
Doklady Mathematics, 2011, Vol. 84, No. 1, pp. 475-481 (doi: 10.1134/S1064562411040120)

Algorithms for Searching for Hidden Oscillations in the
Aizerman and Kalman Problems

Leonov G.A., Kuznetsov N.V.

Draft 1 2

Abstract. The method of harmonic linearization, describing function method, numerical methods, and
the applied bifurcation theory together discover new opportunities for analysis of hidden oscillations of nonlin-
ear control systems. In the present paper new analytical-numerical algorithm for hidden oscillation localization
is discussed. Counterexamples construction to Aizerman’s conjecture and Kalman’s conjecture on absolute
stability of control systems are considered.
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1 Introduction. Aizerman and Kalman conjectures

In the midpoint of twentieth century M.A. Aizerman [Aizerman (1949)] and R.E. Kalman [Kalman (1957)]
formulated two conjectures, which occupy, at once, attention of many famous scholars [Krasovsky (1952);
Malkin (1952); Erugin (1952); Pliss (1958); Lefschetz (1965)]. The attempts to refute these conjectures lead
to creation of effective methods for the search of hidden oscillations — oscillations which are not “connected”
with equilibrium i.e. the creation of numerical procedure of integration of trajectories for the passage from
equilibrium to periodic solution is impossible.

Consider a system with scalar nonlinearity

dx

dt
= Px+ qϕ(r∗x), x ∈ Rn, (1)

where ϕ(σ) is a continuous piecewise-differentiable scalar function and ϕ(0) = 0. Suppose that for all k ∈
(µ1, µ2) a zero solution of system (1) with ϕ(σ) = kσ is asymptotically stable in the large (i.e., a zero solution
is Lyapunov stable and any solution of system (1) tends to zero as t→∞. In other words, a zero solution is
a global attractor of system (1) with ϕ(σ) = kσ).

In 1949 M.A. Aizerman formulated [Aizerman (1949)] the following conjecture: any system (1) with a
nonlinearity, satisfying the property

µ1σ < ϕ(σ) < µ2σ σ 6= 0, (2)

is stable in the large.
The necessary criteria of absolute stability [Leonov et al. (1996)] contradict this hypothesis.
In 1957 R.E. Kalman has formulated a similar hypothesis [Kalman (1957)] with more restrictive condition:

if at the points of differentiability of ϕ(σ) the condition

µ1 < ϕ′(σ) < µ2 (3)

is satisfied, then system (1) is stable in the large.
In this work an effective approach for the study of hidden oscillations, based on the union of analytical

and numerical methods, is considered.
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2 System reduction

Suppose that matrix P has a pair of purely imaginary eigenvalues ±iω0(ω0 > 0) and the rest of its eigenvalues
have negative real parts (to achieve this one can use harmonic linearization technique).

Then, by nonsingular transformation x = Sy system (1) can be reduced to the form

ẏ1 = −ω0y2 + b1ϕ
0(y1 + c3

∗y3),

ẏ2 = ω0y1 + b2ϕ
0(y1 + c3

∗y3),

ẏ3 = A3y3 + b3ϕ
0(y1 + c3

∗y3),

(4)

where y1, y2 are scalar quantities, y3 is (n−2)-dimensional vector; b3 and c3 are (n−2)-dimensional vectors,
b1 and b2 are real quantities; A3 is (n− 2)× (n− 2)-matrix, all eigenvalues of which have negative real parts.

Without loss of generality we assume that for the matrix A3 there exists a positive number d > 0 such
that

y∗3(A3 + A∗3)y3 ≤ −2d|y3|2, ∀y3 ∈ Rn−2. (5)

Write a transfer function of system (1)

r∗(P− pI)−1q =
ηp+ θ

p2 + ω2
0

+
R(p)

Q(p)
(6)

and a transfer function of system (4)

−b1p+ b2ω0

p2 + ω2
0

+ c3
∗(A3 − pI)−1b3. (7)

Here I is a unit matrix, η and θ are certain real number, Q(p) is a stable polynomial of degree (n−2), R(p) is
a polynomial of degree smaller than (n−2). Suppose, the polynomials R(p) and Q(p) have no common roots.
By the equivalence of systems (1) and (4), the transfer functions of these systems coincide. This implies the
following relations

η = −b1, θ = b2ω0, c3
∗b3 + b1 = r∗q,

R(p)

Q(p)
= c3

∗(A3 − pI)−1b3.
(8)

3 Justification of describing function method in critical case

Let us consider the nonlinearity ϕ0(σ) of special form

ϕ0(σ) =

{
ϕ1(σ), ∀ |σ| ≤ ε,

ε3ϕ2(σ), ∀ |σ| > ε,
(9)

The functions ϕ1(σ) and ϕ2(σ) are the piecewise-differentiable ones, for which the following conditions

|ϕ1(σ)| ≤ µ|σ|,
ε∫

−ε

(
b2(c3

∗b3 + b1)ϕ1(σ) + b1ω0σ

)
ϕ1(σ)dσ = Lε3 +O(ε4)

(10)

are satisfied. Here µ > 0 and L are certain numbers. Further, without loss of generality, we can assume that

ϕ2(σ) = 0 ∀σ ∈ [−ε, ε]. (11)
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Such conditions are valid, for example, for the following nonlinearity

ϕ0(σ) =

{
µσ, ∀ |σ| ≤ ε,

Mε3sign(σ), ∀ |σ| > ε,
(12)

where M is a certain positive number.
Consider in a phase space of nonlinear system (4) the set

Ω = {y1 + c3
∗y3 = 0, y2 ∈ [−a1,−a2], |y3| ≤ Dε2}. (13)

Here a1,2 is a certain positive number, the number D is defined by using the following assertion

Lemma 1 For solutions of system (4) with initial data from Ω the following representation

y1(t) = − sin(ω0t)y2(0) +O(ε2),

y2(t) = cos(ω0t)y2(0) +O(ε2),

y3(t) = exp(A3t)y3(0) + On−2(ε2) = On−2(ε2)

t ∈ [0, T ] (14)

is valid. Besides, there exist numbers D1 ≥ D > 0 such that if for small enough ε > 0 the inequality

|y3(0)| ≤ Dε2

is satisfied, then we have
|y3(T )| ≤ Dε2 (15)

and
|y3(t)| ≤ D1ε

2, ∀t ∈ [0, T ]. (16)

Consider for trajectories of system (4) Poincare map F of the set Ω:

F

∥∥∥∥∥∥
y1(0)
y2(0)
y3(0)

∥∥∥∥∥∥ =

∥∥∥∥∥∥
y1(T )
y2(T )
y3(T )

∥∥∥∥∥∥ . (17)

Here T is a positive number such that

y1(T ) + c3
∗y3(T ) = 0, y2(T ) < 0

and the relations
y1(t) + c3

∗y3(t) = 0, y2(t) < 0, ∀ t ∈ (0, T )

are not valid. Introduce a describing function

Φ(a) =

2π/ω0∫
0

ϕ2

(
a sin(ω0t)

)
sin(ω0t)dt. (18)

Theorem 1 If the inequalities

b1Φ(a2) > −
2

ω2
0a

2
2

L, b1Φ(a1) < −
2

ω2
0a

2
1

L, (19)

are valid, then for small enough ε > 0 the map of Poincare (17) of the set Ω is mapping in itself: FΩ ⊂ Ω.
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In this case by Brouwer’s fixed point theorem we have the following statement.

Corollary 1 If inequalities (19) are satisfied, then for small enough ε > 0 system (4) has a periodic solution
with initial data from Ω. This solution is stable in a sense that its neighborhood Ω is mapping in itself:
FΩ ⊂ Ω.

Theorem 2 Suppose that there exists a number a0 > 0 such that the conditions

b1Φ(a0) = − 2

ω2
0a

2
0

L, a0 6= νi, b1
dΦ(a)

da

∣∣∣∣
a=a0

<
4

ω2
0a

3
0

L (20)

are satisfied. Then for small enough ε > 0 system (4) has the periodic solution of the form (14) with the
initial data

y1(0) = O(ε2), y2(0) = −a0 +O(ε), y3(0) = On−2(ε2) (21)

and with the period

T =
2π

ω0

+O(ε2).

Corollary 2 The nonlinearity (12)

L =
2

3

(
b2(c3

∗b3 + b1)µ+ b1ω0

)
µ, Φ(a0) = M

4

ω0

and relation (21) imply that

y1(0) = O(ε2),

y2(0) = −
√
− µ

3ω0b1M

(
b2(c3

∗b3 + b1)µ+ b1ω0

)
+O(ε),

y3(0) = On−2(ε2).

(22)

A scheme of a proof of theorem 2. The proof of theorem is due to the following Lemmas.
By the form of nonlinearity ϕ0 and the representation of solutions (14), for the output of system (4) and

the derivative of output we obtain

σ(t) = y1(t) + c3
∗y3(t) = − sin(ω0t)y2(0) +O(ε2),

σ̇(t) = ẏ1(t) + c3
∗ẏ3(t) = −ω0 cos(ω0t)y2(0) +O(ε).

(23)

Hence |σ̇
(
τ)| > κ > 0 for |σ(τ)| ≤ ε. From (23) and (14) it follows that there exist the numbers

0 = τ0 < τ1 < τ2 < τ3 < τ4 < τ5 = T (24)

such that (see Fig. 1)
τ1 : ∀ t ∈ (0, τ1) σ(t) ∈ (0, ε), σ(τ1) = ε;

τ2 : ∀t ∈ (τ1, τ2) σ(t) > ε, σ(τ2) = ε;

τ3 : ∀t ∈ (τ2, τ3) σ(t) ∈ (−ε, ε), σ(τ3) = −ε;
τ4 : ∀t ∈ (τ3, τ4) σ(t) < −ε, σ(τ4) = −ε;
τ5 = T : ∀t ∈ (τ4, T ) σ(t) ∈ (−ε, 0), σ(T ) = 0.

(25)

By the first relation (23) we have the following assertion.
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Figure 1: projection of solution on the plane (y1, y2) and the nonlinearity ϕ0(σ) of the form (12)

Lemma 2 The following estimations

τ1 =
ε

ω0|y2(0)|
+O(ε2),

τ2 − τ1 =
π

ω0

− 2ε

ω0|y2(0)|
+O(ε2),

τ3 − τ2 =
2ε

ω0|y2(0)|
+O(ε2),

τ4 − τ3 =
π

ω0

− 2ε

ω0|y2(0)|
+O(ε2),

T − τ4 =
ε

ω0|y2(0)|
+O(ε2).

(26)

are valid.

Lemma 3 The following estimate

2π/ω0∫
0

ϕ2

(
σ(t)

)
dt =

2π/ω0∫
0

ϕ2

(
− sin(ω0t)y2(0)

)
dt+O(ε). (27)

is valid.

Lemma 4 For small enough ε > 0 the estimate

y22(T )− y22(0) =

2|y2(0)|
(

2

ω2
0|y2(0)|2

L+ b1Φ
(
|y2(0)|

))
ε3 +O(ε4)

(28)

is satisfied.

Lemmas 1 and 4 imply that if inequalities (19) are satisfied, then the inclusion FΩ ⊂ Ω occurs. By
Brouwer’s fixed point theorem, from this inclusion it follows that there exists a fixed point of map F and,
consequently, there exists a periodic solution of system (4) with initial data from the set Ω.

�
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4 Analytical-numerical method for localization of hidden oscilla-

tion

Based on the above theorems, it is possible to organize a multi-step procedure for the localization of hidden
oscillations: initial data obtained in this theorem allow to step aside from stable zero equilibrium and to start
numerical localization of possible oscillations [Leonov (2010); Leonov et al. (2010); Bragin et al. (2010)].

Consider for j = 1, . . . ,m a finite sequence of piecewise-linear functions

ϕj(σ) =

{
µσ, ∀|σ| ≤ εj;

sign(σ)Mε3j , ∀|σ| > εj.
εj =

j

m

√
µ

M
(29)

Here function ϕ(σ) = ϕm(σ) is monotone continuous piecewise-linear function (“saturation”).
We choose m in such a way that the graphs of functions ϕj and ϕj+1 are slightly distinct from each other

outside small neighborhoods of points of discontinuity.
Corollary 2 permits one to find stable periodic solution x(t) = x0(t) close to harmonic one of system

dx

dt
= Px+ qϕj(r∗x) (30)

with j = 0. All the points of this periodic solution may be placed in domain of attraction of stable solution
x1(t) of system (30) with j = 1 or when pass from system (30) with j = 0 to system (30) with j = 1, the
instability bifurcation destroying periodic solution. In the first case it is possible to find x1(t) numerically,
starting a trajectory of system (30) with j = 1 from the initial point x0(0).

Starting from the point x0(0), after transient process the computational procedure reaches the periodic
solution and computes it. In this case the interval [0, T ] on which the computation is carried out must be
sufficiently large.

After the computation of x1(t) it is possible to take system (30) with j = 2 and to organize a similar
procedure of computing the periodic solution x2(t) by starting from the initial point x(0) = x1(T ) a trajectory,
which with increasing t may reach the periodic trajectory x2(t) or we observe the instability bifurcation
destroying periodic solution.

Proceeding this procedure and computing sequentially the periodic solutions xj(t), using trajectories of
system (30) with the initial data xj(0) = xj−1(T ), we either obtain a periodic solution of system (30) with
j = m, either observe, at a certain step, the instability bifurcation destroying periodic solution and stop
algorithm.

Similar procedure can be used for localization of hidden attractors (a basin of attraction of which does not
contain neighborhoods of equilibria), when the periodic solution sequentially transforms into strange attractor
[Leonov et al. (2010); Kuznetsov et al. (2010)].

Suppose that the periodic solution xm(t) of system (30) with monotone and continuous function ϕm(σ)
(“saturation”) is computed. In this case we organize a similar computational procedure for the sequence of
systems

dx

dt
= Px+ qψi(r∗x). (31)

Here i = 0, . . . , h, ψ0(σ) = ϕm(σ) and

ψi(σ) = ϕm(σ) +

{
0, ∀|σ| ≤ εm;

i(σ − sign(σ)εm)N, ∀|σ| > εm,

where N is a certain positive parameter such that hN < µ2. (also here, using the technique of small changes,
it is possible to approach various other continuous monotonic increasing functions [Leonov et al. (2010)]).

The finding of periodic solutions xi(t) of system (31) gives a certain counterexample to Kalman’s hypothesis
for each i = 1, . . . , h.

6



5 Counterexamples to Aizerman and Kalman problems

Consider a system
ẋ1 = x2,

ẋ2 = −x4,
ẋ3 = x1 − 2x4 − ϕ(x4),

ẋ4 = x1 + x3 − x4 − ϕ(x4),

ϕ(σ) =


5σ, ∀|σ| ≤ 1

5
;

sign(σ) +
1

25
(σ − sign(σ)

1

5
), ∀|σ| > 1

5
.

(32)

Finding matrix S and calculating y(0) by (22), we obtain initial data x(0)= Sy(0) = (0, 0.2309, 0.2309, 0)
for the first step of our algorithm for system (32) with nonlinearity ϕ1(σ).

Proceeding the procedure for j = 2, ...10, we sequentially approximate a periodic solution (see Fig. 2) of
initial system (32) with nonlinearity ϕ(σ).
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Figure 2: The projection of trajectory on the plane (x3, x4); system output; nonlinearity and stability sector.

Change the nonlinearity ϕ(σ) to the strictly increasing function ψi(σ), where µ = 1, εm = 1, N = 0.01.
For i=3 after computational process, we obtain periodic solutions (Fig. 3)
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Figure 3: The projection of trajectory on the plane (x3, x4); system output; nonlinearity and stability sector.

Note that the second part of the algorithm, where saturation zone is rising and counterexample to the
problem of Kalman is constructed, complements the numerical results form Barabanov (1988); Bernat &
Llibre (1996) where nonlinearities sign(σ) and sat(σ) are considered respectively.
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