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Preface

Objectives

In recent years linear matrix inequalities (LMI’s) have emerged as a powerful tool to approach
control problems that appear hard if not impossible to solve in an analytic fashion. Although
the history of LMI’s goes back to the fourties with a major emphasis of their role in control
in the sixties (Kalman, Yakubovich, Popov, Willems), only recently powerful numerical
interior point techniques have been developed to solve LMI’s in a practically efficient manner
(Nesterov, Nemirovskii 1994). Several Matlab software packages are available that allow a
simple coding of general LMI problems and of those that arise in typical control problems
(LMI Control Toolbox, LMI-tool).

Boosted by the availability of fast LMI solvers, research in robust control has experienced a
paradigm shift – instead of arriving at an analytical solution, the intention is to reformulate
a given problem to verifying whether an LMI is solvable or to optimizing functionals over
LMI constraints.

The main emphasis of the course is

• to reveal the basic principles of formulating desired properties of a control system in
the form of LMI’s,

• to demonstrate the techniques to reduce the corresponding controller synthesis problem
to an LMI problem,

• to get familiar with the use of software packages for performance analysis and controller
synthesis using LMI tools.

The power of this approach is illustrated by several fundamental robustness and performance
problems in analysis and design of linear and certain nonlinear control systems.
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ii Preface

Topics

The lecture notes for this course have been written for a course of eight weeks on the
subject. Within the DISC graduate program, two class hours are taught once per week
during a period of eight weeks. The topics covered for this course are the following.

1. Examples. Facts from convex analysis. Interior point methods in convex programming
and their efficiency. Linear Matrix Inequalities: History. The three basic problems
and their solution with LMI-Lab.

2. Lyapunov functions for invariance, stability, performance, robust performance. Quadratic
stability and performance. Considered criteria: Dissipativity, Integral quadratic con-
straints, H2-norm, H∞-norm, upper bound of peak-to-peak norm. LMI stability re-
gions.

3. Frequency domain techniques for the robustness analysis of a control system. Integral
Quadratic Constraints. Multipliers. Relations to classical tests and to µ-theory.

4. A general technique to proceed from LMI analysis to LMI synthesis. State-feedback
and output-feedback synthesis algorithms for robust stability, nominal performance
and robust performance using general scalings.

5. Mixed control problems. Multi-model control problems. Lyapunov shaping technique.

6. Extension to linear parametrically varying systems. Gain-scheduling. Examples of
occurrence. Solution of design problem with scaling and gridding techniques.

7. Extension to certain nonlinear analysis and design problems.

Material

The notes for this course will be made available on-line on the internet site

http://www.er.ele.tue.nl/SWeiland/lmi99.htm

Apart from the notes, the main reference material for the course will be

[1] S. Boyd, L. El Ghaoui, E. Feron and V. Balakrishnan
Linear Matrix Inequalities in System and Control Theory, SIAM studies in Applied
Mathematics, Philadelphia, 1994.

[2] Gahinet et al., LMI-lab Matlab Toolbox for Control Analysis and Design.



Chapter 1

Convex optimization and linear
matrix inequalities

1.1 Introduction

Optimization questions and decision making processes are abundant in daily life and invari-
ably involve the selection of the best decision from a number of options or a set of candidate
decisions. Many examples of this theme can be found in technical sciences such as electrical,
mechanical and chemical engineering, in architecture and in economics, but also in the social
sciences, in biological and ecological processes and organizational questions. For example,
important economical benefits can be realized by making proper decisions in production
processes: the waste of resources has to be minimized, flexibility of production methods
has to be maximized, the supply of products has to be adapted to demand, etc. Due to
increasing requirements on the safety and flexibility of production processes, environmental
measures and economic trade agreements there is a constant need for a further optimization
and improvement of production processes.

Casting an optimization problem in mathematics involves the specification of the candidate
decisions and, most importantly, the formalization of the concept of best or optimal decision.
If the (finite or infinite) set of candidate decisions is denoted by S, then one approach to
quantify the performance of a decision x ∈ S is to express its value in terms of a single real
quantity f(x) where f is some real valued function f : S → R. The value of decision x ∈ S
is then given by f(x). Depending on the interpretation of f , we may wish to minimize or
maximize f over all possible candidates in S. An optimal decision is then simply an element
of S that minimizes or maximizes f over all possible alternatives.

The optimization problem to minimize the criterion f over S involves various specific ques-
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2 Convex optimization and linear matrix inequalities

tions:

1. How to determine the optimal value (or optimal performance)

Vopt := inf
x∈S

f(x) = inf{f(x) | x ∈ S}

2. How to determine an almost optimal solution, i.e., for arbitrary ε > 0, how to determine
xε ∈ S such that

f(xε) � Vopt + ε.

3. Does there exist an optimal solution xopt ∈ S such that f(xopt) = Vopt?

4. If such an optimal solution xopt exists, how can it be computed?

5. Finally, is the optimal solution xopt unique?

1.2 Facts from convex analysis

In view of the optimization problems just formulated, we are interested in finding conditions
for optimal solutions to exist. It is therefore natural to resort to a branch of analysis which
provides such conditions: convex analysis. The results and definitions in this subsection are
mainly basic, but they have important applications as we will see later.

We start with summarizing some definitions and elementary properties from linear algebra
and functional analysis. We assume the reader to be familiar with the basic concepts of
vector spaces and normed linear spaces.

1.2.1 Convexity

Definition 1.1 (Continuity) A function f mapping a normed space S into a normed
space T is continuous at x0 ∈ S if for every ε > 0 there exist δ > 0 such that ‖x − x0‖ < δ
implies that ‖f(x) − f(x0)‖ < ε. The function f is called continuous if it is continuous at
each x0 ∈ S.

Obviously, continuity depends on the definition of the norm in the normed spaces S and T .
We remark that a function f : S → T is continuous at x0 ∈ S if and only if for every sequence
{xn}∞n=1, xn ∈ S, which converges to x0 as n → ∞, there holds that f(xn) → f(x0).

Definition 1.2 (Compactness) A set S in a normed linear space X is called compact if
for every sequence {xn}∞n=1 in S there exists a subsequence {xnm

}∞m=1 which converges to
an element x0 ∈ S.
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If the normed linear space X is finite dimensional then compactness has an equivalent
characterization as follows.

Proposition 1.3 If X is finite dimensional then S ⊂ X is compact if and only if S is closed
and bounded1.

The well-known Weierstrass theorem provides a useful tool to determine whether an opti-
mization problem admits a solution. It provides an answer to the third question raised in
the previous subsection for special sets S and special performance functions f .

Proposition 1.4 (Weierstrass) If f : S → R is a continuous function defined on a com-
pact subset S of a normed linear space X , then there exists xmin, xmax ∈ S such that

inf
x∈S

f(x) = f(xmin) � f(x) � f(xmax) = sup
x∈S

f(x)

for all x ∈ S.

Proof. Define Vmin := infx∈S f(x). Then there exists a sequence {xn}∞n=1 in S such that
f(xn) → Vmin as n → ∞. As S is compact, there must exist a subsequence {xnm

}∞m=1 of
{xn} which converges to an element xmin ∈ S. Then f(xnm

) → Vmin and the continuity of
f implies that f(xmin) � limnm→∞ f(xnm

) = Vmin. By definition of Vmin, it then follows
that f(xmin) = Vmin. The proof of the existence of a maximizing element is similar.

Note that proposition 1.4 does not give a constructive method to find the extremizing so-
lutions xmin and xmax. It only guarantees the existence of these elements for continuous
functions defined on compact sets. For many optimization problems these conditions (conti-
nuity and compactness) turn out to be overly restrictive. We will therefore resort to convex
sets.

Definition 1.5 (Convex sets) A set S in a linear vector space is said to be convex if

{x1, x2 ∈ S} =⇒ {x := αx1 + (1 − α)x2 ∈ S for all α ∈ (0, 1)}.

In geometric terms, this states that for any two points of a convex set also the line segment
connecting these two points belongs to the set. In general, the empty set is considered to
be convex. The point αx1 + (1 − α)x2 with α ∈ (0, 1) is called a convex combination of the
two points x1 and x2. More generally, convex combinations are defined for any finite set of
points as follows.

Definition 1.6 (Convex combinations) Let S be a subset of a normed vector space and
let x1, . . . , xn ∈ S. If α1, . . . , αn, is a set of non-negative real numbers with

∑n
i=1 αi = 1

then

x :=
n∑

i=1

αixi

1A set is S is bounded if there exists a number B such that for all x ∈ S, ‖x‖ � B.
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is called a convex combination of x1, . . . , xn.

If x1, . . . xn ∈ S, then it is easy to see that the set of all convex combinations of x1, . . . , xn

is itself convex, i.e.,

C := {x | x is a convex combination of x1, . . . , xn}

is convex. We next define the notion of interior points and closure points of sets.

Definition 1.7 (Interior points) Let S be a subset of a normed space X . The point
x ∈ S is called an interior point of S if there exists an ε > 0 such that all points y ∈ X with
‖x− y‖ < ε also belong the S. The interior of S is the collection of all interior points of S.

Definition 1.8 (Closure points) Let S be a subset of a normed space X . The point
x ∈ X is called a closure point of S if, for all ε > 0, there exists a point y ∈ S with
‖x − y‖ < ε. The closure of S is the collection of all closure points of S. S is said to be
closed if it is equal to its closure.

We summarize some elementary properties pertaining to convex sets in the following propo-
sition.

Proposition 1.9 Let S and T be convex sets in a normed vector space X . Then

1. the set αS := {x | x = αs, s ∈ S} is convex for any scalar α.

2. the sum S + T := {x | x = s + t, s ∈ S, t ∈ T } is convex.

3. the closure and the interior of S (and T ) are convex.

4. the intersection S ∩ T := {x | x ∈ S and x ∈ T } is convex.

The last property actually holds for the intersection of an arbitrary collection of convex sets,
i.e, if Sα, α ∈ A is a family of convex sets then ∩α∈ASα is convex. This property turns out
to be useful when we wish to consider the smallest convex set that contains a given set.

Definition 1.10 (Convex hull) The convex hull co(S) of a set S is the intersection of all
convex sets containing S.

Convex hulls have the following property.

Proposition 1.11 (Convex hulls) For any subset S of a linear vector space X , the convex
hull co(S) is convex and consists precisely of all convex combinations of the elements of S.

Definition 1.12 (Convex functions) A function f : S → R is called convex if
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1. S is convex and

2. for all x1, x2 ∈ S and α ∈ (0, 1) there holds that

f(αx1 + (1 − α)x2) � αf(x1) + (1 − α)f(x2). (1.2.1)

f is called strictly convex if the inequality in (1.2.1) is strict for x1 �= x2.

Note that in our definition the domain of a convex function is by definition a convex set.
Simple examples of convex functions are f(x) = x2 on R, f(x) = sin x on [π, 2π] and
f(x) = |x| on R.

Instead of minimizing the function f : S → R we can set our aims a little lower and be
satisfied with considering all possible x ∈ S that give a guaranteed upper bound of f . For
this, we introduce, for any number α ∈ R, the sublevel sets associated with f as follows

Sα := {x ∈ S | f(x) � α}.

Obviously, Sα = ∅ if α < infx∈S f(x) and Sα coincides with the set of global minimizers of
f if α = infx∈S f(x). Note also that Sα ⊆ Sβ whenever α � β. As you could have guessed,
convex functions and convex sublevel sets are related to each other:

Proposition 1.13 If f : S → R is convex then the sublevel set Sα is convex for all α ∈ R.

Proof. Suppose f is convex, let α ∈ R and consider Sα. If Sα is empty then the statement
is trivial. Suppose therefore that Sα �= ∅ and let x1, x2 ∈ Sα, λ ∈ [0, 1]. Then, as S is
convex, λx1 + (1 − λ)x2 ∈ S and by definition of Sα we have that f(x1) � α, f(x2) � α.
Convexity of f now implies that

f(λx1 + (1 − λ)x2) � λf(x1) + (1 − λ)f(x2) � λα + (1 − λ)α = α

i.e., λx1 + (1 − λ)x2 ∈ Sα.

We emphasize that it is not true that convexity of the sublevel sets Sα, α ∈ R implies
convexity of f . However, the class of functions for which all sublevel sets are convex are
that important that they deserve their own name. The following concept is probably the
most important generalization of convex functions.

Definition 1.14 (Quasi-convex functions) A function f : S → R is called quasi-convex
if the sublevel set Sα is convex for all α ∈ R.

It is easy to see that f is quasi-convex if and only if

f(αx1 + (1 − α)x2) � max[f(x1), f(x2)]

for all α ∈ [0, 1] and for all x1, x2 ∈ S. In particular, every convex function is also quasi-
convex.
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1.2.2 Convex optimization

We hope that the following propositions will convince the most sceptical reader why the
convexity of sets and functions is such a desirable property. Anyone who gained experience
with numerical optimization methods got familiar with the pitfalls of local minima and local
maxima. One reason for studying convex functions is related to the absence of local minima.

Definition 1.15 (Local and global minima) Let S be a subset of a normed space X .
The function f : S → R is said to have a local minimum at x0 ∈ S if there exists ε > 0 such
that

f(x0) � f(x) (1.2.2)

for all x ∈ S with ‖x − x0‖ < ε. It is a global minimum of f if (1.2.2) holds for all x ∈ S.

In other words, f has a local minimum at x0 ∈ S if there exists a neighborhood N of x0

such that f(x0) � f(x) for all points x ∈ S ∩ N . Note that according to this definition
every global minimum is a local minimum as well. The notions of local maximum and global
maximum of a function f are similarly defined. Here is a simple result which provides one
of our main interests in convex functions.

Proposition 1.16 Suppose that f : S → R is convex. If f has a local minimum at x0 ∈ S
then f(x0) is also the global minimum of f . If f is stricly convex, then x0 is moreover
unique.

Proof. Let f be convex and suppose that f has a local minimum at x0 ∈ S. Then for all
x ∈ S and α ∈ (0, 1) sufficiently small,

f(x0) � f((1 − α)x0 + αx) = f(x0 + α(x − x0)) � (1 − α)f(x0) + αf(x). (1.2.3)

This implies that
0 � α(f(x) − f(x0)) (1.2.4)

or f(x0) � f(x). So f(x0) is a global minimum. If f is strictly convex, then the second
inequality in (1.2.3) is strict so that (1.2.4) becomes strict for all x ∈ S. Hence, x0 is unique.

Interpretation 1.17 It is very important to emphasize that proposition 1.16 does not make
any statement about existence of optimal solutions x0 ∈ S which minimize f . It merely says
that all local minima of f are also global minima. It therefore suffices to compute local
minima of a convex function f to actually determine its global minimum.

Remark 1.18 Proposition 1.16 does not hold for quasi-convex functions.
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Let S0 be a set and suppose that the domain S of a convex function f : S → R is generated
by S0 as follows

S = {x | x is a convex combination of x1, . . . , xn ∈ S0, n > 0} = co(S0).

As we have seen before S is then convex and we have the following simple property.

Proposition 1.19 f(x) � γ for all x ∈ S if and only if f(x) � γ for all x ∈ S0

Proof. Every x ∈ S can be written as a convex combination x =
∑n

i=1 αixi where
n > 0, αi � 0, xi ∈ S0, i = 1, . . . , n and

∑n
i=1 αi = 1. Then, using convexity of f and

non-negativity of the αi’s we obtain

f(x) = f(
n∑

i=1

αixi) �
n∑

i=1

αif(xi) �
n∑

i=1

αiγ = γ.

which yields the result.

Interpretation 1.20 Proposition 1.19 states that the uniform bound f(x) � γ on S can
equivalenty be verified on the set S0. This is of great practical relevance especially when S0

contains only a finite number of elements. It then requires a finite number of tests to conclude
whether or not f(x) � γ for all x ∈ S. In addition, the supremal value γ0 := supx∈S f(x)
can then be determined from γ0 = maxx∈S0 f(x).

Our next characterization of convex functions is motivated by the geometric idea that
through any point on the graph of a convex function we can draw a line such that the
entire graph lies above or on the line. For functions f : S → R with S ⊆ R, this idea is
pretty intuitive and is formalized as follows.

Proposition 1.21 Suppose that S ⊂ R is open. Then f : S → R is convex if and only if
for all x0 ∈ S there exists g ∈ R such that

f(x) � f(x0) + g(x − x0) (1.2.5)

for all x ∈ S.

Proof. Let f be convex and x0 ∈ S. Choose g ∈ [f ′
−(x0), f ′

+(x0)] where

f ′
−(x0) := lim

x↑x0

f(x) − f(x0)
x − x0

f ′
+(x0) := lim

x↓x0

f(x) − f(x0)
x − x0

.



8 Convex optimization and linear matrix inequalities

These limits actually exist as for any triple x−1, x0, x of points in S with x−1 < x0 < x we
have that

f(x0) − f(x−1)
x0 − x−1

� f(x) − f(x−1)
x − x−1

� f(x) − f(x0)
x − x0

.

Hence, (f(x)−f(x0))/(x−x0) is a decreasing function of x which is bounded from below by
(f(x0) − f(x−1))/(x0 − x−1). The limit f ′

+(x0) therefore exists. a similar argument proves
existence of the limit f ′

−(x0). Now the existence of the limits has been proved, it follows
that f(x)−f(x0)

x−x0
is � g or � g depending on whether x > x0 or x < x0. In either case we

obtain (1.2.5). Conversely, suppose that for all x0 ∈ S there exists g ∈ R such that (1.2.5)
holds for all x ∈ S. Let x1, x2 ∈ S, α ∈ [0, 1] and put x0 = αx1 +(1−α)x2. By asssumption
there exists g ∈ R such that f(x0) � f(xi) + g(xi − x0), i = 1, 2. But then also

f(x0) = αf(x0) + (1 − α)f(x0)
� αf(x1) + (1 − α)f(x2) + g[αx1 + (1 − α)x2 − x0]
= αf(x1) + (1 − α)f(x2)

which shows that f is convex.

Remark 1.22 The right-hand side of (1.2.5) is sometimes called a support functional for
f at x0 ∈ S.

As can be deduced from the above proof, if f happens to be differentiable at x0 then g is
uniquely given by the derivative f ′(x0). We turn now to the more general situation where
S ⊆ Rn. The natural extension of the right hand side of (1.2.5) involves the introduction of
an affine function through the point (x0, f(x0)) on the graph of f .

Definition 1.23 (Affine functions) A function f : S → T is affine if f(x) = T (x) + f0

where f0 ∈ T and T : S → T is a linear map, i.e.,

T (α1x1 + α2x2) = α1T (x1) + α2T (x2)

for all x1, x2 ∈ S and α1, α2 ∈ R.

Note that a function f : Rn → R is affine if and only if there exist x0 ∈ Rn such that the
mapping x → f(x) − f(x0) is linear. This means that all affine functions f : Rn → R can
be represented as f(x) = f(x0) + g�(x − x0) where g is some vector in Rn.

Proposition 1.24 Let S ⊆ Rn. If f : S → R is convex then for all x0 ∈ S there exists a
subgradient g ∈ Rn such that

f(x) � f(x0) + g�(x − x0) (1.2.6)

for all x ∈ S.
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Remark 1.25 Proposition 1.24 gives a necessary condition for convexity of a function f .
If the gradient of f

f ′ =
[

∂f
∂x1

. . . ∂f
∂xn

]
exists and is continuous at x0 ∈ S then g = f ′(x0) is the only subgradient of f at x0. In that
case one can prove that f is convex if and only if the gradient f ′ is monotone non-decreasing
in the sense that for all x1, x2 ∈ S there holds that [f ′(x1) − f ′(x2)](x1 − x2) � 0.

Interpretation 1.26 If we consider the right hand side of (1.2.6), then trivially g�(x −
x0) > 0 implies that f(x) > f(x0). Thus all points in the half space {x ∈ S | g�(x−x0) > 0}
lead to larger values of f than f(x0). In particular, in searching the global minimum of f
we can disregard this entire half-space.

The observation in interpretation 1.26 leads to a simple and straightforward recursive algo-
rithm for the computation of optimal solutions.

Algorithm 1.27 (Ellipsoid algorithm (conceptual)) Let x0 ∈ Rn and P0 ∈ Rn×n be a
positive definite matrix. Consider the problem of minimizing the convex function f : Rn → R

over x ∈ Rn subject to the constraint

(x − x0)�P−1
0 (x − x0) � 1.

Step 0 Set E0 := {x ∈ Rn | (x − x0)�P−1
0 (x − x0) � 1}.

Step k For k ∈ Z+

• Compute one subgradient gk ∈ Rn for f at xk and put

Rk := {x ∈ Rn | x ∈ Ek and g�k (x − xk) � 0}.

• Compute xk+1 ∈ Rn and Pk > 0 with minimal determinant det(Pk+1) such that
the ellipsoid

Ek+1 := {x ∈ Rn | (x − xk+1)�P−1
k+1(x − xk+1) � 1}

contains Rk.

• Set k to k + 1 and return to Step k.

The sequence of ellipsoids Ek and the sets Rk have the property that they contain an optimal
solution. The subgradients gk ∈ Rn divide Rn in the two halfspaces {x | gk(x−xk) < 0} and
{x | gk(x−xk) > 0} while the cutting plane {x | gk(x−xk) = 0} passes through the center of
the ellipsid Ek for each k. In particular f(xk) converges to a minimizer of f . The algorithm
therefore does not calculate a solution but only the minimal value of f . convergence of the
algorithm is in ‘polynomial time’ due to the factr that the volume of the ellipsoids decreases
geometrically. However, in practice convergence is rather slow.
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1.3 Linear matrix inequalities

1.3.1 What are they?

A linear matrix inequality is an expression of the form

F (x) := F0 + x1F1 + . . . + xmFm > 0 (1.3.1)

where

• x = (x1, . . . , xm) is a vector of real numbers.

• F0, . . . , Fm are real symmetric matrices, i.e., Fi = F�
i ∈ Rn×n, i = 0, . . . , m for some

n ∈ Z+.

• the inequality > 0 in (1.3.1) means ‘positive definite’, i.e., u�F (x)u > 0 for all u ∈ Rn,
u �= 0. Equivalently, the smallest eigenvalue of F (x) is positive.

Stated slightly more general,

Definition 1.28 (Linear Matrix Inequality) A linear matrix inequality (LMI) is an in-
equality

F (x) > 0 (1.3.2)

where F is an affine function mapping a finite dimensional vector space V to the set Sn :=
{M | M = M� ∈ Rn×n}, n > 0, of real symmetric matrices.

Remark 1.29 The term ‘linear matrix inequality’ is now common use in the literature on
systems and control, but the terminology is not consistent with the expression F (x) > 0 as
F does not need to be a linear function. ‘Affine matrix inequality’ would definitely be a
better name.

Remark 1.30 Recall from definition 1.23 that an affine mapping F : V → Sn necessarily
takes the form F (x) = F0 + T (x) where F0 ∈ Sn and T : V → Sn is a linear transformation.
Thus if V is finite dimensional, say of dimension m, and {e1, . . . , em} constitutes a basis for
V, then we can write

T (x) =
m∑

j=1

xjFj

where the elements {x1, . . . , xm} are such that x =
∑m

j=1 xjej and Fj = T (ej) for j =
1, . . . , m. Hence we obtain (1.3.1) as a special case.

Remark 1.31 The same remark applies to mappings F : Rm1×m2 → Sn where m1,m2 ∈
Z+. A simple example where m1 = m2 is the Lyapunov inequality F (X) = A�X+XA+Q >
0. Here, A,Q ∈ Rm×m are assumed to be given and X ∈ Rm×m is the unknown. The
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unknown variable is therefore a matrix. Note that this defines an LMI only if Q is symmetric.
In this case, the domain V of F in definition 1.28 is equal to Sm. We can view this LMI as
a special case of (1.3.1) by defining a basis E1, . . . , EM of Sm and writing X =

∑M
j=1 xjEj .

Indeed,

F (X) = F

 M∑
j=1

xjEj

 = F0 +
M∑

j=1

xjF (Ej) = F0 +
M∑

j=1

xjFj

which is of the form (1.3.1).

Remark 1.32 A non-strict LMI is a linear matrix inequality where > in (1.3.1) and (1.3.2)
is replaced by �. The matrix inequalities F (x) < 0, and F (x) > G(x) with F and G affine
functions are obtained as special cases of definition 1.28 as they can be rewritten as the
linear matrix inequality −F (x) > 0 and F (x) − G(x) > 0.

1.3.2 Why are they interesting?

The linear matrix inequality (1.28) defines a convex constraint on x. That is, the set F :=
{x | F (x) > 0} is convex. Indeed, if x1, x2 ∈ F and α ∈ (0, 1) then

F (αx1 + (1 − α)x2) = αF (x1) + (1 − α)F (x2) > 0

where in the first equality we used that F is affine and the last inequality follows from the
fact that α � 0 and (1 − α) � 0.

Although the convex constraint F (x) > 0 on x may seem rather special, it turns out that
many convex sets can be represented in this way. In this subsection we discuss some seem-
ingly trivial properties of linear matrix inequalities which turn out to be of eminent help to
reduce multiple constraints on an unknown variable to an equivalent constraint involving a
single linear matrix inequality.

Definition 1.33 (System of LMI’s) A system of linear matrix inequalities is a finite set
of linear matrix inequalities

F1(x) > 0, . . . , Fk(x) > 0. (1.3.3)

It is a simple but essential property that every system of LMI’s can be rewritten as one
single LMI. Precisely, F1(x) > 0, . . . , Fk(x) > 0 if and only if

F (x) :=


F1(x) 0 . . . 0

0 F2(x) . . . 0
...

. . .
...

0 0 . . . Fk(x)

 > 0.
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The last inequality indeed makes sense as F (x) is symmetric. Further, since the set of
eigenvalues of F (x) is simply the union of the eigenvalues of F1(x), . . . , Fk(x), any x that
satisfies F (x) > 0 also satisfies the system of LMI’s (1.3.3) and vice versa.

A second trivial but important property amounts to incorporating affine constraints in linear
matrix inequalities. By this, we mean that combined constraints (in the unknown x) of the
form {

F (x) > 0
Ax = b

or {
F (x) > 0
x = Ay + b for some y

where the affine function F : Rm → Sn and matrices A ∈ Rn×m and b ∈ Rn are given can be
lumped in one linear matrix inequality F̄ (x) > 0. More generally, the combined equations{

F (x) > 0
x ∈ M

(1.3.4)

where M is an affine subset of Rn, i.e.,

M = x0 + M0 = {x0 + m | m ∈ M0}

with x0 ∈ Rn and M0 a linear subspace of Rn, can be rewritten in the form of one single
linear matrix inequality F̄ (x) > 0. To actually do this, let e1, . . . , ek ∈ Rn be a basis of M0

and let F (x) = F0 + T (x) be decomposed as in remark 1.30. Then (1.3.4) can be rewritten
as

0 < F (x) = F0 + T (x0 +
k∑

j=1

xjej) = F0 + T (x0)︸ ︷︷ ︸
constant part

+
k∑

j=1

xjT (ej)︸ ︷︷ ︸
linear part

= F̄0 + x1F̄1 + . . . + xkF̄k

=: F̄ (x̄)

where F̄0 = F0 + T (x0), F̄j = T (ej) and x̄ = (x1, . . . , xk). This implies that x ∈ Rn satisfies
(1.3.4) if and only if F̄ (x̄) > 0. Note that the dimension of x̄ is smaller than the dimension
of x.

A third property of LMI’s is obtained from a simple algebraic observation. It turns out to be
useful in converting non-linear inequalities to linear inequalities. Suppose that we partition
a matrix M ∈ Rn×n as

M =
(

M11 M12

M21 M22

)
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where M11 has dimension r × r. Assume that M11 is non-singular. The matrix S :=
M22 − M21M

−1
11 M12 is called the Schur complement of M11 in M . If M is symmetric then

we have that

M > 0 ⇐⇒
(

M11 0
0 S

)
> 0

⇐⇒
{

M11 > 0
S > 0

For the interested reader, the result is obtained by observing that M > 0 if and only if u�Mu > 0
for all non-zero u ∈ Rn. Let F ∈ Rr×(n−r). Then M > 0 if and only if for all u1 ∈ Rr and u2 ∈ Rn−r

0 <

[
u1 + Fu2

u2

]� [
M11 M12

M21 M22

] [
u1 + Fu2

u2

]
=

[
u1

u2

]� [
M11 M11F + M12

M21 + F�M11 M22 + F�M11F + F�M12 + M21F

] [
u1

u2

]
The result then follows by taking F = −M−1

11 M12.

An immediate consequence of this observation is the following proposition.

Proposition 1.34 (Schur complement) Let F : V → Sn be an affine function which is
partitioned according to

F (x) =
(

F11(x) F12(x)
F21(x) F22(x)

)
where F11(x) is square. Then F (x) > 0 if and only if{

F11(x) > 0
F22(x) − F12(x)F−1

11 (x)F21(x) > 0
. (1.3.5)

Note that the second inequality in (1.3.5) is a non-linear matrix inequality in x. Using this
result, it follows that non-linear matrix inequalities of the form (1.3.5) can be converted to
linear matrix inequalities. In particular, it follows that the non-linear inequalities (1.3.5)
define a convex constraint on the varable x in the sense that all x satisfying (1.3.5) define a
convex set.

1.3.3 What are they good for?

As we will see, many optimization problems in control design, identification and signal
processing can be formulated (or reformulated) using linear matrix inequalities. Clearly,
it only makes sense to cast these problems in terms of LMI’s if these inequalities can be
solved efficiently and in a reliable way. Since the linear matrix inequality F (x) > 0 defines
a convex constraint on the variable x, optimization problems involving the minimization (or
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maximization) of a performance function f : S → R with S := {x | F (x) > 0} belong to the
class of convex optimization problems. Casting this in the setting of the previous section, it
may be apparent that the full power of convex optimization theory can be employed if the
performance function f is known to be convex.

Suppose that F,G : V → Sn1 and H : V → Sn2 are affine functions. There are three generic
problems related to the study of linear matrix inequalities:

1. Feasibility: The test whether or not there exist solutions x of F (x) > 0 is called a
feasibility problem. The LMI is called non-feasible if no solutions exist.

2. Optimization: Let f : S → R and suppose that S = {x | F (x) > 0}. The problem
to determine

Vopt = inf
x∈S

f(x)

is called an optimization problem with an LMI constraint. This problem involves the
determination of the infimum Vopt and for arbitrary ε > 0 the calculation of an almost
optimal solution x which satisfies x ∈ S and Vopt � f(x) � Vopt + ε.

3. Generalized eigenvalue problem: This problem amounts to minimizing a scalar
λ ∈ R subject to 

λF (x) − G(x) > 0
F (x) > 0
H(x) > 0

Let us give some simple examples to motivate the study of these problems.

Example 1

Consider the problem to determine asymptotic stability of the linear autonomous system

ẋ = Ax (1.3.6)

where A ∈ Rn×n. By this, we mean the problem to decide whether or not all functions
x : R → Rn which satisfy (1.3.6) have the property that limt→∞ x(t) = 0. Lyapunov taught
us that this system is asymtotically stable if and only if there exists X ∈ Sn such that
X > 0 and A�X + XA < 0. Thus, asymptotic stability of the system (1.3.6) is equivalent
to feasibility of the LMI (

X 0
0 −A�X − XA

)
> 0.
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Example 2

Experts in µ-analysis (but other people as well!) regularly face the problem to determine a
diagonal matrix D such that ‖DMD−1‖ < 1 where M is some given matrix. Since

‖DMD−1‖ < 1 ⇐⇒ D−�M�D�DMD−1 < I

⇐⇒ M�D�DM < D�D

⇐⇒ X − M�XM > 0

where X := D�D > 0 we see that the existence of such a matrix is an LMI feasibility
problem.

Example 3

Let F : V → Sn be an affine function and consider the problem to minimize f(x) :=
λmax(F (x)) over x. Clearly,

λmax(F�(x)F (x)) < γ ⇐⇒ γI − F�(x)F (x) > 0

⇐⇒
(

γI F�(x)
F (x) I

)
> 0

where the second inequality follows by taking Schur complements. If we define

x̄ :=
(

x
γ

)
, F̄ (x̄) :=

(
γI F�(x)

F (x) I

)
, f̄(x̄) := γ

then F̄ is an affine function of x̄ and the problem to minimize the maximum egenvalue of
F (x) is equivalent to determining inf f̄(x̄) subject to the LMI F̄ (x̄) > 0. Hence, this is an
optimization problem with a linear objective function f̄ and an LMI constraint.

Example 4

Consider the linear time-invariant system

ẋ = Aix + Biu

where Ai ∈ Rn×n and Bi ∈ Rn×m, i = 1, . . . , k. This represents k linear time-invariant
systems with n dimensional state space and m-dimensional input space. The question of
simultaneous stabilization amounts to finding a state feedback law u = Fx with F ∈ Rm×n

such that the eigenvalues λ(Ai+BiF ) belong to the lef-half complex plane for all i = 1, . . . , k.
Using example 1 above, this problem is solved when we can find matrices F and Xi, i =
1, . . . , k, such that for all of these i’s{

Xi > 0
(Ai + BiF )�Xi + Xi(Ai + Bi) < 0

. (1.3.7)
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Note that this is not a system of LMI’s in the variables Xi and F . A simplification of this
problem is obtained by assuming the existence of a joint Lyapunov function, i.e. X1 = . . . =
Xk =: X. Moreover, if we introduce new variables Y = X−1 and K = FY then (1.3.7)
reads {

Y > 0
AiY + Y A�

i + BiK + K�B�
i < 0

for i = 1, . . . , k. The latter is a system of LMI’s in the variables Y and K. The joint
stabilization problem therefore has a solution if this system of LMI’s is feasible.

Example 5

Consider the linear autonomous system

ẋ = Ax (1.3.8)

together with an arbitrary (but fixed) initial value x(0) = x0 and the criterion function

J :=
∫ ∞

0

x�(t)Qx(t) dt

where Q = Q� ∈ Rn×n is non-negative definite. Assume that the system is asymptotically
stable. Then all solutions x of (1.3.8) are square integrable so that J < ∞. Now consider
the non-strict linear matrix inequality

A�X + XA + Q � 0. (1.3.9)

For any solution X = X� of this LMI we can differentiate the function x�(t)Xx(t) along
solutions x of (1.3.8) to get

d

dt
[x�(t)Xx(t)] = x�(t)[A�X + XA]x(t) � −x�(t)Qx(t)

If we assume in addition that X > 0 then integrating the latter inequality from t = 0 till ∞
yields the upper bound

J =
∫ ∞

0

x�(t)Qx(t) dt � x�
0 Xx0.

Here, we used that limt→∞ x(t) = 0. Moreover, the smallest upperbound of J is obtained
by minimizing x�

0 Xx0 over X subject to the system of LMI’s{
X > 0
A�X + XA + Q � 0

.

1.3.4 How are they solved?

The three problems defined in the previous subsection can be solved in a numerically efficient
way. In this section we discuss the basic theoretical ideas behind the ‘LMI-solvers’.



1.3. LINEAR MATRIX INEQUALITIES 17

Ellipsoid method for LMI’s

We first give a solution which is based on the ellipsoidal algorithm as explained in the
previous section. This solution is a simple but not a very efficient one. Let F : S → Sn be
an affine function with S ⊂ Rm. Recall that F (x) < 0 if and only if λmaxF (x) < 0. Define
f(x) := λmax(F (x)) and consider the problem to minimize f . If inf f(x) < 0 then the LMI
F (x) < 0 is feasible, if inf f(x) � 0 then the LMI F (x) < 0 is not feasible.

There are a few observations to make to apply Proposition 1.24. The first one is to establish
that f is a convex function. Indeed, this we showed in Example 3 of the previous subsection.
Secondly, for any x0 we need to determine a subgradient g on the point (x0, f(x0)) of the
graph of f . To do this, we will use the fact that

f(x) = λmax(F (x)) = max
u�u=1

u�F (x)u.

This means that for an arbitrary x0 ∈ S we can determine a vector u0 ∈ Rn with u�
0 u0 = 1

such that λmax(F (x0)) = u�
0 F (x0)u0. But then

f(x) − f(x0) = max
u�u=1

u�F (x)u − u�
0 F (x0)u0

� u�
0 F (x)u0 − u�

0 F (x0)u0

= u�
0 (F (x) − F (x0)) u0.

The last expression is an affine functional that vanishes in x0. This means that the right-
hand side of this expresson must be of the form g�(x − x0) for some vector g ∈ Rm. To
obtain g, we can write

u�
0 F (x)u0 = u�

0 F0u0︸ ︷︷ ︸
g0

+
m∑

j=1

xj u�
0 Fju0︸ ︷︷ ︸

gj

= g0 + g�x.

Here g is the vector with components g1, . . . , gm. In particular, we obtain that

f(x) − f(x0) � g�(x − x0).

The ellipsoid algorithm is now as follows.

Algorithm 1.35 (Ellipsoid algorithm)

Step 0 Let x0 ∈ S and P0 ∈ Sn be a positive definite matrix. Define the ellipsoid

E0 := {x ∈ S | (x − x0)�P−1
0 (x − x0) � 1}.

from the initialization step of the ellipsoid algorithm.
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Step k For k ∈ Z+:

1. Compute a subgradient gk ∈ Rn for f at xk and put

Rk := {x ∈ S | x ∈ Ek and g�k (x − xk) � 0}.

2. Compute xk+1 ∈ S and Pk+1 > 0 such that the ellipsoid

Ek+1 := {x ∈ Rn | (x − xk+1)�P−1
k+1(x − xk+1) � 1}

entirely contains Rk. One such xk+1 and Pk+1 are given by

xk+1 := xk − Pkgk

(m + 1)
√

g�k Pkgk

Pk+1 :=
m2

m2 − 1

(
Pk − 2

(m + 1)g�k Pkgk
Pkgkg�k Pk

)
3. Set k to k + 1 and repeat Step k.

As noticed earlier, this recursive scheme generates a sequence of ellipsoids that are guaran-
teed to contain a minimizer of f in S. The algorithm needs an initialization step in which
P0 and x0 are determined. Note that this is the only ‘non-automated’ step in the algorithm.
If S is a bounded subset in Rm then the safest choice of the initial ellipsoid E0 would be to
guarantee that S ⊆ E0.

Interior point methods

A major breakthrough in convex optimization lies in the introduction of interior-point meth-
ods. These methods were developed in a series of papers [12] and became of true interest in
the context of LMI problems in the work of Yrii Nesterov and Arkadii Nemirovskii [20].

The main idea is rather simple. To solve a convex optimization problem

min f(x)

over all x which satisfy the linear matrix inequality F (x) > 0, it is first necessary to introduce
a barrier function. This is a smooth function φ which is required to

1. be stricly convex on the interior of the feasibility set

F := {x | F (x) > 0},

and
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2. approach infinity along each sequence of points xn in the interior of F that converge
to a boundary point of F .

Given such a barrier function φ, the constraint optimization problem to minimize f(x) over
all x ∈ F is replaced by the unconstrained optimization problem to minimize the functional

ft(x) := tf(x) + φ(x) (1.3.10)

where t > 0 is a so called penalty parameter. The main idea is to determine a minimizer
x(t) of ft and to consider the behavior of x(t) as function of the penalty parameter t > 0.
In almost all interior point methods the latter unconstrained optimization problem is solved
with the classical Newton-Raphson iteration technique to approximate the minimum of ft.
Under mild assumptions and for a suitably defined sequence of penalty parameters tn with
tn → ∞ as n → ∞, the sequence x(tn) with n ∈ Z+ will then converge to a point x which
is a solution of the original convex optimization problem.

A small modification of this theme is obtained by replacing the the original constraint
optimization problem by the unconstrained optimization problem to minimize

gt(x) := φ0(t − f(x)) + φ(x) (1.3.11)

where t > t0 := infF (x)>0 f(x) and φ0 is a barrier function for the non-negative real half-axis.
Again, the idea is to calculate a minimizer x(t) of gt (typically using the classical Newton
algorithm) and to consider the ‘path’ x(t) as function of the penalty parameter t. The curve
given by x(t) with t > t0 is called the path of centers for the optimization problem. Under
suitable conditions the solutions x(t) are analytic and have a limit as t ↓ t0, say xopt. The
point xopt is optimal since for t > t0, x(t) is feasible and satisfies f(x(t)) < t.

Interior point methods can be applied to each of the three problems as defined in the previous
section. If we consider the feasibility problem associated with the LMI F (x) > 0 then (f
does not play a role and) one candidate barrier function is the logarithmic function

φ(x) :=

{
log det F (x)−1 if x ∈ F
∞ otherwise

.

Under the assumption that the feasible set F is bounded and non-empty, it follows that φ is
strictly convex and hence it defines a barrier function for the feasibility set F . By invoking
proposition 1.16, we know that there exists a uniquely defined x0 ∈ F such that φ(xopt) is
the global minimum of φ. This point xopt obviously belongs to F and is called the analytic
center of the feasibility set F . It is usually obtained in a very efficient way from the classical
Newton iteration

xk+1 = xk − (φ′′(xk))−1φ′(xk). (1.3.12)

Here φ′ and φ′′ denote the gradient and the Hessian of φ, respectively.

The convergence of this algorithm can be analyzed as follows. Since φ is strongly convex
and sufficiently smooth, there exist numbers L and M such that for all vectors u with norm
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‖u‖ = 1 there holds

u�φ′′(x)u � M

‖φ′′(x)u − φ′′(y)u‖ � L‖x − y‖.

In that case,

‖φ′(xk+1)‖2 � L

2M2
‖φ′(xk)‖2

so that whenever the initial value x0 is such that L
2M2 ‖φ′(x0)‖ < 1 the method is guaranteed

to converge quadratically.

The idea will be to implement this algorithm in such a way that quadratic convergence can
be guaranteed for the largest possible set of initial values x0. For this reason the iteration
(1.3.12) is modified as follows

xk+1 = xk − αk(λ(xk))φ′′(xk)−1φ(xk)

where

αk(λ) :=

{
1 if λ < 2 −

√
3

1
1+λ if λ � 2 −

√
3

.

and λ(x) :=
√

φ′(x)�φ′′(x)φ′(x) is the so called Newton decrement associated with φ. It is
this damping factor that guarantees that xk will converge to the analytic center xopt, the
unique minimizer of φ. It is important to note that the step-size is variable in magnitude.
The algorithm guarantees that xk is always feasible in the sense that F (xk) > 0 and that xk

converges globally to an optimum xopt. It can be shown that φ(xk)− φ(xopt) � ε whenever

k � c1 + c2 log log(1/ε) + c3 (φ(x0) − φ(xopt))

where c1, c2 and c3 are constants. The first and second terms on the right-hand side do not
dependent on the optimization criterion and the specific LMI constraint. The second term
can almost be neglected for small values of ε.

The optimization problem to minimize f(x) subject to the LMI F (x) > 0 can be viewed as
a feasibility problem for the LMI

F̄t(x) :=
(

t − f(x) 0
0 F (x)

)
> 0.

where t > t∗ := infF (x)>0 f(x) is a penalty parameter. Using the same barrier function for
this linear matrix inequality yields the unconstrained optimization problem to minimize

gt(x) := log det F̄t(x)−1 = log
1

t − f(x)︸ ︷︷ ︸
φ0(t−f(x))

+ log detF (x)−1︸ ︷︷ ︸
φ(x)

which is of the form (1.3.11). Due to the strict convexity of gt the minimizer x(t) of gt is
unique for all t > t∗. It can be shown that the sequence x(t) is feasible for all t > t∗ and
approaches the infimum infF (x)>0 f(x) as t ↑ t∗.
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1.3.5 How to compute solutions?

The LMI toolbox in Matlab provides various routines for the computation of solutions to
the three generic problems that were formulated in subsection 1.3.3. The manual [6] is a well
written introduction for the usage of this software and provides plenty of examples. Since
nobody likes to read software manuals we give a ‘nutshell summary’ of the relevant routines
and their purposes in this section.

The best introduction to the LMI toolbox (and in particular the LMI-lab which comprises
the routines for LMI solvers) is to run and study the tutorial lmidem of the LMI toolbox.
We recommend every ‘beginner’ to try this tutorial at least once.

Specification of LMI’s

In Matlab, the data for the description of a linear matrix inequality is internally represented
in one vector. The LMI-lab can handle any system of LMI’s of the form

N�L(X1, . . . , XK)N < M�R(X1, . . . , XK)M (1.3.13)

where the Xi are the unknown matrix variables, possibly with some prescribed structure,
N and M are given matrices with identical dimensions and L(·) and R(·) are symmetrical
block matrices with identical block structures. Each block in L(·) and R(·) defines an affine
function of X1, . . . , XK and their transposes.

An LMI of this type is internally specified in Matlab with help of the routines

• lmiedit an interactive graphical interface.

• lmivar to specify unknown variables and their structure

• lmiterm to specify the term content of an LMI

• setlmis used in connection with lmiterm

• getlmis gets the internal representation of an LMI

The specification of an LMI should begin with the command setlmis and should be ended
with getlmis. The command

lmisys = getlmis;

returns the internal Matlab description of an LMI in the variable lmisys (Don’t forget the
semicolon as you do not want to see or understand the entries of this variable). The latter
variable subsequently serves as input to the LMI solver routines.
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The simplest way to specify an LMI is by typing

lmiedit

at the Matlab prompt. This will give you a graphical user interface all data for the
specification of an LMI can be entered in symbolic terms. Just try it!

LMI solvers

The basic routines for numerically solving the three generic problems formulated in sec-
tion 1.3.3 are the following

• feasp to compute a solution to the feasibility problem

• mincx to compute a solution to the optimization problem

• gevp to compute a solution to the generalized eigenvalue problem.

Each of these routines is implemented as a .mex file in Matlab and takes a variable which
represents the data of an LMI as its input.

Information retrieval

The routine lmiinfo can be used to interactively retrieve information about a linear matrix
inequality. It provides information about the linear matrix inequality (1.3.13) and the
specific structure and the number of variables and blocks appearing in the affine functions
L(·) and R(·).

Validation

A solution X1, . . . , XK of (1.3.13) can be validated with the routines evallmi and showlmi.
We refer to the corresponding help information of these routines for more details.

1.3.6 When were they invented?

Contrary to what many authors nowadays seem to suggest, the study of linear matrix
inequalities in the context of dynamical systems and control goes back a long way in history
and probably starts with the fundamental work of Aleksandr Mikhailovich Lyapunov on the
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stability of motion. Lyapunov was a school friend of Markov (yes, the one of the Markov
parameters) and later a student of Chebyshev. Around 1890, Lyapunov made a systematic
study of the local expansion and contraction properties of motions of dynamical systems
around an attractor. He worked out the idea that an invariant set of a differential equation
is stable in the sense that it attracts all solutions if one can find a function that is bounded
from below and decreases along all solutions outside the invariant set.

Aleksandr Mikhailovich Lyapunov was born on May 25, 1857 and published in 1892 his
work ‘The General Problem of the Stability of Motion’ in which he analyzed the question
of stability of equilibrium motions of mechanical systems. This work served as his doctoral
dissertation and was defended on September 1892 in Moscow University. Put into modern
jargon, he studied stability of differential equations of the form

ẋ = A(x)

where A : Rn → Rn is some analytic function and x is a vector of positions and velocities of
material taking values in a finite dimensional state space X = Rn. As Theorem I in Chapter
1, section 16 it contains the statement2 that

if the differential equation of the disturbed motion is such that it is possible to
find a definite function V of which the derivative V ′ is a function of fixed sign
which is opposite to that of V , or reduces identically to zero, the undisturbed
motion is stable.

The simple and intuitive idea behind this result is that the so called Lyapunov function V
can be viewed as a generalized ‘energy function’ (in the context of mechanical systems the
kinetic and potential energies always served as typical Lyapunov functions). A system is
then stable if it is ‘dissipative’ in the sense that the Lyapunov function decreases. Because of
the importance of this result we devote the next section to the subject of Lyapunov stability.

1.4 Lyapunov stability

Translated in modern jargon, Lyapunov considered the differential equation

ẋ = f(x) (1.4.1)

with finite dimensional state space X = Rn and f : Rn → Rn an analytic function. For
system theorists this is an example of an autonomous dynamical system. Assume that for
all initial conditions x0 ∈ X there exists a unique solution x : R+ → X of (1.4.1) which
passes through x0 at the initial time t = 0. With some abuse of notation this solution will

2Translation by A.T. Fuller as published in the special issue of the International Journal of Control in
March 1992 and in [16].
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be denoted as x(t, x0) to explicitly display the dependence of the initial value. In particular,
x(0, x0) = x0.

A set S ⊂ X is called an invariant set of (1.4.1) if x0 ∈ S implies that x(t, x0) ∈ S for
all t ∈ R. The idea of an invariant set is therefore that a solution remains in the set once
it started there. A point x∗ in X is called an equilibrium point of the flow if the singleton
S = {x∗} is an invariant set. Obviously, every equilibrium point defines a constant solution
x(t, x∗) = x∗, t � 0 of the differential equation (1.4.1). In particular, an equilibrium point
x∗ of (1.4.1) satisfies 0 = f(x∗). To investigate the issue of stability, we will be interested in
the behavior of solutions x(t, x0) with t � 0 and initial condition x0 in the neighborhood of
an equilibrium point x∗. To do this, we equip the state space X with its natural (Euclidean)
norm ‖ · ‖.

Definition 1.36 (Lyapunov stability) Consider the differential equation (1.4.1).

1. An equilibrium point x∗ ∈ X is called stable (in the sense of Lyapunov) if given any
ε > 0, there exists δ > 0 (only depending on ε and not on t) such that

‖x∗ − x0‖ � δ =⇒ ‖x(t, x0) − x∗‖ � ε for all t � 0

2. The equilibrium point x∗ ∈ X is called an attractor if there exists ε > 0 with the
property that

‖x∗ − x0‖ � ε =⇒ lim
t→∞x(t, x0) = x∗

3. It is called asymptotically stable (in the sense of Lyapunov) if x∗ is both stable (in the
sense of Lyapunov) and an attractor.

4. The equilibrium point x∗ ∈ X is said to be unstable if it is not stable (in the sense of
Lyapunov).

There are many variations to these concepts. The region of attraction associated with an
equilibrium point x∗ is defined to be set of all initial states x0 ∈ X for which x(t, x0) → x∗

as t → ∞. If this region coincides with X then x∗ is said to be a global attractor. We
will say that an equilibrium x∗ is globally asymptotically stable if it is stable and globally
attractive. Lyapunov functions are defined as follows.

Definition 1.37 (Lyapunov functions) A function V : X → R is called a Lyapunov
function in a neighborhood N (x∗) ⊂ X of an equilibrium point x∗ if

1. V is continuous at x∗,

2. V attains a strong local mimimum at x∗, i.e., there exists a function α : R+ → R+

which is continuous, strictly increasing, with α(0) = 0, such that

V (x) − V (x∗) � α(‖x − x∗‖)

for all x ∈ N (x∗).
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3. V is monotone non-increasing along all solutions x(t, x0) of (1.4.1) with x0 ∈ N (x∗),
i.e., V (x(t, x0)) is monotone non-increasing as a function of t for all x0 ∈ N (x∗).

If a Lyapunov function V is differentiable, the last item states that V̇ (x) :=
∑n

j=1
∂V
∂xj

fj(x)
is less than or equal to zero for solutions x(t, x0) of (1.4.1) with initial condition x0 nearby
the equilibrium x∗. The main stability results for autonomous systems of the form (1.4.1)
are summarized in the following proposition.

Proposition 1.38 (Lyapunov theorem) Consider the differential equation (1.4.1) and
let x∗ ∈ X be an equilibrium point.

1. x∗ is a stable equilibrium if there exists a Lyapunov function V in a neigborhood N (x∗)
of x∗.

2. x∗ is an aymptotically stable equilibrium if there exists a Lyapunov function V in a
neighborhood N (x∗) of x∗ such that the only solution x of (1.4.1) in N (x∗) for which
V̇ (x(t)) = 0 is x(t) = x∗.

Proof. 1. Suppose that V is a Lyapunov function. Let ε > 0 be given. As V is continuous
and V (0) = 0, there exists δ > 0 such that V (x0) − V (x∗) < α(ε) for every x0 ∈ X with
‖x − x∗‖ < δ. Now, for all t � 0 and x0 ∈ N (x∗) we have that

0 � α(‖x(t, x0) − x∗‖) � V (x(t, x0)) − V (x∗) � V (x0) − V (x∗) < α(ε)

Since α is strictly increasing, it follows that ‖x(t, x0) − x∗‖ < ε for all t � 0.

2. Similarly proven.

Together with the flow (1.4.1) let us also consider the linear autonomous system

ẋ = Ax (1.4.2)

where A : Rn → Rn is a linear map obtained as the linearization of f : Rn → R around an
equilibrium point x∗ ∈ X of (1.4.1). Precisely, for x∗ ∈ X we write

f(x) = f(x∗) +
n∑

j=1

∂f

∂xj
(x∗)[x − x∗] + . . . .

The linearization of f around x∗ is defined by the system (1.4.2) with A defined by the real
n × n matrix

A :=
n∑

j=1

∂f

∂xj
(x∗).
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It is well known that the origin of the linear flow (1.4.2) is asymptotically stable if and only
if all the eigenvalues of A have negative real parts. Equivalently, the origin of the linear flow
(1.4.2) is asymptotically stable if and only if there exists an ellipsoid

E = {x ∈ X | x�Xx = 1}, X > 0

with center in the origin such that the velocity vector Ax is directed inward at any point x
of the ellipsoid E . The positive definite quadratic function V : X → R defined by

V (x) = x�Xx

is an example of a Lyapunov function. The derivative of V (x) in the direction of the vector
field Ax is given by

x�[A�X + XA]x

and should be negative to guarantee that the origin is an asymptotic stable equilibrium
point of (1.4.2). We thus obtain the following result

Proposition 1.39 The following statements are equivalent.

1. The origin is an asymptotic stable equilibrium point of (1.4.2).

2. All eigenvalues λ(A) of A have strictly negative real part.

3. The linear matrix inequality
A�X + XA < 0

admits a positive definite solution X = X� > 0.

Moreover, if one of these statements hold, then the equilibrium x∗ of the flow (1.4.1) is
asymptotically stable.

The most important conclusion of Proposition 1.39 is that asymptotic stability of the equi-
librium x∗ of the nonlinear flow (1.4.1) can be concluded from the asymptotic stability of
the linearized system. It is evident that this result has important consequences for systems
and control.

1.5 Some simple applications and examples

In this section we collected various examples and illustrations of the theory treated in this
chapter.
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1.5.1 A Leontief economy

A manufacturer may be able to produce n different products from m different resources.
Assume that the selling price of product j is pj and that it takes the manufacturer aij units
of resource i to produce one unit of product j. Let xj denote the amount of product j that
is to be produced and let ai denote the amount of available units of resource i, i = 1, . . . , m.
The manufacturer probably wishes to maximize his profit

p(x1, . . . , xn) := p1x1 + p2x2 + . . . + pnxn

subject to the production constraints

a11x1 + a12x2 + . . . + a1nxn � a1

a21x1 + a22x2 + . . . + a2nxn � a2

...
...

am1x1 + am2x2 + . . . + amnxn � am

and xj � 0, j = 1, . . . , n. Note that this is an optimization problem subject to a system of
non-strict linear matrix inequalities.

(Wassily Leontief was born in 1906 in St. Petersburg and is winner of the 1973 Nobel Prize of
Economics. Among many things, he used input-output analysis to study the characteristics
of trade flow between the U.S. and other countries).

1.5.2 Noise descriptions for system identification

Suppose that input-output data has been collected for the purpose of system identification.
That is, let

(ut, yt), t = 1, . . . , N

denote a finite set of scalar valued input-output samples that were obtained from some
unknown dynamical system. In many applications, the time domain data is supposed to be
generated by a system with transfer function

H(z) =
∞∑

k=0

hkz−k

and it is assumed that the observed output is corrupted by additive noise. That is, it is
assumed that

yt =
t−1∑
k=0

hkut−k + ηt
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where t = 1, . . . , N and ηt is some noise sequence. To define the a-priori noise sets it is
sometimes useful to consider LMI regions. That is, the noise set can be definied as the
feasibility region of a set of LMI’s:

N := {η ∈ RN | F (η) := F0 +
N∑

k=1

Fkηk > 0} (1.5.1)

where Fk are given real matrices. for example, the set

�∞(ε) := {η : [1, N ] → R | sup
t∈[1,N ]

|ηt| < ε}

of bounded amplitude disturbances is often used in this context and is just obtained as a
special case of 1.5.1 by taking Fk ∈ R2N×N as follows

Fk :=

diag
(
ε ε

)�
if k = 0

diag
(
1 −1

)�
if 1 � k � N

.

An identification problem can now be formalized which amounts to determining the set of
consistent models

M :=

{
H(z) =

N∑
k=0

hkz−k | Y − HU ∈ N
}

.

Here, Y =
(
y1, . . . , yN

)�, U =
(
u1, . . . , uN

)� represent the data, and

H :=


h0 0 . . . 0
h1 h0 . . . 0
...

...
... 0

hN−1 . . . h1 h0

 .

Stated otherwise, the set of consistent models are those linear, time-invariant systems for
which the output error belongs to the feasible set of a linear matrix inequality. The data is
said to be consistent with the noise N if M �= ∅.

1.5.3 Convex combinations of linear systems

In definition 1.6 we introduced the notion of a convex combination of a finite set of points.
This notion gets considerable relevance in the context of dynamical systems if ‘points’ become
systems. Consider a time-varying dynamical system

dx

dt
(t) = A(t)x(t) + B(t)u(t)

y(t) = C(t)x(t) + D(t)u(t)
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with input u, output y and state x. Suppose that its system matrix

S(t) :=
(

A(t) B(t)
C(t) D(t)

)
is a time varying object which for any time instant t ∈ R can be written as a convex
combination of the n system matrices S1, . . . , Sn. This means that for any time instant
t ∈ R there exist real numbers αi(t) � 0, (real numbers that are possibly depending on t),
with

∑n
i=1 αi(t) = 1 such that

S(t) =
n∑

i=1

αi(t)Si

Here,

Si =
(

Ai Bi

Ci Di

)
, i = 1, . . . , n

are constant system matrices of equal dimension. In particular, this implies that the system
matrices S(t), t ∈ R belong to the convex hull of S1, . . . , Sn, i.e.,

S(t) ∈ co(S1, . . . , Sn).

Such models are called polytopic linear differential inclusions and arise in a wide variety of
modeling problems. The LMI toolbox in Matlab provides interesting software to represent
such models and to perform simulations with them. See the routines

ltisys to convert a state space model to a system matrix
ltiss to convert a system matrix to a state space model
ltitf to compute the transfer function (SISO only)
sinfo to extract inquiries about system matrices
splot to plot characteristic responses of systems
psys to define a polytopic model
psinfo to extract inquiries about polytopic models

See the help information of these routines for more specific details on their usage.

1.5.4 Affine combinations of linear systems

Models of physical systems are often expressed in terms of state space systems in which the
components of the state variable represent a physical quantity. In these models uncertainty
about specific parameters is therefore often reflected as uncertainty in specific entries of the
state space matrices A,B,C,D. Let p = (p1, . . . , pn) denote the parameter vector which
expresses the uncertain quantities in the system and suppose that this parameter vector
belongs to some subset P ⊂ Rn. Then the uncertain model can be thought of as being
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parametrized by p ∈ P through its state space representation

ẋ = A(p)x + B(p)u
y = C(p)x + D(p)u.

(1.5.2)

One way to think of equations of this sort is to view them as a set of linear time-invariant
systems as parametrized by p ∈ P. However, if p is time, then (1.5.2) defines a linear time-
varying dynamical system and it can therefore also be viewed as such. If components of
p are time varying and coincide with state components then (1.5.2) is better viewed as a
non-linear system.

Of particular interest will be those systems in which the system matrices affinely depend on
p. This means that

A(p) = A0 + p1A1 + . . . + pnAn

B(p) = B0 + p1B1 + . . . + pnBn

C(p) = C0 + p1C1 + . . . + pnCn

D(p) = D0 + p1D1 + . . . + pnDn

or, written in more compact form

S(p) = S0 + p1S1 + . . . + pnSn

where

S(p) =
(

A(p) B(p)
C(p) D(p)

)
is the system matrix associated with (1.5.2). We call these models affine parameter dependent
models.

In Matlab such a system is represented with the routines psys and pvec. For n = 2 and
a parameter box

P := {(p1, p2) | p1 ∈ [pmin
1 , pmax

1 ], p2 ∈ [pmin
2 , pmax

2 ]}

the syntax is

affsys = psys( p, [s0, s1, s2] )
p = pvec( ’box’, [p1min p1max ; p2min p2max])

where p is the parameter vector whose i-th component ranges between pmin
i and pmax

i . See
also the routines

pdsimul for time simulations of affine parameter models
aff2pol to convert an affine model to an equivalent polytopic model.
pvinfo to inquire about the parameter vector.
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1.5.5 Stability regions for LTI systems

As we have seen, the autonomous dynamical system

ẋ = Ax

is asymptotically stable if and only if all eigenvalues of A lie in C−, the open left half
complex plane. For many applications in control and engineering we may be interested in
more general stability regions. Let us define a stability region as a subset Cstab ⊆ C with
the following two properties{

Property 1: λ ∈ Cstab =⇒ λ̄ ∈ Cstab

Property 2: Cstab is convex .

Typical examples of common stability sets include

Cstab = C− open left half complex plane
Cstab = C no stability requirement
Cstab = {s ∈ C | �(s) < −α} guaranteed damping
Cstab = {s ∈ C | �(s) < −α, |s| < r} maximal damping and oscillation
Cstab = {s ∈ C | α1 < �(s) < α2} vertical strip
Cstab = {s ∈ C | |�(s)| < α} horizontal strip
Cstab = {s ∈ C | �(s) tan θ < −|�(s)|} conic stability region.

Here, θ ∈ (0, π/2) and r, α, α1, α2 are real numbers. We consider the question whether we
can derive a feasibility test to verify whether the eigenmodes of the system ẋ = Ax belong
to either of these sets. This can indeed be done in the case of the given examples. To see
this, we observe that

�(s) < 0 ⇐⇒ s + s̄ < 0
�(s) < −α ⇐⇒ s + s̄ + 2α < 0

|s| < r ⇐⇒
(
−r s
s̄ −r

)
< 0

α1 < �(s) < α2 ⇐⇒
(

(s + s̄) − 2α2 0
0 −(s + s̄) + 2α1

)
< 0

�(s) tan(θ) < −|�(s)| ⇐⇒
(

(s + s̄) sin θ (s − s̄) cos θ
(s − s̄) cos θ (s + s̄) sin θ

)
< 0.

Here we used that |s| < r if and only if ss̄ < r2 which in turn is equivalent to r− sr−1s̄ > 0.
The latter expression can then be recognized as a Schur complement of r.

In any case, each of these regions can be expressed in the form

{s ∈ C | P + Qs + Q�s̄ < 0} (1.5.3)
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where P = P� and Q are real matrices. As P + Qs + Q�s̄ is Hermitian for all s ∈ C the
set (1.5.3) is convex and coincides with the feasibility set of a linear matrix inequality. The
matrix valued function

f(s) := P + Qs + Q�s̄

is called the characteristic function of the stability region (1.5.3). This set includes the
examples given above and regions bounded by circles, ellipses, strips, parabolas and hyper-
bolas. Since finite intersections of such regions can be obtained by systems of LMI’s one can
virtually approximate any convex region in the complex plane by an LMI of the form

P1 0 . . . 0
0 P2 . . . 0
...

. . .
...

0 . . . 0 Pk

 +


Q1 0 . . . 0
0 Q2 . . . 0
...

. . .
...

0 . . . 0 Qk

 s +


Q1 0 . . . 0
0 Q2 . . . 0
...

. . .
...

0 . . . 0 Qk

 s̄ < 0

which is again of the form (1.5.3). Stability regions Cstab of the form (1.5.3) lead to the
following interesting generalization of the Lyapunov inequality. The result can be found as
Theorem 2.2 in [3].

Proposition 1.40 (M. Chilali and P. Gahinet) Let P = P�, Q and A be real matrices.
Then A has all its eigenvalues in the stability region

Cstab := {s ∈ C | P + Qs + Q�s̄ < 0}

if and only if there exists a real symmetric matrix X = X� > 0 withp11X + q11AX + q11XA� . . . p1kX + q1kAX + qk1XA�
...

. . .
...

pk1X + qk1AX + q1kXA� . . . pkkX + qkkAX + qkkXA�

 < 0 (1.5.4)

where pij and qij are the ij-th entry of P and Q, respectively.

Stated otherwise, A has all its eigenvalues in the stability region Cstab with characteristic
function P + Qs + Q�s̄ if and only if there exists a positive definite matrix X such that

(pijX + qijXA + qjiA
�X) < 0.

for all i, j. Note that this is an LMI in X and that the classical Lyapunov theorem
corresponds to the characteristic function f(s) = s + s̄. Note also that the condition
(1.5.4) is related to the characteristic function of the stability region by the substitution
(A,AX,XA�) ↔ (1, s, s̄).

1.6 Further reading

Optimization: [15]
Convex function analysis: [25], [43]
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Lyapunov theory: [7, 16, 27, 49]
Interior point methods: [20]
Software issues: [6]

1.7 Exercises

Exercise 1

In section 1.2 we defined sublevel sets and related them to the convexity of functions f :
S → R. Define a suitable notion of suplevel sets (yes, this is a “p”) and formulate and prove
a sufficient condition (in the spirit of proposition 1.13) for suplevel sets to be compact.

Exercise 2

Give an example of a non-convex function f : S → R whose sublevel sets Sα are convex for
all α ∈ R.

Exercise 3

Let f : S → R be a convex function.

1. Show the so called Jensen’s inequality which states that for a convex combination
x =

∑n
i=1 αixi of x1, . . . xn ∈ S there holds that

f(
n∑

i=1

αixi) �
n∑

i=1

αif(xi).

Hint: A proof by induction on n may be the easiest.

2. Show that co(S) is equal to the set of all convex combinations of S

Exercise 4

Run the Matlab demo lmidem.
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Exercise 5

Use a feasibility test of the LMI toolbox to verify the asymptotic stability of the system
ẋ = Ax, where

A =

 0 1 0
0 0 1
−2 −3 −4

 .

To do this, use the routine ltisys to convert a state space model to an internal format which
is used for the LTI toolbox. Use the routine feasp to compute a solution to the corresponding
LMI feasibility problem. (See the Matlab help information for these routines).

Exercise 6

In this exercise we investigate the stability of the linear time-varying system

ẋ = A(t)x (1.7.1)

where for all t ∈ R+ the matrix A(t) is a convex combination of the triple

A1 :=
(
−1 1
−1 −0.2

)
, A2 :=

(
−1 1
−2 −0.7

)
, A3 :=

(
−2 1
−1.2 0.4

)
.

That is,
A(t) ∈ co(A1, A2, A3)

for all values of t ∈ R+. This is referred to as a polytopic model. (See subsection 1.5.3). It
is an interesting fact that the time-varying system (1.7.1) is asymptotically stable if there
exists a X = X� > 0 such that

A�
1 X + XA1 < 0

A�
2 X + XA2 < 0

A�
3 X + XA3 < 0.

If such an X exists then (1.7.1) is stable irrespective of how fast the time variations of A(t)
take place!

1. Reformulate the question of asymptotic stability of (1.7.1) as a feasibility problem.

2. The Matlab function quadstab tests the (quadratic) stability of polytopic models.
To invoke this routine, first use ltisys to represent the state space systems ẋ = Aix
for i = 1, 2, 3 in internal LMI format. Then define the polytopic model (1.7.1) by using
psys.

3. Give a Lyapunov function for this model.
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A second approach to solve the feasibility problem amounts to using the graphical interface
lmiedit to enter the relevant linear matrix inequalities in the unknown X. The procedure
feasp of the LMI toolbox solves the feasibility problem and thus checks whether (1.7.1) is
asymptotically stable. We leave this alternative approach as an option.

Exercise 7

Consider the active suspension system of a transport vehicle as depicted in Figure 1.1. The

m2

m1

�

�

b2 k2
F

k1

�

�

�

q2

q1

q0
�

Figure 1.1: Model for suspension system

system is modeled by the equations

m2q̈2 + b2(q̇2 − q̇1) + k2(q2 − q1) − F = 0
m1q̈1 + b2(q̇1 − q̇2) + k2(q1 − q2) + k1(q1 − q0) + F = 0

where F (resp. −F ) is a force acting on the chassis mass m2 (the axle mass m1). Here,
q2 − q1 is the distance between chassis and axle, and q̈2 denotes the acceleration of the
chassis mass m2. b2 is a damping coefficient and k1 and k2 are spring coefficients. The

m1 m2 k1 k2 b2

1.5 × 103 1.0 × 104 5.0 × 106 5.0 × 105 50 × 103

Table 1.1: Physical parameters

variable q0 represents the road profile. A ‘real life’ set of system parameters is given in
Table 1.1.

1. Consider the case where F = 0 and q0 = 0 (thus no active force between chassis and
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axle and ‘flat’ road characteristic) and compute the eigenmodes of this autonomous
system.

2. Determine a Lyapunov function V (q1, q2, q̇1, q̇2) of this system (with F = 0 and q0 = 0)
and show that its derivative is negative along solutions of the autonomous behavior of
the system (i.e. F = 0 and q0 = 0).

3. Design your favorite road profile q0 in Matlab and simulate the response of the system
to this road profile (the force F is kept 0). Plot the variables q1 and q2. What are
your conclusions?

4. Depending on the load of the truck, the chassis mass m2 is a major source of uncer-
tainty. Simulate the response of the system to the road profile q0 when the mass m2

varies between its minimum value m2,min = 1.5 × 103 (unloaded) and its maximum
value m2,max = 1.0× 104 (fully loaded). Moreover, it is reasonable to assume that the
air spring stiffness k2 is influenced by the load according to

k2 =
m2 × k2,max

m2,max

where k2,max = 5.0× 105. Introduce an arbitrary, non-constant function m2(t) reflect-
ing the time-varying changes in the chassis mass m2 and let the air spring stiffness k2

depend on m2 as above. Use the routines introduced in Subsection 1.5.4 for a time
simulation of this situation and plot the variables q1 and q2.



Chapter 2

Dissipativity and robustness
analysis

2.1 Dissipative dynamical systems and LMI’s

2.1.1 Introduction

The notion of dissipativity is a most important concept in systems theory both for theoretical
consideratons as well as from a practical point of view. Especially in the physical sciences,
dissipativity is closely related to the notion of energy. Roughly speaking, a dissipative
system is characterized by the property that at any time the amount of energy which the
system can conceivably supply to its environment can not exceed the amount of energy that
has been supplied to it. Stated otherwise, when time evolves a dissipative system absorbs a
fraction of its supplied energy and transforms it for example into heat, an increase of entropy,
mass, electromagnetic radiation, or other kinds of energy ‘losses’. In many applications, the
question whether a system is dissipative or not can be answered from physical considerations
on the way the system interacts with its environment. For example, by observing that the
system is an interconnection of dissipative components, or by considering systems in which
a loss of energy is inherent to the behavior of the system (due to friction, optical dispersion,
evaporation losses, etc.).

In this section we will formalize the notion of a dissipative dynamical system for a very
general class of systems. It will be shown that linear matrix inequalities occur in a very
natural way in the study of linear dissipative systems. Perhaps the most appealing frame-
work for studying LMI’s in system and control theory is within the framework of dissipative
dynamical systems. It will be shown that solutions of LMI’s have a natural interpretation as

37
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storage functions associated with a dissipative system. This interpretation will play a key
role in understanding the importance of LMI’s in questions related to stability, robustness,
and H∞ and H2 controller design problems. More details on the theory of this section can
be found in [45, 47, 48].

2.1.2 Dissipativity

Consider a continuous time, time-invariant dynamical system Σ described by the equations

ẋ = f(x, u) (2.1.1a)
y = g(x, u) (2.1.1b)

Here, x is the state which takes its values in a state space X, u is the input taking its values
in an input space U and y denotes the output of the system which assumes its values in the
output space Y . Throughout this section, the precise representation of the systems will not
be relevant. What we need, though, is that for any initial condition x(0) = x0 of (2.1.1a)
and for any input u belonging to an input class U , the state x and the output y are uniquely
defined and depend on u in a causal way. The system (2.1.1) therefore generates outputs
from inputs and initial conditions. Let

s : U × Y → R

be a mapping and assume that for all t0, t1 ∈ R and for all input-output pairs u, y satisfy-
ing (2.1.1) the composite function

s(t) := s(u(t), y(t))

is locally integrable, i.e.,
∫ t1

t0
|s(t)|dt < ∞. (We do realize that we abuse notation here). The

mapping s will be referred to as the supply function.

Definition 2.1 (Dissipativity) The system Σ with supply rate s is said to be dissipative
if there exists a non-negative function V : X → R such that

V (x(t0)) +
∫ t1

t0

s(u(t), y(t))dt � V (x(t1)) (2.1.2)

for all t0 � t1 and all trajectories (u, x, y) which satisfy (2.1.1).

Interpretation 2.2 The supply function (or supply rate) s should be interpreted as the
supply delivered to the system. This means that in a time interval [0, t] work has been done on
the system whenever

∫ t

0
s(τ)dτ is positive, while work is done by the system if this integral is

negative. The non-negative function V is called a storage function and generalizes the notion
of an energy function for a dissipative system. With this interpretation, inequality (2.1.2)
formalizes the intuitive idea that a dissipative system is characterized by the property that
the change of internal storage V (x(t1)) − V (x(t0)) in any time interval [t0, t1] will never
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exceed the amount of supply that flows into the system (or the ‘work done on the system’).
This means that part of what is supplied to the system is stored, while the remaining part
is dissipated. Inequality (2.1.2) is known as the dissipation inequality.

Remark 2.3 Since the system communicates with its environment through the variables u
and y, it is logical to assume that the supply function s is a function defined on the external
signal space U × Y . Moreover, since storage is a concept related to the status of internal
variables of the system, it is logical to define storage functions as state functions.

Remark 2.4 Note that whenever the composite function V (x(·)) with V a storage function
and x : R → X a state trajectory satisfying(2.1.1a), is differentiable as a function of time,
then (2.1.2) can be equivalently written as

V̇ (t) � s(u(t), y(t)). (2.1.3)

Remark 2.5 There are a few refinements to Definition 2.1 which are worth mentioning.
The system Σ is said to be conservative (or lossless) if equality holds in (2.1.2) for all
t0 � t1 and all (u, x, y) which satisfy (2.1.1). Also, Definition 2.1 can be generalized to
time-varying systems by letting the supply rate s depend on time. We will not need such a
generalization for our purposes. Many authors have proposed a definition of dissipativity for
discrete time systems, but since we can not think of any physical example of such a system,
there seems little point in doing this. Another refinement consists of the idea that a system
Σ may be dissipative with respect to more than one supply function. See Example 2.8 below.

The notion of strict dissipativity is a refinement of Definition 2.1 which we will use in the
sequel. It is defined as follows.

Definition 2.6 (Strict dissipativity) The system Σ with supply rate s is said to be
strictly dissipative if there exists an ε > 0 and a non-negative function V : X → R which
attains a strong global minimum (see Chapter 1) such that the dissipation inequality

V (x(t0)) +
∫ t1

t0

(
s(u(t), y(t)) − ε2‖u(t)‖2

)
dt � V (x(t1)) (2.1.4)

holds for all t0 � t1 and all trajectories (u, x, y) which satisfy (2.1.1).

Clearly, a system is strictly dissipative only if a strict inequality holds in (2.1.2). Note
that storage functions of strictly dissipative systems are assumed to have a strong global
minimum at some point x∗ ∈ X. This means that for any state x in a neighborhood of x∗

the storage V (x) is strictly larger than V (x∗).

Example 2.7 The classical motivation for the study of dissipativity comes from circuit
theory. In the analysis of electrical networks the product of voltages and currents at the
external branches of a network, i.e. the power, is an obvious supply function. Similarly,
the product of forces and velocities is a candidate supply function in mechanical systems.
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For those familiar with the theory of bond-graphs we remark that every bond-graph can
be viewed as a representation of a dissipative dynamical system where input and output
variables are taken to be effort and flow variables and the supply function s is invariably
taken to be the product of these two variables. A bond-graph is therefore a special case of
a dissipative system (and not the other way around!).

Example 2.8 Consider a thermodynamic system at uniform temperature T on which me-
chanical work is being done at rate W and which is being heated at rate Q. Let (T,Q,W )
be the external variables of such a system and assume that –either by physical or chemi-
cal principles or through experimentation– the mathematical model of the thermodynamic
system has been decided upon and is given by the time invariant system (2.1.1). The first
and second law of thermodynamics may then be formulated in the sense of Definition 2.1 by
saying that the system Σ is conservative with respect to the supply function s1 := (W + Q)
and dissipative with respect to the supply function s2 := −Q/T . Indeed, the two basic laws
of thermodynamics state that for all system trajectories (T,Q,W ) and all time instants
t0 � t1

E(x(t0)) +
∫ t1

t0

Q(t) + W (t) dt = E(x(t1))

(which is conservation of thermodynamical energy) and the second law of thermodynamics
states that the system trajectories satisfy

S(x(t0)) +
∫ t1

t0

−Q(t)
T (t)

dt � S(x(t1))

for a storage function S. Here, E is called the internal energy and S the entropy. The
first law promises that the change of internal energy is equal to the heat absorbed by the
system and the mechanical work which is done on the system. The second law states that
the entropy decreases at a higher rate than the quotient of absorbed heat and temperature.
Note that thermodynamical systems are dissipative with respect to more than one supply
function!

Example 2.9 Typical examples of supply functions s : U × Y → R are

s(u, y) = u�y,

s(u, y) = ‖y‖2 − ‖u‖2

s(u, y) = ‖y‖2 + ‖u‖2

s(u, y) = ‖y‖2

which arise in network theory, bondgraph theory, scattering theory, H∞ theory, game theory
and LQ-optimal control and H2-optimal control theory.

If Σ is dissipative with storage function V then we will assume that there exists a reference
point x∗ ∈ X of minimal storage, i.e. x∗ is such that V (x∗) = minx∈X V (x). Given a storage
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function V , its normalization (with respect to x∗) is defined as V̄ (x) := V (x) − V (x∗).
Obviously, V̄ is a storage function of Σ whenever V is and V̄ (x∗) = 0.

Instead of considering the set of all possible storage functions associated with a dynamical
system Σ we will restrict attention to the set of normalized storage functions. Formally, the
set of normalized storage functions (associated with (Σ, s)) is defined by

V(x∗) := {V : X → R+ | V (x∗) = 0 and (2.1.2) holds}.

The existence of a reference point x∗ of minimal storage implies that for a dissipative system∫ t1

0

s(u(t), y(t) dt � 0

for any t1 � 0 and any (u, x, y) satisfying (2.1.1) with x(0) = x∗. Stated otherwise, any
trajectory of the system which emanates from x∗ has the property that the net flow of
supply is into the system. In many treatments of dissipativity this property is often taken
as definition of passivity. We introduce two mappings Vav : X → R+ ∪∞ and Vreq : X →
R ∪ {−∞} which will play a crucial role in the sequel. They are defined by

Vav(x0) := sup
{
−
∫ t1

0

s(t) dt | t1 � 0; (u, x, y) satisfy (2.1.1) with x(0) = x0

}
(2.1.5a)

Vreq(x0) := inf

{∫ 0

t−1

s(t) dt | t−1 � 0; (u, x, y) satisfy (2.1.1) with (2.1.5b)

x(0) = x0 and x(t−1) = x∗} (2.1.5c)

Then Vav(x) denotes the maximal amount of internal storage that may be recovered from
the system over all state trajectories starting from x. Similarly, Vreq(x) reflects the minimal
supply the environment has to deliver to the system in order to excite the state x via any
trajectory in the state space originating in x∗. We refer to Vav and Vreq as the available
storage and the required supply, respectively. Note that in (2.1.5b) it is assumed that the
point x0 ∈ X is reachable from the reference pont x∗, i.e. it is assumed that there exist a
control input u which brings the state trajectory x from x∗ at time t = t−1 to x0 at time
t = 0. This is the case when the system Σ is controllable.

Proposition 2.10 (Willems) Let the system Σ be described by (2.1.1) and let s be a supply
function. Then

1. Σ is dissipative if and only if Vav(x) is finite for all x ∈ X.

2. If Σ is dissipative and controllable then

(a) Vav, Vreq ∈ V(x∗).

(b) {V ∈ V(x∗)} ⇒ {0 � Vav � V � Vreq}.
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(c) V(x∗) is a convex set. In particular, Vα := αVav +(1−α)Vreq ∈ V(x∗) for all α ∈
(0, 1).

Interpretation 2.11 Proposition 2.10 gives a necessary and sufficient condition for a sys-
tem to be dissipative. It shows that both the available storage and the required supply are
possible storage functions. Moreover, statement (b) shows that the available storage and the
required supply are the extremal storage functions in V(x∗). In particular, for any state of a
dissipative system, the available storage is at most equal to the required supply. In addition,
convex combinations of the available storage and the required supply are candidate storage
functions for a dissipative system.

Proof. 1. Let Σ be dissipative, V a storage function and x0 ∈ X. From (2.1.2) it then
follows that for all t1 � 0 and all (u, x, y) satisfing (2.1.1) with x(0) = x0,

−
∫ t1

0

s(u(t), y(t))dt � V (x0) < infty.

Taking the supremum over all t1 � 0 and all such trajectories (u, x, y) (with x(0) = x0)
yields that Vav(x0) � V (x0) < ∞. To prove the converse implication it suffices to show that
Vav is a storage function. To see this, first note that Vav(x) � 0 for all x ∈ X (take t1 = 0
in (2.1.5a)). To prove that Vav satisfies (2.1.2), let t0 � t1 � t2 and (u, x, y) satisfy (2.1.1).
Then

Vav(x(t0)) � −
∫ t1

t0

s(u(t), y(t))dt −
∫ t2

t1

s(u(t), y(t))dt.

Since the second term in the right hand side of this inequality holds for arbitrary t2 � t1
and arbitrary (u, x, y)|[t1,t2] (with x(t1) fixed), we can take the supremum over all such
trajectories to conclude that

Vav(x(t0)) � −
∫ t1

t0

s(u(t), y(t))dt − Vav(x(t1)).

which shows that Vav satisfies (2.1.2).

2a. Suppose that Σ is dissipative and let V be a storage function. Then V̄ (x) := V (x) −
V (x∗) ∈ V(x∗) so that V(x∗) �= ∅. Observe that Vav(x∗) � 0 and Vreq(x∗) � 0 (take
t1 = t−1 = 0 in (2.1.5)). Suppose that the latter inequalities are strict. Then, using
controllability of the system, there exists t−1 � 0 � t1 and a state trajectory x with
x(t−1) = x(0) = x(t1) = x∗ such that −

∫ t1
0

s(t)dt > 0 and
∫ 0

t−1
s(t)dt < 0. But this yields

a contradiction with (2.1.2) as both
∫ t1
0

s(t)dt � 0 and
∫ 0

t−1
s(t)dt � 0. Thus, Vav(x∗) =

Vreq(x∗) = 0. We already proved that Vav is a storage function so that Vav ∈ V(x∗). Along
the same lines one shows that also Vreq ∈ V(x∗).

2b. If V ∈ V(x∗) then

−
∫ t1

0

s(u(t), y(t))dt � V (x0) �
∫ 0

t−1

s(u(t), y(t))dt
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for all t−1 � 0 � t1 and (u, x, y) satisfying (2.1.1) with x(t−1) = x∗ and x(0) = x0. Now
take the supremum and infimum over all such trajectories to obtain that Vav � V � Vreq.

2c. Follows trivially from (2.1.2).

If the system Σ is dissipative with respect to the supply function s then

V (x(t0)) +
∫ t1

t0

s(u(t), y(t)) dt − V (x(t1))

is a non-negative quantity that can be interpreted as the amount of supply that is dissipated
in the system in the time interval [t0, t1].

Definition 2.12 (Dissipation functions) A function d : X×U → R is called a dissipation
function for (Σ, s) if there exists a storage function V : X → R+ such that

V (x(t0)) +
∫ t1

t0

[s(u(t), y(t)) − d(x(t), u(t))] dt = V (x(t1))

hold for all t0 � t1 and all trajectories (u, x, y) which satisfy (2.1.1).

Obviously, the system Σ is dissipative with respect to the supply function s if and only if
the dissipation function d is non-negative in the sense that d(x, u) � 0 for all x, u. Note
that if d is a dissipation function then the system is conservative with respect to the supply
function s − d.

2.1.3 Storage functions and Lyapunov functions

Storage functions and Lyapunov functions (introduced in the previous chapter) are closely
related. Indeed, if u(t) = u∗ with u∗ ∈ U is taken as a constant input in (2.1.1) then we
obtain the autonomous system

ẋ = f(x, u∗)
y = g(x, u∗).

Let x∗ be an equilibrium point of this system and suppose that the system defined by (2.1.1)
is dissipative with supply

s(u∗, y) = s(u∗, g(x, u∗)) � 0

for all x in a neigborhood of x∗. From Remark 2.4 we then infer that any (differentiable) stor-
age function V of this system is non-negative and monotone non-increasing along solutions
in a neighborhood of x∗. Consequently, by Lyapunov’s theorem, x∗ is a stable equilibrium
if the storage function V attains a strong local minimum at x∗. In that case, the storage
function V is nothing else than a Lyapunov function defined in a neighborhood of x∗. (See
the corresponding definitions in the previous chapter).
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2.2 Linear dissipative systems with quadratic supply
rates

In this section we will apply the above theory of dissipative dynamical systems to linear
input-output systems Σ described by the equations

ẋ = Ax + Bu

y = Cx + Du
(2.2.1)

with state space X = Rn, input space U = Rm and output space Y = Rp.

Consider a general quadratic supply function s : U × Y → R defined by

s(u, y) =
(

y
u

)� (
Qyy Qyu

Quy Quu

)(
y
u

)
(2.2.2)

Here,

Q :=
(

Qyy Qyu

Quy Quu

)
is a real symmetric matrix which is partitioned conformally with u and y. We emphasize
that no a priori definiteness assumptions are made on Q.

Note that the supply functions given in Example 2.9 can all be written in the form (2.2.2)
for an appropriate partitioned real symmetric matrix Q.

Remark 2.13 Substituting the output equation y = Cx+Du in the supply function (2.2.2)
shows that (2.2.2) can equivalently be viewed as a quadratic function in the variables u and
x. Indeed,

s(u, y) = s(u,Cx + Du) =
(

x
u

)� (
Qxx Qxu

Qux Quu

)(
x
u

)
where (

Qxx Qxu

Qux Quu

)
=

(
C D
0 I

)� (
Qyy Qyu

Quy Quu

)(
C D
0 I

)
.

The following proposition is the main result of this section. It provides necessary and
sufficient conditions for dissipativeness of the pair (Σ, s) and it shows that linear dissipative
systems with quadratic supply functions have at least one quadratic storage function.

Proposition 2.14 Suppose that the system Σ described by (2.2.1) is controllable and let the
supply function s be defined by (2.2.2). Then the following statements are equivalent.

1. (Σ, s) is dissipative.
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2. There exists a quadratic storage function V (x) := x�Kx with K = K� � 0 such that
(2.1.2) holds for all t0 � t1 and (u, x, y) satisfying (2.2.1).

3. There exists K = K� � 0 such that

F (K) := −
(

A�K + KA KB
B�K 0

)
+

(
C D
0 I

)� (
Qyy Qyu

Quy Quu

)(
C D
0 I

)
� 0 (2.2.3)

4. There exists K− = K�
− � 0 such that Vav(x) = x�K−x.

5. There exists K+ = K�
+ � 0 such that Vreq(x) = x�K+x.

Moreover, if one of the above equivalent statements holds, then V (x) := x�Kx is a quadratic
storage function in V(0) if and only if K � 0 and F (K) � 0.

Proof. (1⇒2,4). If (Σ, s) is dissipative then we infer from Proposition 2.10 that the
available storage Vav(x) is finite for any x ∈ Rn. We claim that Vav(x) is a quadratic
function of x. This follows from [46] upon noting that the supply function s is quadratic
and that

Vav(x) = sup−
∫ t1

0

s(t)dt = − inf
∫ t1

0

s(t)dt

denotes the optimal cost of a linear quadratic optimization problem. It is well known that
this infimum is a quadratic form in x.

(4⇒1). Obvious from Proposition (2.10).

(2⇒3). If V (x) = x�Kx with K � 0 is a storage function then the dissipation inequality
can be rewritten as ∫ t1

t0

(
− d

dt
x(t)�Kx(t) + s(u(t), y(t))

)
dt � 0.

Substituting the system equations (2.2.1), this is equivalent to∫ t1

t0

(
x(t)
u(t)

)�
−
(

A�K + KA KB
B�K 0

)
+

(
C D
0 I

)� (
Qyy Qyu

Quy Quu

)(
C D
0 I

)
︸ ︷︷ ︸

F (K)

(
x(t)
u(t)

)
dt � 0.

(2.2.4)
Since (2.2.4) holds for all t0 � t1 and all inputs u this reduces to the requirement that K � 0
satisfies the LMI F (K) � 0.

(3⇒2). Conversely, if there exist K � 0 such that F (K) � 0 then (2.2.4) holds and it follows
that V (x) = x�Kx is a storage function which satisfies the dissipation inequality.

(1⇔5). If (Σ, s) is dissipative then by Proposition (2.10), Vreq is a storage function. Since
Vreq is defined as an optimal cost corresponding to a linear quadratic optimization problem,
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Vreq is quadratic. Hence, if the reference point x∗ = 0, Vreq(x) is of the form x�K+x for
some K+ � 0. Conversely, if Vreq = x�K+x, K+ � 0, then it is easily seen that Vreq satisfies
the dissipation inequality (2.1.2) which implies that (Σ, s) is dissipative.

We recognize in (2.2.3) a non-strict linear matrix inequality. The matrix F (K) is usually
called the dissipation matrix. Observe that in the above proposition the set of quadratic
storage functions in V(0) is completely characterized by the inequalities K � 0 and F (K) �
0. In other words, the set of normalized quadratic storage functions associated with (Σ, s)
coincides with the feasibility set of the system of LMI’s K = K� � 0 and F (K) � 0. In
particular, the available storage and the required supply are quadratic storage functions
and hence K− and K+ also satisfy F (K−) � 0 and F (K+) � 0. Using Proposition 2.10 it
moreover follows that any solution K = K� � 0 of F (K) � 0 has the property that

0 � K− � K � K+.

In other words, among the set of positive semi-definite solutions K of the LMI F (K) � 0
there exists a smallest and a largest element.

For conservative and strictly dissipative systems with quadratic supply functions a similar
characterization can be given. The precize formulation for conservative systems is evident
from Proposition 2.14 and is left to the reader. For strictly dissipative system the result is
worth mentioning.

Proposition 2.15 Suppose that the system Σ described by (2.2.1) is controllable and let the
supply function s be defined by (2.2.2). Then the following statements are equivalent.

1. (Σ, s) is strictly dissipative.

2. There exists K = K� > 0 such that

F (K) := −
(

A�K + KA KB
B�K 0

)
+

(
C D
0 I

)� (
Qyy Qyu

Quy Quu

)(
C D
0 I

)
> 0 (2.2.5)

Moreover, if one of the above equivalent statements holds, then V (x) := x�Kx is a quadratic
storage function in V(0) if and only if K > 0 and F (K) > 0.

Proof. The proof proceeds along the same lines as the proof of Proposition 2.14. We only
prove the implication (2⇒1) here. Let K > 0 be such that F (K) > 0. Then obviously, there
exists ε > 0 such that

F (K) −
(

0 0
0 ε2I

)
� 0.

But then∫ t1

t0

(
x(t)
u(t)

)�
F (K)

(
x(t)
u(t)

)
dt �

∫ t1

t0

(
x(t)
u(t)

)� (
0 0
0 ε2I

)(
x(t)
u(t)

)
dt =

∫ t1

t0

ε2|u(t)|2 dt
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from which it follows that V (x) = x�Kx is a storage function with a strong global minimum
at x = 0 which satisfies the dissipation inequality (2.1.4). Hence, the pair (Σ, s) is strictly
dissipative.

There is a simple relation between the dissipation matrix F (K) and dissipation functions.
Indeed, if K = K� � 0 (or > 0) is such that F (K) � 0 then the dissipation matrix can be
factorized as

F (K) =
(
MK NK

)� (
MK NK

)
.

where
(
MK NK

)
is a real matrix with n + m columns and r � rK := rank(F (K)) rows.

For any triple (u, x, y) satisfying (2.2.1) we then obtain that

∫ t1

t0

‖MKx(t) + NKu(t)‖2 dt =
∫ t1

t0

(
x
u

)�
F (K)

(
x
u

)
dt

= x(t0)�Kx(t0) − x(t1)�Kx(t1) +
∫ t1

t0

s(t) dt.

In other words the function
d(x, u) := ‖MKx + NKu‖2

is a dissipation function of the system (2.2.1).

We conclude this subsection with a frequency domain characterization of dissipativeness.
Let G(s) := C(Is − A)−1B + D denote the transfer function associated with (2.2.1).

Proposition 2.16 (Yakubovich-Kalman) Under the same conditions as Proposition 2.14,
the following statements are equivalent.

1. (Σ, s) is dissipative.

2. For all ω ∈ R with det(iωI − A) �= 0, there holds(
G(iω)

I

)∗ (
Qyy Qyu

Quy Quu

)(
G(iω)

I

)
� 0 (2.2.6)

Proof. Because of the simplicity of the argument, we only prove the implication (1⇒2)
here. Let ω ∈ R be such that det(iωI − A) �= 0 and consider the (complex) input u(t) =
exp(iωt)u0 with u0 ∈ Rm. Define x(t) := exp(iωt)(iωI−A)−1Bu0 and y(t) := Cx(t)+Du(t).
Then y(t) = exp(iωt)G(iω)u0 and the triple (u, x, y) satisfies (2.2.1). Moreover,

s(u(t), y(t)) = ū∗
0

(
G(iω)

I

)∗ (
Qyy Qyu

Quy Quu

)(
G(iω)

I

)
u0

which is a constant for all time t ∈ R. Now suppose that (Σ, s) is dissipative. For non-zero
frequencies ω the triple (u, x, y) is periodic with period P = 2π/ω. In particular, there
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must exist a time instant t0 such that x(t0) = x(t0 + kP ) = 0, k ∈ Z. Since V (0) = 0, the
dissipation inequality (2.1.2) reads∫ t1

t0

s(u(t), y(t)) dt =
∫ t1

t0

ū∗
0

(
G(iω)

I

)∗ (
Qyy Qyu

Quy Quu

)(
G(iω)

I

)
u0

= (t1 − t0)ū∗
0

(
G(iω)

I

)∗ (
Qyy Qyu

Quy Quu

)(
G(iω)

I

)
u0 � 0

for all t1 > t0. Since u0 and t1 > t0 are arbitrary this yields that statement 2 holds.

The converse implication is much more involved and will be omitted here.

The frequency domain characterization of strictly dissipative systems is similar and involves
a strict inequality in (2.2.6). Proposition 2.16 has a long history in system theory. The
result goes back to V.A. Yakubovich (1962) and R. Kalman (1963).

2.2.1 The positive real lemma

Consider the system (2.2.1) together with the quadratic supply function s(u, y) = y�u as
defined in 2.2.2. The following is then an immediate consequence of Proposition 2.14.

Corollary 2.17 Suppose that the system Σ described by (2.2.1) is controllable and has trans-
fer function G. Let s(u, y) = y�u be a supply function. Then equivalent statements are

1. (Σ, s) is dissipative.

2. the system of LMI’s

K = K� � 0(
−A�K − KA −KB + C�

−B�K + C D + D�

)
� 0

is feasible

3. For all ω ∈ R with det(iωI − A) �= 0 G(iω)∗ + G(iω) � 0.

Moreover, V (x) = x�Kx defines a quadratic storage function if and only if K satisfies the
above system of LMI’s.

Remark 2.18 Corollary 2.17 is known as the Kalman-Yacubovich-Popov or the positive
real lemma and has played a crucial role in questions related to the stability of control
systems and synthesis of passive electrical networks. Transfer functions which satisfy the
third statement are generally called positive real.
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2.2.2 The bounded real lemma

Consider the quadratic supply function

s(u, y) = γ2u�u − y�y (2.2.7)

where γ � 0. In a similar fashion we obtain the following result as an immediate consequence
of Proposition 2.14.

Corollary 2.19 Suppose that the system Σ described by (2.2.1) is controllable and has trans-
fer function G. Let s(u, y) = γ2u�u−y�y be a supply function. Then equivalent statements
are

1. (Σ, s) is dissipative.

2. The system of LMI’s

K = K� � 0(
A�K + KA + C�C KB + C�D

B�K + D�C D�D − γ2I

)
� 0

is feasible.

3. For all ω ∈ R with det(iωI − A) �= 0 G(iω)∗G(iω) � γ2I.

Moreover, V (x) = x�Kx defines a quadratic storage function if and only if K satisfies the
above system of LMI’s.

Let us analyze the importance of this result for control. If Σ is dissipative with respect to
the supply function (2.2.7) then we infer from Remark 2.4 that for any quadratic storage
function V (x) = x�Kx,

V̇ � γ2u�u − y�y (2.2.8)

along solutions (u, x, y) of (2.2.1). Suppose that x(0) = 0, A has all its eigenvalues in the
open left-half complex plane and the input u is taken from the set L2 of square integrable
functions, i.e., u is such that

‖u‖2
2 :=

∫ ∞

0

u�(t)u(t) dt < ∞.

Then both the state x and the output y of (2.2.1) are square integrable functions and
limt→∞ x(t) = 0. We can therefore integrate (2.2.8) from t = 0 till ∞ to obtain that for all
u ∈ L2

γ2‖u‖2
2 − ‖y‖2

2 � 0.
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Equivalently,

sup
u∈L2

‖y‖2

‖u‖2
� γ. (2.2.9)

The left-hand side of (2.2.9) is the so called L2-induced norm or L2-gain of the system
(2.2.1). The L2-gain is therefore obtained as the smallest γ � 0 for which (2.2.9) holds.

Translated in terms of LMI’s, we therefore obtain that the upperbound (2.2.9) holds if and
only if there exists K that satisfies the linear matrix inequalities of Corollary (2.19). This
provides a feasibility test, parametrized in γ > 0, to determine L2-gain of the system.

2.3 Nominal performance and LMI’s

In this section we will use the previous results on dissipative systems to characterize a number
of relevant performance criteria for dynamical systems. In view of forthcoming chapters we
consider the system (2.2.1) and assume throughout this section that the system is asymptot-
ically stable (i.e. the eigenvalues of A are in the open left-half complex plane). The following
lemma is a simple but useful variation on one of the implications of Proposition 2.15.

Lemma 2.20 Consider the following statements.

1. (Σ, s) is strictly dissipative

2. There exists K = K� > 0 such that F (K) > 0

3. There exists ε > 0 such that∫ ∞

0

(
y(t)
u(t)

)� (
Qyy Qyu

Quy Quu

)(
y(t)
u(t)

)
dt � ε

∫ ∞

0

u(t)�u(t)dt − x(0)�Kx(0). (2.3.1)

Then statements 1. and 2. are equivalent and each of these statements implies 3.

Proof. If K = K� > 0 is such that K(K) > 0 then we can choose ε > 0 such that

G(K) := F (K) −
(

0 0
0 ε2I

)
� 0.

Viewing this as a dissipation inequality for a dissipative system yields that for all u ∈ L2∫ ∞

0

(
x(t)
u(t)

)�
G(K)

(
x(t)
u(t)

)
dt∫ ∞

0

−
(

d

dt
x(t)�Kx(t) − ε2u(t)�u(t) + s(u(t), y(t))

)
dt

where s(u, y) is the quadratic supply function given in (2.2.2). Stability of the system yields
that for all u ∈ L2 the state x(t) vanishes for t → ∞. The inequality (2.3.1) then follows.



2.3. NOMINAL PERFORMANCE AND LMI’S 51

2.3.1 H∞ nominal performance

A popular performance measure of a stable linear time-invariant system is the H∞ norm of
its transfer function. It is defined as follows. The transfer function associated with (2.2.1)
is defined by

G(s) := C(Is − A)−1B + D

where s ∈ C. Since the system is assumed to be stable, G(s) is bounded for all s ∈ C with
positive real part. By this, we mean that the largest singular value σmax(G(s)) is finite for
all s ∈ C with �s > 0. The space H∞ consists of all complex valued functions which are
analytic in �s > 0 and for which

‖G‖∞ := sup
	s>0

σmax(G(s)) < ∞.

The left hand side of this expression satisfies the axioms of a norm and defines the H∞ norm
of G. It can be shown that each function in H∞ has a unique extension to the imaginary
axis and that in fact the H∞ norm is given by

‖G‖∞ = sup
ω∈R

σmax(G(jω)).

In words, the H∞ norm of a transfer function is the supremum of the maximum singular
value of the frequency response of the system.

Remark 2.21 Various graphical representations of frequency responses are illustrative to
investigate system properties like bandwidth, gains, etc. Probably the most important
one is a plot of the singular values σi(G(jω)) (i = 1, . . . ,min(m, p)) viewed as function of
frequency ω ∈ R. For single-input single-output systems there is only one singular value and
σ(G(jω)) = |G(jω)|. A Bode diagram is a plot of the latter and provides information to
what extent the system amplifies purely harmonic input signals with frequencies ω ∈ R. In
order to interpret these diagrams one usually takes logarithmic scales on the ω axis and plots
2010 log(G(jω)) to get units in dB. The H∞ norm of a transfer function is then nothing else
than the highest peak value occuring in the Bode plot.

The connection between time-domain and frequency-domain norms is most clearly expressed
in the following standard result.

Proposition 2.22 Let G ∈ H∞ be the transfer function of the asymptotically stable system
(2.2.1). Then for all initial conditions x(0) = x0, u ∈ L2 implies y ∈ L2 and with x(0) = 0
there holds that

‖G‖∞ = sup
u∈L2

‖y‖2

‖u‖2
.

Interpretation 2.23 For a stable system, the H∞ norm of its transfer function is the
L2-induced norm of the input-output operator associated with the system.
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This yields a simple relation between the Bounded Real Lemma, Lemma 2.20 and bounds
on the H∞ norm of transfer functions:

Proposition 2.24 If the system (2.2.1) is asymptotically stable then ‖G‖∞ < γ whenever
there exists a solution K = K� > 0 to the LMI(

A�K + KA + C�C KB + C�D
B�K + D�C D�D − γ2I

)
< 0. (2.3.2)

Proof. Apply Lemma 2.20 with x0 = 0, Qyy = I, Qyu = 0, Quy = 0 and Quu = −γ2I to
infer that the existence of a solution K > 0 to the LMI implies that for all u ∈ L2

‖y‖2
2 =

∫ ∞

0

y(t)�y(t)dt � (γ2 − ε)
∫ ∞

0

u(t)�u(t)dt

< γ2

∫ ∞

0

u(t)�u(t)dt = γ2‖u‖2
2.

Proposition 2.22 then yields that ‖G‖∞ < γ as desired.

Interpretation 2.25 We can compute the smallest possible upperbound of the L2-induced
gain of the system (which is the H∞ norm of the transfer function) by minimizing γ > 0
over all variables γ and K > 0 that satisfy the LMI (2.3.2).

2.3.2 H2 nominal performance

Consider the system (2.2.1) and suppose that we are interested only in the impulse responses
of this system. This means, that we take impulsive inputs1 of the form

u(t) = δ(t)ei

with ei the i − th basis vector in the standard basis of the input space Rm. (i runs from 1
till m). With zero initial conditions, the corresponding output yi belongs to L2 and is given
by

yi(t) =


C exp(At)Bei for t > 0
Deiδ(t) for t = 0
0 for t < 0

.

1Formally, the impulse δ is not a function and for this reason it is neither a signal. It requires a complete
introduction to distribution theory to make these statements more precise, but we will not do this at this
place.
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Only if D = 0, the sum of the squared norms of all such impulse responses is well defined
and given by

m∑
i=1

‖yi‖2
2 = trace

∫ ∞

0

B� exp(A�t)C�C exp(At)B dt

= trace
∫ ∞

0

C exp(At)BB� exp(A�t)C� dt

Long ago, Parseval taught us that the latter is equal to

1
2π

trace
∫ ∞

−∞
G(jω)G(jω)∗ dω (2.3.3)

where G is the transfer function of the system. The square root of this expression satisfies
the axioms of a norm of the transfer function G and we will refer to the square root of (2.3.3)
as the H2 norm of G.

Precisely, H2 is the class of complex valued functions which are analytic at �s > 0 and for
which

‖G‖2 :=

√
1
2π

sup
σ>0

trace
∫ ∞

−∞
G(σ + jω)[G(σ + jω)]∗ dω

is finite. This defines the H2 norm of G. As in H∞, it can be shown that each function in
H2 has a unique extension to the imaginary axis and that in fact the H2 norm is given by
the square root of (2.3.3). We have the following characterization of the H2 norm a transfer
function.

Proposition 2.26 Suppose that the system (2.2.1) is asymptotically stable and let G(s) =
C(Is − A)−1B + D denote its transfer function. Then

1. ‖G‖2 < ∞ if and only if D = 0.

2. The following statements are equivalent

(a) ‖G‖2 < γ

(b) there exists K = K� > 0 and Z such that(
A�K + KA KB

B�K −I

)
< 0;

(
K C�

C Z

)
> 0; trace(Z) < γ2 (2.3.4)

(c) there exists K = K� > 0 and Z such that(
AK + KA� KC�

CK −I

)
< 0;

(
K B
B� Z

)
> 0; trace(Z) < γ2. (2.3.5)
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Proof. The first claim is immediate from the definition of the H2 norm. To prove the
second part, note that ‖G‖2 < γ is equivalent to requiring that the controllability gramian
W :=

∫∞
0

exp(At)BB� exp(A�t) dt satisfies trace(CWC�) < γ2. Since the controllability
gramian is the unique positive definite solution to the Lyapunov equation AW + WA� +
BB� = 0 this is equivalent to saying that there exists X > 0 such that

AX + XA� + BB� < 0; trace(CXC�) < γ2.

With a change of variables K := X−1, this is equivalent to the existence of K > 0 and Z
such that

A�K + KA + KBB�K < 0; CK−1C� < Z; trace(Z) < γ2.

Now, using Schur complements for the first two inequalities yields that ‖G‖2 < γ is equiva-
lent to the existence of K > 0 and Z such that(

A�K + KA KB
B�K −I

)
< 0;

(
K C�

C Z

)
> 0; trace(Z) < γ2

which is (2.3.4) as desired. The equivalence with (2.3.5) is obtained by a direct dualization
and the observation that ‖G‖2 = ‖G�‖2.

Interpretation 2.27 The smallest possible upperbound of the H2-norm of the transfer
function can be calculated by minimizing the criterion trace(Z) over the variables K > 0
and Z that satisfy the LMI’s defined by the first two inequalities in (2.3.4) or (2.3.5).

2.3.3 Generalized H2 nominal performance

Consider again the system (2.2.1) and suppose that D = 0. Assuming that the system is
stable, any input u ∈ L2 yields an output y which has finite infinity (or amplitude) norm

‖y‖∞ := max
i=1,...,p

sup
t�0

‖yi(t)‖.

For fixed initial condition x(0) = 0 this system defines a mapping from inputs u ∈ L2 to
outputs y ∈ L∞ and we will be interested in the induced (or ‘energy to peak’ or ‘generalized
H2’ ) norm

sup
u∈L2

‖y‖∞
‖u‖2

.

The following result characterizes an upperbound on this quantity.

Proposition 2.28 Suppose that the system (2.2.1) is asymptotically stable and D = 0.
Then the L2-L∞ induced norm (or generalized H2 norm) is smaller than γ if and only if
there exists a solution K = K� > 0 to the LMI’s(

A�K + KA KB
B�K −I

)
< 0;

(
K C�

C γ2I

)
> 0 (2.3.6)
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Proof. Firstly, infer from Proposition 2.14 that the existence of K > 0 with(
A�K + KA KB

B�K −I

)
< 0

is equivalent to the dissipativity of the system (2.2.1) with respect to the supply function
s(u, y) = u�u. Equivalently, for all u ∈ L2 there holds

x(t)�Kx(t) �
∫ t

0

u(τ)�u(τ) dτ.

Secondly, using Schur complements, the LMI(
K C�

C γ2I

)
> 0

is equivalent to the existence of an ε > 0 such that C�C < (γ2 − ε2)K. Together, this yields
that for all t � 0

y(t)�y(t) = x(t)�C�Cx(t) � (γ − ε)x(t)�Kx(t) � (γ2 − ε2)
∫ t

0

u(τ)�u(τ) dτ.

Taking the supremum over t � 0 yields the existence of ε > 0 such that for all u ∈ L2

‖z‖2
∞ � (γ2 − ε2)‖u‖2

2.

Dividing by ‖u‖2
2 and taking the supremum over all u ∈ L2 then yields the result.

Interpretation 2.29 The smallest possible upperbound of the L2-L∞ gain of a system can
be calculated by minimizing γ over all variables γ and K > 0 for which the LMI’s (2.3.6)
are feasible.

2.3.4 L1 or peak-to-peak nominal performance

Consider the system (2.2.1) and assume again that the system is stable. For fixed initial
condition x(0) = 0 this system defines a mapping from bounded amplitude inputs u ∈ L∞
to bounded amplitude outputs y ∈ L∞ and a relevant performance criterion is the ‘peak-to-
peak’ or L∞-induced norm of this mapping

sup
u∈L∞

‖y‖∞
‖u‖∞

.

We just remark that this induced norm is equal to the L1 norm of the impulse response
of the system. The following result gives a sufficient condition for an upperbound γ of the
peak-to-peak gain of the system.
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Proposition 2.30 If there exists K > 0, λ > 0 and µ > 0 such that(
A�K + KA + λK KB

B�K −µI

)
< 0;

λK 0 C�

0 (γ − µ)I D�

C D γI

 > 0 (2.3.7)

then the peak-to-peak (or L∞ induced) norm of the system is smaller than γ.

Proof. The first inequality in (2.3.7) implies that

d

dt
x(t)�Kx(t) + λx(t)Kx(t) − µu(t)�u(t) < 0.

for all u and x for which ẋ = Ax + Bu. Now assume that x(0) = 0 and u ∈ L∞ with
‖u‖∞ � 1. Then, since K > 0 we obtain (pointwise in t � 0) that

x(t)�Kx(t) � µ

λ
.

Taking a Schur complement of the second inequality in (2.3.7) yields that(
λK 0
0 (γ − µ)I

)
− 1

γ − ε

(
C�

D�

)(
C D

)
> 0

so that, pointwise in t � 0 and for all ‖u‖∞ � 1 we can write

y(t)�y(t) � (γ − ε)[λx(t)�Kx(t) + (γ − µ)u(t)�u(t)]
� γ(γ − ε)

Consequently, the peak-to-peak gain of the system is smaller than γ.

Remark 2.31 We emphasize that Proposition 2.30 gives only a sufficient condition for an
upperbound γ of the peak-to-peak gain of the system. The minimal γ � 0 for which the there
exist K > 0, λ > 0 and µ � 0 such that (2.3.7) is satisfied is usually only an upperbound of
the real peak-to-peak gain of the system.

2.4 Quadratic Lyapunov functions

An important issue in the design of control systems involves the question to what extent
the stability and performance of the controlled system is robust against perturbations and
uncertainties in the parameters of the system. In this section we consider the linear system
defined by

ẋ = A(δ)x (2.4.1)

where the state matrix A(δ) is a function of a real valued parameter vector δ =
(
δ1, . . . , δk

)
∈

Rk. Let X = Rn be the state space of this system. If you like, you can think of this
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(autonomous) system as a feedback interconnection of a plant and a control system. We will
analyze the robust stability of the equilibrium point x∗ = 0 of this system. More precisely,
we analyze to what extent the equilibrium point x∗ = 0 is asymptotically stable when δ
varies in a prescribed set, say ∆, of uncertain parameters.

There are two particular cases of this robust stability problem that are of special interest.

1. the parameter vector δ is a fixed but unknown element of a parameter set ∆ ⊆ Rk.

2. the parameter vector δ is a time varying function δ : R → Rk which belongs to some
set ∆ of functions in (Rk)R. The differential equation (2.4.1) is then to be interpreted
as dx

dt (t) = A(δ(t))x(t).

The first case typically appears in models in which the physical parameters are fixed but
only approximately known up to some accuracy. Note that for these parameters (2.4.1)
defines a linear time-invariant system. The second case involves time-varying uncertain
parameters. For this case one can in addition distinguish between the situations where ∆
consists of one element only (known time varying perturbations) and the situation where ∆
is a higher dimensional set of time functions (arbitrary time varying perturbations). Robust
stability against time-varying perturbations is generally a more demanding requirement
for the system than robust stability against time-invariant parameter uncertainties. This,
because 2 is obviously a special case of 1. We will mainly consider the general case of
time-varying parametric uncertainties in the sequel.

Remark 2.32 We emphasize that in the case of constant uncertain parameters, the system
ẋ = A(δ)x is asymptotically stable if and only if the eigenvalues of A(δ) lie in the open
left-half complex plane for all admissible perturbations. However, we emphasize that such
a test of stability does not hold for time varying systems. In particular, for time-varying
perturbations it is not true that the asymptotic stability of ẋ(t) = A(δ(t))x(t) is equivalent
to the condition that the (time-varying) eigenvalues λ(A(δ(t))) belong to the stability region
C− for all admissible perturbations δ(·).

2.4.1 Quadratic stability

A sufficient condition for x∗ = 0 to be an asymptotically stable equilibrium point of (2.4.1)
is the existence of a quadratic Lyapunov function

V (x) = x�Kx

with K = K� > 0 such that

V̇ =
dV (x(t))

dt
� 0

along state trajectories x of (2.4.1) that originate in a neighborhood of the equilibrium
x∗ = 0.
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Definition 2.33 (Quadratic stability) The system (2.4.1) is said to be quadratically sta-
ble for perturbations ∆ if there exists a matrix K = K� > 0 such that

A(δ(t))�K + KA(δ(t)) < 0

for all perturbations δ ∈ ∆.

Interpretation 2.34 If the system (2.4.1) is quadratically stable for perturbations ∆ then
V (x) = x�Kx is a quadratic Lyapunov function for (2.4.1) for all δ ∈ ∆. By Proposition 1.38
the existence of a quadratic Lyapunov function implies that the equilibrium point x∗ = 0 is
asymptotically stable. Quadratic stability for perturbations ∆ is therefore equivalent to the
existence of a quadratic Lyapunov function V (x) = x�Kx, K > 0 such that

dV (x(t))
dt

= x�[A(δ(t))�K + KA(δ(t))]x < 0

for all δ ∈ ∆.

Note that in general quadratic stability of the system for an uncertainty class ∆ places an
infinite number of constraints on the symmetric matrix K. It is the purpose of this section to
make additional assumptions on the way the uncertainty enters the system, so as to convert
the robust stability problem into a numerically tractable problem.

2.4.2 Quadratic stability of affine models

Suppose that the state matrix A(δ) is an affine function of the parameter vector δ. That is,
suppose that there exist real matrices A0, . . . Ak all of dimension n × n such that

A(δ(t)) = A0 + δ1(t)A1 + . . . + δk(t)Ak

for all δ ∈ ∆. This is refered to as an affine parameter dependent model. Note that these
do not impose restrictions on the rate of changes in the parameters, i.e., arbitrary fast time
variations in the parameters are allowed.

Suppose that the uncertain parameters δj(t), j = 1, . . . , k, t ∈ R assume their values in an
interval [δj , δ̄j ], i.e.,

δj(t) ∈ [δj , δ̄j ].

This means that the uncertainty of each independent parameter is assumed to be bounded
between two extremal values. Define the set of corners of the uncertainty region as

∆0 := {δ =
(
δ1, . . . , δk

)
| δj ∈ {δj , δ̄j} } (2.4.2)

and observe that this set has a finite number of elements.
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Proposition 2.35 If (2.4.1) is an affine parameter dependent model then it is quadratically
stable if and only if there exists K > I such that

A(δ)�K + KA(δ) < 0

for all δ ∈ ∆0.

Proof. The proof of this result is an application of Proposition 1.19 in Chapter 1. Indeed,
fix x ∈ Rn and consider the mapping fx : ∆ → R defined by

fx(δ) := x�[A(δ(t))�K + KA(δ(t))]x.

The domain ∆ of this mapping is a convex set and by definition of ∆0, it is the convex hull
of ∆0, i.e., ∆ = co(∆0). Further, since A(δ) is an affine function of δ it follows that fx(δ) is
a convex function of δ. In particular, Proposition 1.19 yields that fx(δ) < 0 for all δ ∈ ∆ if
and only if fx(δ) < 0 for all δ ∈ ∆0. Since x is arbitrary it follows that

A(δ(t))�K + KA(δ(t)) < 0, δ ∈ ∆

if and only if
A(δ(t))�K + KA(δ(t)) < 0, δ ∈ ∆0

which yields the result.

Obviously, the importance of this result lies in the fact that quadratic stability can be
concluded from a finite test of matrix inequalities. Note that the condition stated in Propo-
sition 2.35 is a feasibility test of a (finite) system of LMI’s.

2.4.3 Quadratic stability of polytopic models

A second case of interest amounts to considering uncertainty defined by convex combinations
of the form

A(δ(t)) = α1(t)A1 + αk(t)Ak (2.4.3)

where αj(t) � 0 and
∑k

j=1 αj(t) = 1 for all t ∈ R. Here, A1, . . . , Ak are fixed real matrices
of dimension n×n and the αj are to be interpreted as coefficients of a convex decomposition
of the uncertain time-varying matrix A(δ(t)) over the set of vertices (A1, . . . , Ak), that is for
all δ ∈ ∆ and t ∈ R we assume the existence of coefficients αj(t) � 0 with

∑k
j=1 αj(t) = 1

such that (2.4.3) holds. We refer to such a model as a polytopic model. The state matrix of
a polytopic model is therefore equivalently specified as

A(δ(t)) ∈ co(A1, . . . , Ak)

for all time-varying perturbations δ ∈ ∆. In particular, these polytopic models do not impose
restrictions on the rate of changes in the parameters, i.e., arbitrarily fast time variations in
the parameters are allowed. The main result concerning quadratic stabilization of a class of
uncertain polytopic models is as follows.
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Proposition 2.36 If (2.4.1) is a polytopic parameter dependent model where A(δ(t)) ∈
co(A1, . . . , Ak) for all δ ∈ ∆ then it is quadratically stable if and only if there exists K > I
such that

A�
i K + KAi < 0

for all i = 1, . . . , k.

Instead of proving Proposition 2.36 (See exercise 6 below) it is useful to understand the
relation between Proposition 2.35 and Proposition 2.36. In fact, the class of affine models
as introduced in the previous subsection can be converted to a class of polytopic models.
To see this, suppose that the map A : ∆ → Rn×n with

∆ := {
(
δ1, . . . , δk

)
| δj ∈ [δj , δ̄j ], j = 1, . . . , k} (2.4.4)

is affine. Let ∆0 be the set of corners as defined in (2.4.2). Then ∆0 has dimension 2k and
since ∆ = co(∆0) we have

A(co(∆0)) = A(∆) = {A(δ) | δ ∈ ∆} = co{A(δ) | δ ∈ ∆0} = co(A(∆0)).

The ‘corner elements’ δ ∈ ∆0 in the parameter space are mapped by A onto a set of vertices
A(δ), δ ∈ ∆0 of a polytopic model. In other words, the affine model ẋ = A(δ)x with
δ ∈ ∆ = co(∆0) can equivalently be viewed as a polytopic model where A(δ) ∈ co(A(∆0)).

2.5 Parameter dependent Lyapunov functions

The main disadvantage in searching one quadratic Lyapunov function for a class of uncertain
models is the conservatism of the test to prove stability of a class of models. Indeed, the test
of quadratic stability does not discriminate between systems that have slow time-varying
parameters and systems whose dynamical characteristics quickly vary in time. To reduce
conservatism of the quadratic stability test we will consider quadratic Lyapunov functions
for the system (2.4.1) which are parameter dependent, i.e., Lyapunov functions of the form

V (x) = x�K(δ)x

where the Lyapunov matrix K(δ) is allowed to dependent on the uncertain parameter δ.
More specifically, we will be interested in Lyapunov functions that are affine in the parameter
δ, i.e.,

K(δ) = K0 + δ1K1 + . . . + δkKk

where K0, . . . , Kk are real matrices of dimension n × n and δ =
(
δ1 . . . δk

)
. Clearly, with

K1 = K2 = . . . = Kk = 0

we are back to the case of parameter independent quadratic Lyapunov functions as discussed
in the previous section.
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Definition 2.37 (Affine quadratic stability) The system (2.4.1) is called affinely quadrat-
ically stable if there exists matrices K0, . . . , Kk such that

K(δ) := K0 + δ1K1 + . . . δkKk > I (2.5.1a)

A(δ)�K(δ) + K(δ)A(δ) +
dK(δ)

dt
< 0 (2.5.1b)

for all δ ∈ ∆.

Interpretation 2.38 The affine function K(δ) which satisfies (2.5.1) for all δ ∈ ∆ defines
a quadratic Lyapunov function

V (x, δ) = x�K(δ)x

for the system (2.4.1). Indeed, from (2.5.1) we infer that V (x, δ) > 0 for all x �= 0 and

dV (x(t)
dt

= x�
(

A(δ)�K(δ) + K(δ)A(δ)
dK(δ)

dt

)
x < 0

for all non-zero x so that the equilibrium point x∗ = 0 is (globally) asymptotically stable if
the conditions (2.5.1) are satisfied.

Remark 2.39 As in the previous section, we emphasize that the conditions (2.5.1) impose
in general an infinite number of constraints on the matrices K0, . . . , Kk.

Given a system (2.4.1) with a set ∆ of uncertain parameters the affine quadratic stabilization
problem therefore amounts to finding matrices K0, . . . Kk such that the conditions (2.5.1) are
satisfied. In solving this problem we will distinguish between the two cases of time-invariant
and time-varying uncertainty descriptions as introduced in section 2.4.

2.5.1 Time-invariant uncertainty

If the uncertainty set ∆ ⊂ Rk contains constant uncertain parameters then obviously the
Lyapunov matrix K(δ) does not vary in time, so that for any δ ∈ ∆ we have that

dK(δ)
dt

= 0

in (2.5.1b). We can therefore guarantee affine quadratic stability of the system ẋ = A(δ)x
with δ ∈ ∆ if we can find matrices K0, . . . , Kk such that (2.5.1a) and

A(δ)�K(δ) + K(δ)A(δ) < 0

hold for all δ ∈ ∆. Let the uncertainty set ∆ again be a convex set as defined in (2.4.4) and
let ∆0 be the corresponding set of vertices as defined in (2.4.2). Note that the expression

L(δ) := A(δ)�K(δ) + K(δ)A(δ)
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is in general not affine in δ not even when A is an affine mapping. As a consequence, for
fixed x ∈ Rn, the function fx : ∆ → R defined by

fx(δ) := x�L(δ)x (2.5.2)

is in general not convex so that the negativity of the function fx at ∆ is not equivalent to
its negativity at the vertices ∆0 of ∆.

To achieve that fx is a convex function (for any x ∈ Rn) we will impose additional con-
straints. Suppose that both the system matrix A(δ) and the Lyapunov matrix K(δ) are
affine in δ. Expanding L(δ) then yields

L(δ) = [A0 +
k∑

j=1

δjAj ]�[K0 +
k∑

j=1

δjKj ] + [K0 +
k∑

j=1

δjKj ][A0 +
k∑

j=1

δjAj ]

= A�
0 K0 + K0A0 +

k∑
j=1

δj [A�
j K0 + K0Aj + A�

0 Kj + KjA0]

+
k∑

j=1

j−1∑
i=1

δiδj [A�
i Kj + KjAi + A�

j Ki + KiAj ] +
k∑

j=1

δ2
j [A�

j Kj + KjAj ].

Now, let x ∈ Rn be fixed and consider the function fx as defined in (2.5.2). Then for any
δ ∈ ∆ this function takes the form

fx(δ) = c0 +
k∑

j=1

δjcj +
k∑

j=1

j−1∑
i=1

δiδjcij +
k∑

j=1

δ2
j dj

where c0, cj , cij and dj are constants. A sufficient condition for the implication

{fx(δ) < 0 for all δ ∈ ∆0} ⇒ {fx(δ) < 0 for all δ ∈ ∆}

is that fx(δ1, . . . , δj , . . . , δk) is convex in each of its arguments δj , j = 1, . . . , k. This is the
case when

dj =
∂2fx

∂δ2
j

(δ) = x�[A�
j Kj + KjAj ]x � 0

for j = 1, . . . , k. Since x is arbitrary, we obtain that

A�
j Kj + KjAj � 0, j = 1, . . . , k

is a sufficient condition to infer the negativity of fx over the uncertainty set ∆ from the
negativity of fx at the vertices ∆0 of ∆. This leads to the following main result.

Proposition 2.40 If (2.4.1) is an affine parameter dependent model and ∆ ⊂ Rk is the
uncertainty set defined in (2.4.4) then the system ẋ = A(δ)x, δ ∈ ∆ is affinely quadratically
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stable if there exist real matrices K0, . . . , Kk such that

A(δ)�K(δ) + K(δ)A(δ) < 0 for all δ ∈ ∆0 (2.5.3a)
K(δ) > I for all δ ∈ ∆0 (2.5.3b)

A�
i K + KAi < 0 for i = 1, . . . , k (2.5.3c)

Here, A(δ) = A0 +
∑k

j=1 δjAj and K(δ) = K0 +
∑k

j=1 δjKj. Moreover, in that case
V (x, δ) := x�K(δ)x is a quadratic parameter-dependent Lyapunov function of the system.

Proof. It suffices to prove that (2.5.3) implies (2.5.1) for all δ ∈ ∆. Let x be a non-zero
fixed but arbitrary element of Rn. Since K(δ) is affine in δ, the mapping

δ → x�K(δ)x

with δ ∈ ∆ is convex. Consequently, x�[K(δ) − I]x is larger than zero for all δ ∈ ∆ if it
is larger than zero for all δ ∈ ∆0. As x is arbitrary, this yields that (2.5.1a) holds for all
δ ∈ ∆ whenever (2.5.3b) holds. Since for time-invariant perturbations dK(δ)/dt = 0 it now
suffices to prove that (2.5.3a) and (2.5.3c) imply that (2.5.1b) holds for all δ ∈ ∆. This
however, we showed in the arguments preceding the proposition.

Interpretation 2.41 Proposition 2.40 reduces the problem to verify affine quadratic stabil-
ity of the system (2.4.1) to a feasibility problem of a (finite) set of linear matrix inequalities.
The latter problem is a numerically tractable one and is readily implemented in the LMI
toolbox.

2.5.2 Time varying uncertainty

We conclude this section with a result on robust stability of the system (2.4.1) for time-
varying parameters. Let the uncertainty set ∆ be defined as

∆ :=
{

(δ1, . . . , δk) : R → Rk | δj is differentiable and for all t ∈ R,

δj(t) ∈ [δj , δ̄j ], and

δ̇j(t) ∈ [λj , λ̄j ]
}

. (2.5.4)

This means that we assume the uncertain parameters to have bounded variation and bounded
rate of variation. We further introduce the vertex sets

∆0 :=
{
(δ1, . . . , δk) : R → Rk | δj ∈ {δj , δ̄j}

}
Λ0 :=

{
(λ1, . . . , λk) : R → Rk | λj ∈ {λj , λ̄j}

}
.

Thus ∆0 represents the vertices of the convex hull in which the uncertain parameters take
their values, whereas Λ0 is a set of vertices whose convex hull represents the admissible rates
of variation of the parameters.
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Remark 2.42 There are two extreme cases of uncertainty sets (2.5.4) worth mentioning.
Firstly, if the rate of variation of the uncertain parameter δj is set to zero, δj represents a
constant, time-invariant perturbation as treated in the previous section. If all perturbations
are known to be time-invariant then λj = λ̄j = 0 for j = 1, . . . , k in which case Λ0 becomes
a singleton. Secondly, arbitrarily fast perturbations of δj are obtained by putting λj = −∞
and λ̄j = ∞.

] The reason for considering this type of uncertainty sets lies in the fact that the last term
in the left-hand side of (2.5.1b) can be evaluated exactly whenever the Lyapunov matrix
K(δ) is affine in δ. Specifically, if K(δ) is affine in δ we infer that

dK(δ)
dt

= δ̇1K1 + . . . + δ̇kKk = K(δ̇) − K0

which is an affine function in δ̇. The main result is now as follows.

Proposition 2.43 If (2.4.1) is an affine parameter dependent model and ∆ is the uncer-
tainty set as defined in (2.5.4) then the system ẋ = A(δ)x, δ ∈ ∆ is affinely quadratically
stable if there exist real matrices K0, . . . , Kk such that

A(δ)�K(δ) + K(δ)A(δ) + K(λ) < K0 for all δ ∈ ∆0 and λ ∈ Λ0 (2.5.5a)
K(δ) > I for all δ ∈ ∆0 (2.5.5b)

A�
i K + KAi < 0 for i = 1, . . . , k (2.5.5c)

Here, A(δ) = A0 +
∑k

j=1 δjAj and K(δ) = K0 +
∑k

j=1 δjKj. Moreover, in that case
V (x, δ) := x�K(δ)x is a quadratic parameter-dependent Lyapunov function of the system.

Proof. The proof of this proposition is basically a generalization of the proof of Propo-
sition 2.40 to the time-varying case. First fix λ ∈ Rk. Then a similar argument as in the
proof of Proposition 2.40 yields that (2.5.5) implies

K(δ) > I

A(δ)�K(δ) + K(δ)A(δ) + K(λ) − K0 < 0

for all δ ∈ ∆. Since K(λ) is affine in λ and this last inequality holds for any λ ∈ Λ0 we
conclude from the definition of ∆ that (2.5.5) implies

K(δ) > I

A(δ)�K(δ) + K(δ)A(δ) + K(δ̇) − K0 < 0

for all δ ∈ ∆. Now use that K(δ̇ − K0 = dK(δ)/dt to conclude that (2.5.1) holds for all
δ ∈ ∆ which implies the affine quadratic stability of the system.
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Interpretation 2.44 Proposition 2.43 reduces the problem to verify affine quadratic stabil-
ity of the system ẋ(t) = A(δ(t))x(t) with time-varying perturbations (2.5.4) to a feasibility
test of a finite set of LMI’s.

Remark 2.45 It is interesting to compare the numerical complexity of the conditions of
Proposition 2.40 with the conditions mentioned in Proposition 2.43. If the uncertainty
vector δ is k-dimensional then the vertex set ∆0 has dimension 2k so that the verification
of conditions (2.5.3) requires a feasibility test of

2k + 2k + k

linear matrix inequalities. In this case, also the vertex set Λ0 has dimension 2k which implies
that (2.5.5) requires a feasibility test of

22k + 2k + k + 1 = 4k + 2k + k

linear matrix inequalities.

2.5.3 Some software aspects

In Matlab both affine and polytopic models are implemented with the routine psys. With
k = 2 the syntax is

• affmodel = psys( pv, [S0, S1, S2] ) for the specification of affine models and

• polmodel = psys( [S1, S2] ) for the specification of polytopic models.

Here, pv is a parameter vector which is supposed to be specified by the routine pvec, i.e.,

pv = pvec(’box’, [ d1min d1max; d2min d2max]);

which implements the ranges of the uncertain parameters. S0, S1 and S2 are system matrices
which are supposed to be defined by expressions of the form

S0 = ltisys(A0, B0, C0, D0, E0);
S1 = ltisys(A1, B1, C1, D1, E1);
S2 = ltisys(A2, B2, C2, D2, E2);

where (Ai, Bi, Ci,Di, Ei) define the state space parameters of the model2

Eiẋ = Aix + Biu; y = Cix + Diu. (2.5.6)
2The matrix Ei in the state space descriptions was introduced to handle descriptor systems in the LMI

toolbox. By default the E-entries are put to the identity matrix if you omit the last argument.
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Remark 2.46 The presence of the E matrix in the system representations of the LMI
toolbox can be pretty disturbing. In particular, an affine combination of models of the form
(2.5.6) with i = 0, . . . , k results in a model

Eẋ = Ax + Bu; y = Cx + Du

where

E = E0 +
k∑

i=1

δiEi;

A = A0 +
k∑

i=1

δiAi; B = B0 +
k∑

i=1

δiBi

C = C0 +
k∑

i=1

δiCi; D = D0 +
k∑

i=1

δiDi.

If E is supposed to be independent of parameter variations then you need to explicitly set
E1 = . . . = Ek = 0.

Information concerning the implemented models and parameter vectors can be retrieved via
the routines psinfo and pvinfo, respectively. The routine

aff2pol

converts affine models to polytopic ones and the routine

quadstab

tests the quadratic stability of the affine or polytopic models. With model denoting either
the affine system affmodel or the polytopic system polmodel, the syntax is

• quadstab(model) to verify the quadratic stability of model

• [t,K] = quadstab(model) to calculate a quadratic Lyapunov function V (x) = x�Kx
for the class of models specified in model.

Parameter dependent Lyapunov functions can be calculated with the procedure pdlstab.
For k = 2 the syntax is

[t,Q0,Q1,Q2]=pdlstab(affmodel)
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where affmodel is as an affine model as specified above. This results in the parameter
dependent function

Q(δ) := Q0 + δ1Q1 + δ2Q2

which defines the Lyapunov function

V (x, δ) := x�Q(δ)−1x

for the uncertain system affmodel. Note that the LMI toolbox therefore computes the
inverses of our Lyapunov function K(δ). For more details on the software we refer to the
corresponding help files in the LMI toolbox.

2.6 Further reading

The material on dissipative systems originates from [47, 48] and has been further developed
in [42] and [44, 45]. The material on quadratic stability and parameter dependent Lyapunov
functions has been documented in the papers [5, 6].

2.7 Exercises

Exercise 1

Show that for conservative controllable systems the set of normalized storage functions V(x∗)
consist of one element only. (Consequently, storage functions of conservative or lossless
systems are unique up to normalization! ).

Exercise 2

Show that the set of dissipation functions associated with a dissipative system is convex.

Exercise 3

Suppose that

ẋ = Ax + Bu

y = Cx + Du

is a minimal (i.e. controllable and observable) representation of a linear time-invariant dy-
namical system Σ. Show that Σ is stable (in the sense that ẋ = Ax is Lyapunov stable)
whenever Σ is dissipative with respect to the supply function s(u, y) = y�u.



68 Dissipativity and robustness analysis

Exercise 4

Consider the suspension system Σ of Exercise 4 in Chapter 1 with the nominal system
parameters as given in Table 1.1.

1. Derive a state space model of the form 2.2.1 of the system which assumes

u =
(

q0

F

)
; y =


q1

q̇1

q2

q̇2


as its input and output, respectively.

2. Define a supply function s : U × Y → R such that (Σ, s) is dissipative. (Base your
definition on physical insight).

3. Characterize the set of all quadratic storage functions of the system as the feasibility
set of a linear matrix inequality.

4. Use the Matlab routine feasp to compute a quadratic storage function V (x) = x�Kx
of this system. (Use the routine lmiedit to implement the linear matrix inequality in
Matlab.

5. Use Matlab to determine a dissipation function d : X × U → R for this system.

Exercise 5

Consider the transfer functions

1. G1(s) = 1/(s + 1)

2. G2(s) = (s − 1)/(s + 1)

3. G3(s) =
(

(s + 2)(s − 1)/(s + 1)2 (s + 3)/(s + 4)
(s − 1)/(s + 0.5) (s + 1)/(s + 2)

)
.

Determine for each of these transfer functions

1. whether or not they are positive real

2. their L2-induced norm

Reformulate this problem as a feasibility test involving a suitably defined LMI (See Corol-
lary 2.17 and Corollary 2.19 of this chapter).
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Exercise 6

Give a proof of Proposition 2.36.

Exercise 7

Time-invariant perturbations and arbitrary fast perturbations can be viewed as two extreme
cases of time-varying uncertainty sets of the type (2.5.4). (See Remark 2.42). These two
extreme manifestations of time-varying perturbations reduce Proposition 2.43 to two special
cases.

1. Show that the result of Proposition 2.40 is obtained as a special case of Proposition 2.43
if

λj = λ̄j = 0; j = 1, . . . , k.

2. Show that if
λj = −∞, λ̄j = ∞; j = 1, . . . , k.

then the matrices K0, . . . , Kk satisfying the conditions of Proposition 2.43 necessarily
satisfy K1 = . . . = Kk = 0.

The latter property implies that with arbitrary fast perturbations the only affine parameter-
dependent Lyapunov matrices K(δ) = K0+

∑k
j=1 δjKj are the constant (parameter-independent)

ones. It is in this sense that Propostion 2.43 reduces to Proposition 2.35 for arbitrarily fast
perturbations.

Exercise 8

Consider the suspension system Σ of Figure 2.1. and suppose that the road profile q0 = 0

m2

m1

�

�
b2 k2 F

k1

�

�

�

q2

q1

q0
�

b1

Figure 2.1: Model for suspension system

and the active suspension force F = 0. Here, b1 and b2 denote the tire damping and the
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suspension damping and k1 and k2 denote the tire stiffness and the suspension stiffness,
respectively. This system is modeled by the equations

m2q̈2 + b2(q̇2 − q̇1) + k2(q2 − q1) = 0
m1q̈1 + b2(q̇1 − q̇2) + k2(q1 − q2) + k1q1 + b1q̇1 = 0

The nominal values of the parameters defining this system are given in Table 2.1. The tire

m1 [kg] m2 [kg] k1 N/m k2 N/m b1 Ns/m b2 Ns/m
1.5 × 103 1.0 × 104 5.0 × 106 7.5 × 104 − 50 × 104 0.5 × 103 − 1.0 × 104 5.0 × 104

Table 2.1: Physical parameters

damping b1 and the suspension stiffness k2 are supposed to be uncertain parameters with
ranges indicated in Table 2.1. Let

δ =
(

b1

k2

)
be the vector containing the uncertain physical parameters.

1. Let x =
(
q1 q2 q̇1 q̇2

)� denote the state of this system and write this system in the
form (2.4.1). Verify whether A(δ) is affine in the uncertainty parameter δ.

2. Use Proposition 2.35 to verify whether this system is quadratically stable. If so, give
a quadratic Lyapunov function for this system.

3. Calculate vertex matrices A1, . . . , Ak such that

A(δ) ∈ co(A1, . . . , Ak)

for all δ satisfying the specifications of Table 2.1.

4. Suppose that b1 and k2 are time-varying and that their rates of variations satisfy

|ḃ1| � β (2.7.1a)

|k̇2| � κ (2.7.1b)

where β = 1 and κ = 3.7. Use Proposition 2.43 to verify whether there exists a
parameter dependent Lyapunov function that proves affine quadratic stability of the
uncertain system. If so, give such a Lyapunov function.

5. Suppose that

b1(t) = bnominal
1 (1 + δ0(t)) (2.7.2a)

k2(t) = knominal
2 (1 + δ0(t)) (2.7.2b)
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where bnominal
1 = 5250 Ns/m and knominal

2 = 28.75× 104 N/m (the average values of b1

and k2, respectively).

The parameter margin is defined as the largest number δmargin > 0 such that the
system ẋ(t) = A(δ(t))x(t) is affinely quadratically stable for all perturbations

δ ∈ ∆ := {(b1, k2) : R → R2 | (2.7.1) and (2.7.2) hold for all |δ0(t)| � δmargin}.

Our aim is to evaluate the parameter margin δmargin as function of β and κ. Suppose
that β = 0 and make a plot of the function

κ → δmargin

where the rate of variation of the stiffness κ ranges from 10−2 till 102.

6. Similarly, assume that κ = 0 and make a plot of the function

β → δmargin

where the rate of variation of the tire damping β ranges from 10−1 till 10. What are
your conclusions?
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Chapter 3

Analysis of Input-Output
Behavior

3.1 Basic Notions

The main concern in control theory is to study how signals are processed by dynamical
systems and how this processing can be influenced to achieve a certain desired behavior.

For that purpose one has to specify the signals (time series, trajectories) which are of interest.
This is done by deciding on the set of values which the signals can take (such as Rn) and on
the time set on which they are considered (such as the full time axis R, the half axis [0,∞)
or the corresponding discrete time versions Z and N).

A dynamical system is then nothing but a mapping that assigns to a certain input signal an
output signal (sorry, Jan!). Very often, such a mapping is defined by a differential equation
with a fixed initial condition or by an integral equation, such that one considers systems or
mappings with a specific description or representation.

The first purpose of this section is to discuss stability properties of systems in the general
setting. In a second step we specify the system representations and investigate in how far
one can obtain refined results which are amenable to computational techniques.

Note that we take a specialized point of view by considering a system as a mapping of signals.
It is not very difficult to extend our results to a more general setting by viewing a system as
a subset of signals or, in the modern language, as a behavior. Note that this point of view
has been adopted also in the older literature on input-output stability where systems are
relations instead of mappings. Obviously, if there is no clear cause-effect between signals,

73
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this latter viewpoint is more appropriate.

To be concrete let us now specify the signal class. We denote by Ln the set of all mappings
x : [0,∞) → Rn that are Lebesgue-measurable. Without bothering too much about the
exact definition, one should recall that all piece-wise continuous signals are contained in Ln.

For any x ∈ Ln one can calculate the integral in

‖x‖2 := 2

√∫ ∞

0

‖x(t)‖2 dt

of the signal x; ‖x‖2 is either finite or infinite. If we collect all signals with a finite value,
we arrive at the space

Ln
2 := {x ∈ Ln : ‖x‖2 < ∞}.

It can be shown that Ln
2 is a linear space, that ‖.‖2 is a norm on Ln

2 , and that Ln
2 is complete.

Mathematically, Ln
2 is a Banach space. ‖x‖2 is often called the energy of the signal x.

Remark. If the number of components n of the underlying signals is understood from the
context or irrelevant, we simply write L2 instead of Ln

2 .

There is an additional structure. Indeed, define the bilinear form

〈x, y〉 =
∫ ∞

0

x(t)T y(t) dt

on Ln
2 × Ln

2 . Bilinearity just means that 〈., y〉 is linear for each y ∈ Ln
2 and 〈x, .〉 is linear

for each x ∈ Ln
2 . It is not difficult to see that 〈., .〉 defines an inner product. Moreover,

the norm on Ln
2 results from this inner product as ‖x‖2

2 = 〈x, x〉. Therefore, Ln
2 is in fact a

Hilbert space.

For any x ∈ Ln
2 one can calculate the Fourier transform x̂ which is a function mapping the

imaginary axis C0 into Cn such that∫ ∞

−∞
x̂(iω)∗x̂(iω) dω is finite.

Indeed, a fundamental results in the theory of the Fourier transformation on L2-spaces, the
so-called Parseval theorem, states that∫ ∞

0

x(t)T y(t) dt =
1
2π

∫ ∞

−∞
x̂(iω)∗ŷ(iω) dω.

(Note that the Fourier transform x̂ has, in fact, a unique continuation into C0 ∪ C+ that
is analytic in C+. Hence, x̂ is not just an element of L2(C0, Cn) but even of the sub-
space H2(C+, Cn), one of the Hardy spaces. Indeed, one has L2(C0, Cn) = H2(C−, Cn) +
H2(C+, Cn), the sum on the right is direct, and the two spaces are orthogonal to each other.
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This corresponds via the Payley-Wiener theorem to the orthogonal direct sum decomposi-
tion L2(R, Cn) = L2((−∞, 0], Cn) + L2([0,∞), Cn). This is only mentioned for clarification
and not required later. The beautiful mathematical background is excellently exposed in
[28].)

Stability of systems will be, roughly speaking, related to the property that it maps any signal
in L2 into a signal that is also contained in L2. Since we also need to deal with unstable
systems, we cannot confine ourselves to signals with finite L2-norm. Hence we introduce a
larger class of signals that have finite energy over finite intervals only.

For that purpose it is convenient to introduce for each T � 0 the so-called truncation operator
PT : It assigns to any signal x ∈ Ln the signal PT x that is identical to x on [0, T ] and that
vanishes identically on (T,∞):

PT : Ln → Ln, (PT x)(t) :=
{

x(t) for t ∈ [0, T ]
0 for t ∈ (T,∞)

Note that Ln is a linear space and that PT is a linear operator on that space with the
property PT PT = PT . Hence PT is a projection.

Now it is easy to define the space Ln
2e. It just consists of all signals x ∈ Ln such that PT x

has finite energy for all T � 0:

Ln
2e := {x ∈ Ln : PT x ∈ Ln

2 for all T � 0}.

Hence any x ∈ Ln
2e has the property that

‖PT x‖2 =
∫ T

0

‖x(t)‖2 dt

is finite for every T . (This is nothing but an integrability condition.) Note that ‖PT x‖2

does not decrease if T increases. Therefore, ‖PT x‖2 viewed as a function of T either stays
bounded for T → ∞, such that it converges, or it is unbounded, such that it diverges to ∞.
We conclude for x ∈ L2e: ‖PT x‖2 is bounded (i.e. there exists a K such that ‖PT x‖2 � K
for all T � 0) iff x is contained in L2. Moreover,

x ∈ Ln
2 implies ‖x‖2 = lim

T→∞
‖PT x‖2.

A dynamical system S is a mapping

S : Lk
2e → Ll

2e.

The system S is causal if

PT S(u) = PT S(PT u) for all T � 0, u ∈ Lk
2e.

It is easily seen that PT S = PT SPT is equivalent to the following more intuitive fact: If
u1 and u2 are two input signals that are identical on [0, T ], PT u1 = PT u2, then Su1 and
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Su2 are also identical on [0, T ], PT S(u1) = PT S(u2). In other words, the future values of
the inputs do not have an effect on the past outputs. This matches the intuitive notion of
causality.

Our main interest in this abstract setting is to characterize invertibility and stability of a sys-
tem. Among the many possibilities to define stability of a system, two concepts have turned
out to be of prominent importance: the finite gain and finite incremental gain property of a
system.

Definition 3.1 The L2-gain of the system S : Lk
2e → Ll

2e is defined as

‖S‖2 := sup{‖PT S(u)‖2

‖PT u‖2
| u ∈ Lk

2e, T � 0, ‖PT u‖2 �= 0} =

= inf{γ ∈ R | ∀u ∈ Lk
2e, T � 0 : ‖PT S(u)‖2 � γ‖PT u‖2}.

If ‖S‖2 < ∞, S is said to have finite L2-gain.

(Why does the equality in the definition of ‖S‖2 hold?) Clearly, S has finite L2-gain iff there
exists a real γ > 0 such that

‖PT S(u)‖2 � γ‖PT u‖2 for all T � 0, u ∈ Lk
2e. (3.1.1)

If S has finite L2-gain, we conclude

‖S(u)‖2 � γ‖u‖2 for all u ∈ Lk
2 . (3.1.2)

Hence, if the input has finite energy, then the output has finite energy and the output
energy is bounded by a constant times the input energy. If S is causal, the converse is
true: then (3.1.2) implies (3.1.1). Indeed, causality implies ‖PT S(u)‖2 = ‖PT S(PT u)‖2 �
‖S(PT u)‖2 and (3.1.2) shows (since PT u is in Lk

2) that ‖S(PT u)‖2 � γ‖PT u‖2. Combining
both inequalities gives (3.1.1).

If S is causal, we hence infer

‖S‖2 = sup
u∈L2, ‖u‖2>0

‖S(u)‖2

‖u‖2
.

The L2-gain of S is the worst amplification of the system if measuring the size of the input-
and output-signals by their L2-norm.

For nonlinear systems it is often more relevant to investigate how the increment S(u1)−S(u2)
relates to the increment of the input signals u1−u2. Indeed, one wishes to have the outputs
close to each other if the inputs are close what amounts to a certain continuity property.
We arrive at the notion of incremental L2-gain.

Definition 3.2 The incremental L2-gain of the system S : Lk
2e → Ll

2e is defined as

‖S‖2i := sup{‖PT S(u1) − PT S(u2)‖2

‖PT u1 − PT u2‖2
| u1, u2 ∈ Lk

2e, T � 0, ‖PT u1 − PT u2‖2 �= 0} =

= inf{γ ∈ R | ∀u1, u2 ∈ Lk
2e, T � 0 : ‖PT S(u1) − PT S(u2)‖2 � γ‖PT u1 − PT u2‖2}.
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If ‖S‖2i < ∞, S is said to have finite incremental L2-gain.

Similarly as before, the system S has finite incremental L2-gain if there exists a real γ > 0
such that

‖PT S(u1) − PT S(u2)‖2 � γ‖PT u1 − PT u2‖2 for all T � 0, u1, u2 ∈ Lk
2e. (3.1.3)

This reveals
‖S(u1) − S(u2)‖2 � γ‖u1 − u2‖2 for all u1, u2 ∈ Lk

2 . (3.1.4)

If S is causal, (3.1.4) implies (3.1.3). Moreover, for causal S, we have

‖S‖2i = sup
u1,u2∈L2, ‖u1−u2‖2>0

‖S(u1) − S(u2)‖2

‖u1 − u2‖2
.

If S is linear, it is obvious that
‖S‖2 = ‖S‖2i

and, hence, S has finite L2-gain iff it has finite incremental L2-gain. Only for nonlinear
systems, the two notions are different. Even for nonlinear S, on can related both concepts
if S(0) = 0; then one has

‖S‖2 � ‖S‖2i;

hence S has finite L2-gain if it has finite incremental L2-gain. The converse is, in general,
not true. (Construct an example!)

In the remainder, stability of S will be mostly related to the property that S has finite
L2-gain or finite incremental L2-gain.

All these concepts can be extended in literally the same fashion to all Lp-spaces for 1 � p �
∞. Let us briefly comment on p = ∞ since it will emerge later. The space Ln

∞ is constructed
on the basis of

‖x‖∞ = ess supt�0 ‖x(t)‖ for x ∈ Ln.

(We don’t discuss the exact definition of the essential supremum. For piece-wise continuous
and right-continuous signals x ∈ Ln, the essential supremum is nothing but supt�0 ‖x(t)‖.)
Contrary to what is often done in the literature, we use the Euclidean norm ‖x(t)‖2 =
x(t)T x(t) to measure the size of the real vector x(t) ∈ Rn. Now Ln

∞ is defined as

Ln
∞ := {x ∈ Ln | ‖x‖∞ < ∞.}

It is well-known that Ln
∞ with the norm ‖.‖∞ defines a Banach space. The space Ln

∞e and
the L∞-gain or incremental L∞-gain ‖S‖∞ or ‖S‖∞i for a system S : Lk

∞e → Ll
∞e are

defined literally as before, and similar properties hold true.

Let us mention a few modifications or generalizations in various respects. As said before, the
extension to all Lp-spaces for 1 � p � ∞ is straightforward. The time-axis can be chosen
as all nonnegative integers to discuss discrete-time systems. A mixture of continuous- and
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discrete-time allows to consider hybrid systems or systems with jumps. Finally, the set on
which the signals take their values can be an arbitrary normed space; this allows to discuss
infinite dimensional systems.

In addition, the stability concept used here is one out of a multitude of possibilities. Often, it
is only required that S maps L2 into L2 without necessarily having a finite L2-gain. Indeed,
the theory can be extended to general designer chosen stability properties that only obey
certain (technical) axiomatic hypotheses. We just include these remarks to stress that we
somehow artificially confine ourselves to pretty specific cases for reasons of space.

3.2 Robust Input-Output Stability

3.2.1 A Specific Feedback Interconnection

In robust control, one encounters systems that are affected by uncertainties (parametric
variations, unmodeled dynamics). In order to study the effects of uncertainties, one has to
start with a structure that captures how variations in the uncertainties affect the system to
be investigated. Although one could think of a broad range of such structures, the technique
of ‘pulling out the uncertainties’ allows to reduce many of these variants to one common
setup that is represented in Figure 3.1.

Here, M is viewed as the nominal model and ∆ captures the (varying) uncertainties. Both
the nominal system and the uncertainty are interconnected via feedback. M is usually
viewed as a fixed system, whereas ∆ is allowed to vary in a certain class ∆.

Typical examples include the case of linear time-invariant systems that are affected by
additive or multiplicative uncertainties. If looking at a large interconnection of such small
uncertain components, one arrives at structured uncertainties as they are considered in µ-
theory. The set ∆ should hence be seen as capturing both the nature of the uncertainty
(linear/nonlinear, time-invariant/time-varying, static/dynamic), their size (bounds on norm,
gain or incremental gain) and their structure (block-diagonal, full-block). We will not repeat
how to pull out the uncertainties in specific feedback interconnections what should have been
presented in a basic course on robust control.

Having specified M and the class ∆, one of the central tasks is to characterize whether the
feedback interconnection of the stable systems M and ∆ remains stable for all ∆ ∈ ∆. Let
us now be more specific by introducing the mathematical setup.

Here are the standing hypotheses.

Assumption 3.3 The mapping

M : Lk
2e → Ll

2e is causal, of finite L2-gain, and linear.
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Figure 3.1: Uncertainty Feedback Configuration

The uncertainty set ∆ is a set of systems

∆ : Ll
2e → Lk

2e that are causal and of finite L2-gain.

Moreover, it is star-shaped with star center 0:

∆ ∈ ∆ =⇒ τ∆ ∈ ∆ for all τ ∈ [0, 1].

Note that the third property implies 0 ∈ ∆; this is consistent with viewing ∆ as an uncer-
tainty where ∆ = 0 is related to the unperturbed or nominal system. Recall that τ → τ∆
just defines a line in the set of all causal and stable systems connecting 0 with ∆ what
justifies the terminology that ∆ is star-shaped with center 0.

Let us finally stress that linearity of M is not crucial at all for the results to follow; they
can be easily extended with minor variations to nonlinear systems M .

For any ∆ ∈ ∆, we investigate the feedback interconnection in Figure 3.1 that is defined by
the relations (

I −∆
M −I

)(
w
z

)
:=

(
w

Mw

)
−

(
∆(z)

z

)
=

(
w0

z0

)
. (3.2.1)

Here, the signals
(

w0

z0

)
are viewed as external inputs or disturbances, and

(
w
z

)
consti-

tutes the response of the interconnection.

A first important property of the feedback interconnection is well-posedness: Does there
exists for each w0, z0 a unique response w, z satisfying (3.2.1) such that the mapping(

w0

z0

)
→

(
w
z

)
(3.2.2)
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is causal?

Secondly, one is interested in the stability of the feedback interconnection: If the inter-
connection is well-posed, does the mapping (3.2.2) have finite L2-gain or finite incremental
L2-gain? If the interconnection is stable for all ∆ ∈ ∆, it is said to be robustly stable.

Thirdly, one might look at uniform robust stability: The interconnection is well-posed and
robustly stable, and the L2-gain or the incremental L2-gain of the mapping (3.2.2) is bounded
by a constant for all ∆ ∈ ∆. (The latter property just means that the (incremental) L2-gain
is uniformly bounded in ∆ ∈ ∆.)

It simplifies notations if we introduce the abbreviations

Xe = Lk+l
2e , X = Lk+l

2 , IM (∆) :=
(

I −∆
M −I

)
.

Consequently, any signal x ∈ Xe is partitioned as x =
(

w
z

)
and we note that the system

IM (∆) captures both the subsystems M and ∆ and the specific interconnection structure
that we are considering. (M and ∆ are asymmetrically entering the notation IM (∆) in
order to stress the fact M is fixed whereas ∆ is allowed to vary in ∆.)

Recall that the loop is required to have a a unique response x to any external input x0:
For each x0 ∈ Xe there exists a unique x ∈ Xe with IM (∆)(x) = x0. Mathematically, this
simply amounts to the mapping IM (∆) : Xe → Xe having an inverse IM (∆)−1. If this
inverse is, in addition, causal, IM (∆) is said to be well-posed.

Definition 3.4 IM (∆) : Xe → Xe is well-posed if it has a causal inverse.

Well-posedness can be often assured by standard results about the existence of solutions of
differential equations. However, we will also provide simple explicit conditions on M and ∆
that imply well-posedness.

If we impose a certain stability property on M and ∆, the composed system IM (∆) shares
this stability property, whereas this is usually not true for the inverse IM (∆)−1. In stability
theory, it is hence of fundamental interest to find additional conditions to guarantee that
this inverse indeed shares its stability properties with M , ∆, and IM (∆).

In these notes we obtain sufficient conditions for the following facts:

• Under the hypothesis that IM (∆)−1 exists and is causal, we characterize that there
exists a c with ‖IM (∆)−1‖ � c for all ∆ ∈ ∆; in particular, any IM (∆)−1 then has
finite L2-gain.

• If all systems in ∆ have finite incremental L2-gain, we characterize that IM (∆) does
have a causal inverse and that there exists a c with ‖IM (∆)−1‖2i � c for all ∆ ∈ ∆;
in particular, any IM (∆)−1 has a finite incremental L2-gain.
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It is important to observe the difference in these two characterizations: In the first scenario
one has to assume that the interconnection is well-posed, whereas in the second situation
one can conclude this property.

Our main goal is to summarize many of the results that are available in the literature in
two basic theorems that are related to the two differing hypotheses and conclusions sketched
above. Let us first turn to a very simple auxiliary observation that simplifies the proofs.

3.2.2 An Elementary Auxiliary Result

Suppose W and Z are arbitrary subset of the normed space X. Our goal is to characterize
that

‖w‖2 + ‖z‖2

‖w − z‖2

remains bounded for all w ∈ W , z ∈ Z such that w �= z. This implies that W and Z can
have at most the vector 0 in common, and that the squared distance of any two vectors is
at least as large as a constant times the sum of the squared norms of these vectors. If W
and Z are subspaces, there are very close relations to the gap or angle of these subspaces.

The desired characterization is provided in terms of a mapping Σ : X → R that is quadrat-
ically continuous [24].

Definition 3.5 Σ : X → R is quadratically continuous if for every δ > 0 there exists a
σδ > 0 with

|Σ(x1) − Σ(x2)| � σδ‖x1 − x2‖2 + δ‖x2‖2 for all x1, x2 ∈ X.

As a typical important example, let 〈., .〉 : X × X → R be any biadditive form that is
bounded: there exists a σ > 0 such that

〈x + y, z〉 = 〈x, z〉 + 〈y, z〉, 〈x, y + z〉 = 〈x, y〉 + 〈x, z〉, |〈x, y〉| � σ‖x‖‖y‖. (3.2.3)

Then Σ(x) := 〈x, x〉 is quadratically continuous. Indeed, we have

|Σ(x + y) − Σ(x)| − δ‖x‖2 = |〈y, y〉 + 〈x, y〉 + 〈y, x〉| − δ‖x‖2 �
� σ‖y‖2 + 2σ‖x‖‖y‖ − δ‖x‖2 � σδ‖y‖2

with σδ := max{σ + 2σt − δt2 : t ∈ R} such that σ + 2σ ‖x‖
‖y‖ − δ ‖x‖2

‖y‖2 � σδ for ‖y‖ �= 0.

Lemma 3.6 Suppose Σ : X → R is quadratically continuous. If

Σ(z) � 0 for all z ∈ Z
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and if there exists an ε > 0 such that

Σ(w) � −ε‖w‖2 for all w ∈ W,

then one can find a c > 0 (that only depends on Σ and ε) with

‖w‖2 + ‖z‖2 � c2‖w − z‖2 for all w ∈ W, z ∈ Z. (3.2.4)

Proof. The proof is trivial: We have 1
2ε‖w‖2 � Σ(z)−Σ(w)− 1

2ε‖w‖2 � σε/2‖z −w‖2 and
hence

‖w‖2 �
σε/2

ε/2
‖z − w‖2.

In addition, we infer

‖z‖2 � (‖z − w‖ + ‖w‖)2 � 2(‖z − w‖2 + ‖w‖2) � 2(1 +
σε/2

ε/2
)‖z − w‖2.

Hence (3.2.4) holds with c =
√

2 + 3σε/2

ε/2 .

Note that the choice of the square of the norms in all these definitions is completely arbitrary
and only made for later, more concrete, applications. One can replace ‖.‖2 everywhere by
α(‖.‖) where α : [0,∞) → [0,∞) is any function that is monotone and for which there exists
a constant α0 > 0 with α(t1 + t2) � α0(α(t1) + α(t2)). The proof remains unchanged.

3.2.3 An Abstract Stability Characterization

In this section we assume that IM (∆) is well-posed for all ∆ ∈ ∆. Hence, IM (∆)−1 exists
and is causal. We intend to get criteria that this inverse admits a uniform bound on its
L2-gain. It is not difficult to provide an abstract criterion on the basis of Lemma 3.6.

Theorem 3.7 Let Σ : Lk+l
2 → R be quadratically continuous. Suppose that for all ∆ ∈ ∆

IM (∆) is well-posed and Σ
(

∆(z)
z

)
� 0 for all z ∈ Ll

2. (3.2.5)

If there exists an ε > 0 with

Σ
(

w
Mw

)
� −ε‖w‖2

2 for all w ∈ Lk
2 , (3.2.6)

there exists a constant c such that ‖IM (∆)−1‖2 � c for all ∆ ∈ ∆.

Proof. Fix any ∆ ∈ ∆. Recall that all τ∆ are also contained in ∆ if τ ∈ [0, 1]. For any
such τ define

W := {
(

w
Mw

)
: w ∈ Lk

2}, Z := {
(

τ∆(z)
z

)
: z ∈ Ll

2}.
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Due to ‖
(

w
Mw

)
‖2
2 � (1 + ‖M‖2

2)‖w‖2
2 we have −ε‖w‖2

2 � − ε
1+‖M‖2

2
‖
(

w
Mw

)
‖2
2 what

allows to apply Lemma 3.6. Then (3.2.4) implies

‖
(

w
Mw

)
‖2
2 + ‖

(
τ∆(z)

z

)
‖2
2 � c2‖

(
w

Mw

)
−

(
τ∆(z)

z

)
‖2
2

for all w ∈ Lk
2 and z ∈ Ll

2. Since the left-hand side bounds ‖
(

w
z

)
‖2
2 from above, we arrive

at
‖x‖2 � c‖IM (τ∆)(x)‖2 for all x ∈ X. (3.2.7)

If we pick x0 ∈ X and we know that x = IM (τ∆)−1(x0) is contained in X (and not only in
Xe), we can conclude

‖IM (τ∆)−1(x0)‖2 � c‖x0‖2. (3.2.8)

Consequently, if IM (τ∆)−1 has finite L2-gain (such that it maps any vector x0 ∈ X into a
vector x ∈ X), we infer (3.2.8) for all x0 ∈ X. This implies that the L2-gain of IM (τ∆)−1

is bounded by the constant c:
‖IM (τ∆)−1‖2 � c.

Note that c only depends on Σ, ε, ‖M‖2; it is independent of the particular ∆ or τ !

Let us now prove the following statement:

‖IM (τ0∆)−1‖2 < ∞ =⇒ ‖IM (τ∆)−1‖2 � c for |τ − τ0| <
1

c‖∆‖2
, τ ∈ [0, 1]. (3.2.9)

Indeed, if IM (τ0∆)−1 has finite L2-gain, we get ‖IM (τ0∆)−1‖2 � c. Let us now take any
x0 ∈ X and set x = IM (τ∆)−1(x0). We infer

IM (τ0∆)(x) =
(

0 (τ − τ0)∆
0 0

)
(x) + IM (τ∆)(x) =

(
0 (τ − τ0)∆
0 0

)
(x) − x0.

This leads to

‖PT x‖2 = ‖PTIM (τ0∆)−1[
(

0 (τ − τ0)∆
0 0

)
(PT x) − PT x0]‖2 �

� c‖
(

0 (τ − τ0)∆
0 0

)
(PT x)‖2 + c‖PT x0‖2 �

� c|τ − τ0| ‖∆‖ ‖PT x‖2 + c‖PT x0‖2

and hence
(1 − c|τ − τ0|‖∆‖2)‖PT x‖2 � c‖PT x0‖2 � c‖x0‖2.

Since the factor on the left is positive for all τ that satisfy the hypothesis in (3.2.9), we infer
that ‖PT x‖2 is bounded what implies x ∈ X. As argued above, we obtain (3.2.8), and since
x0 was arbitrary, we get ‖IM (τ∆)−1‖2 � c.
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Let us now set δj := min{1, j/(2c‖∆‖2)} such that δj ∈ [0, 1] and |δj − δj−1| < 1/(c‖∆‖2).
For δ0 = 0, we have ‖IM (δ0∆)−1‖2 < ∞ such that ‖IM (δ1∆)−1‖2 � c. In this way we can
successively conclude that ‖IM (δj∆)−1‖2 � c for all j. Since δj = 1 for some j, the proof is
finished.

Theorem 3.7 is applied as follows. For the given system M and for the set of uncertainties
∆, one tries to find a quadratically continuous Σ that guarantees (3.2.5) and (3.2.6). Then
we can conclude that IM (∆)−1 admits a uniform bound on its L2-gain. In more concrete
situation, we will later see how the search of such a mapping Σ can be performed by solving
an LMI problem.

However, one can also change the viewpoint: Given a quadratically continuous mapping Σ,
define the class of uncertainties ∆ as those that satisfy (3.2.5). Then all systems that have
the property (3.2.6) cannot be destabilized by this class of uncertainties. Classical small-gain
and passivity theorems fall in this class as will be discussed Section 3.3.

Remarks.

• To characterize that IM (∆)−1 has finite L2-gain for a fixed ∆ requires the stronger
hypotheses

Σ(PT

(
∆(z)

z

)
) � 0 for all z ∈ Ll

2e, T � 0

and, with some ε > 0,

Σ(PT

(
w

Mw

)
) � −ε‖PT w‖2 for all w ∈ Lk

2e, T � 0.

This result is very easy to prove and, in fact, closer to what is usually found in the
literature.

• The proof of the theorem proceeds via a homotopy argument: The L2-gain of IM (0)−1

is finite. Then one proves that IM (∆)−1 has finite L2-gain by showing that the gain
‖IM (τ∆)−1‖2 stays below a constant c and, hence, does not blow up if τ varies from
0 to 1.

The line [0, 1] � τ → τ∆ can be replaced without difficulty by any continuous curve
γ : [0, 1] → ∆ connecting 0 and ∆ as γ(0) = 0, γ(1) = ∆. Hence, instead of being
star-shaped, it suffices to require that ∆ contains 0 and is path-wise connected.

Note that all this is very similar to proving the usual Nyquist-based stability results
for LTI systems.

3.2.4 A Characterization of Well-Posedness and Stability

In the last section we required IM (∆) to have a causal inverse. In this section we intend to
get rid of this hypothesis. As a price to be paid, we have to assume that all ∆ have finite
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incremental L2-gain, and we have to replace the second condition in (3.2.5) on
(

∆(z)
z

)
by

the same on the increment
(

∆(z1)
z2

)
−

(
∆(z2)

z2

)
. (If M is nonlinear, the same holds for

(3.2.6) what is not pursued here.) Instead of a bound on the L2-gain of IM (∆)−1 we then
obtain a bound on the incremental L2-gain of this mapping.

If both M and ∆ are linear but otherwise still general, both criteria coincide. Hence, only
for nonlinear uncertainties ∆ we require a stronger hypotheses to get to the desired stronger
conclusions.

Technically, we exploit the fact that X = L2 is a Banach space and we apply Banach’s fixed
point theorem to derive well-posedness.

Theorem 3.8 Let Σ : Lk+l
2 → R be quadratically continuous. Suppose that all ∆ ∈ ∆ have

finite incremental L2-gain and satisfy

Σ
(

∆(z1) − ∆(z2)
z1 − z2

)
� 0 for all z1, z2 ∈ Ll

2. (3.2.10)

If there exists an ε > 0 with (3.2.6), then IM (∆) does have a causal inverse and there exists
a constant c with ‖IM (∆)−1‖2i � c for all ∆ ∈ ∆.

Proof. Similarly as in the proof of Theorem 3.7 we pick ∆ ∈ ∆, τ ∈ [0, 1] and define

W := {
(

w
Mw

)
: w ∈ Lk

2}, Z := {
(

τ∆(z1) − τ∆(z2)
z1 − z2

)
: z1, z2 ∈ Ll

2}. Again, we can

apply Lemma 3.6 and to infer from (3.2.4) that

‖
(

w
Mw

)
‖2
2 + ‖

(
τ∆(z1) − τ∆(z2)

z1 − z2

)
‖2
2 � c2‖

(
w

Mw

)
−

(
τ∆(z1) − τ∆(z2)

z1 − z2

)
‖2
2

for all w ∈ Lk
2 and z1, z2 ∈ Ll

2. This relation leads to

‖x1 − x2‖2
2 � c2‖IM (τ∆)(x1) − IM (τ∆)(x2)‖2

2 for all x1, x2 ∈ X.

Let us temporarily assume that IM (τ0∆) : X → X with τ0 ∈ [0, 1] has an inverse. Then we
conclude

‖IM (τ0∆)−1(y1) − IM (τ0∆)−1(y2)‖2
2 � c2‖y1 − y2‖2

2 for all y1, y2 ∈ X. (3.2.11)

It is essential to observe that c on the right does does neither depend on ∆ nor on τ !

Now we take another τ ∈ [0, 1] that is close (we will specify how close) to τ0. To verify that
IM (τ∆) : X → X has an inverse amounts to checking that for all y ∈ X there is a unique
x ∈ X satisfying IM (τ∆)(x) = y. Let us now bring in the mapping of which we know that
it has an inverse; we rewrite the equation to

IM (τ∆)(x) − IM (τ0∆)(x) + IM (τ0∆)(x) = y.
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This is easily rearranged to the fixed-point equation

x = IM (τ0∆)−1(y − IM (τ∆)(x) + IM (τ0∆)(x)). (3.2.12)

Let us abbreviate

F (x) := IM (τ0∆)−1(y − IM (τ∆)(x) + IM (τ0∆)(x)).

Note that F maps X into X. We have reduced the original problem to the question of
whether there exists a unique x ∈ X with F (x) = x, i.e., whether F has a unique fixed point
in X. If X is a Banach space, and if there exists a f < 1 with

‖F (x1) − F (x2)‖2 � f‖x1 − x2‖ for all x1, x2 ∈ X, (3.2.13)

Banach’s fixed point theorem leads to the desired conclusion; it is then guaranteed that F
indeed has exactly one fixed point. In our case, X is Banach. The only thing to be assured
is (3.2.13). Using (3.2.11), we arrive at

‖F (x1) − F (x2)‖2
2 �

� c2‖[y − IM (τ∆)(x1) + IM (τ0∆)(x1)] − [y − IM (τ∆)(x2) + IM (τ0∆)(x2)]‖2
2 �

� c2‖[IM (τ0∆)(x1) − IM (τ∆)(x1)] + [IM (τ0∆)(x2) − IM (τ∆)(x2)]‖2
2 �

� c2‖
(

0 (τ − τ0)∆
0 0

)
(x1) +

(
0 (τ − τ0)∆
0 0

)
(x2)‖2

2 � c2|τ − τ0|2‖∆(z1) − ∆(z2)‖2
2 �

� c2|τ − τ0|2‖∆‖2
2i‖z1 − z2‖2

2 � c2|τ − τ0|2‖∆‖2
2i‖x1 − x2‖2

2.

Hence
|τ0 − τ | <

1
c‖∆‖2i

implies (3.2.13) with f = c2|τ − τ0|2‖∆‖2
2i < 1. Then F has a unique fixed point in X.

Therefore, IM (τ∆) : X → X has an inverse that satisfies, a posteriori, (3.2.11).

Obviously, IM (0) : X → X does have an inverse. Therefore, we can successively conclude
that IM (τj∆) : X → X has an inverse satisfying (3.2.8) for τj = min{1, j/(2c‖∆‖2i)},
j = 0, 1, 2, . . ., and hence also for τ = 1.

So far, we have shown that IM (∆) : X → X has the inverse IM (∆)−1 : X → X with
bound c on its incremental L2-gain. It is a simple exercise to prove that the causal mapping
IM (∆) : Xe → Xe then also has a causal inverse IM (∆)−1 : Xe → Xe with the same bound
c on its incremental L2-gain.

Even if dealing with nonlinear uncertainties ∆, they often have the property ∆(0) = 0.
Then we infer that IM (∆)(0) = 0 such that the same must hold for its inverse. Therefore,
we have

‖IM (∆)−1‖2 � ‖IM (∆)−1‖2i
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and Theorem 3.8 also provides a bound on the L2-gain of the inverse.

Since Theorem 3.8 also guarantees the existence of the inverse of IM (∆) and, therefore
(Exercise 1), also of I − M∆, we will mainly build in the sequel on this result under under
the additional

Assumption 3.9 All ∆ ∈ ∆ have finite incremental L2-gain and satisfy ∆(0) = 0.

We stress again that these properties are trivially satisfied if the uncertainties are linear.

3.3 Small-Gain and Passivity Tests

As an illustration, let us consider for a symmetric matrix Π the bilinear mapping

〈x, y〉 =
∫ ∞

0

x(t)T Πy(t) dt (3.3.1)

on Lk+l
2 . Since this mapping satisfies (3.2.3), Σ(x) := 〈x, x〉 is quadratically continuous. We

assume P to be partitioned as

Π =
(

Q S
ST R

)
∈ R(k+l)×(k+l) (3.3.2)

according to the size of the signals w and z.

Let us make the specific choice

Π =
(

−I 0
0 I

)
, Σ

(
w
z

)
=

∫ ∞

0

z(t)T z(t) − w(t)T w(t) dt.

Obviously, the set of all causal uncertainties that satisfy (3.2.5) is given by all

causal ∆ : L2e → L2e with ‖∆‖2 � 1. (3.3.3)

We immediately arrive at the following classical small L2-gain result.

Corollary 3.10 Suppose that, for all ∆ with (3.3.3), IM (∆) has a causal inverse. If
‖M‖2 < 1, there exists a c such that ‖IM (∆)−1‖2 � c for all ∆ as in (3.3.3).

Similarly, the set of all causal uncertainties with (3.2.10) is nothing but all

causal ∆ : L2e → L2e with ‖∆‖2i � 1. (3.3.4)

This leads us to the following standard small incremental L2-gain result.
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Corollary 3.11 Suppose that ‖M‖2 < 1. Then IM (∆) has a causal inverse, and there
exists a c with ‖IM (∆)−1‖2i � c for all ∆ satisfying (3.3.4).

The choice

Π =
(

0 1
2I

1
2I 0

)
, Σ

(
w
z

)
=

∫ ∞

0

z(t)T w(t) dt (3.3.5)

leads to the standard passivity tests for robust stability.

Corollary 3.12 Suppose there exists an ε > 0 with∫ ∞

0

w(t)T (Mw)(t) dt � −ε‖w‖2
2.

• Let IM (∆) have a causal inverse for all causal ∆ : L2e → L2e with∫ ∞

0

z(t)T ∆(z)(t) dt � 0.

Then there exists a c such that ‖IM (∆)−1‖2 � c holds for all these uncertainties.

• The mapping IM (∆) has a causal inverse, and there exists a c with ‖IM (∆)−1‖2i � c
for all causal uncertainties ∆ : L2e → L2e that satisfy∫ ∞

0

[z1(t) − z2(t)]T [∆(z1)(t) − ∆(z2)(t)] dt � 0.

We have obtain with ease four classical results that are usually formulated and proved
independently. Even better, the approach taken here allows much further reaching general-
izations that can only be partially addressed in these notes.

Remark. The small-gain theorem for Lp spaces can be recovered with the mapping

Σ
(

w
z

)
=

∫ ∞

0

‖z(t)‖p − ‖w(t)‖p dt

and with α(t) = tp instead of α(t) = t2 in Section 3.2.2. The details are only variations of
what has been presented and can be left as an exercise.

3.4 Integral Quadratic Constraints

3.4.1 Stability Tests with Integral Quadratic Constraints

In this section we assume that the uncertainties ∆ are general but that z = Mw is defined
with a proper stable rational matrix M̂ as

ẑ(iω) = M̂(iω)ŵ(iω), iω ∈ C0.
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Recall that x̂ denotes the Fourier transform of the signal x ∈ L2.

Instead of general quadratically continuous mappings, let us consider so-called integral
quadratic forms. Suppose Π : iω → Π(iω) is any (measurable) mapping that assigns to
every iω ∈ C0 a Hermitian matrix Π(iω) of dimension (k + l) × (k + l) that is bounded:

‖Π(iω)‖ � p for all iω ∈ C0.

(Note that we will consider in most cases mappings that are defined with a rational matrix
valued function Π(s); then it is just required that this rational matrix is Hermitian on the
imaginary axis, and that it has neither a pole in C0 nor at infinity such that it is proper.)

For any x, y ∈ Lk+l
2 we can define with their Fourier transforms x̂, ŷ the mapping

〈x, y〉 :=
∫ ∞

−∞
x̂(iω)∗Π(iω)ŷ(iω) dω

which satisfies (3.2.3) with bound σ = p.

Condition (3.2.6) then amounts to∫ ∞

−∞
ŵ(iω)∗

(
I

M̂(iω)

)∗
Π(iω)

(
I

M̂(iω)

)
ŵ(iω) dω � − ε

2π

∫ ∞

−∞
ŵ(iω)∗ŵ(iω) dω

for all w ∈ Lk
2 . This is obviously implied by the frequency domain inequality (FDI)(

I

M̂(iω)

)∗
Π(iω)

(
I

M̂(iω)

)
� − ε

2π
I for all iω ∈ C0.

It is not required for our arguments and not difficult to see that the converse holds as well;
both characterization are in fact equivalent.

Lemma 3.13 Suppose Π is a (measurable) bounded Hermitian valued mapping on C0. Then
the following two statements are equivalent:

•
∫ ∞

−∞
x̂(iω)∗Π(iω)x̂(iω) dω � −α

∫ ∞

−∞
x̂(iω)∗x̂(iω) dω for all x ∈ L2.

• Π(iω) � −αI for all iω ∈ C0.

The reason for this re-formulation: the frequency domain inequality is easier to check.

Now we get as immediate corollaries to Theorems 3.7 and 3.8 the following stability results
using integral quadratic constraints (IQC’s).

Theorem 3.14 Suppose that, for all ∆ ∈ ∆, IM (∆) is well-posed and that∫ ∞

−∞

(
∆̂(z)(iω)

ẑ(iω)

)∗
Π(iω)

(
∆̂(z)(iω)

ẑ(iω)

)
dω � 0 for all z ∈ Ll

2. (3.4.1)
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If there exists an ε > 0 with(
I

M̂(iω)

)∗
Π(iω)

(
I

M̂(iω)

)
� −εI for all ω ∈ R, (3.4.2)

then the L2-gain of I−1
M (∆) is bounded uniformly in ∆ ∈ ∆.

Theorem 3.15 Suppose that any ∆ ∈ ∆ has finite incremental L2-gain and satisfies∫ ∞

−∞

(
∆̂(z1)(iω) − ∆̂(z2)(iω)

ẑ1(iω) − ẑ2(iω)

)∗
Π(iω)

(
∆̂(z1)(iω) − ∆̂(z2)(iω)

ẑ1(iω) − ẑ2(iω)

)
dω � 0 (3.4.3)

for all z1, z2 ∈ Ll
2. If there exists an ε > 0 with (3.4.2), then IM (∆) is well-posed, and the

incremental L2-gain of its inverse is uniformly bounded in ∆ ∈ ∆.

Remarks.

• One should read ∆̂(z)(iω) correctly: Take z, let it pass through ∆ to get the signal
∆(z), take its Fourier transform ∆̂(z), and evaluate this Fourier transform at iω to
obtain ∆̂(z)(iω). Therefore, the signal z with power distribution ẑ is mapped into
the signal ∆(z) with power distribution ∆̂(z). (In general, of course, there is no nice
operation - such as the multiplication by a transfer matrix - that maps ẑ directly into
∆̂(z). However, since we only transform signals, no complication arises.)

The inequality (3.4.1) defined via Π hence restricts how the power distribution of z

can and cannot be rearranged in ∆̂(z); (3.4.1) could be called a power distribution
constraint. The constraint (3.4.3) admits the same interpretation for increments.

• In principal, the inequality (3.4.2) is easy to verify: one just needs to plot the largest
eigenvalue of the left-hand side over frequency and read of the maximum that this
curve takes. This could be viewed as a generalization of plotting the largest singular
values of a certain transfer matrix to apply the small-gain theorem.

If Π is real-rational and proper, the Kalman-Yakubovich-Popov Lemma allows to re-
duce this condition to the solvability of a linear matrix inequality; this is the reason
why IQC’s play such prominent role in the LMI approach to robust control. We will
elaborate on these points in Section 3.6.

3.4.2 The Philosophy for Applying IQC’s

So far we have considered one quadratically continuous mapping Σ and one IQC to char-
acterize stability. For small-gain and passivity conditions, this was sufficient to arrive at
standard stability results. However, if one has a more detailed picture about the uncer-
tainty, one can often find more than one IQC that are satisfied by the uncertainties.
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For the purpose of illustration let us look at a simple example. Consider the structured
nonlinear uncertainties ∆ : Ll

2e → Lk
2e that are defined for fixed partitions

z =

 z1

...
zm

 , w =

 w1

...
wm


(where the signals zj and wj can have different sizes) with the causal mappings ∆j : L2e →
L2e, ∆j(0) = 0, as

w = ∆(z), ∆(

 z1

...
zm

) =

 ∆1(z1)
...

∆m(zm)

 .

Furthermore, it is assumed that ‖∆j‖2i � 1 such that, as well, ‖∆j‖2 � 1.

Note that the set of all these uncertainties is star-shaped. Due to ‖∆‖2i � 1, the incremental
small-gain theorem applies. Then ‖M̂‖∞ < 1 implies that IM (∆)−1 exists, is causal, and
uniformly incrementally bounded. However, this also holds for the much larger class of all
uncertainties ∆ with ‖∆‖2i � 1, even if they do not have the specific structure considered
here.

Hence we should find more IQC’s that provide a way to capture this structure. Motivated
by µ-theory, we consider the IQC’s defined with the constant matrices Π given as

Π =
(

Q S
ST R

)
, S = 0, Q = diag(−r1I, . . . ,−rmI), R = diag(r1I, . . . , rmI), rj > 0

(3.4.4)
where the sizes of the identity blocks in Q and R correspond to the sizes of the signals wj

and zj respectively. We infer∫ ∞

0

(
∆(z1)(t) − ∆(z2)(t)

z1(t) − z2(t)

)T

Π
(

∆(z1)(t) − ∆(z2)(t)
z1(t) − z2(t)

)
dt =

=
∫ ∞

0

m∑
j=1

−rj‖∆j(z1)(t) − ∆j(z2)(t)‖2 + rj‖z1(t) − z2(t)‖2 dt =

=
m∑

j=1

∫ ∞

0

rj [‖z1(t) − z2(t)‖2 − ‖∆j(z1)(t) − ∆j(z2)(t)‖2] dt � 0

such that the incremental IQC’s (3.4.3) hold for all uncertainties and for all Π.

We have found a whole family of IQC’s for our class of uncertainties, parameterized by the
numbers rj . If we just find among these infinitely many IQC’s one for which, in addition,
the FDI (3.4.2) holds, we conclude exactly the same stability properties of IM (∆) as before.

Again, we stress that all IQC’s (3.4.3) must be satisfied by the uncertainties, but only for
one IQC we need to assure (3.4.2)! Hence, the more IQC’s we find for the uncertainties, the
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more freedom we have if trying to fulfill the FDI and the better the chances are to verify
robust stability.

Let us now have a more detailed look at (3.4.2) for the specific scalings (3.4.4). The inequality
simply reads as

M̂(iω)∗RM̂(iω) − R < 0 for all ω ∈ R ∪ {∞}. (3.4.5)

(Since we have replaced � −εI by < 0, we have to include ω = ∞ in the condition. Why?)
The goal is to find some R (structured as in (3.4.4)) that satisfies this FDI. It will turn out
that the search for R can be cast into an LMI problem.

In order to relate to µ-theory, re-parameterize

R = DT D

with D in the same class as R. Then M̂(iω)∗DT DM̂(iω) − DT D < 0 is equivalent to
‖DM̂(iω)D−1‖ < 1 if ‖.‖ denotes the maximal singular value for complex matrices. There-
fore, (3.4.5) is nothing but

‖DM̂D−1‖∞ < 1 (3.4.6)

which is a scaled H∞ condition. Such conditions - possibly with frequency dependent scalings
D - appear in µ-theory. Note, however, that the conclusions made in µ-theory are usually
only valid for linear time-invariant uncertainties that admit a Fourier transform with suitable
properties. Our conclusions hold for a much larger class of uncertainties since our proof was
not based on a Nyquist type argument in the frequency domain.

We have shown that we can replace ‖M̂‖∞ < 1 by the scaled small-gain condition (3.4.6) to
come to the same robust stability conclusions. The scalings D capture the knowledge about
the structure of the uncertainties and provide us extra freedom to satisfy (3.4.5). Hence,
the scalings reduce the conservatism that is involved in the simple but rough condition
‖M̂‖∞ < 1.

Let us introduce a terminology: We will call the matrices Π that define the IQC’s scalings
or multipliers. The first name is motivated by the above mentioned relation to µ-theory.
The second name reminds of the relation to classical multipliers that have been used in loop
transformation arguments.

The example reveals the philosophy in applying the robust stability results discussed here:
Try to find as many multipliers Π as possible such that the IQC’s (3.4.1) (or (3.4.3)) hold
for the considered class of uncertainties. Then find, among all these multipliers, one that
also satisfies the FDI (3.4.2). If this is possible, one can conclude (existence and) uniform
boundedness of the (incremental) L2-gain of IM (∆)−1.

A simple trick often allows to increase the number of multipliers. Indeed, if Π1, . . . ,Πk are
multipliers that satisfy (3.4.1) (or (3.4.3)), the same is true of all

k∑
j=1

τjΠj if τj � 0. (3.4.7)
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One can hence easily construct out of finitely many multipliers an infinite family of multi-
pliers parameterized by τj . The same trick applies to an infinite set of multipliers. (Those
familiar with the corresponding concepts will recognize that we just need to take the convex
conic hull; any set of multipliers can, therefore, always assumed to be a convex cone.)

Finding multipliers such that a specific class of uncertainties satisfies the corresponding IQC
is not really supported by theory; this is indeed the hard part in concrete applications. For
suitable parameterizations of the family of considered multipliers (such as (3.4.7) or more
general versions), the second step of finding one multiplier that also renders the FDI (3.4.2)
satisfied will turn out to be an LMI problem.

3.4.3 Examples of IQC’s

In what follows we provide a non-exhaustive list of uncertainties and suitable multipliers.
We recall that one needs to always verify Assumption 3.3, in particular star-shapeness with
center 0, in order to apply Theorem 3.7, Theorem 3.8 or their IQC counterparts.

• The structured nonlinear uncertainties

∆(

 z1

...
zm

) =

 ∆1(z1)
...

∆m(zm)

 (3.4.8)

with causal ∆j that satisfy ‖∆j‖2 � 1 or ‖∆j‖2i � 1 fulfill (3.4.1) or (3.4.3) for the
class of multipliers

Π := {
(

Q 0
0 R

)
, Q = diag(−r1I, . . . ,−rmI), R = diag(r1I, . . . , rmI) > 0}. (3.4.9)

• In (3.4.8) we can confine the attention to linear causal mappings ∆j only. Beautiful
results by Shamma and Megretsky [19, 40] show that, then, the resulting scaled H∞-
condition (3.4.2) is not only sufficient for robust stability (as we have proved) but even
necessary (what is harder to show).

• We can specialize further and use (3.4.9) also for the block-diagonal time-varying
parametric uncertainties

wj(t) = ∆j(t)zj(t)

with (measurable) matrix valued functions satisfying

‖∆j(t)‖ � 1 for all t � 0.

Equivalently, we have

w(t) = ∆(t)z(t), ∆(t) = diag(∆1(t), . . . ,∆m(t)), ‖∆(t)‖ � 1 for t � 0.
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In this case, for any Π in the class (3.4.9), the uncertainties even satisfy the quadratic
constraint (

∆(t)
I

)T

Π
(

∆(t)
I

)
� 0. (3.4.10)

(We will see in Section 3.7 that this implies exponential stability.) The quadratic
constraint still holds if using a time-varying multiplier. Let P : [0,∞) → Π be (mea-
surable and essentially) bounded. Note that P (t) admits exactly the same structure
as the constant multipliers above. For any such time-varying scaling we infer(

∆(t)
I

)T

P (t)
(

∆(t)
I

)
� 0 for all t � 0.

With the quadratically continuous mapping (why?)

Σ(x) :=
∫ ∞

0

x(t)T P (t)x(t) dt

on Lk+l
2 , we infer (3.2.10) by linearity. Hence, if there exists an ε > 0 with∫ ∞

0

(
w(t)

M(w)(t)

)T

P (t)
(

w(t)
M(w)(t)

)
dt � −ε‖w‖2

2, (3.4.11)

we can apply the more abstract Theorem 3.8 to infer that IM (∆)−1 exists and has a
uniformly bounded L2-gain. Again, (3.4.11) amounts to a scaled small-gain condition
with time-varying scalings. If M can be described by

ẋ = A(t)x + B(t)w, z = C(t)x + D(t)w, x(0) = 0,

where ẋ = A(t)x is exponentially stable, the validity of (3.4.11) can be characterized
by a differential linear matrix inequality.

• The so-called repeated structured uncertainties are defined as

w(t) = ∆(t)z(t), ∆(t) = diag(δ1(t)I, . . . , δm(t)I), |δj(t)| � 1 for t � 0.

Here the blocks on the diagonal of ∆(t) are repeated scalar valued functions. If we
choose the multipliers Π in the partition (3.3.2) as

R = diag(R1, . . . , Rm) > 0, Q = −R, S = diag(S1, . . . , Sm), Sj + ST
j = 0,

we infer(
∆(t)

I

)T

Π
(

∆(t)
I

)
=

m∑
j=1

−δj(t)2Rj +δj(t)(Sj +ST
j )+Rj =

m∑
j=1

(1−δj(t)2)Rj � 0.

Again, we have found a class of multipliers for which (3.4.1) or (3.4.3) hold, and we
could generalize to time-varying scalings.
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• Note that there exists a δ(t) with |δ(t)| � 1 and w(t) = δ(t)z(t) iff w(t)w(t)T �
z(t)z(t)T . This leads to the notion of structured repeated nonlinear uncertainties.
They are defined as in (3.4.8) where the diagonal maps ∆j satisfy∫ ∞

0

∆j(zj)(t)∆j(zj)(t)T dt �
∫ ∞

0

zj(t)zj(t)T dt.

The same scalings as in the previous item can be used to infer (3.4.1). If we ask
the property to hold for the increments, we obtain (3.4.3). Then we arrive at robust
stability results against repeated nonlinear uncertainties.

• In the above examples we have used for parametric uncertainties and the corresponding
nonlinear uncertainties the same class of scalings. However, for parametric uncertain-
ties, one can work with a class of scalings that is only indirectly described but larger
than that considered so far; since this results in more IQC’s, it reduces the conservatism
in the stability results.
Let us assume that the uncertainty is defined as

w(t) = ∆(t)z(t)

where (the measurable) ∆ : [0,∞) → Rk×l satisfies

∆(t) ∈ co{∆1, ...,∆N} for all t � 0.

Here, ∆j are fixed matrices which generate the convex hull that defines the set of
values which can be taken by the time-varying uncertainties; these generators capture
the structure and the size of the parametric uncertainty. Obviously, the repeated
diagonal structure is a special case of this more general setup (Why?). The goal is to
define the scalings in order to assure (3.4.10). We just ask the condition (3.4.10) to
hold at the generators of the convex hull:(

∆j

I

)T

Π
(

∆j

I

)
� 0 for all j = 1, . . . , N. (3.4.12)

If we impose an additional constraint on Π such that these finitely many inequalities
imply (3.4.10), we are done. The simplest possible condition is to require the left-upper
block of Π being negative definite; this leads to the class

Π := {Π =
(

Q S
ST R

)
: Q < 0,

(
∆j

I

)T

Π
(

∆j

I

)
> for j = 1, . . . , N}.

A very simple convexity argument reveals that any Π ∈ Π indeed satisfies (3.4.10).
Instead of what we have done previously, the multipliers are now only indirectly de-
scribed. Since we have strengthened the non-strict inequality to a strict inequality,
however, one can easily implement this indirect description as constraints in an LMI
solver. That allows to reduce, again, the search for a multiplier satisfying (3.4.1) to
an LMI problem. As a considerable advantage of this latter technique we observe
that we do not need to bother at all about the specific structure of the uncertainties
and theoretically derive the corresponding structure of the multipliers - the numerical
algorithm does the job for us.
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Figure 3.2: Uncertain System with Performance Channel

3.5 Guaranteeing Robust Performance

So far we have considered robust stability. However, the techniques presented so far allow a
simple extension to provide sufficient conditions for robust performance.

3.5.1 An Abstract Condition for Robust Performance

Let us consider the uncertain system in Figure 3.2 where the blocks M and ∆ ∈ ∆ satisfy
the Assumptions 3.3 and 3.9.

As indicated we assume that M is partitioned as(
zu

zp

)
=

(
Muu Mup

Mpu Mpp

)(
wu

wp

)
. (3.5.1)

The signals wu and zu form the uncertainty channel wu → zu and wp → zp denotes the
performance channel. The reason for this terminology is simple. The uncertain system is
described by (3.5.1) and by closing the upper loop with any uncertainty ∆ ∈ ∆ as

wu = ∆(zu). (3.5.2)

This leads to zu = Muu∆(zu) + Mupwp. If I − Muu∆ has a causal inverse, we arrive at
zu = (I − Muu∆)−1(Mupwp). The perturbed system hence admits the description

zp = Mppwp + Mpu∆(I − Muu∆)−1(Mupwp). (3.5.3)
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The performance specification under considerations is then specified in terms of the channel
wp → zp.

As a typical performance specification, the L2-gain from wp to zp should not exceed one (or
any other number what can be always brought back to one by scaling); this specification
amounts to ∫ ∞

0

zp(t)T zp(t) dt �
∫ ∞

0

wp(t)T wp(t) dt for all wp ∈ L2.

For technical reasons (to arrive at necessary and sufficient conditions) one often tries to
characterize that the L2-gain is strictly smaller than one. Contrary to what is often stated
in the literature, we cannot just replace the � by < in the above inequality! (Why?) The
correct formulation is as follows: there exists an ε > 0 such that∫ ∞

0

zp(t)T zp(t) − wp(t)T wp(t) dt � −ε

∫ ∞

0

wp(t)T wp(t) dt for all wp ∈ L2.

Similarly, alternative performance specifications are passivity∫ ∞

0

zp(t)T wp(t) dt � 0 for all wp ∈ L2

or strict passivity: there exists an ε > 0 with∫ ∞

0

zp(t)T wp(t) dt � −ε

∫ ∞

0

wp(t)T wp(t) dt for all wp ∈ L2.

These cases are easily seen to be specialization of the following general performance specifi-
cation: there exists an ε > 0 such that

Σp

(
wp

zp

)
� −ε‖wp‖2

2 for all wp ∈ L2. (3.5.4)

Here, Σp is an arbitrary mapping

Σp : L2 �
(

wp

zp

)
→ Σp

(
wp

zp

)
∈ R satisfying Σp

(
0
zp

)
� 0. (3.5.5)

(The second condition is of technical nature - it is required in the proof of the next theorem.)

The goal is to characterize robust stability and robust performance. For the precise definition
of robust stability, we need to introduce (as earlier) the auxiliary signals w0 and z0 as in
Figure 3.3.

The interconnection (3.2) is said to be uniformly robustly stable if the relations(
zu

zp

)
= M

(
wu

wp

)
, wu = ∆(z) + w0, z = zu − z0
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Figure 3.3: Setup for Robust Performance

that correspond to Figure 3.3 define, for each ∆ ∈ ∆, a causal mapping

L2e �

 w0

z0

wp

 →

 wu

z
zp

 ∈ L2e,

and if the incremental L2-gain of this mapping is bounded uniformly in ∆ ∈ ∆.

Since M and ∆ have finite (incremental) L2-gain, it is very simple to verify that robust
stability is equivalent to IMuu

(∆) or (Exercise 1) I − Muu∆ having a causal inverse whose
incremental L2-gain is bounded uniformly in ∆ ∈ ∆.

Theorem 3.16 Suppose Σ : L2 → L2 is quadratically continuous and that all ∆ ∈ ∆ satisfy
(3.2.10). Moreover, suppose there exists an ε > 0 such that

Σ
(

wu

Muuwu + Mupwp

)
+ Σp

(
wp

Mpuwu + Mppwp

)
� −ε(‖wu‖2

2 + ‖wp‖2
2) (3.5.6)

for all wu ∈ L2, wp ∈ L2. Then I − Muu∆ has a causal inverse whose incremental L2-gain
is bounded uniformly in ∆ ∈ ∆, and the uncertain system (3.5.3) satisfies (3.5.4).

Proof. The proof is extremely simple. We can set wp = 0 to infer by the second property
in (3.5.5) from (3.5.6) that

Σ
(

wu

Muuwu

)
� −ε‖wu‖2

2
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for all wu ∈ L2. Hence we can apply Theorem 3.8 to conclude that IMuu
(∆) or, equivalently

(Exercise 1), I − Muu∆ have causal inverses with uniformly bounded incremental L2-gain.

Note that, in particular, the uncertain system system (3.5.3) then defines a mapping with
uniformly bounded incremental L2-gain. Even more, for any wp ∈ L2, we use wu = ∆(zu)
and (3.2.10) to infer

Σ
(

wu

Muuwu + Mupwp

)
= Σ

(
wu

zu

)
= Σ

(
∆(zu)

zu

)
� 0

(where we require Assumption 3.9). Then (3.5.6) leads to (3.5.4).

It is straightforward to generalize Theorem 3.7 along the same lines. One needs to assume
that IMuu

(∆) or I − Muu∆ have a causal inverses, and one can work with the weaker
hypothesis (3.2.5) to conclude in a similar fashion robust stability and robust performance.
The details can be left to the reader and are omitted.

3.5.2 Guaranteeing Robust Quadratic Performance with IQC’s

After this abstract motivating introduction, we turn our attention to the case that (3.5.1)
is described by a finite dimensional stable LTI system; the corresponding transfer matrix is
again denoted as M̂ .

Let us look at the quadratic performance index

Σp

(
wp

zp

)
:=

∫ ∞

0

(
wp(t)
zp(t)

)T

Pp

(
wp(t)
zp(t)

)
dt

where Pp is a fixed symmetric matrix that satisfies

Pp =
(

Qp Sp

ST
p Rp

)
, Rp � 0 (3.5.7)

to guarantee (3.5.5).

If Σ is defined by an IQC based on Π, (3.5.6) amounts to

∫ ∞

−∞

(
∗
∗

)∗
Π(iω)

(
ŵu(iω)

M̂uu(iω)ŵu(iω) + M̂up(iω)ŵp(iω)

)
dω+

+
∫ ∞

−∞

(
∗
∗

)
Pp

(
ŵp(iω)

M̂pu(iω)ŵu(iω) + M̂pp(iω)ŵp(iω)

)
dω �

� − ε

2π

∫ ∞

−∞

(
ŵu(iω)
ŵp(iω)

)∗ (
ŵu(iω)
ŵp(iω)

)
dω.
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We can apply Lemma 3.13 to arrive at the equivalent condition(
I 0

M̂uu M̂up

)∗
Π
(

I 0
M̂uu M̂up

)
+

(
0 I

M̂pu M̂pp

)∗
Pp

(
0 I

M̂pu M̂pp

)
� − ε

2π
I (3.5.8)

on C0. Again, this amounts to a simple frequency domain condition for which we provide
an alternative formula in the following result.

Theorem 3.17 Suppose that any ∆ ∈ ∆ satisfies the incremental IQC (3.4.3) for the

multiplier Π =
(

Q S
S∗ R

)
. Moreover, suppose there exists an ε > 0 with


I 0
0 I

M̂uu M̂up

M̂pu M̂pp


∗ 

Q 0 S 0
0 Qp 0 Sp

S∗ 0 R 0
0 ST

p 0 Rp




I 0
0 I

M̂uu M̂up

M̂pu M̂pp

 � − ε

2π
I on C0. (3.5.9)

Then the interconnection (3.2) is robustly stable, and for any wp ∈ L2 one has∫ ∞

0

(
wp(t)
zp(t)

)T

Pp

(
wp(t)
zp(t)

)
dt � −ε‖wp‖2

2.

3.5.3 Guaranteeing Robust H2 Performance with IQC’s

For a strictly proper stable rational matrix M̂ , the squared H2-norm is defined as

‖M̂‖2
2 =

1
2π

∫ ∞

−∞
trace(M̂(iω)∗M̂(iω)) dω.

We have mentioned that there are many interpretations and motivations why to consider
this norm in design problems. Therefore, there are different manners to define the robust
H2 analysis problem.

In these notes we concentrate on one of these possible generalizations. For that purpose we
characterize ‖M̂‖2 < γ by requiring the existence of a symmetric matrix Q such that

1
2π

∫ ∞

−∞
M̂(iω)∗M̂(iω) dω < Q, trace(Q) < γ2.

The first of these two inequalities admits a simple signal based interpretation; indeed it is
equivalent to ∫ ∞

0

z(t)T z(t) dt − wT Qw � −ε‖w‖2

for all real vectors w and ẑ(iω) = M̂(iω)w. (Why?)
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We intend to generalize this characterization to uncertain systems that are again described
using a linear mapping (

zu

zp

)
=

(
Muu Mup

Mpu Mpp

)(
wu

wp

)
(3.5.10)

that takes
wu ∈ Lku

2e , wp ∈ Rkp into zu ∈ Llu
2e, zp ∈ L

lp
2e.

We assume that Muu, Mup are causal and of finite L2-gain, and that Mup, Mpp have finite
gain as mappings from Rkp to L2; this means that there exists a constant m with

‖
(

Mupwp

Mppwp

)
‖2 � m‖wp‖ for all wp ∈ Rkp .

(The theory presented so far does not directly encompass this case since we considered
time-signals as inputs. Although one could easily extend the setup - by simply admitting
the time-set {0} for some components of the signals, - we view, instead, Mupwp and Mppwp

as L2 disturbances and directly apply the techniques developed up to now.)

Robust stability is defined analogously as earlier, and the uncertainty system is said to have
a robust H2-level γ > 0 if there exists a symmetric Q with

trace(Q) < γ2 (3.5.11)

such that, for some ε > 0,

−wT
p Qwp +

∫ ∞

0

zp(t)T zp(t) dt � −ε‖wp‖2 for all wp ∈ Rkp . (3.5.12)

It is now straightforward to arrive at the following IQC test for robust H2 performance.

Theorem 3.18 Suppose that every ∆ ∈ ∆ satisfies (3.4.3) and that Q is a symmetric
matrix. Moreover, suppose there exists an ε > 0 such that∫ ∞

−∞

(
ŵu(iω)
ẑu(iω)

)∗
Π(iω)

(
ŵu(iω)
ẑu(iω)

)
+ ẑp(iω)∗ẑp(iω) dω − wT

p Qwp � − ε

2π
(‖wu‖2

2 + ‖wp‖2)

(3.5.13)
for all wu ∈ Lku

2 , wp ∈ Rkp and the corresponding outputs as defined in (3.5.10). Then I −
Muu∆ has a causal inverse with uniformly bounded incremental L2-gain, and the uncertain
system (3.5.3) satisfies (3.5.12).

Proof. As for robust quadratic performance, the proof is a simple exercise and left to the
reader.

In a concrete test we have to view Q as an extra variable (besides Π) with (3.5.11) in order
to satisfy (3.5.13). Hence Q can be viewed as a varying performance multiplier.
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All this can be applied if M is an LTI system; then it is defined with real rational proper
stable matrices M̂uu, M̂pu, M̂up, M̂pp where M̂up(∞) = 0, M̂pp(∞) = 0, as(

ẑu(iω)
ẑp(iω)

)
=

(
M̂uu(iω) M̂up(iω)
M̂pu(iω) M̂pp(iω)

)(
ŵu(iω)

wp

)
.

Remarks.

• Obviously, our robust H2 property is an immediate extension of robust quadratic
performance if equipping the space Rkp × Lku

2 with the norm
√

‖wp‖2 + ‖wu‖2
2 and

defining the quadratic form Σp : Rkp × L
lp
2 → R as

Σp

(
wp

zp

)
= −wT

p Qwp +
∫ ∞

0

zp(t)T zp(t) dt.

As earlier, one can also consider a general mapping Σp that satisfies Σp

(
0
zp

)
� 0.

• Suppose M is LTI. Paganini [22] has observed that the H2-norm can be approximated
by the gain of the underlying system for a certain class of finite power signals that
approximate white noise. He shows that this concept can be then extended to un-
certain systems similarly as done here, and derives necessary and sufficient conditions
for robust H2-performance against arbitrarily fast and arbitrarily slow time-varying
uncertainties (similarly as Shamma [40], Megretsky [19], Poolla, Tikku [23] did for
the robust L2-gain problem). The conditions of [22] can be extended to the more
general setting considered here and then read as follows: There exists an ε > 0 and a
measurable Hermitian valued Φ on C0

1
2π

∫ ∞

−∞
trace(Φ(iω)) dω < γ2

such that
I 0
0 I

Muu Mup

Mpu Mpp


∗ 

Q 0 S 0
0 −Φ 0 0
S∗ 0 R 0
0 0 0 I




I 0
0 I

Muu Mup

Mpu Mpp

 �
(

− ε
2π I 0
0 0

)
on C0,

where Π is again partitioned as in Theorem 3.17. (Note that the latter inequality
implies M∗

ppMpp � Φ such that Φ is positive semi-definite. If the (2,2) block of the
matrix on the right-hand side was negative definite, the L2(C0)-norm of Φ could not
be finite!) Again, the proof of sufficiency of these conditions is straightforward and
left to the reader.

• In the robust quadratic performance problem, one can view Pp as an extra parameter
that varies in a certain given class of matrices. D’Andrea [4] has worked out interesting
variations of the H∞-performance criterion that are amenable to this technique.
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3.6 IQC’s in the State-Space

Let us now look at multipliers Π that are real-rational. Then we can assume Π to be given
in a specific form.

Lemma 3.19 If Π is real rational and bounded on C0, there exists a P and a real rational
proper stable Ψ with

Π(iω) = Ψ(iω)∗PΨ(iω).

Proof. Since Π is bounded, it is proper and there exists some α > 0 such that Π(iω)+αI > 0
for all ω ∈ R∪{∞}. Hence there exists a proper stable rational matrix T with Π(iω)+αI =

T (iω)∗T (iω). This implies Π(iω) =
(

T (iω)
I

)∗ (
I 0
0 −αI

)(
T (iω)

I

)
.

The IQC∫ ∞

−∞

(
ŵ(iω)
ẑ(iω)

)∗
Π(iω)

(
ŵ(iω)
ẑ(iω)

)
dω =

∫ ∞

−∞

(
ŵ(iω)
ẑ(iω)

)∗
Ψ(iω)∗PΨ(iω)

(
ŵ(iω)
ẑ(iω)

)
dω � 0

can, therefore, be rewritten as a static quadratic constraint∫ ∞

0

zΨ(t)T PzΨ(t) dt � 0 (3.6.1)

on the output of

zΨ = Ψ
(

w
z

)
. (3.6.2)

The system Ψ can be interpreted as a filter which encompasses the dynamics in the multiplier
Π. Non-dynamic multipliers are simply obtained with Ψ = I such that the only possibly
freedom is left in P . With a minimal realization

Ψ =
[

AΨ BΨ

CΨ DΨ

]
,

we arrive at yet another parameterization of the multiplier Π in the state-space. Indeed, the
system (3.6.2) now admits the description(

ẋΨ

zΨ

)
=

(
AΨ

CΨ

)
xΨ +

(
BΨ

DΨ

)(
w
z

)
, xΨ(0) = 0.

3.6.1 Robust Stability

In order to apply Theorems 3.15 or 3.14 to guarantee robust stability, we need to check the
FDI (

I

M̂

)∗
Π(iω)

(
I

M̂

)
= [Ψ

(
I

M̂

)
]∗P [Ψ

(
I

M̂

)
] < 0 on C0 ∪ {∞}. (3.6.3)
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For a state-space characterization, we choose a realization of(
w
z

)
=

(
I

M̂

)
w

as

ẋ = Ax + Bw,

(
w
z

)
= Cx + Dw

such that A is Hurwitz. (Note that C and D have a specific structure due to the fact that
the first component of the output equals the input w.) Then we infer

Ψ
(

I

M̂

)
=

 A 0 B
BΨC AΨ BΨD
DΨC CΨ DΨD

 =
[

Ã B̃

C̃ D̃

]
.

The Kalman-Yakubovich-Popov Lemma reveals that the FDI (3.6.3) is equivalent to the
solvability of a linear matrix inequality.

Lemma 3.20 The FDI (3.6.3) holds iff there exists a symmetric solution X of the LMI(
ÃT X + XÃ XB̃

B̃T X 0

)
+

(
C̃ D̃

)T
P

(
C̃ D̃

)
< 0.

3.6.2 Robust Quadratic Performance

The FDI (3.5.8) that characterizes robust quadratic performance is treated similarly. Indeed,
it is equivalent to(

0 I

M̂uu M̂up

)∗
Ψ∗PΨ

(
0 I

M̂uu M̂up

)
+

(
0 I

M̂pu M̂pp

)∗
Pp

(
0 I

M̂pu M̂pp

)
< 0 (3.6.4)

on C0 ∪ {∞}.

Introduce the minimal realization
(

I 0
M̂uu M̂up

)
(

0 I

M̂pu M̂pp

)
 =

 A Bu Bp

Cu Duu Dup

Cp Dpu Dpp

 (3.6.5)

with an A that is Hurwitz to arrive at Ψ
(

I 0
M̂uu M̂up

)
(

0 I

M̂pu M̂pp

)
 =


A 0 Bu Bp

BΨCu AΨ BΨDuu BΨDup

DΨCu CΨ DΨDuu DΨDup

Cp 0 Dpu Dpp

 =

 Ã B̃u B̃p

C̃Ψ D̃Ψu D̃Ψp

C̃p D̃pu D̃pp

 .

(3.6.6)
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Again, the Kalman-Yakubovich-Popov Lemma allows to characterize this FDI in terms of
the solvability of an LMI.

Lemma 3.21 The FDI (3.6.4) holds iff there exits an X satisfying ÃT X + XÃ XB̃u XB̃p

B̃T
u X 0 0

B̃T
p X 0 0

+
(

C̃Ψ D̃Ψu D̃Ψp

C̃p D̃pu D̃pp

)T (
P 0
0 Pp

)(
C̃Ψ D̃Ψu D̃Ψp

C̃p D̃pu D̃pp

)
< 0.

3.6.3 Robust H2 Performance

For robust H2 performance we have to guarantee (3.5.13). We introduce the realization
(3.6.5) (with stable A) and recall that M̂up and M̂pp are strictly proper such that Dup = 0
and Dpp = 0. This implies D̃up = 0 and D̃pp = 0 for the realization (3.6.6) that incorporates
the dynamics of the multiplier. Let us introduce the abbreviation

Pp :=
(

0 0
0 I

)
such that

zT
p zp =

(
wp

zp

)T

Pp

(
wp

zp

)
.

Then (3.5.13) is equivalent to the existence of some ε > 0 with∫ ∞

0

(
z̃u(t)
z̃p(t)

)T (
P 0
0 Pp

)(
z̃u(t)
z̃p(t)

)
dt − wT

p Qwp � −ε(‖wu‖2
2 + ‖wp‖2) (3.6.7)

for all wu ∈ Lku
2 , wp ∈ Rkp and for the output of ẋ

z̃u

z̃p

 =

 Ã B̃u

C̃Ψ D̃Ψu

C̃p D̃pu

(
x

wu

)
, x(0) = B̃pwp. (3.6.8)

Again, by the Kalman-Yakubovich-Popov Lemma, this condition turns out to be equivalent
to the solvability of an LMI.

Lemma 3.22 The conditions (3.5.13) for robust H2-performance holds iff there exists an
X satisfying

B̃T
P XB̃p < Q,

(
ÃT X + XÃ XB̃u

B̃T
u X 0

)
+

(
C̃Ψ D̃Ψu

C̃p D̃pu

)T (
P 0
0 Pp

)(
C̃Ψ D̃Ψu

C̃p D̃pu

)
< 0.

One should compare with robust quadratic performance.



106 Analysis of Input-Output Behavior

3.7 A Summary and Extensions

In this section we intend to merge robust quadratic performance and the robust H2 spec-
ification into one result. Furthermore, we summarize the required hypotheses, we provide
alternative proofs based on Lyapunov arguments whenever possible, and we discuss the
consequences of strengthening the IQC hypotheses on the uncertainties.

With a set ∆ of systems ∆ : Ll
2e → Lk

2e that are causal and of finite L2-gain, we consider
the uncertain system ẋ

zu

zp

 =

 A Bu Bp

Cu Duu Dup

Cp Dpu Dpp

 x
wu

wp

 , x(0) = x0, wu = ∆(zu), ∆ ∈ ∆. (3.7.1)

Pp is the performance index matrix that satisfies(
0
I

)T

Pp

(
0
I

)
� 0. (3.7.2)

The dynamics of the considered IQC is given as(
ẋΨ

zΨ

)
=

(
AΨ

CΨ

)
xΨ +

(
BΨ

DΨ

)(
w
z

)
, xΨ(0) = 0 (3.7.3)

and P is the index matrix of the IQC.

Let us now interconnect (3.7.1) with (3.7.2) as(
w
z

)
=

(
wu

zu

)
. (3.7.4)

The dynamics of the resulting system admits the state-space description


ẋ

ẋΨ

zΨ(
wp

zp

)
 =



A 0 Bu Bp

BΨ

(
0

Cu

)
AΨ BΨ

(
I

Duu

)
BΨ

(
0

Dup

)
DΨ

(
0

Cu

)
CΨ DΨ

(
I

Duu

)
DΨ

(
0

Dup

)
(

0
Cp

)
0

(
0

Dpu

) (
I

Dpp

)


︸ ︷︷ ︸

Ã B̃u B̃p

C̃Ψ D̃Ψu D̃Ψp

C̃p D̃pu D̃pp




x

xΨ

wu

wp

 . (3.7.5)



3.7. A SUMMARY AND EXTENSIONS 107

Finally, suppose that the symmetric matrix X satisfies the LMI

(
I 0 0
Ã B̃u B̃p

)T (
0 X
X 0

)(
I 0 0
Ã B̃u B̃p

)
+

+
(

C̃Ψ D̃Ψu D̃Ψp

C̃p D̃pu D̃pp

)T (
P 0
0 Pp

)(
C̃Ψ D̃Ψu D̃Ψp

C̃p D̃pu D̃pp

)
< 0. (3.7.6)

Note that the first term in this LMI just equals ÃT X + XÃ XB̃u XB̃p

B̃T
u X 0 0

B̃T
p X 0 0


but the formula given above is slightly more illustrative for our purposes.

This list of ingredients is motivated by the discussion in Section 3.6. At this point we have
not yet specified the exact relation of the uncertainties and the IQC dynamics what will be
done in the next subsections. We first proceed with some preparatory remarks.

For some small ε > 0, we can replace the matrix Pp in (3.7.6) by Pp + εI and the right-
hand side 0 by −εI without violating the LMI (3.7.6). For any trajectory of (3.7.5), we
right-multiply the resulting inequality with

(
x(t)

xΨ(t)

)
wu(t)
wp(t)


and left-multiply with its transpose. We obtain

d

dt

(
x(t)

xΨ(t)

)T

X

(
x(t)
xΨ(t)

)
+ zΨ(t)T PzΨ(t) +

(
wp(t)
zp(t)

)T

(Pp + εI)
(

wp(t)
zp(t)

)
�

� −ε‖
(

x(t)
xΨ(t)

)
‖2 − ε‖

(
wu(t)
wp(t)

)
‖2 for all t � 0 (3.7.7)

and, after integration on [0, T ],

(
x(T )
xΨ(T )

)T

X

(
x(T )

xΨ(T )

)
−

(
x(0)
xΨ(0)

)T

X

(
x(0)

xΨ(0)

)
+

+
∫ T

0

zΨ(t)T PzΨ(t) dt +
∫ T

0

(
wp(t)
zp(t)

)T

(Pp + εI)
(

wp(t)
zp(t)

)
dt �

� −ε

∫ T

0

‖
(

x(t)
xΨ(t)

)
‖2 + ‖

(
wu(t)
wp(t)

)
‖2 dt for all T � 0. (3.7.8)
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We further exploit (3.7.2) to find a δ > 0 with(
δI 0
0 0

)
+ (Pp + εI) > 0

(why?) such that we can conclude

−
(

wp(t)
zp(t)

)T

(Pp + εI)
(

wp(t)
zp(t)

)
� δ‖wp(t)‖2. (3.7.9)

All new (Lyapunov based) arguments in this section are based on these three relations.

3.7.1 Well-Posedness with Soft Incremental IQC’s

We assume that A and AΨ are Hurwitz and that ∆ is star-shaped with star center 0.
Moreover, for each ∆ ∈ ∆ and z1, z2 ∈ L2, the output of (3.7.3) for(

w
z

)
=

(
∆(z1) − ∆(z2)

z1 − z2

)
satisfies ∫ ∞

0

zΨ(t)T PzΨ(t) dt � 0. (3.7.10)

Then a suitable adaption of the proof of Theorem 3.8 reveals that the solvability of (3.7.6)
implies

Well-posedness: For each x0 ∈ Rn and wp ∈ L2e, the system (3.7.1) admits a unique
response x,wu ∈ L2e.

Recall that this proof heavily relies on the fact that L2 is a Banach space. However, for
all the remaining statements in this section, this property will not be exploited. Hence,
one could e.g. guarantee well-posedness by standard results on the existence of solutions
of differential equations (such as Lipschitz conditions plus linear boundedness properties)
that are derived by other techniques. It is then no problem to adapt the considered class of
signals - such as to the set of piece-wise continuous (and continuous/piecewise continuously
differentiable x) or continuous signals of finite energy - to the result that has been applied.
Hence, the ‘smoothness’ properties of the trajectories is mainly dictated by those results
that are available to show well-posedness. Once well-posedness has been established (by
whatsoever technique), one can often restrict the attention to signal subspaces that are
technically easier to handle.

Let us mention a situation in which well-posedness is easy to verify. Suppose that the
uncertainty w = ∆(z) is described by an LTI system

ẋ∆ = A∆x∆ + B∆z,

(
w
z

)
=

(
C∆

0

)
x∆ +

(
D∆

I

)
z, x∆(0) = 0.
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Then (3.7.1) is well-posed if (
I D∆

Duu I

)
is nonsingular. (3.7.11)

(Why?)

The soft IQC condition on ∆ now reads as (3.7.10) on the output of

 ẋ∆

ẋΨ

zΨ

 =


A∆ 0 B∆

BΨ

(
C∆

0

)
AΨ BΨ

(
D∆

I

)
DΨ

(
C∆

0

)
CΨ DΨ

(
D∆

I

)


 x∆

xΨ

z

 ,

(
x∆

xΨ

)
(0) = 0.

On the one hand, taking the resulting FDI at ω = ∞ reveals

[DΨ

(
D∆

I

)
]T PDΨ

(
D∆

I

)
� 0. (3.7.12)

On the other hand, (3.7.6) implies

0 >

(
D̃Ψu

D̃pu

)T (
P 0
0 Pp

)(
D̃Ψu

D̃pu

)
=

= [DΨ

(
I

Duu

)
]T P [DΨ

(
I

Duu

)
] +

(
0

Dpu

)T

Pp

(
0

Dpu

)
.

Due to (3.7.2), we infer

[DΨ

(
I

Duu

)
]T P [DΨ

(
I

Duu

)
] < 0. (3.7.13)

The two inequalities (3.7.12) and (3.7.13) imply that(
DΨ

(
I

Duu

)
DΨ

(
D∆

I

) )
has full column rank what leads to well-posedness (3.7.11).

Similar arguments apply for time-varying uncertainties if one can assure (3.7.12) to hold.
Note that we used a frequency domain argument to infer (3.7.12) from the soft IQC; this
argument breaks down for time-varying uncertainties.

From now on we assume that well-posedness has been verified.
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3.7.2 Soft IQC’s

Again, suppose A and AΨ are Hurwitz, that the LMI (3.7.6) holds, and that ∆ is star-shaped
with center 0. For each ∆ ∈ ∆ and for any z, w ∈ L2 such that w = ∆(z), the output of
(3.7.3) satisfies (3.7.10). Similarly as Theorem 3.7 one proves

Robust Stability: For all x0 ∈ Rn and wp ∈ L2, the unique system response of (3.7.1)
satisfies x,wu ∈ L2.

For the remaining properties of uniform robust stability and robust performance we provide
independent (very elementary) proofs.

Uniform Robust Stability: There exist constants K1, K2 such that for every x0 ∈ Rn

and every wp ∈ L2

‖x‖2
2 + ‖wu‖2

2 � K1‖wp‖2
2 + K2‖x0‖2 and lim

t→∞x(t) = 0.

We could add (after possibly modifying K1, K2) ‖zu‖2
2, ‖zp‖2

2 and ‖xΨ‖2
2, ‖zΨ‖2

2 on the
left-hand side and the inequality still remains true. (Why?)

Proof. For x0 ∈ Rn, wp ∈ L2, we conclude for the unique system response that wu, x ∈ L2

and hence (with the system’s differential equation and since L2 is a linear space) ẋ, zu, zp ∈
L2; this implies limt→∞ x(t) = 0. For the interconnection of (3.7.1) and (3.7.3) according to
(3.7.4), we infer (

ẋΨ

zΨ

)
=

(
AΨ

CΨ

)
xΨ +

(
BΨ

DΨ

)(
∆(zu)

zu

)
, xΨ(0) = 0.

Since AΨ is stable, we infer xΨ, ẋΨ, zΨ ∈ L2 and limt→∞ xΨ(t) = 0. Moreover, (3.7.10) holds
true. If we take the limit T → ∞ in (3.7.8), and if we combine with (3.7.10), we get∫ ∞

0

(
wp(t)
zp(t)

)T

(Pp + εI)
(

wp(t)
zp(t)

)
dt �

�
(

x0

0

)T

X

(
x0

0

)
− ε

∫ ∞

0

‖
(

x(t)
xΨ(t)

)
‖2 + ‖

(
wu(t)
wp(t)

)
‖2 dt. (3.7.14)

Exploiting (3.7.9) leads, as required, to

ε

∫ ∞

0

‖
(

x(t)
xΨ(t)

)
‖2 + ‖

(
wu(t)
wp(t)

)
‖2 dt � δ

∫ ∞

0

‖wp(t)‖2 dt +
(

x(0)
0

)T

X

(
x(0)

0

)
.

Robust Performance: The system is (uniformly) robustly stable, and for all x0 ∈ R and
wp ∈ L2 one has ∫ ∞

0

(
wp(t)
zp(t)

)T

Pp

(
wp(t)
zp(t)

)
dt �

(
x0

0

)T

X

(
x0

0

)
.
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Proof. This immediately follows from (3.7.14).

For some given symmetric Q ∈ Rn×n and some subspace X of Rn, we can impose the extra
constraint (

I
0

)T

X

(
I
0

)
< Q on X

to infer ∫ ∞

0

(
wp(t)
zp(t)

)T

Pp

(
wp(t)
zp(t)

)
dt � xT

0 Qx0

for every wp ∈ L2 and every x0 ∈ X ; this reveals that we have indeed merged the previous
robust H2 and robust quadratic performance specification into one result.

3.7.3 Hard IQC’s

Recall that we assume well-posedness of (3.7.1). Suppose that, for each ∆ ∈ ∆ and z, w ∈
L2e with w = ∆(z), the output of (3.7.3) satisfies∫ T

0

zΨ(t)T PzΨ(t) dt � 0 for all T � 0. (3.7.15)

We say that ∆ satisfies a hard IQC. In addition, we include the hypothesis that the LMI
(3.7.6) has a solution

X > 0.

Remark. Note that the set ∆ is not necessarily star-shaped; it can even be just a singleton.
Moreover, note that A and AΨ are not necessarily stable. Whether positivity of X implies
or is implied by the stability of A, AΨ depends on the specific matrices P and Pp, and no
general claim is possible.

Now we can provide a direct proof of robust stability and we can strengthen the uniform
robust stability and robust performance conclusions.

Robust Stability: For x0 ∈ Rn, wp ∈ L2, the unique response of (3.7.1) satisfies x,wu ∈ L2.

Proof. The proof is directly based on (3.7.8) and (3.7.9). Indeed, we infer from (3.7.8) that

(
x(T )
xΨ(T )

)T

X

(
x(T )

xΨ(T )

)
+

∫ T

0

(
wp(t)
zp(t)

)T

(Pp + εI)
(

wp(t)
zp(t)

)
dt �

�
(

x0

0

)T

X

(
x0

0

)
− ε

∫ T

0

‖
(

x(t)
xΨ(t)

)
‖2 + ‖

(
wu(t)
wp(t)

)
‖2 dt (3.7.16)
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and combining with (3.7.9) gives(
x(T )
xΨ(T )

)T

X

(
x(T )

xΨ(T )

)
+ ε

∫ T

0

‖
(

x(t)
xΨ(t)

)
‖2 + ‖

(
wu(t)
wp(t)

)
‖2 dt �

�
(

x0

0

)T

X

(
x0

0

)
+ δ

∫ T

0

‖wp(t)‖2 dt (3.7.17)

for all T � 0. Since the right-hand side is bounded for T → ∞, we infer the same (due to
X > 0) for

∫ T

0
‖x(t)‖2 dt,

∫ T

0
‖xΨ(t)‖2 dt, and

∫ T

0
‖wu(t)‖2 dt; this shows x, xΨ, wu ∈ L2.

Uniform Robust Stability: The system is robustly stable, and there exist constants K1,
K2 such that for every x0 ∈ Rn and every wp ∈ L2

‖x(T )‖2 +
∫ T

0

‖x(t)‖2 + ‖wu(t)‖2 dt � K1

∫ T

0

‖wp(t)‖2 dt + K2‖x0‖2 for all T � 0

and limt→∞ x(t) = 0. Again we could add (for possibly other constants)
∫ T

0
‖zu(t)‖2 +

‖zp(t)‖2 + ‖xΨ(t)‖2 + ‖zΨ(t)‖2 dt and ‖xΨ(T )‖ on the left-hand side. (Why?)

Proof. This is immediate from (3.7.17).

Robust Performance: The system is (uniformly) robustly stable, and for all x0 ∈ R and
wp ∈ L2 one has(

x(T )
xΨ(T )

)T

X

(
x(T )

xΨ(T )

)
+

∫ T

0

(
wp(t)
zp(t)

)T

Pp

(
wp(t)
zp(t)

)
dt �

�
(

x0

0

)T

X

(
x0

0

)
for all T � 0.

Proof. Immediate with (3.7.16).

3.7.4 QC’s

Again, we assume well-posedness of (3.7.1). Furthermore, suppose that for each ∆ ∈ ∆ and
w, z ∈ L2e with w = ∆(z), the output of (3.7.3) satisfies

zΨ(t)T PzΨ(t) � 0 for all t � 0. (3.7.18)

This is a quadratic constraint (QC) in time. Moreover, let us suppose that the LMI (3.7.6)
has the solution X > 0.

Note that this QC implies the hard IQC (3.7.15) such that all conclusions from the previous
subsection are still true. However, due to the constraint point-wise in time, we can now
argue directly with (3.7.7); this leads to uniform exponential stability.
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Uniform Exponential Stability: There exist constants α > 0, K3, K4 such that

‖x(T )‖2 � K3‖x(t0)‖2e−α(T−t0) + K4

∫ T

t0

‖wp(t)‖2
2 dt for all T � t0 � 0.

If wp = 0, this implies that the system state x(T ) converges exponentially to zero for T → ∞.
Since the constants K3 and α do not depend on the specific ∆, the exponential stability is
uniform in the uncertainty.

Proof. Let us introduce the abbreviations

v(t) :=
(

x(t)
xΨ(t)

)T

X

(
x(t)
xΨ(t)

)
, α :=

ε

λmin(X)
> 0.

Then (3.7.7) clearly implies

d

dt
v(t) + αv(t) +

(
wp(t)
zp(t)

)T

(Pp + εI)
(

wp(t)
zp(t)

)
� 0 for all t � 0.

Combining with (3.7.9) gives

d

dt
v(t) + αv(t) � δ‖wp(t)‖2 for all t � 0.

For any t0 � 0 we conclude

v(T ) � v(t0)e−α(T−t0) + δ

∫ T

t0

e−α(T−t)‖wp(t)‖2 dt.

We conclude that there exist constants K3, K4 such that

‖x(T )‖2 � K3‖x(t0)‖2e−α(T−t0) + K4

∫ T

0

‖wp(t)‖2
2 dt.

Remarks.

• Typical examples for the latter results to apply are time-varying parametric uncertain-
ties, static non-linearities, or non-linearities defined by differential equations. Often,
mild Lipschitz-type conditions suffice to guarantee that (3.7.1) has a solution for each
initial condition and for each disturbance. Usually, such solutions are only given locally
in time. (Recall that nonlinear differential equations can have a finite escape time.)
The stability results for hard IQC’s or QC’s might allow, however, to exclude e.g. a
finite escape time such that solutions can be extended to the whole interval [0,∞).
Hence, apart from stability, also certain aspects of well-posedness could be shown with
the arguments that we presented in this section.
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• Further weakening the IQC’s. We have assumed the hard IQC’s or the QC’s to
hold for all w, z ∈ L2e with w = ∆(z). However, it is obvious that all proofs given in
this section only required them to be satisfied if, in addition, (3.7.4) holds for some
trajectory of the uncertain system (3.7.1).

• We include two exercises about the multi-variable circle criterion and the Popov cri-
terion that reveal the subtleties discussed here and, nevertheless, allow to re-prove
classical results in a straightforward manner without the need for technical hypotheses
that often occur in the literature [14].

3.8 Other Performance Specifications in the State-Space

In this section we want to clarify how to extend the results to other performance criteria
different from robust quadratic or H2-performance. As a rule, all those criteria that can
be formulated in terms of a quadratic Lyapunov function on the system extended with the
IQC dynamics can be considered. In [2, Chapter 5 and 6] one finds many variations of these
criteria which are not listed since, after an understanding of the basic IQC principle, all
these results can be easily derived not only for polytopic and LFT parametric uncertainties,
but they can be effectively extended to much larger classes of uncertainties described by
dynamic IQC’s.

We just confine ourselves to the generalized H2 and peak-to-peak upper bound specifications;
we employ the same setup as in Section 3.7.

3.8.1 Robust Generalized H2-Performance

Let us define

Pp1 =
(

−I 0
0 0

)
and Pp2 =

(
0 0
0 I

)
with a partition according to those of the rows of C̃p in (3.7.5). (This choice will be motivated
by the considerations to follow). Suppose that X > 0 satisfies

(
I 0 0
Ã B̃u B̃p

)T (
0 X
X 0

)(
I 0 0
Ã B̃u B̃p

)
+

+
(

C̃Ψ D̃Ψu D̃Ψp

C̃p D̃pu D̃pp

)T (
P 0
0 γPp1

)(
C̃Ψ D̃Ψu D̃Ψp

C̃p D̃pu D̃pp

)
< 0 (3.8.1)

and (
C̃p D̃pu D̃pp

)T 1
γ

Pp2

(
C̃p D̃pu D̃pp

)
�

(
I 0 0

)T
X

(
I 0 0

)
. (3.8.2)
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Then the conclusions about well-posedness and robust stability remain unchanged.

If the uncertainty satisfies the hard IQC as in Section 3.7.3, we infer for x(0) = 0 and
xΨ(0) = 0 from (3.7.8) by∫ T

0

(
wp(t)
zp(t)

)T

Pp1

(
wp(t)
zp(t)

)
dt =

∫ T

0

wp(t)T wp(t) dt

(what motivates the definition of Pp1) that(
x(T )

xΨ(T )

)T

X

(
x(T )

xΨ(T )

)
� (γ − ε)

∫ T

0

wp(t)T wp(t) dt for all T � 0.

Hence, we have (
x(T )
xΨ(T )

)T

X

(
x(T )

xΨ(T )

)
� (γ − ε)‖wp‖2

2 for all T � 0

such that the state-trajectory is caught in an ellipsoid defined by X. The second inequality
implies

1
γ

(
wp(t)
zp(t)

)T

Pp2

(
wp(t)
zp(t)

)
=

1
γ

zp(t)T zp(t) �
(

x(t)
xΨ(t)

)T

X

(
x(t)
xΨ(t)

)
for all t � 0

(what motivates the choice of Pp2.) With the L∞-norm definition ‖zp‖∞ = supt�0 ‖zp(t)‖,
we infer by combining both inequalities that

‖zp‖2
∞ � γ(γ − ε)‖wp‖2

2.

Hence, the gain of wp � L2 → zp ∈ L∞ is robustly strictly smaller than γ.

Due to Pp2 � 0, we note that (3.8.2) is equivalent to the relations

Pp2D̃pu = 0, Pp2D̃pp = 0,
1
γ

C̃T
p Pp2C̃p < X.

Hence, the non-strict inequality (3.8.2) indeed comprises certain strict properness conditions
that are required to render the gain wp � L2 → zp ∈ L∞ finite.

Suppose we know (as for parametric perturbations) that the uncertainties even satisfy a QC
as in Section 3.7.4 for the indices P1 and P2. Then we can replace (3.8.2) by(

C̃Ψ D̃Ψu D̃Ψp

C̃p D̃pu D̃pp

)T (
P2 0
0 1

γ Pp2

)(
C̃Ψ D̃Ψu D̃Ψp

C̃p D̃pu D̃pp

)
�

(
I 0 0

)T
X

(
I 0 0

)
(3.8.3)

and, still, infer that the generalized H2-gain is robustly smaller than γ.

Note that we have used different multipliers P1 and P2 in both inequalities (what will be
relevant if searching for suitable multipliers in a whole family as discussed in Section 3.9.)
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The extra multiplier P2 leads to extra freedom to render the inequality satisfied; hence it
reduces conservatism. Contrary to what we could conclude previously, the inequality does
not necessarily lead to D̃pu = 0, D̃pp = 0 but, still, it implies that the gain wp � L2 → zp ∈
L∞ is finite. Hence, (3.8.3) allows a more complicated dependence on the uncertainties at
the expense of a non-strict inequality that cannot be easily re-formulated to a strict one.

Remark. The presented techniques do not apply for soft IQC’s. In addition, it might be
more suitable to look at uncertainties ∆ that map L∞ causally into L2; the abstract theory
developed earlier can be easily extended to cope with such situations.

3.8.2 Robust Bound on Peak-to-Peak Gain

Let us assume that the class of uncertainties ∆ consists of causal mappings ∆ : L∞e → L∞e

of finite L∞-gain. We assume that, for each ∆ ∈ ∆, the perturbed system (3.7.1) is

well-posed: For each x0 ∈ Rn and wp ∈ L∞e, the system (3.7.1) admits a unique response
x,wu ∈ L∞e.

Let us now assume that for any zu ∈ L∞e and any ∆ ∈ ∆, the QC (3.7.18) holds for
wu = ∆(zu) and for P = P1, P = P2 (similarly as in Section 3.7.4).

Let X, λ > 0, µ ∈ R satisfy the inequalities

X > 0,

(
I 0 0
Ã B̃u B̃p

)T (
λX X
X 0

)(
I 0 0
Ã B̃u B̃p

)
+

+
(

C̃Ψ D̃Ψu D̃Ψp

C̃p D̃pu D̃pp

)T (
P 0
0 µPp1

)(
C̃Ψ D̃Ψu D̃Ψp

C̃p D̃pu D̃pp

)
< 0

and(
C̃Ψ D̃Ψu D̃Ψp

C̃p D̃pu D̃pp

)T (
P2 0
0 1

γ Pp2

)(
C̃Ψ D̃Ψu D̃Ψp

C̃p D̃pu D̃pp

)
�

�
(

I 0 0
0 0 I

)T (
λX 0
0 (γ − µ)I

)(
I 0 0
0 0 I

)
. (3.8.4)

This leads to uniform exponential stability, for every wp ∈ L∞

x(T ) � λmax(X)
λmin(X)

e−λT x(0) +
µ

λmin(X)λ
sup

t∈[0,T ]

wp(t)T wp(t),

and to the robust peak-to-peak norm bound γ: for every wp ∈ L∞

‖zp‖∞ � γ‖wp‖∞.



3.9. MULTIPLE IQC’S IN THE STATE-SPACE 117

Proof. Again, set

v(t) :=
(

x(t)
xΨ(t)

)T

X

(
x(t)
xΨ(t)

)
.

Then the first inequality shows

d

dt
v(t) + λv(t) � µwp(t)T wp(t) for all t � 0

and hence
v(T ) � e−λT )v(0) +

µ

λ
sup

t∈[0,T ]

wp(t)T wp(t) for all T � 0.

This clearly implies the statement on robust stability. Moreover, x(0) = 0 reveals

λv(T ) � µ‖wp‖2
∞ for all T � 0.

Now we exploit (3.8.4) to infer

1
γ
‖zp(t)‖2 � λv(t) + (γ − µ)‖wp(t)‖2 for all t � 0.

Combining both inequalities implies

zp(t)T zp(t) � γ2‖wp‖2
∞

what reveals that γ is a bound on the peak-to-peak gain of L∞ � wp → zp ∈ L∞.

Remark. The above inequalities imply well-posedness if A, AΨ are Hurwitz, if all ∆ ∈ ∆
are of finite incremental L∞-gain, if ∆ is star-shaped with star center 0, and if each ∆ ∈ ∆
satisfies (3.7.10) for all z1, z2 ∈ L∞ and z = z1 − z2, w = ∆(z1)−∆(z2). The proof is based
Banach’s fixed point theorem that exploits the completeness of L∞ and just requires a slight
modification of that of Theorem 3.8.

Remark. As for the generalized H2 norm, we can reduce (3.8.4) to a strict inequality with
algebraic constraints if setting P2 = 0; we can replace (3.8.4) equivalently by

Pp2D̃pu = 0,
1
γ

(
C̃p D̃pp

)T
Pp2

(
C̃p D̃pp

)
<

(
λX 0
0 (γ − µ)I

)
.

3.9 Multiple IQC’s in the State-Space

Although most of the results provided so far have been given for one IQC, it is always impor-
tant to keep in mind that one usually considers a whole family of IQC’s that is parameterized
in a suitable fashion.

In the latter sections we have considered IQC’s that are described by a dynamical part
(3.7.3) defined through AΨ, BΨ, CΨ, DΨ, and an index matrix P . In principle, all of these
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parameters could be varied in specific classes to describe a set of IQC’s. However, the final
task is to find one of these parameters and an X (possibly with X > 0) such that the LMI
(3.7.6) is satisfied. Hence we will prefer those parameterizations for which the search for X
and a suitable IQC turns out to be a standard LMI problem.

Obvious cases include those where the dynamic part of the IQC is fixed and only the
quadratic index varies in a class P . If this class P is described by infinitely many LMI’s, a
semi-infinite LMI problem results; although convex, such problems cannot be directly han-
dled with existing software. However, if the set P is described by finitely LMI’s, standard
software can be used to search for X and a suitable multiplier.

As a simple example, suppose that

Πj(s) = Cj(sI − Aj)−1Bj + Dj

(Aj Hurwitz) are finitely many rational multipliers. Searching in the set of all multipliers
parameterized as (3.4.7) with τj > 0 has indeed the form as just described. (Derive the
dynamics and the class of indices P .)

3.10 Parametric Uncertainties

In this final section we would like to briefly return to the situation that ∆ in (3.7.1) is
time-varying parametric and can vary arbitrarily fast.

3.10.1 LFT Representations

The set of values of the parametric uncertainties is assumed to be given by finitely many
generating points

∆g = {∆1, ...,∆N}
as

∆c = co∆g = co{∆1, ...,∆N}.
We assume 0 ∈ ∆c. The set of uncertainties is given by all curves ∆(t) defined on [0,∞)
and taking their values in ∆c:

∆ := {∆ | ∆ : [0,∞) → ∆c is continuous}.

Note that any ∆ ∈ ∆ acts in (3.7.1) as a multiplication operator

w(t) = ∆(t)z(t).

If, for ∆ ∈ ∆, (
I ∆(t)

Duu I

)
is nonsingular for all t � 0,
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the uncertain system (3.7.1) admits the alternative representation(
ẋ
zp

)
=
((

A Bp

Cp Dpp

)
+
(

Bu

Dpu

)
∆(t)(I − Duu∆(t))−1

(
Cu Dup

))(
x
wp

)
, x(0) = x0.

This motivates to define the functions(
A∆ B∆

C∆ D∆

)
:=

(
A + Bu∆(I − Duu∆)−1Cu Bp + Bp∆(I − Duu∆)−1Dup

Cp + Dpu∆(I − Duu∆)−1Cu Dpp + Dpu∆(I − Duu∆)−1Dup

)
.

Note that these functions are rational in the elements of ∆, and they are affine if Duu = 0.
However, we are interested in this function only on the set ∆c. Depending on the structure
of the matrices in ∆c and on Duu, it might happen that det(I −Duu∆) vanishes identically
on ∆c. Even if not vanishing identically, this function can have zeros on the set ∆c. We
call the LFT well-posed, if

det(I − Duu∆) �= 0 for all ∆ ∈ ∆c. (3.10.1)

Then (I − Duu∆)−1 and A∆, B∆, C∆, D∆ are well-defined rational functions that are
continuous on the set ∆c. (Continuity even implies that these functions are smooth. In
fact, the essence is that they don’t have poles on this set.)

If the well-posedness condition (3.10.1) holds, we arrive at the alternative LFT description(
ẋ
zp

)
=

(
A∆(t) B∆(t)

C∆(t) D∆(t)

)(
x
wp

)
, x(0) = x0

of the uncertain system (3.7.1).

Let us recall the following converse fact from µ-theory: Suppose F (δ), G(δ), H(δ), J(δ) are
rational functions of δ =

(
δ1 · · · δm

)
that are continuous on the parameter box

δc := {δ = (δ1, ..., δm) | δj ∈ [−1, 1]}.

(As usual, we can shift and re-scale the uncertainties to such they take their values in [−1, 1]
without without loss of generality.) Then there exist matrices A Bu Bp

Cu Duu Dup

Cp Dpu Dpp


and nonnegative integers

d1, ..., dm

such that, with
∆(δ) = diag(δ1Id1 , ..., δmIdm

), (3.10.2)

we have the following two properties:

det(I − Duu∆(δ)) �= 0 and
(

A∆(δ) B∆(δ)

C∆(δ) D∆(δ)

)
=

(
F (δ) G(δ)
H(δ) J(δ)

)
on δc.

Consequently, we can summarize:
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• On every set ∆c where det(I − Duu∆) does not vanish, A∆, B∆, C∆, D∆ define
continuous rational functions of the elements of ∆.

• Arbitrary continuous rational functions F (δ), G(δ), H(δ), J(δ) without poles on δc

admit a well-posed LFT representation; they can be written as A∆(δ), B∆(δ), C∆(δ),
D∆(δ) where ∆(δ) is a block-diagonal matrix whose blocks admit the form δjI.

Remarks. This result shows that choice of a block-diagonal structure (as usually made
in µ-theory) is a specific case of the general formulation we started out with. In concrete
applications, the extra freedom of not being forced to use block-diagonal matrices should be
exploited to arrive at more efficient LFT representations, in particular with respect to the
size of ∆. Note also that one is not bound to parameter boxes of the form δc but one can
also choose for more general sets that are described as ∆c.

3.10.2 Robust Quadratic Performance

Let us now return to robust quadratic performance analysis with an index Pp that satisfies,
as earlier, the condition (3.5.7). We have given two seemingly different sufficient conditions
to guarantee robust performance; one is related to finding a common quadratic Lyapunov
function, and the other proceeds via scalings and quadratic constraints.

Indeed, robust quadratic performance is implied by the existence of an X such that

X > 0,

(
AT

∆X + XA∆ XB∆

BT
∆X 0

)
+

(
0 I

C∆ D∆

)T

Pp

(
0 I

C∆ D∆

)
< 0 for all ∆ ∈ ∆v.

(3.10.3)
Moreover, it is also guaranteed if there exists an X and a scaling

P =
(

Q S
ST R

)
satisfying

(
∆
I

)T

P

(
∆
I

)
> 0 for all ∆ ∈ ∆c (3.10.4)

such that(
I 0 0
A Bu Bp

)T (
0 X
X 0

)(
I 0 0
A Bu Bp

)
+

+
(

0 I 0
Cu Duu Dup

)T

P

(
0 I 0

Cu Duu Dup

)
+

+
(

0 0 I
Cp Dpu Dpp

)T

Pp

(
0 0 I

Cp Dpu Dpp

)
< 0. (3.10.5)

A simple exercise reveals that (3.10.4)-(3.10.5) imply the non-singularity of I−Duu∆ for all
∆ ∈ ∆c and the validity of (3.10.3) with the same X. (Why?) It is not so trivial to see that
the converse holds true as well; in fact, both conditions for robust quadratic performance
are equivalent.
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Theorem 3.23 The matrix I −Duu∆ is nonsingular for all ∆ ∈ ∆c and there exists an X
with (3.10.3) iff there exist symmetric X and P satisfying (3.10.4)-(3.10.5).

The proof of this theorem is found in [33]. Since based on a more general result about
quadratic forms, similar statements can be obtained with ease for all the other performance
criteria (such as H2, generalized H2 and peak-to-peak upper bound performance) that have
been considered in these notes.

Testing the first condition amounts to reducing (3.10.3) to finitely many LMI’s that can
be based on convexity arguments or gridding techniques. In the second characterization,
(3.10.5) poses no problem and only the parameterization of the scalings as in (3.10.4) has
to be given with a finite number of LMI’s.

If Duu vanishes, the picture becomes clear. Then the functions A∆, B∆, C∆, D∆ are affine
in ∆, and one just has to solve the inequalities in (3.10.3) for the finitely many generators
in ∆g. Similarly, Duu = 0 implies that any multiplier P that satisfies (3.10.5) has, in fact,
the property

Q < 0.

(Why? The alert reader recalls that the required argument appeared earlier in the text.)
Hence we can introduce this extra constraint without conservatism. Under this constraint,
however, (3.10.4) holds iff it holds already for the generators ∆g. Hence, both robust
performance characterizations reduce without conservatism to standard LMI problems.

The situation is more complicated for Duu �= 0 such that A∆, B∆, C∆, D∆ could (depending
on the structure of ∆) be genuinely nonlinear. Then (3.10.3) offers no clear hint how to
perform the reduction to a finite number of LMI’s. The second characterization, however,
allows to give - possibly at the expense of conservatism - certain reduction recipes. We
provide three possibilities:

• Just introduce the extra constraint Q < 0 and replace ∆c by ∆g in (3.10.4). If the
resulting LMI’s are feasible, robust performance is guaranteed. Hence this is a sufficient
condition for the two tests (3.10.3) or (3.10.4)-(3.10.5) that is, generally, stronger due
to the extra constraint for the scaling.

• One can take the specific structure of the set ∆c and of the function

∆ →
(

∆
I

)T

P

(
∆
I

)
(3.10.6)

into account to refine the pretty rough extra constraint Q < 0. Just as an example
that admits immediate extensions, suppose that

∆c = {∆ =

 δ1I 0
. . .

0 δmI

 | δj ∈ [−1, 1]}.
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Then it suffices to restrict Q only as

Q =

 Q11 · · · Q1m

...
. . .

...
Qm1 · · · Qmm

 , Qjj < 0, j = 1, . . . , m

(in the same partition as that of ∆.) This renders the function (3.10.6) in δ =(
δ1 · · · δm

)
partially convex on the parameter box δc, and it suffices to describe

the scalings only through inequalities on the extreme points

δg := {δ =
(

δ1 · · · δm

)
| δj ∈ {−1, 1}}

of this box. Clearly, this extra constraint on Q is less stringent than Q < 0 what
reduces conservatism.

• Finally, we mention a variant that is even more conservative than Q < 0. One just
uses, for the class of uncertainties as in the previous item, the scalings adjusted to
the uncertainty structure as defined in (3.4.3). This provides a subset of all scalings
satisfying (3.10.4) that admit an explicit (implementable) description. If the diagonal
blocks are not repeated, Q = −R are diagonal and S vanishes; this is the case that
reappears throughout the book [2] by applying the so-called S-procedure. Although
the restriction to a smaller class of scalings introduces conservatism, it also reduces
the number of variables in the LMI test what speeds up the calculations.

This discussion reveals that the introduction of scalings allows to provide guarantees for
robust quadratic performance even if the parameters enter in a rational fashion. Moreover,
for the least conservatism, one should employ scalings that are full and can only be indirectly
described. Using the usual structured scalings as appearing in µ-theory introduces extra
conservatism that should be avoided.

There is, however, one point that seems not sufficiently stressed in the literature: No matter
by which technique, solving (3.10.4)-(3.10.5) or (3.10.3) amounts to guaranteeing robust
performance not only for the systems described with matrices in{(

A∆ B∆

C∆ D∆

)
| ∆ ∈ ∆c

}
but even for those described with

co
{(

A∆ B∆

C∆ D∆

)
| ∆ ∈ ∆c

}
. (3.10.7)

(Why?) If A∆, B∆, C∆, D∆ are affine on ∆c, both sets coincide since ∆c is convex.
However, if these functions are nonlinear, taking the convex hull might increase the set
considerably such that the desired spec is guaranteed for systems which are not included in
the original description. Note that this observations suggests another approach to guarantee
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robust performance: Try to find a description of (3.10.7) as the convex hull of finitely
many generators. The computation of such a re-parameterization, however, might be very
expensive.

Remarks.

• In general, ∆ enters the constraints (3.10.3) in a rational fashion, whereas (3.10.5)
is independent of ∆ and (3.10.4) is quadratic in ∆. Through the auxiliary variable
P , the dependence on ∆ has been simplified. The variable P is closely related to
Lagrange-multipliers as appearing in constraint optimization theory.

• In [2] the authors apply the so-called S-procedure to derive (3.10.5) from (3.10.3) for
the specific class of scalings described above; the constraint (3.10.4) does not appear
explicitly since the corresponding multipliers satisfy it automatically. In the present
notes we have provided two version of robust performance tests: One directly based on
the parameter dependent system description, and one based on QC’s. We avoided to
refer to the S-procedure since the QC results allow powerful generalizations and since
our approach provides a better insight in the choice of various classes of scalings and
the resulting conservatism. Therefore, the S-procedure only plays a minor role in our
notes.

• The discussion in this section is particularly important for the synthesis of robust
controllers. Controller synthesis seems not directly possible on the basis of (3.10.3),
but one can easily provide variations of the standard D/K-iteration from µ-synthesis
if characterizing robust performance by (3.10.4)-(3.10.5).
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3.11 Exercises

Exercise 1

a) Suppose that M (linear) and ∆ are systems that have finite gain. Show that IM (∆) has
a causal inverse with finite gain iff the same is true of the mapping I −M∆. Show that the
same holds if ‘finite gain’ is replaced with ‘finite incremental gain’.

b) Suppose S : L2e → L2e is causal and has finite incremental gain. Moreover, assume
that the restriction S : L2 → L2 has an inverse whose incremental gain is finite. Then
S : L2e → L2e itself has an inverse with finite incremental gain.

Exercise 2

Suppose w and z are two vectors in Rn. Prove:

There exists a ∆ ∈ Rn×n with ‖∆‖ � 1 and w = ∆z iff wT w � zT z.

There exists a δ ∈ R with |δ| � 1 and w = δz iff wwT � zzT .

Exercise 3

For given ∆j ∈ Rk×l, define the set ∆ := co{∆1, . . . ,∆N}. With fixed Q = QT , S, R = RT

consider the function

f(∆) :=
(

∆
I

)T (
Q S
ST R

)(
∆
I

)
.

Prove: Q � 0 implies that ∆ → f(∆) is concave.

Prove: If f is concave then

f(∆j) > 0 for all j = 1, . . . , N =⇒ f(∆) > 0 for all ∆ ∈ ∆. (3.11.1)

Find weaker conditions on Q that lead to the the same implication (3.11.1).

Exercise 4 (MIMO Circle criterion)

Consider the system
ẋ = Ax + B∆(t, Cx)
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where ∆ : R × Rl → Rk is any continuously differentiable function that satisfies, for two
matrices K, L, the multi-variable sector condition

[∆(t, z) − Kz]T [∆(t, z) − Lz] � 0 for all (t, z) ∈ R × Rl. (3.11.2)

Note that this is nothing but a static QC. Find a multiplier and the corresponding LMI that
proves exponential stability. With M(s) = C(sI − A)−1B define G(s) = (I − LM(s))(I −
KM(s))−1. Show that the LMI you found has a solution iff

A + BKC is stable and G(iω)∗ + G(iω) > 0 for all ω ∈ R.

(Hence G is strictly positive real. Note that this terminology is often used in the literature
for a different property!) Is stability of A required for your arguments?

Exercise 5 (Popov criterion)

Consider the system
ẋ = Ax + B∆(Cx) (3.11.3)

with A Hurwitz and ∆ a continuously differentiable nonlinearity ∆ : R → R that satisfies

0 � z∆(z) � z2 for all z ∈ R.

Prove the following statements:

1. ∆ satisfies the static quadratic constraints

τ

(
∆(z)

z

)T (
−2 1
1 0

)(
∆(z)

z

)
� 0

for all z ∈ R and τ � 0.

2. For any z ∈ R ∫ z

0

∆(ζ) dζ � 0,

∫ z

0

ζ − ∆(ζ) dζ � 0.

If z : [0,∞) → R is continuously differentiable, then

τ1

∫ T

0

z(t)ż(t) − ∆(z(t))ż(t) dt � −τ1
1
2
z(0)2, τ2

∫ T

0

∆(z(t))ż(t) dt � −τ2
1
2
z(0)2

for τ1, τ2 � 0. (Substitution rule!)

3. Suppose there exist X and τ, τ1, τ2 � 0 such that(
I 0
A B

)T (
0 X
X 0

)(
I 0
A B

)
+

(
0 I
C 0

)T (
−2τ τ
τ 0

)(
0 I
C 0

)
+

+
(

C 0
CA CB

)T (
0 τ1

τ1 0

)(
C 0

CA CB

)
+
(

0 I
CA CB

)T (
0 −τ1

τ1 0

)(
0 I

CA CB

)
+

+
(

0 I
CA CB

)T (
0 τ2

τ2 0

)(
0 I

CA CB

)
< 0.
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Then the equilibrium x0 = 0 of (3.11.3) is globally asymptotically Lyapunov stable.
What can you say about exponential stability? Hint: Use a simple hard IQC argument.
Note that, along trajectories of (3.11.3), one has z = Cx, ż = CAx + CBw and
w = ∆(z).

4. Show that the condition in the previous exercise is equivalent to the existence of a
symmetric K, ν ∈ R, τ > 0 with(

AT K + KA KB
BT K 0

)
+

(
0 I

CA CB

)T (
0 ν
ν 0

)(
0 I

CA CB

)
+

+
(

0 I
C 0

)T (
−2τ τ
τ 0

)(
0 I
C 0

)
< 0.

5. With G(s) = C(sI − A)−1B, the LMI in the last exercise is solvable iff there exists a
q ∈ R with

Re((1 + qiω)G(iω)) < 1 for all ω ∈ R ∪ {∞}.
This reveals the relation to the classical Popov criterion. Note that q is often assumed
to be nonnegative what is, actually, a redundant hypothesis. Show with an example
that the extra constraint q � 0 (or ν � 0 in the LMI) introduces conservatism. (Think
of a smart test using LMI-Lab to find an example.)

6. Find an LMI condition for global asymptotic stability of

ẋ = Ax +
k∑

j=1

Bj∆j(Cjx)

where the continuously differentiable ∆j : R → R satisfy the sector conditions βjz
2 �

z∆j(z) � αjz
2 for all z ∈ R.



Chapter 4

Controller Synthesis

In this chapter we intend to provide a powerful result that allows to step in a straightforward
manner from analysis conditions formulated in terms of matrix inequalities to the corre-
sponding matrix inequalities for controller synthesis. We will observe that this is achieved
by a nonlinear and essentially bijective transformation of the controller parameters.

4.1 The Setup

Suppose an LTI system is described as
ẋ
z1

...
zq

y

 =


A B1 · · · Bq B
C1 D1 · · · D1q E1

...
...

. . .
...

...
Cq Dq1 · · · Dq Eq

C F1 · · · Fq 0




x
w1

...
wq

u

 . (4.1.1)

We denote by u the control input, by y the measured output available for control, and by
wj → zj the channels on which we want to impose certain robustness and/or performance
objectives. Since we want to extend the design technique to mixed problems with various
performance specifications on various channels, we already start at this point with a multi-
channel system description. Sometimes we collect the signals as

z =

 z1

...
zq

 , w =

 w1

...
wq

 .

127



128 Controller Synthesis

Remark. Note that we do not exclude the situation that some of the signals wj or zj are
identical. Therefore, we only need to consider an equal number of input- and output-signals.
Moreover, it might seem restrictive to only consider the diagonal channels and neglect the
channels wj → zk for j �= k. This is not the case. As a typical example, suppose we intend
to impose for z = Tw specifications on LjTRj where Lj , Rj are arbitrary matrices that pick
out certain linear combinations of the signals z, w (or of the rows/columns of the transfer
matrix if T is described by an LTI system). If we set w = Rjwj , zj = Ljz, we are hence
interested in specifications on the diagonal channels of z1

z2

...

 =

 L1

L2

...

T
(

R1 R2 . . .
) w1

w2

...

 .

If T is LTI, the selection matrices Lj and Rj can be easily incorporated into the realization
to arrive at the description (4.1.1).

A controller is any finite dimensional linear time invariant system described as(
ẋc

u

)
=

(
Ac Bc

Cc Dc

)(
xc

y

)
(4.1.2)

that has u as its input and y as its output. Controllers are hence simply parameterized by
the matrices Ac, Bc, Cc, Dc.

The controlled or closed-loop system then admits the description

(
ξ̇
z

)
=

(
A B
C D

)(
ξ
w

)
or


ξ̇
z1

...
zq

 =


A B1 · · · Bq

C1 D1 · · · D1q

...
...

. . .
...

Cq Dq1 · · · Dq




ξ
w1

...
wq

 . (4.1.3)

The corresponding input-output mappings (or transfer matrices) are denoted as

w = T z or

 z1

...
zq

 =

 T1 ∗
. . .

∗ Tq


 w1

...
wq

 .

respectively.

One can easily calculate a realization of Tj as(
ξ̇
zj

)
=

(
A Bj

Cj Dj

)(
ξ
wj

)
(4.1.4)

where (
A Bj

Cj Dj

)
=

 A + BDcC BCc Bj + BDcFj

BcC Ac BcFj

Cj + EjDcC EjCc Dj + EjDcFj

 .
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Figure 4.1: Multi-channel Closed-Loop System
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It simplifies some calculations if we use the equivalent alternative formula

(
A Bj

Cj Dj

)
=

 A 0 Bj

0 0 0
Cj 0 Dj

 +

 0 B
I 0
0 Ej

(
Ac Bc

Cc Dc

)(
0 I 0
C 0 Fj

)
. (4.1.5)

Note that the left-hand side depends affinely on the controller parameters what is not made
explicit by our notation.

4.2 From Analysis to Synthesis - A General Procedure

Let us consider as a paradigm example the design of a controller that achieves stability and
quadratic performance in the channel wj → zj . For that purpose we suppose that we have
given a performance index

Pj =
(

Qj Sj

ST
j Rj

)
with Rj � 0.

In Chapter 2 we have revealed that the following conditions are equivalent: The controller
(4.1.2) renders (4.1.4) internally stable and leads to∫ ∞

0

(
wj(t)
zj(t)

)T

Pj

(
wj(t)
zj(t)

)
dt � −ε

∫ ∞

0

wj(t)T wj(t) dt

for some ε > 0 if and only if

σ(A) ⊂ C− and
(

I
Tj(iω)

)∗
Pj

(
I

Tj(iω)

)
< 0 for all ω ∈ R ∪ {∞}

if and only if there exists a symmetric X satisfying

X > 0,

(
ATX + XA XBj

BT
j X 0

)
+

(
0 I
Cj Dj

)T

Pj

(
0 I
Cj Dj

)
< 0. (4.2.1)

The corresponding quadratic performance synthesis problem reads as follows: Search con-

troller parameters
(

Ac Bc

Cc Dc

)
and an X > 0 that render (4.2.1) satisfied.

Recall that A depends on the controller parameters; since X is also a variable, we observe
that XA depends non-linearly on the variables to be found.

It has been observed only quite recently [18, 38] that one can find a nonlinear transformation(
X ,

(
Ac Bc

Cc Dc

) )
→ v =

(
X, Y,

(
K L
M N

) )
(4.2.2)
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and a Y such that, with the functions

X(v) :=
(

Y I
I X

)
(

A(v) Bj(v)
Cj(v) Dj(v)

)
:=

 AY + BM A + BNC Bj + BNFj

K AX + LC XBj + LFj

CjY + EjM Cj + EjNC Dj + EjNFj


 (4.2.3)

one has
YTXY = X(v)(

YTXAY YTXBj

CjY Dj

)
=

(
A(v) Bj(v)
Cj(v) Dj(v)

)  (4.2.4)

Hence, under congruence transformations with the matrices

Y and
(

Y 0
0 I

)
, (4.2.5)

the blocks transform as

X → X(v),
(

XA XBj

Cj Dj

)
→

(
A(v) Bj(v)
Cj(v) Dj(v)

)
.

Therefore, the original blocks that depend non-linearly on the decision variables X and(
Ac Bc

Cc Dc

)
are transformed into blocks that are affine functions of the new variables v.

If Y is nonsingular, we can perform a congruence transformation on the two inequalities in
(4.2.1) with the nonsingular matrices (4.2.5) to obtain

YTXY > 0,

(
YT [ATX + XA]Y YTXBj

BT
j XY 0

)
+
(

0 I
CjY Dj

)T

Pj

(
0 I

CjY Dj

)
< 0 (4.2.6)

what is nothing but

X(v) > 0,

(
A(v)T + A(v) Bj(v)

Bj(v)T 0

)
+

(
0 I

Cj(v) Dj(v)

)T

Pj

(
0 I

Cj(v) Dj(v)

)
< 0.

(4.2.7)

For Rj = 0 (as it happens in the positive real performance index), we infer Pj =
(

Qj Sj

ST
j 0

)
what implies that the inequalities (4.2.7) are affine in v. For a general performance index with
Rj � 0, the second inequality in (4.2.7) is non-linear but convex in v. It is straightforward
to transform it to a genuine LMI with a Schur complement argument. Since it is more
convenient to stay with the inequalities in the form (4.2.7), we rather formulate a general
auxiliary result that displays how to perform the linearization whenever it is required for
computational purposes.
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Lemma 4.1 (Linearization Lemma) Suppose that A, S are constant matrices, that B(v),
Q(v) = Q(v)T depend affinely on some parameter v, and that R(v) can be decomposed as
TU(v)−1TT with U(v) being affine. Then the non-linear matrix inequalities

U(v) > 0,

(
A

B(v)

)T (
Q(v) S
S′ R(v)

)(
A

B(v)

)
< 0

are equivalent to the linear matrix inequality(
AT Q(v)A + AT SB(v) + B(v)T ST A B(v)T T

TT B(v) −U(v)

)
< 0.

In order to apply this lemma we rewrite the second inequality of (4.2.7) as
I 0

A(v) Bj(v)
0 I

Cj(v) Dj(v)


T 

0 I 0 0
I 0 0 0
0 0 Qj Sj

0 0 ST
j Rj




I 0
A(v) Bj(v)

0 I
Cj(v) Dj(v)

 < 0 (4.2.8)

what is, after a simple permutation, nothing but
I 0
0 I

A(v) Bj(v)
Cj(v) Dj(v)


T 

0 0 I 0
0 Qj 0 Sj

I 0 0 0
0 ST

j 0 Rj




I 0
0 I

A(v) Bj(v)
Cj(v) Dj(v)

 < 0. (4.2.9)

This inequality can be linearized according to Lemma 4.1 with an arbitrary factorization

Rj = TjT
T
j leading to

(
0 0
0 Rj

)
=

(
0
Tj

)(
0 TT

j

)
.

So far we have discussed how to derive the synthesis inequalities (4.2.7). Let us now suppose
that we have verified that these inequalities do have a solution, and that we have computed

some solution v. If we can find a preimage
(

X ,

(
Ac Bc

Cc Dc

) )
of v under the transforma-

tion (4.2.2) and a nonsingular Y for which (4.2.4) holds, then we can simply reverse all the
steps performed above to reveal that (4.2.7) is equivalent to (4.2.1). Therefore, the controller

defined by
(

Ac Bc

Cc Dc

)
renders (4.2.1) satisfied and, hence, leads to the desired quadratic

performance specification for the controlled system.

Before we comment on the resulting design procedure, let us first provide a proof of the
following result that summarizes the discussion.

Theorem 4.2 There exists a controller
(

Ac Bc

Cc Dc

)
and a X satisfying (4.2.1) iff there ex-

ists an v that solves the inequalities (4.2.7). If v satisfies (4.2.7), then I−XY is nonsingular
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and there exist nonsingular U , V with I−XY = UV T . The unique X and
(

Ac Bc

Cc Dc

)
with

(
Y V
I 0

)
X =

(
I 0
X U

)
and(

K L
M N

)
=

(
U XB
0 I

)(
Ac Bc

Cc Dc

)(
V T 0
CY I

)
+

(
XAY 0

0 0

)
(4.2.10)

satisfy the LMI’s (4.2.1).

Note that U and V are square and nonsingular such that (4.2.10) leads to the formulas

X =
(

Y V
I 0

)−1 (
I 0
X U

)
and(

Ac Bc

Cc Dc

)
=

(
U XB
0 I

)−1 (
K − XAY L

M N

)(
V T 0
CY I

)−1

.

Due to the zero blocks in the inverses, the formulas can be rendered even more explicit. Of
course, numerically it is better to directly solve the equations (4.2.10) by a stable technique.

Proof. Suppose a controller and some X satisfy (4.2.1). Let us partition

X =
(

X U
UT ∗

)
and X−1 =

(
Y V
V T ∗

)
according to A. Define

Y =
(

Y I
V T 0

)
and Z =

(
I 0
X U

)
to get YTX = Z. (4.2.11)

Without loss of generality we can assume that the dimension of Ac is larger than that of
A (why?). Hence, U has more columns than rows, and we can perturb this block (since we
work with strict inequalities) such that it has full row rank. Then Z has full row rank and,
hence, Y has full column rank.

Due to XY + UV T = I, we infer

YTXY =
(

Y I
I X

)
= X(v)

what leads to the first relation in (4.2.4). Let us now consider(
Y 0
0 I

)T (
XA XBj

Cj Dj

)(
Y 0
0 I

)
=

(
YTXAY YTXBj

CjY Dj

)
.



134 Controller Synthesis

Using (4.1.5), a very brief calculation (do it!) reveals that

(
YTXAY YTXBj

CjY Dj

)
=

(
ZAY ZBj

CjY Dj

)
=

 AY A Bj

0 XA XBj

CjY Cj Dj

+

+

 0 B
I 0
0 Ej

[(
U XB
0 I

)(
Ac Bc

Cc Dc

)(
V T 0
CY I

)
+

(
XAY 0

0 0

)](
I 0 0
0 C Fj

)
.

If we introduce the new parameters
(

K L
M N

)
as in (4.2.10), we infer

(
YTXAY YTXBj

CjY Dj

)
=

=

 AY A Bj

0 XA XBj

CjY Cj Dj

 +

 0 B
I 0
0 Ej

(
K L
M N

)(
I 0 0
0 C Fj

)
=

=

 AY + BM A + BNC Bj + BNFj

K AX + LC XBj + LFj

CjY + EjM Cj + EjNC Dj + EjNFj

 =
(

A(v) Bj(v)
Cj(v) Dj(v)

)
.

Hence the relations (4.2.4) are valid. Since Y has full column rank, (4.2.1) implies (4.2.6),
and by (4.2.4), (4.2.6) is identical to (4.2.7). This proves necessity.

To reverse the arguments we assume that v is a solution of (4.2.7). Due to X(v) > 0, we
infer that I − XY is nonsingular. Hence we can factorize I − XY = UV T with square and
nonsingular U , V . Then Y and Z defined in (4.2.11) are, as well, square and nonsingular.

Hence we can choose X ,
(

Ac Bc

Cc Dc

)
such that (4.2.10) hold true; this implies that, again, the

relations (4.2.4) are valid. Therefore, (4.2.7) and (4.2.6) are identical. Since Y is nonsingular,
a congruence transformation with Y−1 and diag(Y−1, I) leads from (4.2.6) back to (4.2.1)
and the proof is finished.

We have obtained a general procedure for deriving from analysis inequalities the correspond-
ing synthesis inequalities and for construction corresponding controllers as follows:

• Rewrite the analysis inequalities in the blocks X , XA, XBj , Cj , Dj in order to be able
to find a (formal) congruence transformation involving Y which leads to inequalities
in the blocks YTXY, YTXAY , YTXBj , CjY, Dj .

• Perform the substitution (4.2.4) to arrive at matrix inequalities in the variables v.

• After having solved the synthesis inequalities for v, one factorizes I − XY into non-
singular blocks UV T and solves the equations (4.2.10) to obtain the controller param-
eters Ac, Bc, Cc, Dc and a Lyapunov matrix X which render the analysis inequalities
satisfied.
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The power of this procedure lies in its simplicity and its generality. Virtually all controller
design methods that are based on matrix inequality analysis results can be converted with
ease into the corresponding synthesis result. In the subsequent section we will include an
extensive discussion of how to apply this technique to the various analysis results that have
been obtained in the present notes.

Remark on the controller order. In Theorem 4.2 we have not restricted the order of the
controller. In proving necessity of the solvability of the synthesis inequalities, the size of Ac

was arbitrary. The specific construction of a controller in proving sufficiency leads to an Ac

that has the same size as A. Hence Theorem 4.2 also include the side result that controllers
of order larger than that of the plant offer no advantage over controllers that have the same
order as the plant. The story is very different in reduced order control: Then the intention
is to include a constraint dim(Ac) � k for some k that is smaller than the dimension of A. It
is not very difficult to derive the corresponding synthesis inequalities; however, they include
rank constraints that are hard if not impossible to treat by current optimization techniques.
We will only briefly comment on a concrete result later.

Remark on strictly proper controllers. Note that the direct feed-through of the con-
troller Dc is actually not transformed; we simply have Dc = N . If we intend to design a
strictly proper controller (i.e. Dc = 0), we can just set N = 0 to arrive at the correspond-
ing synthesis inequalities. The construction of the other controller parameters remains the
same. Clearly, the same holds if one wishes to impose an arbitrary more refined structural
constraint on the direct feed-through term as long as it can be expressed in terms of LMI’s.

Remarks on numerical aspects. After having verified the solvability of the synthesis
inequalities, we recommend to take some precautions to improve the conditioning of the
calculations to reconstruct the controller out of the decision variable v. In particular, one
should avoid that the parameters v get to large, and that I − XY is close to singular what
might render the controller computation ill-conditioned.

We have observed good results with the following two-step procedure:

• Add to the feasibility inequalities the bounds

‖X‖ < α, ‖Y ‖ < α,

∥∥∥∥( K L
M N

)∥∥∥∥ < α

as extra constraints and minimize α. Note that these bounds are equivalently rewritten
in LMI form as

X < αI, Y < αI,


αI 0 K L
0 αI M N

KT MT αI 0
LT NT 0 αI

 > 0.

Hence they can be easily included in the feasibility test, and one can directly minimize
α to compute the smallest bound α∗.
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• In a second step, one adds to the feasibility inequalities and to the bounding inequalities
for some enlarged but fixed α > α∗ the extra constraint(

Y βI
βI X

)
> 0.

Of course, the resulting LMI system is feasible for β = 1. One can hence maximize
β to obtain a supremal β∗ > 1. The value β∗ gives an indication of the conditioning
of the controller reconstruction procedure. In fact, the extra inequality is equivalent
to X − β2Y −1 > 0. Hence, maximizing β amounts to ‘pushing X away from Y −1’.
Therefore, this step is expected to push the smallest singular value of I − XY away
from zero. The larger the smaller singular value of I −XY , the larger one can choose
the smallest singular values of both U and V in the factorization I−XY = UV T . This
improves the conditioning of U and V , and renders the calculation of the controller
parameters more reliable.

4.3 Other Performance Specifications

4.3.1 H∞ Design

The optimal value of the H∞ problem is defined as

γ∗
j = inf

Ac,Bc,Cc,Dc such that σ(A)⊂C−
‖Tj‖∞.

Clearly, the number γj is larger than γ∗
j iff there exists a controller which renders

σ(A) ⊂ C− and ‖Tj‖∞ < γj

satisfied. These two properties are equivalent to stability and quadratic performance for the
index

Pj =
(

Qj Sj

ST
j Rj

)
=

(
−γjI 0

0 (γjI)−1

)
.

The corresponding synthesis inequalities (4.2.7) are rewritten with Lemma 4.1 to

X(v) > 0,

 A(v)T + A(v) Bj(v) Cj(v)T

Bj(v)T −γjI Dj(v)T

Cj(v) Dj(v) −γjI

 < 0.

Note that the the optimal H∞ value γ∗
j is then just given by the minimal γj for which these

inequalities are feasible; one can directly compute γ∗
l by a standard LMI algorithm.

For the controller reconstruction, one should improve the conditioning (as described in the
previous section) by an additional LMI optimization. We recommend not to perform this
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step with the optimal value γ∗
j itself but with a slightly increased value γj > γ∗

j . This is
motivated by the observation that, at optimality, the matrix X(v) is often (but not always!)
close to singular; then I −XY is close to singular and it is expected to be difficult to render
it better conditioned if γj is too close to the optimal value γ∗

j .

4.3.2 Positive Real Design

In this problem the goal is to test whether there exists a controller which renders the following
two conditions satisfied:

σ(A) ⊂ C−, Tj(iω)∗ + Tj(iω) > 0 for all ω ∈ R ∪ {∞}.

This is equivalent to stability and quadratic performance for

Pj =
(

Qj Sj

ST
j Rj

)
=

(
0 −I
−I 0

)
,

and the corresponding synthesis inequalities read as

X(v) > 0,

(
A(v)T + A(v) Bj(v) − Cj(v)T

Bj(v)T − Cj(v) −Dj(v) − Dj(v)T

)
< 0.

4.3.3 H2-Problems

Let us define the linear functional

fj(Z) := trace(Z).

Then we recall that A is stable and ‖Tj‖2 < γj iff there exists a symmetric X with

Dj = 0, X > 0,

(
ATX + XA XBj

BT
j X −γjI

)
< 0, fj(CjX−1CT

j ) < γj . (4.3.1)

The latter inequality is rendered affine in X and Cj by introducing the auxiliary variable (or
slack variable) Zj . Indeed, the analysis test is equivalent to

Dj = 0,

(
ATX + XA XBj

BT
j X −γjI

)
< 0,

(
X CT

j

Cj Zj

)
> 0, fj(Zj) < γj . (4.3.2)

(Why?) This version of the inequalities is suited to simply read-off the corresponding syn-
thesis inequalities.

Corollary 4.3 There exists a controller that renders (4.3.2) for some X , Zj satisfied iff
there exist v and Zj with

Dj(v) = 0,

(
A(v)T + A(v) Bj(v)

Bj(v)T −γjI

)
< 0,

(
X(v) Cj(v)T

Cj(v) Zj

)
> 0, fj(Zj) < γj .

(4.3.3)
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The proof of this statement and the controller construction are literally the same as for
quadratic performance.

For the generalized H2-norm ‖Tj‖2g, we recall that A is stable and ‖Tj‖2g < γj iff

Dj = 0, X > 0,

(
ATX + XA XBj

BT
j X −γjI

)
< 0, CjX−1CT

j < γjI.

These conditions are nothing but

Dj = 0,

(
ATX + XA XBj

BT
j X −γjI

)
< 0,

(
X CT

j

Cj γjI

)
> 0

and it is straightforward to derive the synthesis LMI’s.

Note that the corresponding inequalities are equivalent to (4.3.3) for the function

fj(Z) = Z.

In contrast to the genuine H2-problem, there is no need for the extra variable Zj to render
the inequalities affine.

Remarks.

• If f assigns to Z its diagonal diag(z1, . . . , zm) (where m is the dimension of Z), one
characterizes a bound on the gain of L2 � wj → zj ∈ L∞ if equipping L∞ with
the norm ‖x‖∞ := ess supt�0 maxk |xk(t)| [26, 30]. Note that the three concrete H2-
like analysis results for fj(Z) = trace(Z), fj(Z) = Z, fj(Z) = diag(z1, . . . , zm) are
exact characterizations, and that the corresponding synthesis results do not involve
any conservatism.

• In fact, Corollary 4.3 holds for any affine function f that maps symmetric matrices
into symmetric matrices (of possibly different dimension) and that has the property
Z � 0 ⇒ f(Z) � 0. (Why?) Hence, Corollary 4.3 admits many other specializations.

• Similarly as in the H∞ problem, we can directly minimize the bound γj to find the op-
timal H2-value or the optimal generalized H2-value that can be achieved by stabilizing
controllers.

• We observe that it causes no trouble in our general procedure to derive the synthesis
inequalities if the underlying analysis inequalities involve certain auxiliary parameters
(such as Zj) as extra decision variables.

• It is instructive to equivalently rewrite (4.3.2) as X > 0, Zj > 0, fj(Zj) < γj and I 0
XA XBj

0 I

T  0 I 0
I 0 0
0 0 −γjI

 I 0
XA XBj

0 I

 < 0,

 I 0
0 I
Cj Dj

T  −X 0 0
0 0 0
0 0 Z−1

j

 I 0
0 I
Cj Dj

 � 0.
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Note that the last inequality is non-strict and includes the algebraic constraint Dj = 0.
It can be equivalently replaced by(

I
Cj

)T (
−X 0
0 Z−1

j

)(
I
Cj

)
< 0, Dj = 0.

The synthesis relations then read as X(v) > 0, Zj > 0, fj(Zj) < γj and I 0
A(v) Bj(v)

0 I

T  0 I 0
I 0 0
0 0 −γjI

 I 0
A(v) Bj(v)

0 I

 < 0, (4.3.4)

(
I

Cj(v)

)T (
−X(v) 0

0 Z−1
j

)(
I

Cj(v)

)
< 0, Dj(v) = 0. (4.3.5)

The first inequality is affine in v, whereas the second one can be rendered affine in v and Zj

with Lemma 4.1.

4.3.4 Upper Bound on Peak-to-Peak Norm

The controller (4.1.2) renders A stable and the bound

‖wj‖∞ � γj‖zj‖∞ for all zj ∈ L∞

satisfied if there exist a symmetric X and real parameters λ, µ with

λ > 0,

(
ATX + XA + λX XBj

BT
j X 0

)
+

(
0 I
Cj Dj

)T (
−µI 0

0 0

)(
0 I
Cj Dj

)
< 0(

0 I
Cj Dj

)T (
0 0
0 1

γj
I

)(
0 I
Cj Dj

)
<

(
λX 0
0 (γj − µ)I

)
.

(Note that X > 0 is built in. Where?) The inequalities are obviously equivalent to

λ > 0,

(
ATX + XA + λX XBj

BT
j X −µI

)
< 0,

 λX 0 CT
j

0 (γj − µ)I DT
j

Cj Dj γjI

 > 0,

and the corresponding synthesis inequalities thus read as

λ > 0,

(
A(v)T + A(v) + λX(v) Bj(v)

Bj(v)T −µI

)
< 0,

 λX(v) 0 Cj(v)T

0 (γj − µ)I Dj(v)T

Cj(v) Dj(v) γjI

 > 0.

If these inequalities are feasible, one can construct a stabilizing controller which bounds the
peak-to-peak norm of zj = Tjzj by γj . We would like to stress that the converse of this
statement is not true since the analysis result involves conservatism.
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Note that the synthesis inequalities are formulated in terms of the variables v, λ, and µ;
hence they are non-linear since λX(v) depends quadratically on λ and v. This problem can
be overcome as follows: For fixed λ > 0, test whether the resulting linear matrix inequalities
are feasible; if yes, one can stop since the bound γj on the peak-to-peak norm has been
assured; if the LMI’s are infeasible, one has to pick another λ > 0 and repeat the test.

In practice, it might be advantageous to find the best possible upper bound on the peak-
to-peak norm that can be assured with the present analysis result. This would lead to the
problem of minimizing γj under the synthesis inequality constraints as follows: Perform a
line-search over λ > 0 to minimize γ∗

j (λ), the minimal value of γj if λ > 0 is held fixed;
note that the calculation of γ∗

j (λ) indeed amounts to solving a genuine LMI problem. The
line-search leads to the best achievable upper bound

γu
j = inf

λ>0
γ∗

j (λ).

To estimate the conservatism, let us recall that ‖Tj‖∞ is a lower bound on the peak-to-peak
norm of Tj . (Why?) If we calculate the minimal achievable H∞-norm, say γl

j , of Tj , we
know that the actual optimal peak-to-peak gain must be contained in the interval

[γl
j , γ

u
j ].

If the length of this interval is small, we have a good estimate of the actual optimal peak-
to-peak gain that is achievable by control, and if the interval is large, this estimate is poor.

4.4 Multi-Objective and Mixed Controller Design

In a realistic design problem one is usually not just confronted with a single-objective prob-
lem but one has to render various objectives satisfied. As a typical example, one might wish
to keep the H∞ norm of z1 = T1w1 below a bound γ1 to ensure robust stability against
uncertainties entering as w1 = ∆z1 where the stable mapping ∆ has L2-gain smaller than
1/γ1, and render, at the same time, the H2-norm of z2 = T2w2 as small as possible to
ensure good performance measured in the H2-norm (such as guaranteeing small asymptotic
variance of zj against white noise inputs wj or small energy of the output zj against pulses
as inputs wj .)

Such a problem would lead to minimizing γ2 over all controllers which render

σ(A) ⊂ C−, ‖T1‖∞ < γ1, ‖T2‖2 < γ2 (4.4.1)

satisfied. This is a multi-objective H2/H∞ control problem with two performance speci-
fications.

Note that it is often interesting to investigate the trade-off between the H∞-norm and the H2-
norm constraint. For that purpose one plots the curve of optimal values if varying γ1 in some
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interval [γl
1, γ

u
1 ] where the lower bound γl

1 could be taken close to the smallest achievable
H∞-norm of T1. Note that the optimal value will be non-increasing if increasing γ1. The
actual curve will provide insight in how far one can improve performance by giving up
robustness. In practice, it might be numerically advantageous to give up the hard constraints
and proceed, alternatively, as follows: For fixed real weights α1 and α2, minimize

α1γ1 + α2γ2

over all controllers that satisfy (4.4.1). The larger αj , the more weight is put on penal-
izing large values of γj , the more the optimization procedure is expected to reduce the
corresponding bound γj .

Multi-objective control problems as formulated here are hard to solve. Let us briefly sketch
one line of approach. The Youla parameterization [17] reveals that the set of all Tj that can
be obtained by internally stabilizing controllers can be parameterized as

T j
1 + T j

2 QT j
3 with Q varying freely in RHp×q

∞ .

Here T j
1 , T j

2 , T j
3 are real-rational proper and stable transfer matrices which can be easily

computed in terms of the system description (4.1.1) and an arbitrary stabilizing controller.
Recall also that RHp×q

∞ denotes the algebra of real-rational proper and stable transfer ma-
trices of dimension p×q. With this re-parameterization, the multi-objective control problem
then amounts to finding a Q ∈ RHp×q

∞ that minimizes γ2 under the constraints

‖T 1
1 + T 1

2 QT 1
3 ‖∞ < γ1, ‖T 2

1 + T 2
2 QT 2

3 ‖2 < γ2. (4.4.2)

After this re-formulation, we are hence faced with a convex optimization problem in the
parameter Q which varies in the infinite-dimensional space RH∞. A pretty standard Ritz-
Galerkin approximation scheme leads to finite-dimensional problems. In fact, consider for a
fixed real parameter a > 0 the sequence of finite-dimensional subspaces

Sν :=
{

Q0 + Q1
s − a

s + a
+ Q2

(s − a)2

(s + a)2
+ · · · + Qν

(s − a)ν

(s + a)ν
: Q0, . . . , Qν ∈ Rp×q

}
of the space RHp×q

∞ . Let us now denote the infimum of all γ2 satisfying the constraint (4.4.2)
for Q ∈ RHp×q

∞ by γ∗
2 , and that for Q ∈ Sν by γ2(ν). Since Sν ⊂ RHp×q

∞ , we clearly have

γ∗
2 � γ2(ν + 1) � γ2(ν) for all ν = 0, 1, 2 . . . .

Hence solving the optimization problems for increasing ν leads to a non-increasing sequence
of values γ(ν) that are all upper bounds on the actual optimum γ∗

2 . If we now note that any
element of Q can be approximated in the H∞-norm with arbitrary accuracy by an element in
Sν if ν is chosen sufficiently large, it is not surprising that γ2(ν) actually converges to γ∗

2 for
ν → ∞. To be more precise, we need to assume that the strict constraint ‖T 1

1 +T 1
2 QT 1

3 ‖∞ <
γ1 is feasible for Q ∈ Sν and some ν, and that T 1

1 and T 2
2 or T 3

2 are strictly proper such that
‖T 2

1 + T 2
2 QT 2

3 ‖2 is finite for all Q ∈ RHp×q
∞ . Then it is not difficult to show that

lim
ν→∞ γ2(ν) = γ∗

2 .
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Finally, we observe that computing γ2(ν) is in fact an LMI problem. (Why?) For more
information on this and related problems the reader is referred to [9, 31, 41].

We observe that the approach that is sketched above suffers from two severe disadvantages:
First, if improving the approximation accuracy by letting ν grow, the size of the LMI’s and
the number of variables that are involved grow drastically what renders the corresponding
computations slow. Second, increasing ν amounts to a potential increase of the McMillan
degree of Q ∈ Sν what leads to controllers whose McMillan degree cannot be bounded a
priori.

In view of these difficulties, it has been proposed to replace the multi-objective control
problem by the mixed control problem. To prepare its definition, recall that the conditions
(4.4.1) are guaranteed by the existence of symmetric matrices X1, X2, Z2 satisfying

X1 > 0,

 ATX1 + X1A X1B1 CT
1

X1B1 −γ1I DT
1

C1 D1 −γ1I

 < 0

D2 = 0,

(
ATX2 + X2A X2B2

BT
2 X2 −γ2I

)
< 0,

(
X2 CT

2

C2 Z2

)
> 0, trace(Z2) < γ2.

If trying to apply the general procedure to derive the synthesis inequalities, there is some
trouble since the controller parameter transformation depends on the closed-loop Lyapunov
matrix; here two such matrices X1, X2 do appear such that the technique breaks down. This
observation itself motivates a remedy: Just force the two Lyapunov matrices to be equal.
This certainly introduces conservatism that is, in general, hard to quantify. On the positive
side, if one can find a common matrix

X = X1 = X2

that satisfies the analysis relations, we can still guarantee (4.4.1) to hold. However, the
converse is not true, since (4.4.1) does not imply the existence of common Lyapunov matrix
to satisfy the above inequalities.

This discussion leads to the definition of the mixed H2/H∞ control problem: Minimize γ2

subject to the existence of X , Z2 satisfying

 ATX + XA XB1 CT
1

BT
1 X −γ1I DT

1

C1 D1 −γ1I

 < 0

D2 = 0,

(
ATX + XA XB2

BT
2 X −γ2I

)
< 0,

(
X CT

2

C2 Z2

)
> 0, trace(Z2) < γ2.

This problem is amenable to our general procedure. One proves as before that the corre-
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sponding synthesis LMI’s are A(v)T + A(v) B1(v) C1(v)T

B1(v)T −γ1I D1(v)T

C1(v) D1(v) −γ1I

 < 0

D2(v) = 0,

(
A(v)T + A(v) B2(v)

B2(v)T −γ2I

)
< 0,

(
X(v) C2(v)T

C2(v) Z2

)
> 0, trace(Z2) < γ2,

and the controller construction remains unchanged.

Let us conclude this section with some important remarks.

• After having solved the synthesis inequalities corresponding to the mixed problem for v
and Z2, one can construct a controller which satisfies (4.4.1) and which has a McMillan
degree (size of Ac) that is not larger than (equal to) the size of A.

• For the controller resulting from mixed synthesis one can perform an analysis with
different Lyapunov matrices X1 and X2 without any conservatism. In general, the
actual H∞-norm of T1 will be strictly smaller than γ1, and the H2-norm will be strictly
smaller than the optimal value obtained from solving the mixed problem. Judging a
mixed controller should, hence, rather be based on an additional non-conservative and
direct analysis.

• Performing synthesis by searching for a common Lyapunov matrix introduces conser-
vatism. Little is known about how to estimate this conservatism a priori. However,
the optimal value of the mixed problem is always an upper bound of the optimal value
of the actual multi-objective problem.

• Starting from a mixed controller, it has been suggested in [35, 36] how to compute
sequences of upper and lower bounds, on the basis of solving LMI problems, that
approach the actual optimal value. This allows to provide an a posteriori estimate of
the conservatism that is introduced by setting X1 equal to X2.

• If starting from different versions of the analysis inequalities (e.g. through scaling the
Lyapunov matrix), the artificial constraint X1 = X2 might lead to a different mixed
control problem. Therefore, it is recommended to choose those analysis tests that are
expected to lead to Lyapunov matrices which are close to each other. However, there
is no general rule how to guarantee this property.

• In view of the previous remark, let us sketch one possibility to reduce the conservatism
in mixed design. If we multiply the analysis inequalities for stability of A and for
‖T1‖∞ < γ1 by an arbitrary real parameter α > 0, we obtain

αX1 > 0,

 AT (αX1) + (αX1)A (αX1)B1 αCT
1

BT
1 (αX1) −αγ1I αDT

1

αC1 αD1 −αγ1I

 < 0.



144 Controller Synthesis

If we multiply the last row and the last column of the second inequality with 1
α (what is

a congruence transformation) and if we introduce Y1 := αX1, we arrive at the following
equivalent version of the analysis inequality for the H∞-norm constraint:

Y1 > 0,

 ATY1 + Y1A Y1B1 CT
1

BT
1 Y1 −γ1αI DT

1

C1 D1 −γ1/αI

 < 0.

Performing mixed synthesis with this analysis inequality leads to optimal values of the
mixed H2/H∞ problem that depend on α. Each of these values form an upper bound
on the actual optimal value of the multi-objective problem such that the best bound
is found by performing a line-search over α > 0.

• Contrary to previous approaches to the mixed problem, the one presented here does
not require identical input- or output-signals of the H∞ or H2 channel. In view of
their interpretation (uncertainty for H∞ and performance for H2), such a restriction
is, in general, very unnatural. However, due to this flexibility, it is even more crucial
to suitably scale the Lyapunov matrices.

• We can incorporate with ease various other performance or robustness specifications
(formulated in terms of linear matrix inequalities) on other channels. Under the con-
straint of using for all desired specifications the same Lyapunov matrix, the design of a
mixed controller is straightforward. Hence, one could conceivably consider a mixture
of H∞, H2, generalized H2, and peak-to-peak upper bound requirements on more than
one channel. In its flexibility and generality, this approach is unique; however, one
should never forget the conservatism that is involved.

• Using the same Lyapunov function might appear less restrictive if viewing the result-
ing procedure as a Lyapunov shaping technique. Indeed, one can start with the most
important specification to be imposed on the controller. This amounts to solving a
single-objective problem without conservatism. Then one keeps the already achieved
property as a constraint and systematically imposes other specifications on other chan-
nels of the system to exploit possible additional freedom that is left in designing the
controller. Hence, the Lyapunov function is shaped to realize additional specifications.

• Finally, constraints that are not necessarily related to input- output-specifications can
be incorporated as well. As a nice example we mention the possibility to place the
eigenvalues of A into an arbitrary LMI region {z : Q + Pz + PT z̄ < 0}. For that
purpose one just has to include p11X(v) + q11A(v) + q11A(v)T . . . p1kX(v) + q1kA(v) + qk1A(v)T

...
. . .

...
pk1X(v) + qk1A(v) + q1kA(v)T . . . pkkX(v) + qkkA(v) + qkkA(v)T

 < 0

in the set of synthesis LMI (see Chapter 2).
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4.5 Elimination of Parameters

The general procedure to derive described in Section 4.2 leads to synthesis inequalities in the
variables K, L, M , N and X, Y as well as some auxiliary variables. For specific problems it
is often possible to eliminate some of these variables in order to reduce the computation time.
For example, since K has the same size as A, eliminating K for a system with McMillan
degree 20 would save 400 variables. In view of the fact that, in our experience, present-day
solvers are practical for solving problems up to about one thousand variables, parameter
elimination might be of paramount importance to be able to solve realistic design problems.

In general, one cannot eliminate any variable that appears in at least two synthesis inequali-
ties. Hence, in mixed design problems, parameter elimination is typically only possible under
specific circumstances. In single-objective design problems one has to distinguish various
information structures. In output-feedback design problems, it is in general not possible to
eliminate X, Y but it might be possible to eliminate some of the variables K, L, M , N if
they only appear in one inequality. For example, in quadratic performance problems one
can eliminate all the variables K, L, M , N . In state-feedback design, one can typically
eliminate in addition X, and for estimation problems one can eliminate Y .

To understand which variables can be eliminated and how this is performed, we turn to a dis-
cussion of two topics that will be of relevance, namely the dualization of matrix inequalities
and explicit solvability tests for specifically structured LMI’s [10, 32].

4.5.1 Dualization

The synthesis inequalities for quadratic performance can be written in the form (4.2.9). The
second inequality has the structure(

I
M

)T (
Q S
S′ R

)(
I
M

)
< 0 and R � 0. (4.5.1)

Let us re-formulate these conditions in geometric terms. For that purpose we abbreviate

P =
(

Q S
ST R

)
∈ R(k+l)×(k+l)

and observe that (4.5.1) is nothing but

P < 0 on im
(

I
M

)
and P � 0 on im

(
0
I

)
.

Since the direct sum of im
(

I
M

)
and im

(
0
I

)
spans the whole R(k+l)×(k+l), we can apply

the following dualization lemma if P is non-singular.
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Lemma 4.4 (Dualization Lemma) Let P be a non-singular symmetric matrix in Rn×n,
and let U , V be two complementary subspaces whose sum equals Rn. Then

xT Px < 0 for all x ∈ U \ {0} and xT Px � 0 for all x ∈ V (4.5.2)

is equivalent to

xT P−1x > 0 for all x ∈ U⊥ \ {0} and xT P−1x � 0 for all x ∈ V⊥. (4.5.3)

Proof. Since U ⊕ V = Rn is equivalent to U⊥ ⊕ V⊥ = Rn, it suffices to prove that (4.5.2)
implies (4.5.3); the converse implication follows by symmetry. Let us assume that (4.5.2)
is true. Moreover, let us assume that U and V have dimension k and l respectively. We
infer from (4.5.2) that P has at least k negative eigenvalues and at least l non-negative
eigenvalues. Since k + l = n and since P is non-singular, we infer that P has exactly k
negative and l positive eigenvalues. We first prove that P−1 is positive definite on U⊥. We
assume, to the contrary, that there exists a vector y ∈ U⊥ \ {0} with yT P−1y � 0. Define
the non-zero vector z = P−1y. Then z is not contained in U since, otherwise, we would
conclude from (4.5.2) on the one hand zT Pz < 0, and on the other hand z⊥y = Pz what
implies zT Pz = 0. Therefore, the space Ue := span(z) + U has dimension k + 1. Moreover,
P is positive semi-definite on this space: for any x ∈ U we have

(z + x)T P (z + x) = yT P−1y + yT x + xT y + xT Px = yT P−1y + xT Px � 0.

This implies that P has at least k+1 non-negative eigenvalues, a contradiction to the already
established fact that P has exactly k positive eigenvalues and that 0 is not an eigenvalue of
P .

Let us now prove that P−1 is negative semi-definite on V⊥. For that purpose we just observe
that P + εI satisfies

xT (P + εI)x < 0 for all x ∈ U \ {0} and xT (P + εI)x > 0 for all x ∈ V \ {0}

for all small ε > 0. Due to what has been already proved, this implies

xT (P + εI)−1x > 0 for all x ∈ U⊥ \ {0} and xT (P + εI)−1x < 0 for all x ∈ V⊥ \ {0}

for all small ε. Since P is non-singular, (P + εI)−1 converges to P−1 for ε → 0. After taking
the limit, we end up with

xT P−1x � 0 for all x ∈ U⊥ \ {0} and xT P−1x � 0 for all x ∈ V⊥ \ {0}.

Since we already know that the first inequality must be strict, the proof is finished.

Let us hence introduce

P−1 =
(

Q̃ S̃

S̃T R̃

)
∈ R(k+l)×(k+l)
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and observe that

im
(

I
M

)⊥
= ker

(
I MT

)
= im

(
−MT

I

)
as well as im

(
0
I

)⊥
= im

(
I
0

)
.

Hence Lemma 4.4 implies that (4.5.1) is equivalent to(
−MT

I

)T (
Q̃ S̃

S̃T R̃

)(
−MT

I

)
> 0 and Q̃ � 0. (4.5.4)

As an immediate consequence, we arrive at the following dual version of the quadratic
performance synthesis inequalities.

Corollary 4.5 Let Pj :=
(

Qj Sj

ST
j Rj

)
be non-singular, and abbreviate P−1

j :=
(

Q̃j S̃j

S̃T
j R̃j

)
.

Then 
I 0

A(v) Bj(v)
0 I

Cj(v) Dj(v)


T 

0 I 0 0
I 0 0 0
0 0 Qj Sj

0 0 ST
j Rj




I 0
A(v) Bj(v)

0 I
Cj(v) Dj(v)

 < 0, Rj � 0

is equivalent to
−A(v)T −C(v)T

I 0
−B(v)T −D(v)T

0 I


T 

0 I 0 0
I 0 0 0
0 0 Q̃j S̃j

0 0 S̃T
j R̃j




−A(v)T −C(v)T

I 0
−B(v)T −D(v)T

0 I

 > 0, Q̃j � 0.

Remark. Any non-singular performance index Pj =
(

Qj Sj

ST
j Rj

)
can be inverted to

P−1
j =

(
Q̃j S̃j

S̃T
j R̃j

)
. Recall that we required Pj to satisfy Rj � 0 since, otherwise, the syn-

thesis inequalities may not be convex. The above discussion reveals that any non-singular
performance index has to satisfy as well Q̃j � 0 since, otherwise, we are sure that the syn-
thesis inequalities are not feasible. We stress this point since, in general, Rj � 0 does not
imply Q̃j � 0. (Take e.g. Pj > 0 such that P−1

j > 0.)

Similarly, we can dualize the H2-type synthesis inequalities as formulated in (4.3.4)-(4.3.5).

Corollary 4.6 For γj > 0, I 0
A(v) Bj(v)

0 I

T  0 I 0
I 0 0
0 0 −γjI

 I 0
A(v) Bj(v)

0 I

 < 0
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if and only if  −A(v)T

−Bj(v)T

I

T  0 I 0
I 0 0
0 0 − 1

γj
I

 −A(v)T

−Bj(v)T

I

 > 0.

For X(v) > 0 and Zj > 0,(
I

Cj(v)

)T (
−X(v) 0

0 Z−1
j

)(
I

Cj(v)

)
< 0

if and only if (
−Cj(v)T

I

)T (
−X(v)−1 0

0 Zj

)(
−Cj(v)T

I

)
> 0.

Again, Lemma 4.1 allows to render the first and the second dual inequalities affine in γj and
X(v) respectively.

4.5.2 Special Linear Matrix Inequalities

Let us now turn to specific linear matrix inequalities for which one can easily derive explicit
solvability tests.

We start by a trivial example that is cited for later reference.

Lemma 4.7 The inequality  P11 P12 P13

P21 P22 + X P23

P31 P32 P33

 < 0

in the symmetric unknown X has a solution if and only if(
P11 P13

P31 P33

)
< 0.

Proof. The direction ‘only if’ is obvious by cancelling the second row/column. To prove
the converse implication, we just need to observe that any X with

X < −P22 +
(

P11 P13

)( P11 P13

P31 P33

)−1 (
P12

P32

)
< 0

(such as X = −αI for sufficiently large α > 0) is a solution (Schur).
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Remark. This result extends to finding a common solution to a whole system of LMI’s,
due to the following simple fact: For finitely matrices Q1, . . . , Qm, there exists an X with
X < Qj , j = 1, . . . , m.

The first of three more advanced results in this vain is just a simple consequence of a Schur
complement argument and it can be viewed as a powerful variant of what is often called the
technique of ‘completing the squares’.

Lemma 4.8 (Projection Lemma) Let P be a symmetric matrix partitioned into three
rows/columns and consider the LMI P11 P12 + XT P13

P21 + X P22 P23

P31 P32 P33

 < 0 (4.5.5)

in the unstructured matrix X. There exists a solution X of this LMI iff(
P11 P13

P31 P33

)
< 0 and

(
P22 P23

P32 P33

)
< 0. (4.5.6)

If (4.5.6) hold, one particular solution is given by

X = PT
32P

−1
33 P31 − P21. (4.5.7)

Proof. If (4.5.5) has a solution then (4.5.6) just follow from (4.5.5) by canceling the first
or second block row/column.

Now suppose that (4.5.6) holds what implies P33 < 0. We observe that (4.5.5) is equivalent
to (Schur complement)(

P11 P12 + XT

P21 + X P22

)
−

(
P13

P23

)
P−1

33

(
P31 P32

)
< 0.

Due to (4.5.6), the diagonal blocks are negative definite. X defined in (4.5.7) just renders
the off-diagonal block zero such that it is a solution of the latter matrix inequality.

An even more powerful generalization is the so-called projection lemma.

Lemma 4.9 (Projection Lemma) For arbitrary A, B and a symmetric P , the LMI

AT XB + BT XT A + P < 0 (4.5.8)

in the unstructured X has a solution if and only if

Ax = 0 or Bx = 0 imply xT Px < 0 or x = 0. (4.5.9)

If A⊥ and B⊥ denote arbitrary matrices whose columns form a basis of ker(A) and ker(B)
respectively, (4.5.9) is equivalent to

AT
⊥PA⊥ < 0 and BT

⊥PB⊥ < 0. (4.5.10)
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We give a full proof of the Projection Lemma since it provides a scheme for constructing a
solution X if it exists. It also reveals that, in suitable coordinates, Lemma 4.9 reduces to
Lemma 4.8 if the kernels of A and B together span the whole space.

Proof. The proof of ‘only if’ is trivial. Indeed, let us assume that there exists some X with
AT XB +BT XT A+P < 0. Then Ax = 0 or Bx = 0 with x �= 0 imply the desired inequality
0 > xT (AT XB + BT XT A + P )x = xT Px.

For proving ‘if’, let S = (S1 S2 S3 S4) be a nonsingular matrix such that the columns of
S3 span ker(A) ∩ ker(B), those of (S1 S3) span ker(A), and those of (S2 S3) span ker(B).
Instead of (4.5.8), we consider the equivalent inequality ST (4.5.8)S < 0 which reads as

(AS)T X(BS) + (BS)T XT (AS) + ST PS < 0. (4.5.11)

Now note that AS and BS have the structure (0 A2 0 A4) and (B1 0 0 B4) where (A2 A4)
and (B1 B4) have full column rank respectively. The rank properties imply that the equation

(AS)T X(BS) =


0

AT
2

0
AT

4

X
(

B1 0 0 B4

)
=


0 0 0 0

Z21 0 0 Z24

0 0 0 0
Z41 0 0 Z44


has a solution X for arbitrary Z21, Z24, Z41, Z44. With Q := ST PS partitioned accordingly,
(4.5.11) hence reads as

Q11 Q12 + ZT
21 Q13 Q14 + ZT

41

Q21 + Z21 Q22 Q23 Q24 + Z24

Q31 Q32 Q33 Q34

Q41 + Z41 Q42 + ZT
24 Q43 Q44 + Z44 + ZT

44

 < 0 (4.5.12)

with free blocks Z21, Z24, Z41, Z44. Since

ker(AS) = im


I 0
0 0
0 I
0 0

 and ker(BS) = im


0 0
I 0
0 I
0 0

 ,

the hypothesis (4.5.9) just amounts to the conditions(
Q11 Q13

Q31 Q33

)
< 0 and

(
Q22 Q23

Q32 Q33

)
< 0.

By Lemma 4.8, we can hence find a matrix Z21 which renders the marked 3 × 3 block in
(4.5.12) negative definite. The blocks Z41 and Z24 can be taken arbitrary. After having
fixed Z21, Z41, Z24, we can choose Z44 according to Lemma 4.7 such that the whole matrix
on the left-hand side of (4.5.12) is negative definite.

Remark. We can, of course, replace < everywhere by >. It is important to recall that the
unknown X is unstructured. If one requires X to have a certain structure (such as being
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symmetric), the tests, if existing at all, are much more complicated. There is, however,
a generally valid extension of the Projection Lemma to block-triangular unknowns X [29].
Note that the results do not hold true as formulated if just replacing the strict inequalities by
non-strict inequalities (as it is sometimes erroneously claimed in the literature)! Again, it is
possible to provide a full generalization of the Projection Lemma to non-strict inequalities.

Let

P =
(

Q S
ST R

)
with R � 0 have the inverse P−1 =

(
Q̃ S̃

S̃T R̃

)
with Q̃ � 0

(4.5.13)
and let us finally consider the quadratic inequality(

I
AT XB + C

)T

P

(
I

AT XB + C

)
< 0 (4.5.14)

in the unstructured unknown X. According to Lemma 4.4, we can dualize this inequality to(
−BT XT A − C ′

I

)T

P−1

(
−BT XT A − C ′

I

)
> 0. (4.5.15)

It is pretty straightforward to derive necessary conditions for the solvability of (4.5.14).
Indeed, let us assume that (4.5.14) holds for some X. If A⊥ and B⊥ denote basis matrices
of ker(A) and ker(B) respectively, we infer(

I
AT XB + C

)
B⊥ =

(
I
C

)
B⊥ and

(
−BT XT A − C ′

I

)
A⊥ =

(
−C ′

I

)
A⊥.

Since BT
⊥(4.5.14)B⊥ < 0 and AT

⊥(4.5.15)A⊥ > 0, we arrive at the two easily verifiable
inequalities

BT
⊥

(
I
C

)T

P

(
I
C

)
B⊥ < 0 and AT

⊥

(
−CT

I

)T

P−1

(
−CT

I

)
A⊥ > 0 (4.5.16)

which are necessary for a solution of (4.5.14) to exist. One can constructively prove that
they are sufficient [37].

Lemma 4.10 (Elimination Lemma) Under the hypotheses (4.5.13) on P , the inequality
(4.5.14) has a solution if and only if (4.5.16) hold true.

Proof. It remains to prove that (4.5.16) implies the existence of a solution of (4.5.14).

Let us first reveal that one can assume without loss of generality that R > 0 and Q̃ < 0.
For that purpose we need to have information about the inertia of P . Due to R � 0, P and
P−1 have size(R) positive eigenvalues (since none of the eigenvalues can vanish). Similarly,
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Q̃ � 0 implies that P−1 and P have size(Q̃) = size(Q) negative eigenvalues. Let us now
consider (4.5.14) with the perturbed data

Pε :=
(

Q S
ST R + εI

)
where ε > 0

is fixed sufficiently small such that (4.5.16) persist to hold for Pε, and such that Pε and P
have the same number of positive and negative eigenvalues. Trivially, the right-lower block of
Pε is positive definite. The Schur complement Q − S(R + εI)−1ST of this right-lower block
must be negative definite since Pε has size(Q) negative and size(R) positive eigenvalues.
Hence the left-upper block of P−1

ε which equals [Q− S(R + εI)−1ST ]−1 is negative definite
as well. If the result is proved with R > 0 and Q̃ < 0, we can conclude that (4.5.14) has a
solution X for the perturbed data Pε. Due to P0 � Pε, the very same X also satisfies the
original inequality for P0.

Let us hence assume from now on R > 0 and Q̃ < 0. We observe that the left-hand side of
(4.5.14) equals(

I
C

)T

P

(
I
C

)
+ (AT XB)T (ST + RC) + (ST + RC)T (AT XB) + (AT XB)T R(AT XB).

Hence (4.5.14) is equivalent to (Schur) (
I
C

)T

P

(
I
C

)
+ (AT XB)T (ST + RC) + (ST + RC)T (AT XB) (AT XB)T

(AT XB) −R−1

 < 0

or  (
I
C

)T

P

(
I
C

)
0

0 −R−1

+

+
(

A(ST + RC)T

A

)T

X
(

B 0
)

+
(

BT

0

)
XT

(
A(ST + RC) A

)
< 0. (4.5.17)

The inequality (4.5.17) has the structure as required in the Projection Lemma. We need to
show that (

B 0
)( x

y

)
= 0,

(
x
y

)
�= 0 (4.5.18)

or (
A(ST + RC) A

)( x
y

)
= 0,

(
x
y

)
�= 0 (4.5.19)

imply(
x
y

)T
 (

I
C

)T

P

(
I
C

)
0

0 −I

(
x
y

)
= xT

(
I
C

)T

P

(
I
C

)
x − yT y < 0. (4.5.20)
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In a first step we show that (4.5.17) and hence (4.5.14) have a solution if A = I. Let us
assume (4.5.18). Then (4.5.20) is trivial if x = 0. For x �= 0 we infer Bx = 0 and the first
inequality in (4.5.16) implies

xT

(
I
C

)T

P

(
I
C

)
x < 0

what shows that (4.5.20) is true. Let us now assume (4.5.19) with A = I. We infer x �= 0
and y = −(ST + RC)x. The left-hand side of (4.5.20) is nothing but

xT

(
I
C

)T

P

(
I
C

)
x − xT (ST + RC)T R−1(ST + RC)x =

= xT

(
I
C

)T

P

(
I
C

)
x − xT

(
I
C

)T (
S
R

)
R−1

(
ST R

)( I
C

)
x =

= xT

(
I
C

)T [
P −

(
SR−1ST S

ST R

)](
I
C

)
x = xT (Q − SR−1ST )x

what is indeed negative since Q̃−1 = Q − SR−1ST < 0 and x �= 0. We conclude that, for
A = I, (4.5.17) and hence (

I
XB + C

)T

P

(
I

XB + C

)
< 0

have a solution.

By symmetry - since one can apply the arguments provided above to the dual inequality
(4.5.15) - we can infer that(

I
AT X + C

)T

P

(
I

AT X + C

)
< 0

has a solution X. This implies that (4.5.17) has a solution for B = I. Therefore, with the
Projection Lemma, (4.5.19) implies (4.5.20) for a general A.

In summary, we have proved for general A and B that (4.5.18) or (4.5.19) imply (4.5.20).
We can infer the solvability of (4.5.17) or that of (4.5.14).

4.5.3 The Quadratic Performance Problem

For the performance index

Pj =
(

Qj Sj

S′
j Rj

)
, Rj � 0 with inverse P−1

j =
(

Q̃j S̃j

S̃′
j R̃j

)
, Q̃j � 0, (4.5.21)
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we have derived the following synthesis inequalities:

X(v) > 0,


I 0

A(v) Bj(v)
0 I

Cj(v) Dj(v)


T 

0 I 0 0
I 0 0 0
0 0 Qj Sj

0 0 ST
j Rj




I 0
A(v) Bj(v)

0 I
Cj(v) Dj(v)

 < 0. (4.5.22)

Due to the specific structure(
A(v) Bj(v)
Cj(v) Dj(v)

)
=

 AY A Bj

0 XA XBj

CjY Cj Dj

 +

 0 B
I 0
0 Ej

(
K L
M N

)(
I 0 0
0 C Fj

)
,

(4.5.23)

it is straightforward to apply Lemma 4.10 to eliminate all the variables
(

K L
M N

)
. For

that purpose it suffices to compute basis matrices

Φj =
(

Φ1
j

Φ2
j

)
of ker

(
BT ET

j

)
and Ψj =

(
Ψ1

j

Ψ2
j

)
of ker

(
C Fj

)
.

Corollary 4.11 For a performance index with (4.5.21), there exists a solution v of (4.5.22)
if and only if there exist symmetric X and Y that satisfy(

Y I
I X

)
> 0, (4.5.24)

ΨT


I 0
A Bj

0 I
Cj Dj


T 

0 X 0 0
X 0 0 0
0 0 Qj Sj

0 0 ST
j Rj




I 0
A Bj

0 I
Cj Dj

Ψ < 0, (4.5.25)

ΦT


−AT −CT

j

I 0
−BT

j −DT
j

0 I


T 

0 Y 0 0
Y 0 0 0
0 0 Q̃j S̃j

0 0 S̃T
j R̃j




−AT −CT
j

I 0
−BT

j −DT
j

0 I

Φ > 0. (4.5.26)

Remark. Note that the columns of
(

B
Ej

)
indicate in how far the right-hand side of

(4.1.1) can be modified by control, and the rows of
(

C Fj

)
determine those functionals

that provide information about the system state and the disturbance that is available for
control. Roughly speaking, the columns of Φj or of Ψj indicate what cannot be influenced
by control or which information cannot be extracted from the measured output. Let us
hence compare (4.5.24)-(4.5.26) with the synthesis inequalities that would be obtained for

ẋ
z1

...
zq

 =


A B1 · · · Bq

C1 D1 · · · D1q

...
...

. . .
...

Cq Dq1 · · · Dq




x
w1

...
wq

 (4.5.27)
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without control input and measurement output. For this system we could choose Φ = I and
Ψ = I to arrive at the synthesis inequalities(

Y I
I X

)
> 0, (4.5.28)


I 0
A Bj

0 I
Cj Dj


T 

0 X 0 0
X 0 0 0
0 0 Qj Sj

0 0 ST
j Rj




I 0
A Bj

0 I
Cj Dj

 < 0, (4.5.29)


−AT −CT

j

I 0
−BT

j −DT
j

0 I


T 

0 Y 0 0
Y 0 0 0
0 0 Q̃j S̃j

0 0 S̃T
j R̃j




−AT −CT
j

I 0
−BT

j −DT
j

0 I

 > 0. (4.5.30)

Since there is no control and no measured output, these could be viewed as analysis inequal-
ities for (4.5.27). Hence we have very nicely displayed in how far controls or measurements
do influence the synthesis inequalities through Φj and Ψj . Finally, we note that (4.5.28)-
(4.5.30) are equivalent to X > 0, (4.5.29) or to Y > 0, (4.5.30). Moreover, if dualizing
X > 0, (4.5.29), we arrive at Y > 0, (4.5.30) for Y := X−1.

Proof of Corollary 4.11. The first inequality (4.5.24) is just X(v) > 0. The inequalities
(4.5.25)-(4.5.26) are obtained by simply applying Lemma 4.10 to the second inequality of

(4.5.22), viewed as a quadratic matrix inequality in the unknowns
(

K L
M N

)
. For that

purpose we first observe that

ker
(

0 I 0
BT 0 ET

j

)
, ker

(
I 0 0
0 C Fj

)
have the basis matrices

 Φ1
j

0
Φ2

j

 ,

 0
Ψ1

j

Ψ2
j


respectively. Due to


I 0

A(v) Bj(v)
0 I

Cj(v) Dj(v)


 0

Ψ1
j

Ψ2
j

 =


I 0 0
0 I 0

AY A Bj

0 XA XBj

0 0 I
CjY Cj Dj


 0

Ψ1
j

Ψ2
j

 =


0 0
I 0
A Bj

XA XBj

0 I
Cj Dj

Ψ,

the solvability condition that corresponds to the first inequality in (4.5.16) reads as

ΨT


0 0
I 0
A Bj

XA XBj

0 I
Cj Dj



T 
0 0 I 0 0 0
0 0 0 I 0 0
I 0 0 0 0 0
0 I 0 0 0 0
0 0 0 0 Qj Sj

0 0 0 0 ST
j Rj




0 0
I 0
A Bj

XA XBj

0 I
Cj Dj

Ψ < 0
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what simplifies to

ΨT


I 0

XA XBj

0 I
Cj Dj


T 

0 I 0 0
I 0 0 0
0 0 Qj Sj

0 0 ST
j Rj




I 0
XA XBj

0 I
Cj Dj

Ψ < 0.

This is clearly nothing but (4.5.25). The very same simple steps lead to (4.5.26). Indeed,
we have

A(v)T Cj(v)T

I 0
Bj(v)T Dj(v)T

0 I


 Φ1

j

0
Φ2

j

 =

=



−Y AT 0 −Y CT
j

−AT −AT X −CT
j

I 0 0
0 I 0

−BT
j −XBT

j −DT
j

0 0 I


 Φ1

j

0
Φ2

j

 =


−Y AT −Y CT

1

−AT −CT
1

I 0
0 0

−BT
1 −DT

1

0 I

Φ

such that the solvability condition that corresponds to the second inequality in (4.5.16) is

ΦT


−Y AT −Y CT

1

−AT −CT
1

I 0
0 0

−BT
1 −DT

1

0 I



T 

0 0 I 0 0 0
0 0 0 I 0 0
I 0 0 0 0 0
0 I 0 0 0 0
0 0 0 0 Q̃j S̃j

0 0 0 0 S̃T
j R̃j




−Y AT −Y CT

1

−AT −CT
1

I 0
0 0

−BT
1 −DT

1

0 I

Φ < 0

what simplifies to

ΦT


−Y AT −Y CT

1

I 0
−BT

1 −DT
1

0 I


T 

0 I 0 0
I 0 0 0
0 0 Q̃j S̃j

0 0 S̃T
j R̃j




−Y AT −Y CT
1

I 0
−BT

1 −DT
1

0 I

Φ < 0

and we arrive at (4.5.26).

Starting from the synthesis inequalities (4.5.22) in the variables X, Y ,
(

K L
M N

)
, we have

derived the equivalent inequalities (4.5.24)-(4.5.26) in the variables X, Y only. Testing feasi-
bility of these latter inequalities can hence be accomplished much faster. This is particularly
advantageous if optimizing an additional parameter, such as minimizing the sup-optimality
level γ in the H∞ problem.
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To conclude this section, let us comment on how to compute the controller after having
found solutions X, Y of (4.5.24)-(4.5.26). One possibility is to explicitly solve the quadratic

inequality (4.5.22) in
(

K L
M N

)
along the lines of the proof of Lemma 4.10, and reconstruct

the controller parameters as earlier. One could as well proceed directly: Starting from X
and Y , we can compute non-singular U and V with UV T = I − XY , and determine X > 0
by solving the first equation in (4.2.10). Due to (4.1.5), we can apply Lemma 4.10 directly
to the analysis inequality

I 0
A Bj

0 I
Cj Dj


T 

0 X 0 0
X 0 0 0
0 0 Qj Sj

0 0 ST
j Rj




I 0
A Bj

0 I
Cj Dj

 < 0

if viewing
(

Ac Bc

Cc Dc

)
as variables. It is not difficult (and you should provide the details!)

to verify the solvability conditions for this quadratic inequality, and to construct an explicit
solution along the lines of the proof of Lemma 4.10. Alternatively, one can transform the
quadratic inequality to a linear matrix inequality with Lemma 4.1, and apply the Projection
Lemma to reconstruct the controller parameters. For the latter step the LMI-Lab offers a
standard routine. We conclude that there are many basically equivalent alternative ways to
compute a controller once one has determined X and Y .

4.5.4 H2-Problems

If recalling (4.2.3), we observe that both inequalities in the H2-synthesis conditions (4.3.3)
involve the variables M and N , but only the first one(

A(v)T + A(v) Bj(v)
Bj(v)T −γjI

)
< 0 (4.5.31)

is affected by K and L. This might suggest that the latter two variables can be eliminated
in the synthesis conditions. Since (4.5.31) is affine in

(
K L

)
, we can indeed apply the

Projection Lemma to eliminate these variables. It is not difficult to arrive at the following
alternative synthesis conditions for H2-type criteria.

Corollary 4.12 There exists a controller that renders (4.3.2) for some X , Zj satisfied iff
there exist X, Y , M , N , Zj with fj(Zj) < γj, Dj + EjNFj = 0 and Y I (CjY + EjM)T

I X (Cj + EjNC)T

CjY + EjM Cj + EjNC Zj

 > 0,

ΨT

(
AT X + XA XBj

BT
j X −γjI

)
Ψ < 0,

(
(AY + BM) + (AY + BM)T Bj + BNFj

(Bj + BNFj)T −γjI

)
< 0.

(4.5.32)
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Proof. We only need to show that the elimination of K and L in (4.5.31) leads to the two
inequalities (4.5.32). Let us recall

(
A(v) Bj(v)

)
=

(
AY A Bj

0 XA XBj

)
+

(
0 B
I 0

)(
K L
M N

)(
I 0 0
0 C Fj

)
=

=
(

AY + BM A + BNC Bj + BNFj

0 XA XBj

)
+

(
0
I

)(
K L

)( I 0 0
0 C Fj

)
.

Therefore, (4.5.31) is equivalent to AY + Y AT A Bj

AT AT X + XA XBj

BT
j BT

j X −γjI

 + sym

 B
0
0

(
M N

)( I 0 0
0 C Fj

)+

+ sym

 0
I
0

(
K L

)( I 0 0
0 C Fj

) < 0

where sym (M) := M + MT is just an abbreviation to shorten the formulas. Now note that

ker
(

0 I 0
)
, ker

(
I 0 0
0 C Fj

)
have the basis matrices

 I 0
0 0
0 I

 ,

 0
Ψ1

j

Ψ2
j


respectively. Therefore, the Projection Lemma leads to the two inequalities 0

Ψ1
j

Ψ2
j

T  AY + Y AT A Bj

AT AT X + XA XBj

BT
j BT

j X −γjI

 0
Ψ1

j

Ψ2
j

 < 0

and (
AY + Y AT Bj

BT
j −γjI

)
+ sym

((
B
0

)(
M N

)( I 0
0 Fj

))
< 0

that are easily rewritten to (4.5.32).

If it happens that Ej vanishes, we can also eliminate all variables
(

K L
M N

)
from the

synthesis inequalities. The corresponding results are obtained in a straightforward fashion
and their proof is left as an exercise.

Corollary 4.13 Suppose that Ej = 0. Then there exists a controller that renders (4.3.2)
for some X , Zj satisfied iff Dj = 0 and there exist X, Y Zj with fj(Zj) < γj and Y I (CjY )T

I X CT
j

CjY Cj Zj

 > 0,

ΨT

(
AT X + XA XBj

BT
j X −γjI

)
Ψ < 0,

(
Φ̂ 0
0 I

)T (
AY + Y AT Bj

BT
j −γjI

)(
Φ̂ 0
0 I

)
< 0
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where Φ̂ is a basis matrix of ker(B).

Remarks.

• Once the synthesis inequalities have been solved, the computation of
(

K L
)

or of(
K L
M N

)
can be performed along the lines of the proof of the Projection Lemma.

• It was our main concern to perform the variable elimination with as little computations
as possible. They should be read as examples how one can proceed in specific circum-
stances, and they can be easily extended to various other performance specifications.
As an exercise, the reader should eliminate variables in the peak-to-peak upper bound
synthesis LMI’s.

4.6 State-Feedback Problems

The state-feedback problem is characterized by

y = x or
(

C F1 · · · Fq

)
=

(
I 0 · · · 0

)
.

Then the formulas (4.2.3) read as

(
A(v) Bj(v)
Cj(v) Dj(v)

)
=

 AY + BM A + BN Bj

K AX + L XBj

CjY + EjM Cj + EjN Dj

 .

Note that the variable L only appears in the (2, 2)-block, and that we can assign an arbitrary
matrix in this position by suitably choosing L. Therefore, by varying L, the (2, 2) block of

(
A(v)T + A(v) Bj(v)

Bj(v) 0

)
=

=

 (AY + BM) + (AY + BM)T (A + BN) + KT Bj

K + (A + BN)T (AX + L) + (AX + L)T XBj

BT
j BT

j X 0


varies in the set of all symmetric matrices. This allows to apply Lemma 4.7 in order to
eliminate L in synthesis inequalities what leads to a drastic simplification.

Let us illustrate all this for the quadratic performance problem. The corresponding synthesis
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inequalities (4.2.7) read as

(
Y I
I X

)
> 0,

 (AY + BM) + (AY + BM)T (A + BN) + KT Bj

K + (A + BN)T (AX + L) + (AX + L)T XBj

BT
j BT

j X 0

+

+
(

0 0 I
CjY + EjM Cj + EjN Dj

)T

Pj

(
0 0 I

CjY + EjM Cj + EjN Dj

)
< 0.

These imply, just by cancelling the second block row/column,

Y > 0,

(
(AY + BM) + (AY + BM)T Bj

BT
j 0

)
+

+
(

0 I
CjY + EjM Dj

)T

Pj

(
0 I

CjY + EjM Dj

)
< 0

or

Y > 0,


I 0

AY + BM Bj

0 I
CjY + EjM Dj


T 

0 I 0 0
I 0 0 0
0 0 Qj Sj

0 0 ST
j Rj




I 0
AY + BM Bj

0 I
CjY + EjM Dj

 < 0. (4.6.1)

This is a drastic simplification since only the variables Y and M do appear in the resulting
inequalities. It is no problem to reverse the arguments in order to show that the reduced
inequalities are equivalent to the full synthesis inequalities.

However, proceeding in a different fashion leads to another fundamental insight: With solu-
tions Y and M of (4.6.1), one can in fact design a static controller which solves the quadratic
performance problem. Indeed, we just choose

Dc := MY −1

to infer that the static controller y = Dcu leads to a controlled system with the describing
matrices (

A Bj

Cj Dj

)
=

(
A + BDc Bj

Cj + EjDc Dj

)
=

(
(AY + BM)Y −1 Bj

(CjY + EjM)Y −1 Dj

)
.

We infer that (4.6.1) is identical to

Y > 0,


I 0

AY Bj

0 I
CjY Dj


T 

0 I 0 0
I 0 0 0
0 0 Qj Sj

0 0 ST
j Rj




I 0
AY Bj

0 I
CjY Dj

 < 0.
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If we perform congruence transformations with Y −1 and
(

Y −1 0
0 I

)
, we arrive with X :=

Y −1 at

X > 0,


I 0

XA XBj

0 I
Cj Dj


T 

0 I 0 0
I 0 0 0
0 0 Qj Sj

0 0 ST
j Rj




I 0
XA XBj

0 I
Cj Dj

 < 0.

Hence the static gain D indeed defines a controller which solves the quadratic performance
problem.

Corollary 4.14 Under the state-feedback information structure, there exists a dynamic con-

troller
(

Ac Bc

Cc Dc

)
and some X which satisfy (4.2.1) iff there exist solutions Y and M of

the inequalities (4.6.1). If Y and M solve (4.6.1), the static state-feedback controller gain

Dc = MY −1

and the Lyapunov matrix X := Y −1 render (4.2.1) satisfied.

In literally the same fashion as for output-feedback control, we arrive at the following general
procedure to proceed from analysis inequalities to synthesis inequalities, and to construct a
static state-feedback controller:

• Rewrite the analysis inequalities in the blocks X , XA, XBj , Cj , Dj in order to be able
to find a (formal) congruence transformation involving Y which leads to inequalities
in the blocks YTXY, YTXAY , YTXBj , CjY, Dj .

• Perform the substitutions

YTXY → Y and
(

YTXAY YTXBj

CjY Dj

)
→

(
AY + BM Bj

CjY + EjM Dj

)
to arrive at matrix inequalities in the variables Y and M .

• After having solved the synthesis inequalities for Y and M , the static controller gain
and the Lyapunov matrix

D = MY −1 and X = Y −1

render the analysis inequalities satisfied.

As an illustration, starting form the analysis inequalities (4.3.2) for H2-type problems, the
corresponding state-feedback synthesis conditions read as(

(AY + BM)T + (AY + BM) Bj

BT
j −γjI

)
< 0,(

Y (CjY + EjM)T

CjY + EjM Zj

)
> 0, fj(Zj) < γj , Dj = 0.
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All our previous remarks pertaining to the (more complicated) procedure for the output-
feedback information structure apply without modification.

In general we can conclude that dynamics in the controller do not offer any advantage over
static controllers for state-feedback problems. This is also true for mixed control problems.
This statements requires extra attention since our derivation was based on eliminating the
variable L which might occur in several matrix inequalities. At this point the remark after
Lemma 4.7 comes into play: This particular elimination result also applies to systems of
matrix inequalities such that, indeed, the occurrence of L is various inequalities will not
harm the arguments.

As earlier, in the single-objective quadratic performance problem by state-feedback, it is
possible to eliminate the variable M in (4.6.1). Alternatively, one could as well exploit the
particular structure of the system description to simplify the conditions in Theorem 4.11.
Both approaches lead to the following result.

Corollary 4.15 For the state-feedback quadratic performance problem with index satisfying
(4.5.21), there exists dynamic controller and some X with (4.2.1) iff there exists a symmetric
Y which solves

Y > 0, ΦT


−AT −CT

j

I 0
−BT

j −DT
j

0 I


T 

0 Y 0 0
Y 0 0 0
0 0 Q̃j S̃j

0 0 S̃T
j R̃j




−AT −CT
j

I 0
−BT

j −DT
j

0 I

Φ > 0. (4.6.2)

Remarks. All these results should be viewed as illustrations how to proceed for specific sys-
tem descriptions. Indeed, another popular choice is the so-called full information structure
in which both the state and the disturbance are measurable:

y =
(

x
w

)
.

Similarly, one could consider the corresponding dual versions that are typically related to
estimation problems, such as e.g. 

B
E1

...
Eq

 =


I
0
...
0

 .

We have collected all auxiliary results that allow to handle these specific problems without
any complications.
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4.7 Robust Controller Design

So far we have presented techniques to design controllers for nominal stability and nominal
performance. Chapters 2 and 3 have been devoted to a thorough discussion of how to analyze,
for a fixed stabilizing controller, robust stability or robust performance. For time-invariant
or time-varying parametric uncertainties, we have seen direct tests formulated as searching
for constant or parameter-dependent quadratic Lyapunov functions. For much larger classes
of uncertainties, we have derived tests in terms of integral quadratic constraints that involve
additional variables which have been called scalings or multipliers.

Typically, only those IQC tests with a class of multipliers that admit a state-space description
as discussed in the Sections 3.6-3.10 are amenable to a systematic output-feedback controller
design procedure which is a reminiscent of the D/K-iteration in µ-theory. This will be the
subject of the first section.

In a second section we consider as a particular information structure the robust state-
feedback design problem. We will reveal that the search for static state-feedback gains
which achieve robust performance can be transformed into a convex optimization problem.

The discussion is confined to the quadratic performance problem since most results can be
extended in a pretty straightforward fashion to the other specifications considered in these
notes.

4.7.1 Robust Output-Feedback Controller Design

If characterizing robust performance by an IQC, the goal in robust design is to find a
controller and a multiplier such that, for the closed-loop system, the corresponding IQC test
is satisfied. Hence, the multiplier appears as an extra unknown what makes the problem
hard if not impossible to solve.

However, if the multiplier is held fixed, searching for a controller amounts to a nominal design
problem that can be approached with the techniques described earlier. If the controller is
held fixed, the analysis techniques presented in Chapter 3 can be used to find a suitable
multiplier. Hence, instead of trying to search for a controller and a multiplier commonly,
one iterates between the search for a controller with fixed multiplier and the search for a
multiplier with fixed controller. This procedure is known from µ-theory as scalings/controller
iteration or D/K iteration.

To be more concrete, we consider the specific example of achieving robust quadratic perfor-
mance against time-varying parametric uncertainties as discussed in Section 3.10.

The uncontrolled unperturbed system is described by (4.1.1). We assume that w1 → z1 is
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the uncertainty channel and the uncontrolled uncertain system is described by including

w1(t) = ∆(t)z1(t)

where ∆(.) varies in the set of continuous curves satisfying

∆(t) ∈ ∆c := co{∆1, ...,∆N} for all t � 0.

We assume (w.l.o.g.) that
0 ∈ co{∆1, ...,∆N}.

The performance channel is assumed to be given by w2 → z2, and the performance index

Pp =
(

Qp Sp

ST
p Rp

)
, Rp � 0 with the inverse P̃−1

p =
(

Q̃p S̃p

S̃T
p R̃p

)
, Q̃p � 0

is used to define the quadratic performance specification∫ ∞

0

(
w2(t)
z2(t)

)T

Pp

(
w2(t)
z2(t)

)
dt � −ε‖w2‖2

2.

The goal is to design a controller that achieves robust stability and robust quadratic per-
formance. We can guarantee both properties by finding a controller, a Lyapunov matrix X ,
and a multiplier

P =
(

Q S
ST R

)
, Q < 0,

(
∆j

I

)T (
Q S
ST R

)(
∆j

I

)
> 0 for all j = 1, . . . , N (4.7.1)

that satisfy the inequalities

X > 0,


I 0 0

XA XB1 XB2

0 I 0
C1 D1 D12

0 0 I
C2 D21 D2



T 
0 I 0 0 0 0
I 0 0 0 0 0
0 0 Q S 0 0
0 0 ST R 0 0
0 0 0 0 Qp Sp

0 0 0 0 ST
p Rp




I 0 0

XA XB1 XB2

0 I 0
C1 D1 D12

0 0 I
C2 D21 D2

 < 0.

(Recall that the condition on the left-upper block of P can be relaxed in particular cases
what could reduce the conservatism of the test.)

If we apply the controller parameter transformation of Chapter 4, we arrive that the synthesis
matrix inequalities

X(v) > 0,


∗
∗
∗
∗
∗
∗



T 
0 I 0 0 0 0
I 0 0 0 0 0
0 0 Q S 0 0
0 0 ST R 0 0
0 0 0 0 Qp Sp

0 0 0 0 ST
p Rp




I 0 0

A(v) B1(v) B2(v)
0 I 0

C1(v) D1(v) D12(v)
0 0 I

C2(v) D21(v) D2(v)

 < 0.
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Unfortunately, there is no obvious way how to render these synthesis inequalities convex in
all variables v, Q, S, R.

This is the reason why we consider, instead, the problem with a scaled uncertainty

w1(t) = [r∆(t)]z1(t), ∆(t) ∈ ∆c (4.7.2)

where the scaling factor is contained in the interval [0, 1]. Due to(
r∆
I

)T (
Q rS

rST r2R

)(
r∆
I

)
= r2

(
∆
I

)T (
Q S
ST R

)(
∆
I

)
,

we conclude that the corresponding analysis or synthesis are given by (4.7.1) and

X > 0,


I 0 0

XA XB1 XB2

0 I 0
C1 D1 D12

0 0 I
C2 D21 D2



T 
0 I 0 0 0 0
I 0 0 0 0 0
0 0 Q rS 0 0
0 0 rST r2R 0 0
0 0 0 0 Qp Sp

0 0 0 0 ST
p Rp




I 0 0

XA XB1 XB2

0 I 0
C1 D1 D12

0 0 I
C2 D21 D2

 < 0

(4.7.3)
or

X(v) > 0,


∗
∗
∗
∗
∗
∗



T 
0 I 0 0 0 0
I 0 0 0 0 0
0 0 Q rS 0 0
0 0 rST r2R 0 0
0 0 0 0 Qp Sp

0 0 0 0 ST
p Rp




I 0 0

A(v) B1(v) B2(v)
0 I 0

C1(v) D1(v) D12(v)
0 0 I

C2(v) D21(v) D2(v)

 < 0.

(4.7.4)

For r = 0, we hence have to solve the nominal quadratic performance synthesis inequalities.
If they are not solvable, the robust quadratic performance synthesis problem is not solvable
either and we can stop. If they are solvable, the idea is to try to increase, keeping the
synthesis inequalities feasible, the parameter r from zero to one. Increasing r is achieved by
alternatingly maximizing r over v satisfying (4.7.4) (for fixed P ) and by varying X and P
in (4.7.3) (for a fixed controller).

The maximization of r proceeds along the following steps:

Initialization. Perform a nominal quadratic performance design by solving (4.7.4) for
r = 0. Proceed if these inequalities are feasible and compute a corresponding controller.

After this initial phase, the iteration is started. The j − 1-st step of the iteration leads to
a controller, a Lyapunov matrix X , and a multiplier P that satisfy the inequalities (4.7.1)
and (4.7.3) for the parameter r = rj−1. Then it proceeds as follows:
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First step: Fix the controller and maximize r by varying the Lyapunov matrix X and the
scaling such that such that (4.7.1) and (4.7.3) hold. The maximal radius is denoted as r̂j

and it satisfies rj−1 � r̂j .

Second step: Fix the resulting scaling P and find the largest r by varying the variables v
in (4.7.4). The obtained maximum rj clearly satisfies r̂j � rj .

The iteration defines a sequence of radii

r1 � r2 � r3 � · · ·

and a corresponding controller that guarantee robust stability and robust quadratic perfor-
mance for all uncertainties (4.7.2) with radius r = rj .

If we are in the lucky situation that there is an index for which rj � 1, the corresponding
controller is robustly performing for all uncertainties with values in ∆c as desired, and we
are done. However, if rj < 1 for all indices, we cannot guarantee robust performance for
r = 1, but we still have a guarantee of robust performance for r = rj !

Before entering a brief discussion of this procedure, let us include the following remarks on
the start-up and on the computations. If the nominal performance synthesis problem has a
solution, the LMI’s (4.7.1)-(4.7.3) do have a solution X and P for the resulting controller
and for some - possibly small - r > 0; this just follows by continuity. Hence the iteration
does not get stuck after the first step. Secondly, for a fixed r, the first step of the iteration
amounts to solving an analysis problem, and finding a solution v of (4.7.4) can be converted
to an LMI problem. Therefore, the maximization of r can be performed by bisection.

Even if the inequalities (4.7.1)-(4.7.4) are solvable for r = 1, it can happen the the limit of
rj is smaller than one. As a remedy, one could consider another parameter to maximize,
or one could modify the iteration scheme that has been sketched above. For example, it
is possible to take the fine structure of the involved functions into account and to suggest
other variable combinations that render the resulting iteration steps convex. Unfortunately,
one cannot give general recommendations for modifications which guarantee success.

Remark. It should be noted that the controller/multiplier iteration can be extended to all
robust performance tests that are based on families of dynamic IQC’s which are described by
real rational multipliers. Technically, one just requires a parametrization of the multipliers
such that the corresponding analysis test (for a fixed controller) and the controller synthesis
(for a fixed multiplier) both reduce to solving standard LMI problems.

4.7.2 Robust State-Feedback Controller Design

For the same set-up as in the previous section we consider the corresponding synthesis
problem if the state of the underlying system is measurable. According to our discussion in
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Section 4.6, the resulting synthesis inequalities read as

Q < 0,

(
∆j

I

)T (
Q S
ST R

)(
∆j

I

)
> 0 for all j = 1, . . . , N

and

Y > 0,


∗
∗
∗
∗
∗
∗



T 
0 I 0 0 0 0
I 0 0 0 0 0
0 0 Q S 0 0
0 0 ST R 0 0
0 0 0 0 Qp Sp

0 0 0 0 ST
p Rp




I 0 0

AY + BM B1 B2

0 I 0
C1Y + E1M D1 D12

0 0 I
C2Y + E1M D21 D2

 < 0

in the variables Y , M , Q, S, R.

In this form these inequalities are not convex. However, we can can apply the Dualization
Lemma (Section 4.5.1) to arrive at the equivalent inequalities

R̃ > 0,

(
I

−∆T
j

)T (
Q̃ S̃

S̃T R̃

)(
I

−∆T
j

)
< 0 for all j = 1, . . . , N

and Y > 0,

∗



0 I 0 0 0 0
I 0 0 0 0 0
0 0 Q̃ S̃ 0 0
0 0 S̃T R̃ 0 0
0 0 0 0 Q̃p S̃p

0 0 0 0 S̃T
p R̃p




−(AY + BM)T −(C1Y + E1M)T −(C2Y + E2M)T

I 0 0
−BT

1 −DT
1 −DT

21

0 I 0
−BT

2 −DT
12 −DT

2

0 0 I

> 0

in the variables Y , M , Q̃, S̃, R̃. It turns out that these dual inequalities are all affine in
the unknowns. Testing feasibility hence amounts to solving a standard LMI problem. If the
LMI’s are feasible, a robust static state-feedback gain is given by D = MY −1. This is one
of the very few lucky instances in the world of designing robust controllers!

4.7.3 Affine Parameter Dependence

Let us finally consider the system ẋ
z
y

 =

 A(∆(t)) B1(∆(t)) B(∆(t))
C1(∆(t)) D(∆(t)) E(∆(t))
C(∆(t)) F (∆(t)) 0

 x
w
u

 , ∆(t) ∈ co{∆1, ...,∆N}
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where the describing matrices depend affinely on the time-varying parameters. If designing
output-feedback controllers, there is no systematic alternative to pulling out the uncertain-
ties and applying the scalings techniques as in Section 4.7.1.

For robust state-feedback design there is an alternative without scalings. One just needs to
directly solve the system of LMI’s

Y > 0,


∗
∗
∗
∗


T 

0 I 0 0
I 0 0 0
0 0 Qp Sp

0 0 ST
p Rp




I 0
A(∆j)Y + B(∆j)M B1(∆j)

0 I
C1(∆j)Y + E(∆j)M D(∆j)

 < 0, j = 1, . . . , N

(4.7.5)
in the variables Y and M .

For the controller gain Dc = MY −1 we obtain

Y > 0,


∗
∗
∗
∗


T 

0 I 0 0
I 0 0 0
0 0 Qp Sp

0 0 ST
p Rp




I 0
(A(∆j) + B(∆j)Dc)Y B1(∆j)

0 I
(C1(∆j) + E(∆j)Dc)Y D(∆j)

 < 0, j = 1, . . . , N

A convexity argument leads to

Y > 0,


∗
∗
∗
∗


T 

0 I 0 0
I 0 0 0
0 0 Qp Sp

0 0 ST
p Rp




I 0
(A(∆(t)) + B(∆(t))Dc)Y B1(∆(t))

0 I
(C1(∆(t)) + E(∆(t))Dc)Y D(∆(t))

 < 0

for all parameter curves ∆(t) ∈ co{∆1, ...,∆N}, and we can perform a congruence transfor-
mation as in Section 4.6 to get

X > 0,


∗
∗
∗
∗


T 

0 I 0 0
I 0 0 0
0 0 Qp Sp

0 0 ST
p Rp




I 0
X (A(∆(t)) + B(∆(t))Dc) XB1(∆(t))

0 I
(C1(∆(t)) + E(∆(t))Dc) D(∆(t))

 < 0.

These two inequalities imply, in turn, robust exponential stability and robust quadratic
performance for the controlled system as seen in Section 3.10.2.

We have proved that it suffices to directly solve the LMI’s (4.7.5) to compute a robust static
state-feedback controller. Hence, if the system’s parameter dependence is affine, we have
found two equivalent sets of synthesis inequalities that differ in the number of the involved
variables and in the sizes of the LMI’s that are involved. In practice, the correct choice
is dictated by whatever system can be solved faster, more efficiently, or numerically more
reliably.
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Remark. Here is the reason why it is possible to directly solve the robust performance
problem by state-feedback without scalings, and why this technique does, unfortunately,
not extend to output-feedback control: The linearizing controller parameter transformation
for state-feedback problems does not involve the matrices that describe the open-loop system,
whereas that for that for ouptut-feedback problems indeed depends on the matrices A, B,
C of the open-loop system description. (See also Exercise 2.)

Let us conclude this section by stressing, again, that these techniques find straightforward
extensions to other performance specifications. As an exercise, the reader is asked to work
out the details of the corresponding results for the robust H2-synthesis problem by state- or
output-feedback.

4.8 Discrete-Time Systems

Everything what has been said so far can be easily extended to discrete time-design problems.
This is particularly surprising since, in the literature, discrete-time problem solutions often
seem much more involved and harder to master than their continuous-time counterparts.

Our general procedure to step from analysis to synthesis as well as the technique to recover
the controller need no change at all; in particular, the concrete formulas for the block
substitutions do not change. The elimination of transformed controller parameters proceeds
in the same fashion on the basis of the Projection Lemma or the Elimination Lemma and
the specialized version thereof.

Only as a example we consider the problem discussed in [13]: the mixed H2/H∞ problem
with different disturbance inputs and controlled outputs in discrete-time.

It is well-known [13] that A has all its eigenvalues in the unit disk, that the discrete time
H2-norm of

C1(zI −A)−1B1 + D1

is smaller than γ1, and that the discrete time H∞-norm of

C2(zI −A)−1B2 + D2

is smaller than γ2 iff there exist symmetric matrices X1, X2, and Z with trace(Z) < γ1 and

 X1 X1A X1B1

ATX1 X1 0
BT

1 X1 0 γ1I

 > 0,

 X1 0 CT
1

0 I DT
1

C1 D1 Z

 > 0,


X2 0 ATX2 CT

2

0 γ2I BT
2 X2 DT

2

X2A X2B2 X2 0
C2 D2 0 γ2I

 > 0.

(4.8.1)
Note that we have transformed these analysis LMI’s such that they are affine in the blocks
that will be transformed for synthesis.
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The mixed problem consists of searching for a controller that renders these inequalities
satisfied with a common Lyapunov function X = X1 = X2. The solution is immediate:
Perform congruence transformations of (4.8.1) with

diag(Y,Y, I), diag(Y, I, I), diag(Y, I,Y, I)

and read off the synthesis LMI’s using (4.2.3). After solving the synthesis LMI’s, we stress
again that the controller construction proceeds along the same steps as in Theorem 4.2. The
inclusion of pole constraints for arbitrary LMI regions (related, of course, to discrete time
stability) and other criteria poses no extra problems.
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4.9 Exercises

Exercise 1

Derive an LMI solution of the H∞-problem for the system ẋ
z1

y

 =

 A B1 B
C1 D1 E
C F 0

 x
w1

u


with

C =
(

I
0

)
, F =

(
0
I

)
such that y =

(
x
w1

)
.

(This is the so-called full information problem.)

Exercise 2 (Nominal and Robust Estimation)

Consider the system  ẋ
z
y

 =

 A B1

C1 D1

C F

(
x
w

)
and inter-connect it with the estimator(

ẋc

ẑ

)
=

(
Ac Bc

Cc Dc

)(
xc

y

)
(4.9.1)

where both A and Ac are Hurwitz. The goal in optimal estimation is to design an estimator
which keeps z − ẑ as small as possible for all disturbances w in a certain class. Out of the
multitude of possibilities, we choose the L2-gain of w → z − ẑ (for zero initial condition of
both the system and the estimator) as the measure of the estimation quality.

This leads to the following problem formulation: Given γ > 0, test whether there exists an
estimator which renders

sup
w∈L2, w =0

‖z − ẑ‖2

‖w‖2
< γ (4.9.2)

satisfied. If yes, reveal how to design an estimator that leads to this property.

1. Show that the estimation problem is a specialization of the general output-feedback
H∞-design problem.

2. Due to the specific structure of the open-loop system, show that there exists a lineariz-
ing transformation of the estimator parameters which does not involve any matrices
that describe the open-loop system.
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Hint: To find the transformation, proceed as in the proof of Theorem 4.2 with the
factorization

YTX = Z where YT =
(

I Y −1V
I 0

)
, Z =

(
Y −1 0
X U

)
,

and consider as before the blocks YTXAY , YTXB, CY.

3. Now assume that the system is affected by time-varying uncertain parameters as ẋ
z
y

 =

 A(∆(t)) B1(∆(t))
C1(∆(t)) D1(∆(t))
C(∆(t)) F (∆(t))

(
x
w

)
where  A(∆) B1(∆)

C1(∆) D1(∆)
C(∆) F (∆)

 is affine in ∆ and ∆(t) ∈ co{∆1, ...,∆N}.

Derive LMI conditions for the existence of an estimator that guarantees (4.9.2) for all
uncertainties, and show how to actually compute such an estimator if the LMI’s are
feasible.

Hint: Recall what we have discussed for the state-feedback problem in Section 4.7.3.

4. Suppose that the uncertainty enters rationally, and that it has been pulled out to
arrive at the LFT representation

ẋ
z1

z
y

 =


A B1 B2

C1 D1 D12

C2 D21 D2

C F1 F2


 x

w1

w

 , w1(t) = ∆(t)z1(t), ∆(t) ∈ co{∆1, ...,∆N}

of the uncertain system. Derive synthesis inequalities with full-block scalings that
guarantee the existence of an estimator that guarantees (4.9.2) for all uncertainties
and reveal how to actually compute such an estimator if the LMI’s are feasible. What
happens if D1 = 0 such that the uncertainty enters affinely?

Hint: The results should be formulated analogously to what we have done in Section
4.7.2. There are two possibilities to proceed: You can either just use the transfor-
mation (4.2.10) to obtain synthesis inequalities that can be rendered convex by an
additional congruence transformation, or you can employ the alternative parameter
transformation as derived in part 2 of this exercise to directly obtain a convex test.

Exercise 3

This is an exercise on robust control. To reduce the complexity of programming, we consider
a non-dynamic system only.
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Suppose you have given the algebraic uncertain system

z1

z2

z3

z4

z
y1

y2


=



0 1 0 1 1 1 0
0.5 0 0.5 0 1 0 1
2a 0 a 0 1 0 0
0 −2a 0 −a 1 0 0
1 1 1 1 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0





w1

w2

w3

w4

w
u1

u2


,

with a time-varying uncertainty
w1

w2

w3

w4

 =


δ1(t) 0

δ1(t)
δ2(t)

0 δ2(t)




z1

z2

z3

z4

 , |δ1(t)| � 0.7, |δ2(t)| � 0.7.

As the performance measure we choose the L2-gain of the channel w → z.

1. For the uncontrolled system and for each a ∈ [0, 1], find the minimal robust L2-gain
level of the channel w → z by applying the robust performance analysis test in Chapter

3 with the following class of scalings P =
(

Q S
ST R

)
:

• P is as in µ-theory: Q, S, R are block-diagonal, Q < 0, R is related to Q (how?),
and S is skew-symmetric.

• P is general with Q < 0.
• P is general with Q1 < 0, Q2 < 0, where Qj denote the blocks Q(1 : 2, 1 : 2) and

Q(3 : 4, 3 : 4) in Matlab notation.

Draw plots of the corresponding optimal values versus the parameter a and comment!

2. For a = 0.9, apply the controller(
u1

u2

)
=

(
0 0
0 k

)(
y1

y2

)
and perform the analysis test with the largest class of scalings for k ∈ [−1, 1]. Plot
the resulting optimal value over k and comment.

3. Perform a controller/scaling iteration to minimize the optimal values for the controller
structures(

u1

u2

)
=

(
0 0
0 k2

)(
y1

y2

)
and

(
u1

u2

)
=

(
k1 k12

k21 k2

)(
y1

y2

)
.

Start from gain zero and plot the optimal values that can are reached in each step of
the iteration to reveal how they decrease. Comment on the convergence.

4. With the last full controller from the previous exercise for a performance level that is
close to the limit, redo the analysis of the first part. Plot the curves and comment.
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Exercise 4

This is a simulation exercise that involves the synthesis of an active controller for the sus-
pension system in Exercise 7 of Chapter 1. We consider the rear wheel of a tractor-trailer
combination as is depicted in Figure 4.2. Here m1 represents tire, wheel and rear axle mass,

m2

m1

�

�
b2 k2 F

k1

�

�

�

q2

q1

q0
�

b1

Figure 4.2: Active suspension system

m2 denotes a fraction of the semitrailer mass. The deflection variables qi are properly scaled
so that q2 − q1 = 0 and q1 − q0 = 0 in steady state. The system is modeled by the state
space equations

ẋ = Ax + B

(
q0

F

)
z = Cx + D

(
q0

F

)
where

A =


0 0 1 0
0 0 0 1

−k1+k2
m1

k2
m1

− b1+b2
m1

b2
m1

k2
m2

− k2
m2

b2
m2

− b2
m2

 ; B =


b1
m1

0
0 0

k1
m1

− b1
m1

b1+b2
m1

− 1
m1

b1b2
m1m2

1
m2



C =


1 0 0 0
0 0 0 0
k2
m2

− k2
m2

b2
m2

− b2
m2

−1 1 0 0

 ; D =


−1 0
0 1

b1b2
m1m2

1
m2

0 0

 .

Here, x =
(
q1 q2 q̇1 − b1q0/m1 q̇2

)� and z =
(
q1 − q0 F q̈2 q2 − q1

)� define the state
and the to-be-controlled output, respectively. The control input is the force F , the exogenous
input is the road profile q0.

Suppose that the masses m1 = 1.5×103 and m2 = 10×103, the tire damping b1 = 1.7×103

and the tire stiffness k1 = 5 × 106. The suspension damping is a time-varying uncertain
quantity with

b2(t) ∈ [50 × 103 − b̄, 50 × 103 + b̄], t � 0 (4.9.3)



4.9. EXERCISES 175

and the suspension stiffness is a time-varying uncertainty parameter with

k2(t) ∈ [500 × 103 − k̄, 500 × 103 + k̄], t � 0. (4.9.4)

The aim of the exercise is to design an active suspension control system that generates the
force F as a (causal) function of the variable y =

(
q̈2 q2 − q1

)�.

The main objective of the controller design is to achieve low levels of acceleration throughout
the vehicle (q̈2), bounded suspension deflection (q2 − q1 and q1 − q0) and bounded dynamic
tire force (F ).

1. Suppose first that k̄ = b̄ = 0 (i.e., no uncertainty n the parameters) and let the road
profile be represented by q0 = Wq0 q̃0 where q̃0 ∈ L2 is equalized in frequency and Wq0

is the transfer function
Wq0(s) =

0.01
0.4s + 1

reflecting the quality of the road when the vehicle drives at constant speed. Define
the to-be-controlled output z̃ = Wzz where Wz is a weighting matrix with transfer
function

Wz(s) =


200 0 0 0
0 0.1 0 0
0 0 0.0318s+0.4

3.16×10−4s2+0.0314s+1 0
0 0 0 100

 .

The weight on the chassis acceleration reflects the human sensitivity to vertical ac-
celerations. Use the routines ltisys, smult and sdiag to implement the generalized
plant

P :
(

q0

F

)
�→

(
z̃
y

)
and synthesize with the routine hinflmi a controller which minimizes the H∞ norm
of the closed-loop transfer function T : q̃0 �→ z̃.

2. Construct with this controller the closed-loop system which maps q0 to z (not q̃0 to
z̃!) and validate the controlled system by plotting the four frequency responses of the
closed-loop system and the four responses to a step with amplitude 0.3 (meter). (See
the routines slft, ssub and splot). What are your conclusions about the behavior
of this active suspension system?

3. Partition the output z of the system into

z =
(

z1

z2

)
; z1 =

(
q1 − q0

F

)
; z2 =

(
q̈2

q2 − q1

)
.

and let the weights on the signal components be as in the first part of this exercise.
Suppose again that k̄ = b̄ = 0. Let Ti, i = 1, 2 be the transfer function mapping
q̃0 �→ z̃i. We wish to obtain insight in the achievable trade-offs between upper bounds
of ‖T1‖∞ and ‖T2‖2. To do this,
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(a) Calculate the minimal achievable H∞ norm of T1.

(b) Calculate the minimal achievable H2 norm of T2.

(c) Calculate the minimal achievable H2 norm of T2 subject to the bound ‖T1‖∞ < γ1

where γ1 takes some1 values in the interval [0.15, 0.30].

Make a plot of the Pareto optimal performances, i.e, plot the minimal achievable H2

norm of T2 as function of γ1. (See the routine hinfmix for details).

4. (This part is optional). We now incorporate the uncertainty in the parameters k2 and
b2. Let k̄ = 50000 and b̄ = 5000. Synthesize a gain scheduled H∞ controller for the
uncertain system such that

• the closed-loop system is stable for all parameter trajectories k2(t) and b2(t)
satisfying (4.9.3) and eqrefk2unc.

• the worst-case H∞ performance from q̃0 to z̃ does not exceed the level γ > 0.

To do this, use the same weighting functions as in part (a) of this exercise. (See the
routine hinfgs). Construct the parameter dependent closed-loop system using slft
and create an .m-file which generates a realization of the parameters b2(t) and k2(t)
according to their specification. Make a time simulation on the time interval [0, 5]
(in seconds) of the step-response of this system with time-varying parameters. (Use
pdsimul for the latter).

1Slightly depending on your patience and the length of your coffee breaks, I suggest about 5.



Chapter 5

Linear Parameterically Varying
Systems

Linear parameterically varying (LPV) systems are linear systems whose describing matrices
depend on a time-varying parameter such that both the parameter itself and its rate of
variation are known to be contained in pre-specified sets.

In robust control, the goal is to find one fixed controller that achieves robust stability and
robust performance for all possible parameter variations, irrespective of which specific pa-
rameter curve does indeed perturb the system.

Instead, in LPV control, it is assumed that the parameter (and, possibly, its rate of varia-
tion), although not known a priori, is (are) on-line measurable. Hence the actual parameter
value (and its derivative) can be used as extra information to control the system - the con-
troller will turn out to depend on the parameter as well. We will actually choose also an
LPV structure for the controller to be designed.

We would like to stress the decisive distinction to the control of time-varying systems: In the
standard techniques to controlling time-varying systems, the model description is assumed
to be known a priori over the whole time interval [0,∞). In LPV control, the model is
assumed to be known, at time instant t, only over the interval [0, t].

The techniques we would like to develop closely resemble those for robust control we have
investigated earlier. It is possible to apply them

• to control certain classes of nonlinear systems

• to provide a systematic procedure for gain-scheduling

177
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with guarantees for stability and performance.

Before we explore these applications in more detail we would like to start presenting the
available problem setups and solution techniques to LPV control.

5.1 General Parameter Dependence

Suppose that δc, δ̇c ⊂ Rm are two parameter sets such that

δc × δ̇c is compact,

and that the matrix valued function A(p) Bp(p) B(p)
Cp(p) Dp(p) E(p)
C(p) F (p) 0

 is continuous in p ∈ δc. (5.1.1)

Consider the Linear Parameterically Varying (LPV) system that is described as ẋ
zp

y

 =

 A(δ(t)) Bp(δ(t)) B(δ(t))
Cp(δ(t)) Dp(δ(t)) E(δ(t))
C(δ(t)) F (δ(t)) 0

 x
wp

u

 , δ(t) ∈ δc, δ̇(t) ∈ δ̇c. (5.1.2)

We actually mean the family of systems that is obtained if letting δ(.) vary in the set of
continuously differentiable parameter curves

δ : [0,∞) → Rm with δ(t) ∈ δc, δ̇(t) ∈ δ̇c for all t � 0.

The signals admit the same interpretations as in Chapter 4: u is the control input, y is the
measured output available for control, and wp → zp denotes the performance channel.

In LPV control, it is assumed that the parameter δ(t) is on-line measurable. Hence the actual
value of δ(t) can be taken as extra information for the controller to achieve the desired design
goal.

In view of the specific structure of the system description, we assume that the controller
admits a similar structure. In fact, an LPV controller is defined by functions(

Ac(p) Bc(p)
Cc(p) Dc(p)

)
that are continuous in p ∈ δc (5.1.3)

as (
ẋc

u

)
=

(
Ac(δ(t)) Bc(δ(t))
Cc(δ(t)) Dc(δ(t))

)(
xc

y

)
with the following interpretation: It evolves according to linear dynamics that are defined
at time-instant t via the actually measured value of δ(t).
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Note that a robust controller would be simply defined with a constant matrix(
Ac Bc

Cc Dc

)
that does not depend on δ what clarifies the difference between robust controllers and LPV
controllers.

The controlled system admits the description(
ξ̇
zp

)
=

(
A(δ(t)) B(δ(t))
C(δ(t)) D(δ(t))

)(
ξ

wp

)
, δ(t) ∈ δc, δ̇(t) ∈ δ̇c (5.1.4)

where the function (
A(p) B(p)
C(p) D(p)

)
is continuous in p ∈ δc

and given as A(p) + B(p)Dc(p)C(p) B(p)Cc(p) Bp(p) + B(p)Dc(p)F (p)
Bc(p)C(p) Ac(p) Bc(p)F (p)

Cp(p) + E(p)Dc(p)C(p) E(p)Cc(p) Dp(p) + E(p)Dc(p)F (p)


or  A(p) 0 Bp(p)

0 0 0
Cp(p) 0 Dp(p)

 +

 0 B(p)
I 0
0 E(p)

(
Ac(p) Bc(p)
Cc(p) Dc(p)

)(
0 I 0

C(p) 0 F (p)

)
.

To evaluate performance, we concentrate again on the quadratic specification∫ ∞

0

(
w(t)
z(t)

)T

Pp

(
w(t)
z(t)

)
dt � −ε‖w‖2

2 (5.1.5)

with an index

Pp =
(

Qp Sp

ST
p Rp

)
, Rp � 0 that has the inverse P̃−1

p =
(

Q̃p S̃p

S̃T
p R̃p

)
, Q̃p � 0.

In order to abbreviate the formulation of the analysis result we introduce the following
differential operator.

Definition 5.1 If X : δc � p → X(p) ∈ Rn×n is continuously differentiable, the continuous
mapping

∂X : δc × δ̇c → Rn×n is defined as ∂X(p, q) :=
m∑

j=1

∂X

∂pj
(p)qj .
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Note that this definition is simply motivated by the fact that, along any continuously dif-
ferentiable parameter curve δ(.), we have

d

dt
X(δ(t)) =

m∑
j=1

∂X

∂pj
(δ(t))δ̇j(t) = ∂X(δ(t), δ̇(t)). (5.1.6)

(We carefully wrote down the definitions and relations, and one should read all this correctly.
X and ∂X are functions of the parameters p ∈ δc and q ∈ δ̇c respectively. In the definition
of ∂X, no time-trajectories are involved. The definition of ∂X is just tailored to obtain the
property (5.1.6) if plugging in a function of time.)

In view of the former discussion, the following analysis result comes as no surprise.

Theorem 5.2 Suppose there exists a continuously differentiable X (p) defined for p ∈ δc

such that for all p ∈ δc and q ∈ δ̇c one has

X (p) > 0,

(
∂X (p, q) + A(p)TX (p) + X (p)A(p) X (p)B(p)

B(p)TX (p) 0

)
+

+
(

0 I
C(p) D(p)

)T

Pp

(
0 I

C(p) D(p)

)
< 0. (5.1.7)

Then there exists an ε > 0 such that, for each parameter curve with δ(t) ∈ δc and δ̇(t) ∈ δ̇c,
the system (5.1.4) is exponentially stable and satisfies (5.1.5) if the initial condition is zero
and if wp ∈ L2.

In view of our preparations the proof is a simple exercise that is left to the reader.

We can now use the same procedure as for LTI systems to arrive at the corresponding
synthesis result. It is just required to obey that all the matrices are actually functions of
p ∈ δc or of (p, q) ∈ δc × δ̇c. If partitioning

X =
(

X U
UT ∗

)
, X−1 =

(
Y V
V T ∗

)
,

we can again assume w.l.o.g. that U , V have full row rank. (Note that this requires the
compactness hypothesis on δc and δ̇c. Why?) With

Y =
(

Y I
V T 0

)
and Z =

(
I 0
X U

)
we obtain the identities

YTX = Z and I − XY = UV T .

If we apply the differential operator ∂ to the first functional identity, we arrive at (∂Y)TX +
YT (∂X ) = ∂Z. (Do the simple calculations. Note that ∂ is not the usual differentiation
such that you cannot apply the standard product rule.) If we right-multiply Y, this leads to

YT (∂X )Y = (∂Z)Y − (∂Y)TZT =
(

0 0
∂X ∂U

)(
Y I
V T 0

)
−

(
∂Y ∂V
0 0

)(
I X
0 UT

)
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and hence to

YT (∂X )Y =
(

−∂Y −(∂Y )X − (∂V )UT

(∂X)Y + (∂U)V T ∂X

)
.

If we introduce the transformed controller parameters(
K L
M N

)
=

(
U XB
0 I

)(
Ac Bc

Cc Dc

)(
V T 0
CY I

)
+

(
XAY 0

0 0

)
+

+
(

(∂X)Y + (∂U)V T 0
0 0

)
,

a brief calculation reveals that

YT (∂X + ATX + XA)Y =
(

−∂Y + sym (AY + BM) (A + BNC) + KT

(A + BNC)T + K ∂X + sym (AX + LC)

)
YTXB =

(
Bp + BNF
XBp + LF

)
, CY =

(
CpY + EM Cp + ENC

)
, D = Dp + ENF

where we used again the abbreviation sym (M) = M+MT . If compared to a parameter inde-
pendent Lyapunov function, we have modified the transformation to K by (∂X)Y +(∂U)V T

in order to eliminate this extra term that appears from the congruence transformation of
∂X . If X is does not depend on p, ∂X vanishes identically and the original transformation
is recovered.

We observe that L, M , N are functions of p ∈ δc only, whereas K also depends on q ∈ δ̇c.
In fact, this function has the structure

K(p, q) = K0(p) +
m∑

i=1

Ki(p)qi (5.1.8)

(why?) and, hence, it is fully described by specifying

Ki(p), i = 0, 1, . . . ,m

that depend, as well, on p ∈ δc only.

Literally as in Theorem 4.2 one can now prove the following synthesis result for LPV systems.

Theorem 5.3 If there exists an LPV controller defined by (5.1.3) and a continuously dif-
ferentiable X (.) defined for p ∈ δc that satisfy (5.1.7), then there exist continuously differen-
tiable functions X, Y and continuous functions Ki, L, M , N defined on δc such that, with
K given by (5.1.8), the inequalities (

Y I
I X

)
> 0 (5.1.9)
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and −∂Y + sym (AY + BM) (A + BNC) + KT Bp + BNF
(A + BNC)T + K ∂X + sym (AX + LC) XBp + LF

(Bp + BNF )T (XBp + LF )T 0

+

+
(

∗
∗

)T

Pp

(
0 0 I

CpY + EM Cp + ENC Dp + ENF

)
< 0 (5.1.10)

hold on δc×δ̇c. Conversely, suppose the continuously differentiable X, Y and the continuous
Ki, defining K as in (5.1.8), L, M , N satisfy these synthesis inequalities. Then one can
factorize I −XY = UV T with continuously differentiable square and nonsingular U , V , and

X =
(

Y V
I 0

)−1 (
I 0
X U

)
(5.1.11)(

Ac Bc

Cc Dc

)
=

(
U XB
0 I

)−1 (
K − XAY − [(∂X)Y + (∂U)V T ] L

M N

)(
V T 0
CY I

)−1

(5.1.12)

render the analysis inequalities (5.1.7) satisfied.

Remark. Note that the formula (5.1.12) just emerges from the modified controller param-
eter transformation. We observe that the matrices Bc, Cc, Dc are functions of p ∈ δc only.
Due to the dependence of K on q and due to the extra term U−1[(∂X)Y + (∂U)V T ]V −T in
the formula for Ac, this latter matrix is a function that depends both on p ∈ δc and q ∈ δ̇c.
It has the same structure as K and can be written as

Ac(p, q) = A0(p) +
m∑

i=1

Ai(p)qi.

A straightforward calculation reveals that

Ai = U−1[KiV
−T − ∂X

∂pi
Y V −T − ∂U

∂pi
], i = 1, . . . , m.

Hence, to implement this controller, one indeed requires not only to measure δ(t) but also
its rate of variation δ̇(t). However, one could possibly exploit the freedom in choosing U
and V to render Ai = 0 such that Ac does not depend on q any more. Recall that U and V
need to be related by I − XY = UV T ; hence let us choose

V T := U−1(I − XY ).

This leads to

Ai = U−1[(Ki −
∂X

∂pi
Y )(I − XY )−1U − ∂U

∂pi
], i = 1, . . . , m.
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Therefore, U should be chosen as a nonsingular solution of the system of first order partial
differential equations

∂U

∂pi
(p) = [Ki(p) − ∂X

∂pi
(p)Y (p)](I − X(p)Y (p))−1U(p), j = 1, . . . , m.

This leads to Ai = 0 such that the implementation of the LPV controller does not require any
on-line measurements of the rate of the parameter variations. First order partial differential
equations can be solved by the method of characteristics [11]. We cannot go into further
details at this point.

In order to construct a controller that solves the LPV problem, one has to verify the solv-
ability of the synthesis inequalities in the unknown functions X, Y , Ki, L, M , N , and for
designing a controller, one has to find functions that solve them.

However, standard algorithms do not allow to solve functional inequalities directly. Hence
we need to include a discussion of how to reduce these functional inequalities to finitely
many LMI’s in real variables.

First step. Since q ∈ δ̇c enters the inequality (5.1.10) affinely, we can replace the set δ̇c, if
convex, by its extreme points. Let us make the, in practice non-restrictive, assumption that
this set has finitely many generators:

δ̇c = co{δ̇1, . . . , δ̇k}.

Solving (5.1.9)-(5.1.10) over (p, q) ∈ δc × δ̇c is equivalent to solving (5.1.9)-(5.1.10) for

p ∈ δc, q ∈ {δ̇1, . . . , δ̇k}. (5.1.13)

Second step. Instead of searching over the set of all continuous functions, we restrict the
search to a finite dimensional subspace thereof, as is standard in Ritz-Galerkin techniques.
Let us hence choose basis functions

f1(.), . . . , fl(.) that are continuously differentiable on δc.

Then all the functions to be found are assumed to belong to the subspace spanned by the
functions fj . This leads to the Ansatz

X(p) =
l∑

j=1

Xjfj(p), Y (p) =
l∑

j=1

Yjfj(p)

Ki(p) =
l∑

j=1

Ki
jfj(p), i = 0, 1, . . . ,m,

L(p) =
l∑

j=1

Ljfj(p), M(p) =
l∑

j=1

Mjfj(p), N(p) =
l∑

j=1

Njfj(p).
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We observe

∂X(p, q) =
l∑

j=1

Xj ∂fj(p, q), ∂Y (p, q) =
l∑

j=1

Yj ∂fj(p, q).

If we plug these formulas into the inequalities (5.1.9)-(5.1.10), we observe that all the co-
efficient matrices enter affinely. After this substitution, (5.1.9)-(5.1.10) turns out to be a
family of linear matrix inequalities in the

matrix variables Xj , Yj ,K
i
j , Lj ,Mj , Nj

that is parameterized by (5.1.13). The variables of this system of LMI’s are now real num-
bers; however, since the parameter p still varies in the infinite set δc, we have to solve
infinitely many LMI’s. This is, in fact, a so-called semi-infinite (not infinite dimensional as
often claimed) convex optimization problem.

Third step. To reduce the semi-infinite system of LMI’s to finitely many LMI’s, the
presently chosen route is to just fix a finite subset

δfinite ⊂ δc

and solve the LMI system in those points only. Hence the resulting family of LMI’s is
parameterized by

p ∈ δfinite and q ∈ {δ̇1, . . . , δ̇k}.
We end up with a finite family of linear matrix inequalities in real valued unknowns that can
be solved by standard algorithms. Since a systematic choice of points δfinite is obtained by
gridding the parameter set, this last step is often called the gridding phase, and the whole
procedure is said to be a gridding technique.

Remark on the second step. Due to Weierstraß’ approximation theorem, one can choose
a sequence of functions f1, f2, . . . on δc such that the union of the subspaces

Sν = span{f1, . . . , fν}

is dense in the set of all continuously differentiable mappings on δc with respect to the norm

‖f‖ = max{|f(p)| | p ∈ δc} +
m∑

j=1

max{| ∂f

∂pj
(p)| | p ∈ δc}.

This implies that, given any continuously differentiable g on δc and any accuracy level ε > 0,
one can find an index ν0 such that there exists an f ∈ Sν0 for which

∀ p ∈ δc, q ∈ δ̇c : |g(p) − f(p)| � ε, |∂g(p, q) − ∂f(p, q)| � ε.

(Provide the details.) Functions in the subspace Sν hence approximate any function g and
its image ∂g under the differential operator ∂ up to arbitrary accuracy, if the index ν is
chosen sufficiently large.
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Therefore, if (5.1.9)-(5.1.10) viewed as functional inequalities do have a solution, then they
have a solution if restricting the search over the finite dimensional subspace Sν for sufficiently
large ν, i.e., if incorporating sufficiently many basis functions. However, the number of basis
functions determines the number of variables in the resulting LMI problem. To keep the
number of unknowns small requires an efficient choice of the basis functions what is, in
theory and practice, a difficult problem for which one can hardly give any general recipes.

Remark on the third step. By compactness of δc and continuity of all functions, solving
the LMI’s for p ∈ δc or for p ∈ δfinite is equivalent if only the points are chosen sufficiently
dense. A measure of density is the infimal ε such that the balls of radius ε around each of
the finitely many points in δfinite already cover δc:

δc ⊂
⋃

p0 ∈ δfinite

{u | ‖p − p0‖ � ε}.

If the data functions describing the system are also differentiable in δ, one can apply the mean
value theorem to provide explicit estimates of the accuracy of the required approximation.
Again, however, it is important to observe that the number of LMI’s to solve depends on
the number of grid-points; hence one has to keep this number small in order to avoid large
LMI’s.

Remark on extensions. Only slight adaptations are required to treat all the other perfor-
mance specifications (such as bounds on the L2-gain and on the analogue of the H2-norm or
generalized H2-norm for time-varying systems) as well as the corresponding mixed problems
as discussed in Chapter 4 in full generality. Note also that, for single-objective problems,
the techniques to eliminate parameters literally apply; there is no need go into the details.
In particular for solving gain-scheduling problems, it is important to observe that one can as
well let the performance index depend on the measured parameter without any additional
difficulty. As a designer, one can hence ask different performance properties in different
parameter ranges what has considerable relevance in practical controller design.

Remark on robust LPV control. As another important extension we mention robust
LPV design. It might happen that some parameters are indeed on-line measurable, whereas
others have to be considered as unknown perturbations with which the controller cannot
be scheduled. Again, it is straightforward to extend the robustness design techniques that
have been presented in Chapter 4 from LTI systems and controllers to LPV systems and
controllers. This even allows to include dynamic uncertainties if using IQC’s to capture their
properties. Note that the scalings that appear in such techniques constitute extra problem
variables. In many circumstances it causes no extra technical difficulties to let these scalings
also depend on the scheduling parameter what reduces the conservatism.
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5.2 Affine Parameter Dependence

Suppose that the matrices (5.1.1) describing the system are affine functions on the set

δc = co{δ1, . . . , δk}.

In that case we intend to search, as well, for an LPV controller that is defined with affine
functions (5.1.3). Note that the describing matrices for the cosed-loop system are also affine
in the parameter if (

B
E

)
and

(
C F

)
are parameter independent

what is assumed from now on. Finally, we let X in Theorem 5.2 be constant.

Since Rp � 0, we infer that (5.1.7) is satisfied if and only if it holds for the generators p = δj

of the set δc. Therefore, the analysis inequalities reduce to the finite set of LMI’s

X > 0,

(
A(δj)TX + XA(δj) XB(δj)

B(δj)TX 0

)
+

+
(

0 I
C(δj) D(δj)

)T

Pp

(
0 I

C(δj) D(δj)

)
< 0 for all j = 1, . . . , k.

Under the present structural assumptions, the affine functions
(

Ac Bc

Cc Dc

)
are transformed

into affine functions
(

K L
M N

)
under the controller parameter transformation as considered

in the previous section.

Then the synthesis inequalities (5.1.9)-(5.1.10) whose variables are the constant X and Y

and the affine functions
(

K L
M N

)
turn out to be affine in the parameter p. This implies for

the synthesis inequalities that we can replace the search over δc without loss of generality by
the search over the generators δj of this set. Therefore, solving the design problem amounts
to testing whether the LMI’s (

Y I
I X

)
> 0

and sym
(
A(δj)Y + BM(δj)

)
∗ ∗

(A(δj) + BN(δj)C)T + K(δj) sym
(
A(δj)X + L(δj)C

)
∗

(Bp(δj) + BN(δj)F )T (XBp(δj) + L(δj)F )T 0

+

+
(

∗
∗

)T

Pp

(
0 0 I

Cp(δj)Y + EM(δj) Cp(δj) + EN(δj)C Dp(δj) + EN(δj)F

)
< 0
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for j = 1, . . . , k admit a solution.

Since affine, the functions K, L, M , N are parameterized as(
K(p) L(p)
M(p) N(p)

)
=

(
K0 L0

M0 N0

)
+

m∑
i=1

(
Ki Li

Mi Ni

)
pi

with real matrices Ki, Li, Mi, Ni. Hence, the synthesis inequalities form genuine linear
matrix inequalities that can be solved by standard algorithms.

5.3 LFT System Description

Similarly as for our discussion of robust controller design, let us assume in this section that
the LPV system is described as and LTI system

ẋ
zu

zp

y

 =


A Bu Bp B
Cu Duu Dup Eu

Cp Dpu Dpp Ep

C Fu Fp 0




x
wu

wp

u

 (5.3.1)

in wich the parameter enters via the uncertainty channel wu → zu as

wu(t) = ∆(t)zu(t), ∆(t) ∈ ∆c. (5.3.2)

The size and the structure of the possible parameter values ∆(t) is captured by the convex
set

∆c := co{∆1, ...,∆N}
whose generators ∆j are given explicitly. We assume w.l.o.g. that 0 ∈ ∆c. As before,
we concentrate on the quadratic performance specification with index Pp imposed on the
performance channel wp → zp.

Adjusted to the structure of (5.3.1)-(5.3.2), we assume that the measured parameter curve
enters the controller also in a linear fractional fashion. Therefore, we assume that the to-
be-designed LPV controller is defined by scheduling the LTI system

ẋc = Acxc + Bc

(
y
wc

)
,

(
u
zc

)
= Ccxc + Dc

(
y
wc

)
(5.3.3)

with the actual parameter curve entering as

wc(t) = ∆c(∆(t))zc(t). (5.3.4)

The LPV controller is hence parameterized through the matrices Ac, Bc, Cc, Dc, and through
a possibly non-linear matrix-valued scheduling function

∆c(∆) ∈ Rnr×nc defined on ∆c.
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Figure 5.1: LPV system and LPV controller with LFT description

Figure 5.1 illustrates this configuration.

The goal is to construct an LPV controller such that, for all admissible parameter curves,
the controlled system is exponentially stable and, the quadratic performance specification
with index Pp for the channel wp → zp is satisfied.

The solution of this problem is approached with a simple trick. In fact, the controlled system
can, alternatively, be obtained by scheduling the LTI system

ẋ
zu

zc

zp

y
wc

 =


A Bu 0 Bp B 0
Cu Duu 0 Dup Eu 0
0 0 0 0 0 Inc

Cp Dpu 0 Duu Ep 0
C Fu 0 Fp 0 0
0 0 Inr

0 0 0




x

wu

wc

wp

u
zc

 (5.3.5)

with the parameter as (
w1

wc

)
=

(
∆(t) 0

0 ∆c(∆(t))

)(
z1

zc

)
, (5.3.6)

and then controlling this parameter dependent system with the LTI controller (5.3.3). Al-
ternatively, we can interconnect the LTI system (5.3.5) with the LTI controller (5.3.3) to
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Figure 5.2: LPV system and LPV controller: Alternative Interpretation

arrive at the LTI system
ẋ
zu

zc

zp

 =


A Bu Bc Bp

Cu Duu Duc Dup

Cc Dcu Dcc Dcp

Cp Dpu Dpc Dpp




x
wu

wc

wp

 , (5.3.7)

and then re-connect the parameter as (5.3.6). This latter interconnection order is illustrated
in Figure 5.2.

Note that (5.3.5) is an extension of the original system (5.3.1) with an additional uncertainty
channel wc → zc and with an additional control channel zc → wc; the number nr and nc of
the components of wc and zc dictate the size of the identity matrices Inr

and Inc
that are

indicated by their respective indices.

Once the scheduling function ∆c(∆) has been fixed, it turns out that (5.3.3) is a robust
controller for the system (5.3.5) with uncertainty (5.3.6). The genuine robust control problem
in which the parameter is not measured on-line would relate to the situation that nr = 0 and
nc = 0 such that (5.3.5) and (5.3.1) are identical. In LPV control we have the extra freedom
of being able to first extend the system as in (5.3.5) and design for this extended system
a robust controller. It will turn out that this extra freedom will render the corresponding
synthesis inequalities convex.
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Before we embark on a solution of the LPV problem, let us include some further comments
on the corresponding genuine robust control problem. We have seen in section 4.7.1 that the
search for a robust controller leads to the problem of having to solve the matrix inequalities

X(v) > 0,


∗
∗
∗
∗
∗
∗



T 
0 I 0 0 0 0
I 0 0 0 0 0
0 0 Q S 0 0
0 0 ST R 0 0
0 0 0 0 Qp Sp

0 0 0 0 ST
p Rp




I 0 0

A(v) Bu(v) Bp(v)
0 I 0

Cu(v) Duu(v) Dup(v)
0 0 I

Cp(v) Dpu(v) Dpp(v)

 < 0

(
∆
I

)T (
Q S
ST R

)(
∆
I

)
> 0 for all ∆ ∈ ∆c

in the parameter v and in the multiplier P =
(

Q S
ST R

)
.

Recall from our earlier discussion that one of the difficulties is a numerical tractable pa-
rameterization of the set of multipliers. This was the reason to introduce, at the expense
of conservatism, the following subset of multipliers that admits a description in terms of
finitely many LMI’s:

P :=

{
P =

(
Q S
ST R

)
| Q < 0,

(
∆j

I

)T

P

(
∆j

I

)
> 0 for j = 1, . . . , N

}
. (5.3.8)

Even after confining the search to v and P ∈ P , no technique is known how to solve the
resulting still non-convex synthesis inequalities by standard algorithms.

In contrast to what we have seen for state-feedback design, the same is true of the dual
inequalities that read as

X(v) > 0,


∗
∗
∗
∗
∗
∗



T

0 X 0 0 0 0
X 0 0 0 0 0
0 0 Q̃ S̃ 0 0
X 0 S̃T R̃ 0 0
0 0 0 0 Q̃p S̃p

0 0 0 0 S̃T
p R̃p




−A(v)T −Cu(v)T −Cp(v)T

I 0 0
−Bu(v)T −Duu(v)T −Dpu(v)T

0 I 0
−Bp(v)T −Dup(v)T −Dpp(v)T

0 0 I

 > 0

(
I

−∆T

)T (
Q̃ S̃

S̃T R̃

)(
I

−∆T

)
< 0 for all ∆ ∈ ∆c.

Again, even confining the search to the set of multipliers

P̃ :=

{
P̃ =

(
Q̃ S̃

S̃T R̃

)
| R̃ > 0,

(
I

−∆T
j

)T

P̃

(
I

−∆T
j

)
< 0 for j = 1, . . . , N

}
(5.3.9)



5.3. LFT SYSTEM DESCRIPTION 191

does not lead to a convex feasibility problem.

Since non-convexity is caused by the multiplication of functions that depend on v with the
multipliers, one could be lead to the idea that it might help to eliminate as many of the
variables that are involved in v as possible. We can indeed apply the technique exposed in
Section 4.5.3 and eliminate K, L, M , N .

For that purpose one needs to compute basis matrices

Φ =

 Φ1

Φ2

Φ3

 of ker
(

BT ET
u ET

p

)
and Ψ =

 Ψ1

Ψ2

Ψ3

 of ker
(

C Fu Fp

)
respectively. After elimination, the synthesis inequalities read as(

Y I
I X

)
> 0, (5.3.10)

ΨT


I 0 0
A Bu Bp

0 I 0
Cu Duu Dup

0 0 I
Cp Dpu Dpp



T 
0 X 0 0 0 0
X 0 0 0 0 0
0 0 Q S 0 0
0 0 ST R 0 0
0 0 0 0 Qp Sp

0 0 0 0 ST
p Rp




I 0 0
A Bu Bp

0 I 0
Cu Duu Dup

0 0 I
Cp Dpu Dpp

Ψ < 0, (5.3.11)

ΦT



−AT −CT
u −CT

p

I 0 0
−BT

u −DT
uu −DT

pu

0 I 0
−BT

p −DT
pu −DT

pp

0 0 I



T 

0 X 0 0 0 0
X 0 0 0 0 0
0 0 Q̃ S̃ 0 0
0 0 S̃T R̃ 0 0
0 0 0 0 Q̃p S̃p

0 0 0 0 S̃T
p R̃p





−AT −CT
u −CT

p

I 0 0
−BT

u −DT
uu −DT

pu

0 I 0
−BT

p −DT
pu −DT

pp

0 0 I

Φ > 0

(5.3.12)
in the variables X, Y , and in the multiplier P and P̃ that are coupled as

P̃ =
(

Q̃ S̃

S̃T R̃

)
=

(
Q S
ST R

)−1

= P−1. (5.3.13)

Hence, after elimination, it turns out that the inequalities (5.3.10)-(5.3.12) are indeed affine
in the unknowns X, Y , P and P̃ . Unfortunately, non-convexity re-appears through the
coupling (5.3.13) of the multipliers P and P̃ .

Let us now turn back to the LPV problem where we allow, via the scheduling function
∆c(∆) in the controller, extra freedom in the design process.

For guaranteeing stability and performance of the controlled system, we employ extended
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multipliers adjusted to the extended uncertainty structure (5.3.6) that are given as

Pe =
(

Qe Se

ST
e Re

)
=


Q Q12 S S12

Q21 Q22 S21 S22

∗ ∗ R R12

∗ ∗ R21 R22

 with Qe < 0, Re > 0 (5.3.14)

and that satisfy 
∆ 0
0 ∆c(∆)
I 0
0 I

Pe


∆ 0
0 ∆c(∆)
I 0
0 I

 > 0 for all ∆ ∈ ∆. (5.3.15)

The corresponding dual multipliers P̃e = P−1
e are partitioned similarly as

P̃e =
(

Q̃e S̃e

S̃T
e R̃e

)
=


Q̃ Q̃12 S̃ S̃12

Q̃21 Q̃22 S̃21 S̃22

∗ ∗ R̃ R̃12

∗ ∗ R̃21 R̃12

 with Q̃e < 0, R̃e > 0 (5.3.16)

and they satisfy
I 0
0 I

−∆T 0
0 −∆c(∆)T


T

Pe


I 0
0 I

−∆T 0
0 −∆c(∆)T

 > 0 for all ∆ ∈ ∆.

As indicated by our notation, we observe that(
Q S
ST R

)
∈ P and

(
Q̃ S̃

S̃T R̃

)
∈ P̃

for the corresponding sub-matrices of Pe and P̃e respectively.

If we recall the description (5.3.6)-(5.3.7) of the controlled LPV system, the desired expo-
nential stability and quadratic performance property is satisfied if we can find a Lyapunov
matrix X and an extended scaling Pe with (5.3.14)-(5.3.15) such that

X > 0,



∗
∗
∗
∗
∗
∗
∗
∗



T 

0 X 0 0 0 0 0 0
X 0 0 0 0 0 0 0
0 0 Q Q12 S S12 0 0
0 0 Q21 Q22 S21 S22 0 0
0 0 ∗ ∗ R R12 0 0
0 0 ∗ ∗ R21 R22 0 0
0 0 0 0 0 0 Qp Sp

0 0 0 0 0 0 ST
p Rp





I 0 0 0
A Bu Bc Bp

0 I 0 0
0 0 I 0
Cu Duu Duc Dup

Cc Dcu Dcc Dcp

0 0 0 I
Cp Dpu Dpc Dpp


< 0.

(5.3.17)
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We are now ready to formulate an LMI test for the existence of an LPV controller such that
the controlled LPV system fulfills this latter analysis test.

Theorem 5.4 The following statements are equivalent:

1. There exists a controller (5.3.3) and a scheduling function ∆c(∆) such that the con-
trolled system as described by (5.3.4)-(5.3.7) admits a Lyapunov matrix X and a mul-
tiplier (5.3.14)-(5.3.15) that satisfy (5.3.17).

2. There exist X, Y and multipliers P ∈ P , P̃ ∈ P̃ that satisfy the linear matrix inequal-
ities (5.3.10)-(5.3.12).

Proof. Let us first prove 1 ⇒ 2. We can apply the technique as described in Section 4.5.3 to
eliminate the controller parameters in the inequality (5.3.17). According to Corollary 4.11,
this leads to the coupling condition (4.5.24) and to the two synthesis inequalities (4.5.25)-
(4.5.26). The whole point is to show that the latter two inequalities can indeed be simplified
to (5.3.11)-(5.3.12). Let us illustrate this simplification for the first inequality only since a
duality argument leads to the same conclusions for the second one.

With

Ψe =


Ψ1

Ψ2

0
Ψ3

 as a basis matrix of ker
(

C Fu 0 Fp

0 0 Inr
0

)
,

the inequality that corresponds to (4.5.24) reads as

ΨT
e



∗
∗
∗
∗
∗
∗
∗
∗



T 

0 X 0 0 0 0 0 0
X 0 0 0 0 0 0 0
0 0 Q Q12 S S12 0 0
0 0 Q21 Q22 S21 S22 0 0
0 0 ∗ ∗ R R12 0 0
0 0 ∗ ∗ R21 R22 0 0
0 0 0 0 0 0 Qp Sp

0 0 0 0 0 0 ST
p Rp





I 0 0 0
A Bu 0 Bp

0 I 0 0
0 0 I 0

Cu Duu 0 Dup

0 0 0 0
0 0 0 I

Cp Dpu Dpc Dpp


Ψe < 0.

Due to the zero block in Ψe, it is obvious that this is the same as

ΨT



∗
∗
∗
∗
∗
∗
∗
∗



T 

0 X 0 0 0 0 0 0
X 0 0 0 0 0 0 0
0 0 Q Q12 S S12 0 0
0 0 Q21 Q22 S21 S22 0 0
0 0 ∗ ∗ R R12 0 0
0 0 ∗ ∗ R21 R22 0 0
0 0 0 0 0 0 Qp Sp

0 0 0 0 0 0 ST
p Rp





I 0 0
A Bu Bp

0 I 0
0 0 0

Cu Duu Dup

0 0 0
0 0 I

Cp Dpu Dpp


Ψ < 0.
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The two zero block rows in the outer factors allow to simplify this latter inequality to
(5.3.11), what finishes the proof of 1 ⇒ 2.

The constructive proof of 2 ⇒ 1 is more involved and proceeds in three steps. Let us assume
that we have computed solutions X, Y and P ∈ P , P̃ ∈ P̃ with (5.3.10)-(5.3.12).

First step: Extension of Scalings. Since P ∈ P and P̃ ∈ P̃ , let us recall that we have(
∆
I

)T

P

(
∆
I

)
> 0 and

(
I

−∆T

)T

P̃

(
I

−∆T

)
< 0 for all ∆ ∈ ∆. (5.3.18)

Due to 0 ∈ ∆c, we get R > 0 and Q̃ < 0. Hence we conclude for the diagonal blocks of
P that Q < 0 and R > 0, and for the diagonal blocks of P̃ that Q̃ > 0 and R̃ < 0. If we
introduce

Z =
(

I
0

)
and Z̃ =

(
0
I

)
with the same row partition as P , these properties can be expressed as

ZT PZ < 0, Z̃T PZ̃ > 0 and ZT P̃Z < 0, Z̃T P̃ Z̃ > 0. (5.3.19)

If we observe that im(Z̃) is the orthogonal complement of im(Z), we can apply the Dual-
ization Lemma to infer

Z̃T P−1Z̃ > 0, ZT P−1Z < 0 and Z̃T P̃−1Z̃ > 0, ZT P̃−1Z < 0. (5.3.20)

For the given P and P̃ , we try to find an extension Pe with (5.3.14) such that the dual
multiplier P̃e = P−1

e is related to the given P̃ as in (5.3.16). After a suitable permutation,
this amounts to finding an extension(

P T
TT TT NT

)
with

(
P̃ ∗
∗ ∗

)
=

(
P T
TT TT NT

)−1

, (5.3.21)

where the specific parameterization of the new blocks in terms of a non-singular matrix T
and some symmetric N will turn out convenient. Such an extension is very simple to obtain.
However, we also need to obey the positivity/negativity constraints in (5.3.14) that amount
to (

Z 0
0 Z

)T (
P T
TT TT NT

)(
Z 0
0 Z

)
< 0 (5.3.22)

and (
Z̃ 0
0 Z̃

)T (
P T
TT TT NT

)(
Z̃ 0
0 Z̃

)
> 0. (5.3.23)

We can assume w.l.o.g. (perturb, if necessary) that P − P̃−1 is non-singular. Then we set

N = (P − P̃−1)−1
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and observe that (5.3.21) holds for any non-singular T .

The main goal is to adjust T to render (5.3.22)-(5.3.23) satisfied. We will in fact construct
the sub-blocks T1 = TZ and T2 = T Z̃ of T = (T1 T2). Due to (5.3.19), the conditions
(5.3.22)-(5.3.23) read in terms of these blocks as (Schur)

TT
1

[
N − Z(ZT PZ)−1ZT

]
T1 < 0 and TT

2

[
N − Z̃(Z̃T PZ̃)−1Z̃T

]
T2 > 0. (5.3.24)

If we denote by n+(S), n−(S) the number of positive, negative eigenvalues of the symmetric
matrix S, we hence have to calculate n−(N−Z(ZT PZ)−1ZT ) and n+(N−Z̃(Z̃T PZ̃)−1Z̃T ).
Simple Schur complement arguments reveal that

n−

(
ZT PZ ZT

Z N

)
= n−(ZT PZ) + n−(N − Z(ZT PZ)−1ZT ) =

= n−(N) + n−(ZT PZ − ZT N−1Z) = n−(N) + n−(ZT P̃−1Z).

Since ZT PZ and ZT P̃−1Z have the same size and are both negative definite by (5.3.19)
and (5.3.20), we conclude n−(ZT PZ) = n−(ZT P̃−1Z). This leads to

n−(N − Z(ZT PZ)−1ZT ) = n−(N).

Literally the same arguments will reveal

n+(N − Z̃(Z̃T PZ̃)−1Z̃T ) = n+(N).

These two relations imply that there exist T1, T2 with n−(N), n+(N) columns that satisfy
(5.3.24). Hence the matrix T = (T1 T2) has n+(N) + n−(N) columns. Since the number
of rows of T1, T2, Z, Z̃, N are all identical, T is actually a square matrix. We can assume
w.l.o.g. - by perturbing T1 or T2 if necessary - that the square matrix T is non-singular.

This finishes the construction of the extended multiplier (5.3.14). Let us observe that the
dimensions of Q22/R22 equal the number of columns of T1/T2 which are, in turn, given by
the integers n−(N)/n+(N).

Second Step: Construction of the scheduling function. Let us fix ∆ and let us apply
the Elimination Lemma to (5.3.15) with ∆c(∆) viewed as the unknown. We observe that
the solvability conditions of the Elimination Lemma just amount to the two inequalities
(5.3.18). We conclude that for any ∆ ∈ ∆ one can indeed compute a ∆c(∆) which satisfies
(5.3.15).

Due to the structural simplicity, we can even provide an explicit formula which shows that
∆c(∆) can be selected to depend smoothly on ∆. Indeed, by a straightforward Schur-
complement argument, (5.3.15) is equivalent to

U11 U12 (W11 + ∆)T WT
21

U21 U22 WT
12 (W22 + ∆c(∆))T

W11 + ∆ W12 V11 V12

W21 W22 + ∆c(∆) V21 V22

 > 0
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for U = Re − ST
e Q−1

e Se > 0, V = −Q−1
e > 0, W = Q−1

e Se. Obviously this can be rewritten
to(

U22 ∗
W22 + ∆c(∆) V22

)
−

(
U21 WT

12

W21 V21

)(
U11 (W11 + ∆)T

W11 + ∆ V11

)−1(
U12 WT

21

W12 V12

)
> 0

in which ∆c(∆) only appears in the off-diagonal position. Since we are sure that there
does indeed exist a ∆c(∆) that renders the inequality satisfied, the diagonal blocks must
be positive definite. If we then choose ∆c(∆) such that the off-diagonal block vanishes, we
have found a solution of the inequality; this leads to the following explicit formula

∆c(∆) = −W22 +
(

W21 V21

)( U11 ∗
W11 + ∆ V11

)−1 (
U12

W12

)
for the scheduling function. We note that ∆c(∆) has the dimension n−(N) × n+(N).

Third Step: LTI controller construction. After having constructed the scalings, the
last step is to construct an LTI controller and Lyapunov matrix that render the inequality
(5.3.17) satisfied. We are confronted with a standard nominal quadratic design problem
of which we are sure that it admits a solution, and for which the controller construction
proceed along the steps that have been intensively discussed in Chapter 4.

We have shown that the LMI’s that needed to be solved for designing an LPV controller are
identical to those for designing a robust controller, with the only exception that the coupling
condition (5.3.13) drops out. Therefore, the search for X and Y and for the multipliers
P ∈ P and P̃ ∈ P̃ to satisfy (5.3.10)-(5.3.12) amounts to testing the feasibility of standard
LMI’s. Moreover, the controller construction in the proof of Theorem 5.4 is constructive.
Hence we conclude that we have found a full solution to the quadratic performance LPV
control problem (including L2-gain and dissipativity specifications) for full block scalings Pe

that satisfy Qe < 0. The more interesting general case without this still restrictive negativity
hypotheses is dealt with in future work.

Remarks.

• The proof reveals that the scheduling function ∆c(∆) has a many rows/colums as
there are negative/positive eigenvalues of P − P̃−1 (if assuming w.l.o.g. that the latter
is non-singular.) If it happens that P − P̃−1 is positive or negative definite, there is
no need to schedule the controller at all; we obtain a controller that solves the robust
quadratic performance problem.

• Previous approaches to the LPV problem [1, 8, 21, 39] were based on ∆c(∆) = ∆ such
that the controller is scheduled with an identical copy of the parameters. These results
were based on block-diagonal parameter matrices and multipliers that were as well
assumed block-diagonal. The use of full block scalings [33] require the extension to a
more general scheduling function that is - as seen a posteriori - a quadratic function
of the parameter ∆.
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• It is possible to extend the procedure to H2-control and to the other performance
specifications in these notes. However, this requires restrictive hypotheses on the
system description. The extension to general mixed problems seems nontrivial and is
open in its full generality.

5.4 A Sketch of Possible Applications

It is obvious how to apply robust or LPV control techniques in linear design: If the underlying
system is affected, possibly in a nonlinear fashion, by some possibly time-varying parameter
(such as varying resonance poles and alike), one could strive

• either for designing a robust controller if the actual parameter changes are not available
as on-line information

• or for constructing an LPV controller if the parameter (and its rate of variation) can
be measured on-line.

As such the presented techniques can be a useful extension to the nominal design specifica-
tions that have been considered previously.

In a brief final and informal discussion we would like to point out possible applications of
robust and LPV control techniques to the control of nonlinear systems:

• They clearly apply if one can systematically embed a nonlinear system in a class of
linear systems that admit an LPV parameterization.

• Even if it is required to perform a heuristic linearization step, they can improve classical
gain-scheduling design schemes for nonlinear systems since they lead to a one-shot
construction of a family of linear controllers.

5.4.1 From Nonlinear Systems to LPV Systems

In order to apply the techniques discussed in these notes to nonlinear systems, one uses
variations of what is often called global linearization.

Consider a nonlinear system described by

ẋ = f(x) (5.4.1)

where we assume that f : Rn → Rn is a smooth vector field.

If f(0) = 0, it is often possible to rewrite f(x) = A(x)x with a smooth matrix valued
mapping A(.). If one can guarantee that the LPV system

ẋ = A(δ(t))x
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is exponentially stable, we can conclude that the nonlinear system

ẋ = A(x)x

has 0 as a globally exponentially stable equilibrium. Note that one can and should impose
a priori bounds on the state-trajectories such as x(t) ∈ M for some set M such that the
stability of the LPV system only has to be assured for δ(t) ∈ M ; of course, one can then
only conclude stability for trajectories of the nonlinear system that remain in M .

A slightly more general procedure allows to consider arbitrary system trajectories instead of
equilibrium points (or constant trajectories) only. In fact, suppose x1(.) and x2(.) are two
trajectories of (5.4.1). By the mean-value theorem, there exist

ηj(t) ∈ co{x1(t), x2(t)}

such that

ẋ1(t) − ẋ2(t) = f(x1(t)) − f(x2(t)) =


∂f1
∂x (η1(t))

...
∂fn

∂x (ηn(t))

 (x1(t) − x2(t)).

Therefore, the increment ξ(t) = x1(t) − x2(t) satisfies the LPV system

ξ̇(t) = A(η1(t), . . . , ηn(t))ξ(t)

with parameters η1, . . . , ηn. Once this LPV system is shown to be exponentially stable, one
can conclude that ξ(t) = x1(t) − x2(t) converges exponentially to zero for t → ∞. If x2(.)
is a nominal system trajectory (such as an equilibrium point or a given trajectory to be
investigated), we can conclude that x1(t) approaches this nominal trajectory exponentially.

Finally, the following procedure is often referred to as global linearization. Let

F be the closure of co{fx(x) | x ∈ Rn}.

Clearly, F is a closed and convex subset of Rn×n. It is not difficult to see that any pair of
trajectories x1(.), x2(.) of (5.4.1) satisfies the linear differential inclusion

ẋ1(t) − ẋ2(t) ∈ F(x1(t) − x2(t)). (5.4.2)

Proof. Fix any t and consider the closed convex set

F [x1(t) − x2(t)] ⊂ Rn.

Suppose this set is contained in the negative half-space defined by the vector y ∈ Rn:

yTF [x1(t) − x2(t)] � 0.

Due to the mean-value theorem, there exists a ξ ∈ co{x1(t), x2(t)} with

yT [ẋ1(t) − ẋ2(t)] = yT [f(x1(t)) − f(x2(t))] = yT fx(ξ)[x1(t) − x2(t)].
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Since fx(ξ) ∈ F , we infer
yT [ẋ1(t) − ẋ2(t)] � 0.

Hence ẋ1(t)− ẋ2(t) is contained, as well, in the negative half-space defined by y. Since F is
closed and convex, we can indeed infer (5.4.2) as desired.

To analyze the stability of the differential inclusion, one can cover the set F by the convex
hull of finitely many matrices Aj and apply the techniques that have been presented in these
notes.

Remarks. Of course, there are many other possibilities to embed nonlinear systems in a
family of linear systems that depend on a time-varying parameter. Since there is no general
recipe to transform a given problem to the LPV scenario, we have only sketched a few
ideas. Although we concentrated on stability analysis, these ideas straightforwardly extend
to various nominal or robust performance design problems what is a considerable advantage
over other techniques for nonlinear systems. This is particularly important since, in practical
problems, non-linearities are often highly structured and not all states enter non-linearly.
For example, in a stabilization problem, one might arrive at a system

ẋ = A(y)x + B(y)u, y = Cx

where u is the control input and y is the measured output that captures, as well, those states
that enter the system non-linearly. We can use the LPV techniques to design a stabilizing
LPV controller for this system. Since y is the scheduling variable, this controller will depend,
in general, non-linearly on y; hence LPV control amounts to a systematic technique to design
nonlinear controllers for nonlinear systems ‘whose non-linearities can be measured’.

5.4.2 Gain-Scheduling

A typical engineering technique to attack design problems for nonlinear systems proceeds
as follows: Linearize the system around a couple of operating points, design good linear
controllers for each of these points, and then glue these linear controllers together to control
the nonlinear system.

Although this scheme seems to work reasonably well in many practical circumstances, there
are considerable drawbacks:

• There is no general recipe how to glue controllers together. It is hard to discriminate
between several conceivable controller interpolation techniques.

• It is not clear how to design the linear controllers such that, after interpolation, the
overall controlled system shows the desired performance.

• There are no guarantees whatsoever that the overall system is even stabilized, not
to speak of guarantees for performance. Only through nonlinear simulations one can
roughly assess that the chosen design scenario has been successful.
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Based on LPV techniques, one can provide a recipe to systematically design a family of
linear controllers that is scheduled on the operating point without the need for ad-hoc inter-
polation strategies. Moreover, one can provide, at least for the linearized family of systems,
guarantees for stability and performance, even if the system undergoes rapid changes of the
operating condition.

Again, we just look at the stabilization problem and observe that the extensions to include
as well performance specifications are straightforward.

Suppose a nonlinear system

ẋ = a(x, u), y = c(x, u) − r (5.4.3)

has x as its state, u as its control, r as a reference input, and y as a tracking error output
that is also the measured output. We assume that, for each reference input r, the system
admits a unique equilibrium (operating condition)

0 = a(x0(r), u0(r)), 0 = c(x0(r), u0(r)) − r

such that x0(.), u0(.) are smooth in r. (In general, one applies the implicit function theo-
rem to guarantee the existence of such a parameterized family of equilibria under certain
conditions. In practice, the calculation of these operating points is the first step to be done.)

The next step is to linearize the the system around each operating point to obtain

ẋ = fx(x0(r), u0(r))x + fu(x0(r), u0(r))u, y = cx(x0(r), u0(r))x + cu(x0(r), u0(r))u − r.

This is indeed a family of linear systems that is parameterized by r.

In standard gain-scheduling, linear techniques are used to find, for each r, a good track-
ing controller for each of these systems, and the resulting controllers are then somehow
interpolated.

At this point we can exploit the LPV techniques to systematically design an LPV controller
that achieves good tracking for all reference trajectories in a certain class, even if these
references vary quickly with time. This systematic approach directly leads to a family of
linear systems, where the interpolation step is taken care of by the algorithm. Still, however,
one has to confirm by nonlinear simulations that the resulting LPV controller works well for
the original nonlinear system. Note that the Taylor linearization can sometimes be replaced
by global linearization (as discussed in the previous section) what leads to a priori guarantees
for the controlled nonlinear system.

Again, this was only a very brief sketch of ideas to apply LPV control in gain-scheduling,
and we refer to [14] for a broader exposition of gain-scheduling in nonlinear control.
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