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Outline

e Equilibrium of nonlinear system

x=f(x,t).
» Stability definitions.

* Stability theorems.

Equilibrium Point

» Consider nonautonomous systems.
x=f(xt),f:D xRt > R"
D = open connected subset of R"

f locally Lipschitz in x, continuous in t on
D xRt
Equilibrium point at ¢,

f(0,t) =0,Vt > ¢,

Equilibrium at the Origin
* W.l.og., assume x, = 0 equilibrium point at
to of x = f(x,t)

* If x, # 0 is an equilibrium point at t,
translate the axes.

» Translation of a nonzero trajectory x(t)
z=x(t) —x(t)
z=%x-X%
=f(z+x(),t) - f(x,t) =0,z=0,Vt > ¢,
z=f(z1t),z,=0




Stability Definitions

Uniform Stability Definitions
The equilibrium x, = 0 at ty of x = f(x,t) is
o Stable if Ve > 0,3 8(¢,ty) > 0 such that The equilibrium X, = 0 at ¢, of X = f(x,¢) is
x|l < 8(e,ty) = |[x(D)]| < e, VE=ty >0 * Uniformly stable if Ve > 0,3 §(¢) > Os.t
Otherwise, X, is unstable. lx(t)|l < 6(e) = ||lx(®)|| < e VE=ty >0
» Convergent at t; if 3 61 (tp) > 0 s.t.  Uniformly convergent if 3 §; > 0 s.t.
lx(to)ll < 61(to) = L x(t) = 0 (or) lx(t)] < 6; = tg&; x(t) = 0 (or)
Ve > 0,3T (e, ty) s.t.||x(ty)l] < 6; = |[x(®)] <€,
Vt > to + T(e, t,) Ve > 0,3T(e) s.t. ||x(t)|| < 81 = ||lx(D] <€,
Asymptotically stable if it is both stable & convergent vt 2ty +T(e)

Uniform Asymptotic Stability

Exponential Stability
The equilibrium x, = 0 of x = f(x,t) is

The equilibrium x, = 0 is exponentially
 Uniformly asymptotically stable if it is stable if 3a,4 > 0 s.t.
both uniformly stable & uniformly
convergent.

el < allx(to)lle™*
¢ Globally uniformly asymptotically stable if vt 2 to, Vllx(to)ll < &
it is uniformly asymptotically stable and

The equilibrium x, = 0 is globally
every motion converges to the origin.

exponentially stable if the condition holds
Vx € R"




Positive Semidefinite Functions
W(x,t), W:DxRt->R0€eD

o W (x,t) continuously differentiable w.r.t. all
its arguments.

o W(x, t) Positive semidefinite in D
i W(,t)=0,vt e RT

i W(x,t)>0,Vx€D,x+0,vVteR*

Positive Definite Functions
W(x,t), W:DxRt->R0€D

* W(x,t) continuously differentiable w.r.t. all its
arguments.

o W (x,t) Positive definite in D:
i W(,t) =0,vte R

i V(x) <W(x,t),Vx€eD,x+ 0, Vt e RT,
V(x) positive definite.

Decrescent Functions
W(x,t), W:DXxRt >R 0€D

o W (x,t) continuously differentiable w.r.t. all
its arguments.

e W(x,t) decrescent in D if
IW(x,t)| <V(x),Vx € D,vt e Rt
V(x) positive definite

» Decay of W (x,t) a function of x only, not t

Radially Unbounded Functions

W(x,t), W:R" xRt > R
Radially Unbounded if
W(x,t) - oas |[x|| = oo
uniformly on t
Or

VM >0, dN > 0s.t forallt
|x|| >N = W(x,t) >M




Functions of Class K, KL

Class K: continuous function a:[0,a] » R*
with (i) @(0) = 0, (ii) a(.) strictly increasing.
Class KL: Continuous function 3: [0, a] X
RT - Rt s.t.

.. For fixed s, 8(r,s) is in class K w.r.t. .

i. For fixed r, B(r,s) is strictly decreasing
W.IL. S.

ii. B(r,s) >0ass— oo

In Terms of Class K Functions

* Positive Definite

a(|x]) <V(x) <W(x,t),Vvx € B, c D,
vt e Rt

* Decrescent

[W(x,t)| <V(x) < a,(||x]]),Vx € B, € D,
vt e Rt

¢ Positive Definite & Decrescent

ay([[x]) = W(x, t) < a(l[x]])
Vx € B, c D, vt e RT

Lemmas: Functions of Class K

x. = 0 equilibrium point at t, of x = f(x,t) is

e Uniformly stable if and only if 3 a class K
function a(.) and a constant c s.t.

Xl < ¢ =[x < alllx(t)ID, vVt = to

» Uniformly asymptotically stable if and only if
3 a class KL function B(.,.) & a constant ¢
s.t.

()l < c = llx@I < BUlx ()l t — to)

Vt >t

Examples

W(x,t) = (x2+x2e % a>0
wW(,t) =0.e % =0,vt e Rt
W(x,t) >0,vVx+0VteR"
Y W (x,t) = 0,Vx

t—oo

e W(x,t) does not satisfy a;(||x|]) < W(x,t),
vt e R

* W(x,t) is positive semidefinite but not positive
definite.




Example
W t) =2+ D2 +x2)/(x% +2)

Vo(x) = (x2 +x2)/(x? +2) < W(x,t),Vx € R,
Vx =0, VteR*

e No V(x) s.t.
[W(x,t)| <V(x),Vx € D,Vt € RT
W(x,t) > (t* + 1) as x; > oo,not o Vt

» W(x,t) positive definite, not decrescent, not
radially unbounded.

Example
Wx,t) =xTx(t?>+1)

Va(x) = ||x]|? < W(x,t),Vx € R", x = 0,
VteR?T

» W(x,t) positive definite and radially
unbounded.

* We cannot find V(x) s.t.
IW(x,t)| <V(x),Vx € D,vt e R*

W (x,t) is not decrescent

Example
W(x,t) = Cef +x3)/(xf +2)

Vo(x) = (x2 +x2)/(x2 +2) < W(x,t),Vx
€ R?, Vx # 0, VteR?T

(W (x,t)| < Vs(x) = ||x]|?,Vx € R, Vt € R
W(x,t) > 1asx; » oo,not wo Vvt

» W (x, t) positive definite, decrescent, not
radially unbounded.

Example

W(xt) = llxll*(t? + 1)/(t? + 2)
aVs(x) = allxl|”> < W(x, 1),

Vx ER", x # 0, VteRY, a < 1/2

» W(x,t) positive definite and radially
unbounded.

[W(x,t)| < V;3(x),Vx € R™",Vt € R*

W(x,t) is decrescent




Derivative

 Along the trajectories of the system

x = f(x,t)
i t)_aw+aw,
YU =50 T !

W(x,t) = z—vl/ + VW. f(x,t)

Theorem: Stability
The equilibrium x, = 0 at ty of x = f(x,t) is
e Stable if 3 a continuously differentiable
positive definite W(x,t), W:D X R* -
R,0 € D,s.t. W(x,t) is negative
semidefinite in D

e Uniformly stable if 3 a continuously
differentiable positive definite decrescent
W(x,t), W:DXxRT > R,0 € D,s.t.

W (x,t) is negative semidefinite in D

Theorem: Uniform Asymptotic
Stability

The equilibrium x, = 0 at ¢, of

x = f(x,t) is uniformly asymptotically
stable if 3 a continuously differentiable
positive definite decrescent W (x, t),
W:DXRY >R 0€ED,s.t. W(x,t)is
negative definite in D

Theorem: Global Uniform
Asymptotic Stability

The equilibrium x, = 0 at t; of

x = f(x,t) is globally uniformly
asymptotically stable if 3 a continuously
differentiable positive definite, decrescent,
& radially unbounded W (x, t), W:R™" X
R*T > R,s.t. W(x, t) is negative definite
Vx € R"




Summary of Stability Theorems

Theorem: Exponential Stability

W(x,t) W(x,t) Conclusion
Pos. definite Neg.semi-  Stable The equilibrium at t, x, = 0 of X = f(x,t)
definite is exponentially stable if 3K, K,, K3 > 0 s.t.

Pos. definite Neg.semi-  Uniformly stable vVt =t
decrescent definite K1IIx(t)IIp < W(x,t) < Kl[x(OIP
Pos. definite Neg. definite  Uniformly W(x,t) < —Ksllx(OllP
decrescent asymptot. stable ¢ If the conditions hold globally, x, = 0 is
Globally pos. Globally neg. Globally, globally exponentially stable.
definite definite uniformly * Proof: similar to autonomous case.
decrescent asymptot. stable
Rad.unbounded

Example Derivative

o -2t ow ow

X X1 — Xpe

.1 1 2 W(x,t)—ﬁ+a—x

Xy =X1 —X

2 1 2 _ 2X%€_2t

Equilibrium: x, = 0 (f(0,t) = 0,Vt = t,, Vt,
W(x,t) =x?+ (1 +e 2)x2

Vi(x) = |Ix|I>? < W(x, t) < x? +2x2
= V,(x)

Vx € R?, vt eRT

* Positive definite, decrescent, radially
unbounded

—x, — xze_Zt]
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W (x,t) globally negative definite
X, = 0 is globally exponentially stable.




Linear Time-varying Systems
x =A(t)x
A(t) = [aij(t)] ER" X R
a;;(.):R* > R,i,j=1,..,n
» Continuous functions Vt € R™

« State-transition matrix: ®(.,.)

x(t) = (¢, t9)x(to)
| (¢, to)ll = Ilrarclllixlllq)(t' to)x||

Theorem: Exponential Stability

The equilibrium x, = 0 of x = A(t)x

is exponentially stable if and only if
HKl, K2 >0s.t.

D (t, to) || < Kye KzEto)
Vt > to, Yty = 0

Proof (Sufficiency)
e Assume 3K;,K, > 0 s.t.
1Dt to)| < Kye K2t

Vt > ty, Vt, =0
lx@Il = |, to)x(to) |l
lx(Il < [P, t)lllx (o)l
< |lx(to) || Ky e ~K2(t=t0)
Vt > t,,Vty =0

i. e. exponential stability

Proof (Necessity)

* Assume exponential stability
() = 1D, to)x(to) || < ce™ At
Vx(ty) € R",Vt = t,,Vt, =0
» Assume w.l.o.g. ||x(ty)]l =1
1Pt to) | = max [|P (2, to) x|

< Kle_KZ(t_tO), Vt = to,vto >0




Lyapunov Function

W(x,t) = xTP(t)x
P(t) continuously differentiable, symmetric,
bounded, and positive definite.
1K;,K; > 0 s. t.

Killx|I? < W(x,t) < K, ||x||?

Vt > ty,, Vx € R"
W (x, t) positive definite, decrescent,
radially unbounded

Derivative
W(x,t) = xTP(t)x + xTP(t)x + xTP(t)x
= xT[AT(®)P(t) + P(DA(t) + P(t)]x
= —x"Q(t)x
Q(t) symmetric by construction
o If Q(t) uniformly positive definite, W (x,t) < 0
Xe = 0 is uniformly asymptotically stable

C.T. Chen, 1984, p.404: Equilibrium x, = 0 of
x = A(t)x is uniformly asymptotically stable iff it
is exponentially stable.

Theorem: Exponential Stability
The equilibrium x, = 0 of x = A(t)x

is exponentially stable iff VQ(t) continuous,
symmetric, bounded, and positive definite

AT(OP() + P()A() + P(t) = —Q(¢t)

3P(t) continuously differentiable,
symmetric, bounded, and positive definite.

Asymptotic Stability of A(t)

» The LTV system x = A(t)x is
exponentially stable if there exists 1 > 0
st.Viand Vt > 0

L{A@®) +AT(D)} < -2
s Proof: V(x) = xTx

V(x) = xT{A(t) + ATO}x < -1 xTx
=—AV

V(t) <V(0)e 2t




Asymptotic Stability of A(t)

» The LTV system x = A(t)x is
exponentially stable if there exists 1 > 0
st.Viand Vt = 0

i Re{A[A() + AT(D]} < -2
i f, AT (DA(D)}dt < oo

Linearization Principle

» Linearize nonlinearx = f(x,t) system in
vicinity of equilibrium x, = 0, f(0,t) =0
af (x)

0x

~ A(t)x

x+g(xt)

xo=0

X =
0
xo=0

gx,t) = f(x,t) — A(t)x

Theorem: Linearization

* The equilibrium x, = 0 of
of (x
X = );(x ) x+g(xt)

Xe=0

is uniformly asymptotically stable if
i X = A(t)x is exponentially stable.
lgGdll _ 4

Zim
lxll-0 Il

uniformly w.r.t. t.




Converse Theorems

* If the equilibrium x, = 0 of X = f(x,t) is
uniformly stable, then a Lyapunov function
that satisfies the conditions for the uniform
stability theorem exists.

e Similarly for uniform asymptotic stability,
global uniform asymptotic stability.

* The theorems show that the search for
W (x,t) may be worth it but do not tell us
how to find the Lyapunov function: not
useful in practice.




