transducer failures, is
analysed. Using the results of Section 4, system
stability when loop 1 fails, i.e. k;=0, is guaranteed
if element 22 of G(s) satisfies the Nyquist stability
criterion. Thus, using any of the classical methods,
it is easily shown that the system with loop 1 open
and loop 2 closed is stable for the loop gain values

k=0, k,<0-0111. (6-8)

Applying the same argument to failure in loop 2
produces the stability condition

k,=0, k,;>0. (6-9)

The above results show that lack of suitable
stability margins is primarily due to poor integrity
when loop 1 is open as indicated in Fig. 4. To
remedy this situation, a type (a) elementary trans-
formation matrix controller factor

10
x=[o 1]

(6-10)
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0-0m
Stabie

k1 =k2<0-01‘|1
k]>0

< Ky

FiG. 4. Stable operating region.

is used to change the sign of the feedback round
822(s) without affecting g, ,(s). This now produces
the stability margins

k1=0, k2>0 (6'11)
and
k=0, k=0 (6-12)
and defines
Q,(s)=G(s)K,
0:03362 - 1-03-;
5+0-3949 o(s)
= . (6-13)
9-66 x 10" *s+1:17 x 103 001141
afs) afs) i

Returning to the stability phase to see if K, has
improved overall stability with all loops closed
gives

2
Z n"'=0 for kl =k2=k>0 (6'14)
i=1
N
2y v l Vo~
()b wyf
0y~
\ ()b
0z-
ay™ 08 o7 . [}]

wyl

F1G. 5. Characteristic loci of Q1(s).

upon inspection of the characteristic loci of Q,(s)
shown in Fig. 5. From these results, it can safely
be assumed that stability will be maintained for all
combinations of loop gain between zero and arbit-
rarily high values,

db
40
-Yqﬂml
9 ] 04 10 100 1000w
40 Iagtiwh|
deg
5
81(jw)/
30].
15 ,
9 5ljuw)-
0 o0t 03 19 109 1000w

FiG. 6. Interaction analysis for Qi(s).

Having successfully dealt with the stability and
integrity phases of the design process, attention is
now turned to interaction. Figure 6 shows plots of
the angular misalignment of the characteristic
directions of Q,(s) vs frequency. From an inspec-
tion of these plots, it is concluded that interaction
problems are present at both low and high fre-
quencies.  Furthermore, general performance
characteristics at low frequencies are not expected
to be good since ]qz(jco)[<1. Thus a reasonable
indication for choice of the next controller factor
K,(s) is the matrix P.I. controller K,(s)=K,D,
+KoD,/s. Selecting

01 0
Dl = [ 0 1x 10—4]’ D2=Iz (6'15)
gives

11-72 ]
3 103

K,(s)= 6-16
2(S) 0011 ( )

0-012
—9-66— 5 0-3362 + |
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where K, and K, are determined according to the
procedure laid down in the previous section. This
gives

Q,(5)=Q(s)K,(s). (6-17)
db
“0 fag Gl
a g2 10 10.0 w
1 lag {jul
=40

deg
30

15

8 {jwl
8w} \
0. e 10 100 w

Fi1G. 7. Interaction analysis for Qy(s).

Repeating the interaction analysis with Q,(s)
produces the plots in Fig. 7 where it is seen that
interaction is now negligible. Checking the
characteristic loci of Q,(s), shown in Fig. 8,
reveals that system stability is not impaired by the
addition of K,(s). The same comment is valid for
integrity. All that now remains is to adjust the
overall closed-loop performance by tuning the
design values of loop gain. This is done on the
basis of the diagonal elements of Q,(s) and pro-

duces
10 O

K3—[ 0 100] (6-18)
Hit
1
[} 02 04 (XY ) 10
hit)
| I
of 02 04 06 08 10

so that the overall controller becomes

K(s)=K,K;(s)K;

1172
¥ 1030

= . (6-19)

0-12 11
96:6+—— —3362——

The transient responses for unit step changes in
total head H(¢) and level A(¢) are shown in Fig. 9
where it is seen that the closed-loop responses are
fast and that interaction is negligible.

iTm

-200
/CHUW’
-400
1Nm
-200, HE Re
[ Ry

asljwl S %
\;2 0 E .50

i

i i

L -2

Fi1G. 8. Characteristic loci of Qs(s).

Hit}

hit)

tisec)

0 2 4 & 8 10

F1G. 9. Transient responses for compensated system.
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Before closing the discussion of the pressurised-
flow-box, the effects of the control valve dynamics,
previously ignored, may be considered, the purpose
being to determine if the controller K(s) which has
just been devised can, with slight modifications,
adequately control the more accurate system model

G'(s)=G(5)G,(s) (6-20)
Hitt
: [L
0 2 4 6 8 10
hit)
0] 2 4 |3 8 tlsec)

so that the overall controller now becomes

K'(s)=K(5)K,(s). (6-23)
The transient responses for unit step changes in
total head and level are shown in Fig. 10 and are
seen to be quite acceptable. If better responses
were desired then the full design procedure could

Hit)

hit

tsec)

3} 6 12 18 24 30

Fi1G. 10. Transient responses for compensated system. Including valve dynamics.

where the extra plant factor

1 0
1+ 5s
G,(s)= (6-21)
1
0 1425

accounts for the valve dynamics. By slight modi-
fications is meant the addition of single-loop con-
trollers chosen to compensate the diagonal elements
of G'(s)K(s). Such an investigation is of great
interest since it will show if the previously designed
controller K(s) is a robust controller capable of
handling large changes in system dynamics. It is
easy to see that the inclusion of valve dynamics can
seriously affect the behaviour of the system, since
both valve time constants are of the same order of
magnitude as the fastest time constants associated
with the poles of G(s).

Following the above procedure leads to the
incorporation of the phase-advance controller
factor

14025
1+40-02s
K, ()= (6-22)
0-5(1 + 2s)
(1+0-25)
L. =

be carried through for the complete model in which
valve dynamics were included right from the start.

7. CONCLUSIONS

The work outlined above indicates that it should
be possible to develop, for multivariable feedback
systems, approaches which are natural general-
isations of the classical Bode—Nyquist methods for
the frequency-response analysis and design of
scalar systems. Since the general multivariable
problem is very complex, a fully-developed design
technique capable of handling problems of arbitrary
dimension in a completely systematic way will
require a great deal of further development. Never-
theless, it is felt that the procedure described
represents an encouraging step in the right direction.
As it stands, it should give a flexible and useful
design tool which may prove helpful for a range of
practical industrial problems where plant data is
available in an experimentally measured form from
which the required frequency responses may be
calculated. The technique described is notinherently
limited by the dimensions of the system transfer
function matrix. It is currently being investigated
on systems of higher dimension than that of the
simple illustrative example, and it is hoped to
report on this work in a future paper. The chief
problem to be overcome in an extension to much
higher, say greater than 4, dimensions will lie in
the need to devise algorithms which allow a
computer to generate suitable controller factors.
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The work described differs from state-space
approaches in that its prime motivation is to extend
the Bode-Nyquist frequency-response approach.
Nevertheless, much of the mathematical apparatus
is the same, using linear vector space theory which
appears to be the natural tool for all multivariable
problems. It differs from the frequency-response
approach of ROSENBROCK [15] in using loci which
are direct generalisations of Nyquist loci, rather
than approximating bands within which such loci
lie. It differs from the approach of MAYNE [19] in
its strong emphasis on and exploitation of the
geometrical structure of the linear vector space
operators involved in the analysis. The links with
state-space approaches, and a fuller discussion of
other frequency-response methods have been given
in {12]. The multivariable feedback problem is too
complex for any one approach to serve all purposes.
Hopefully however it has been shown that the
combination of complex variable theory with the
methodology of linear vector spaces has a great
deal to offer in this area.
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Résumé—[’ouvrage classique de Nyquist et Bode sur
I'analyse de réponse de fréquence de systémes rétroactifs
scalaires meéne 4 des procédures de design souples et utiles
car il permet de manipuler simultanément les demandes
opposées de stabilité et de précision par une représentation de
systéme de forme unique—la fonction de réponse de fréq-
uence 4 boucle ouverte d’une variable complexe. Des
méthodes d’espace d’état dérivent leur élégance et leur
puissance de I'exploitation systématique des propriétés
algébriques et géométriques d’espaces de vecteurs linéaires.
L’idée fondamentale de la Méthode Caractéristique de Lieu
développée ici est la combinaison des idées principales de ces
deux abordages en exploitant les propriétés d’espaces de
vecteurs linéaires définis sur des domaines de base de fonc-
tions d’'une variable complexe. Ce qui émerge est une
théorie générale de rétroaction de vecteur dans laquelile le
technique classique Bode-Nyquist est un cas spécial, et de
laquelle une technique de design fondée sur la réponse de
fréquence est développée et connue sous le nom de Méthode
Caractéristique de Lieu.

Zusammenfassung—Das klassische Werk von Nyquist und
Bode iiber die Frequenzganganalysis von skalaren Riickkopp
lungssystemen fiihrt zu flexiblen und niitzlichen Entwurfs-
sprozeduren, weil es erméglicht, die einander widersprech-
enden Erfordernisse von Stabilitit und Genauigkeit iiber
eine einzige Form der Systemdarstellung - ndmlich die
Frequenzfunktion einer komplexen Variablen des aufges-
chnittenen Kreises - zu behandeln. Zustandsraum-Methoden
leiten ihre Eleganz und Kraft aus der systematischen Erfors-
chung der algebraischen und geometrischen Eigenschaften
linearer Vektorrdume her. Die Grundidee der hier entwick-
elten Methode des charakteristischen Ortes liegt in der
Kombination dieser beiden Approximationen durch Aus-
nutzung der Eigenschaften linearer Vektorrdume, die iiber
Grundfelder von Funktionen einer komplexen Variablen
definiert sind. Was sich dann ergibt, ist eine allgemeine
Vektor-Riickkopplungstheorie, von der die klassische Bode—
Nyquist-Technik ein Spezialfall ist und aus der eine auf dem
Frequenzgang basierende Technik, die sogenannte Methode
des charakteristischen Ortes, entwickelt wurde.

Pesrome—U3 xnaccuyeckolt paborst Hadtksucra u Boma,
MOCBSIIICHHON aHa/IM3y CKaNApHOM CHCTeMBI ¢ oOpaTHOM
CBS3BIO BEITEKAET rUOKas ¥ [TOoJIe3Has pACCUETHAS NPOLIEAYDA.
OHa mnonydaercs B pe3ylbTaTeé TOTO, 4TO KOH(QMHKTHbIE
TpeGOBaHUA YCTOWYMBOCTH M TOYHOCTH MOXHO OHOBpPEME-
HHO YYHTBIBATB C TOMOINBIO € AUHOK HOPMBI IPEACTABACHAS
- 4acTOTHOK (GYHKIHM KOMIUIEKCHOrO HEPEMEHHOIO IJIs
Pa3OMKHYTOH Lenu.
MeToap!l $a30BbIX NPOCTPAHCTB MOJYYAIOTCA MOLHBIMH
H H3AIHBIMHA B PE3YJIbTATE CHCTEMATHYESCKOIO HCIOJNB30B-
aHHs anreOpanvecKHX A TeOMETPHYECKHX CBOMCTE JIMHEHHEIX
BEKTOPHBIX OPOCTPAHCTB. OCHOBHAA HAESl Pa3BUTOro
3mech MeTona (ha3oBOM TPAEeKTOPHH 3aKTovaercs B o0nen-
MHEHWH CYIIECTBA 3THUX JABYX NOMIXOINOB IYTEM HCIIOIL30Ba-
HHMA CBOMCTB IMHEHHBIX BEKTOPHBIX IPOC TPAHCTB, OIIpene-
SIEMBIX HA OCHOB HOM MHOJXKeCTBE (yHKLMI KOMILIE KCHOTO
nepeMeHsoro. B pe3ynmeTaTte monywaercs obmas Teopus
BEKTOpPHOM 00paTHOM CBA3M B KOTOPO# KIIACCHYECKHH METO
Bons-Haiikencra ABnasgercs ocoObIM CIIyYaeM M W3 KOTOpOW
BBEIBOAMTCA METOMA HA3BAHHBIM METONOM XapaKTepPHCTHYEC-
Koif ¢pa30BoO# TpaekTOpHH.



