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A. M. Lyapunov’s stability theory—100 years on*

P. C. PARKS
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Shrivenham, Swindon, Wilts SN6 8LA, UK

On 12 October 1892 (by the modern calendar) Alexandr Mikhailovich Lyapunov
defended his doctoral thesis The general problem of the stability of motion at Moscow
University. A brief history of Lyapunov’s life and tragic death is given, and followed
by a section highlighting the important ideas in his thesis of 1892. Subsequent
applications of these ideas in the control field are then reviewed, from which the
great importance of Lyapunov’s thesis in present day technology may be appreciated.

1. A brief history of the life of A. M. Lyapunov

Aleksandr Mikhailovich Lyapunov was born on 6 June 1857t at Yaroslavl’ where
his father was director of the Demidovsk Lycée, a general high school. In 1870 his
mother, who had been widowed in 1868, moved with her three sons to Nizhny-
Novgorod (known for many years as Gorki), and it was here that Lyapunov
received his secondary school education, graduating from the gymnasium in 1876
with a gold medal. In the same year he became a student in mathematics at St.
Petersburg University, where he was particularly influenced by the lectures of

* IMA Lyapunov Centenary Lecture given at the IMA International Conference on Control, Modelling,
and Computation, UMIST, Manchester, 2-4 September 1992
t All dates in this paper accord to the modern (Gregorian) calendar.
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Professor P. L. Chebyshev. Lyapunov graduated in 1880, again winning a gold medal
for an essay on hydrostatics. He stayed on at the university in the Mechanics Faculty,
developing his Master’s thesis On the stability of ellipsoidal forms of equilibrium of
rotating fluids which he defended in 1884 (Lyapunov 1884). This work, which was
translated into French in 1904, established his name in Europe.

In the autumn of 1885, Lyapunov moved to Kharkov where he became a
‘privat-dozent’ in the university’s Department of Mechanics. In the winter break of
1885/6 he returned to St. Petersburg to marry his first cousin, Natalia Rafailovna
Sechenova. In his work in Kharkov, Lyapunov first had to spend much time
preparing lectures in mechanics and notes for his students, but in 1888 he started to
publish papers devoted to the stability of motion. This work led to his famous
doctoral thesis of 1892, The general problem of the stability of motion (Lyapunov
1892). He defended this thesis in Moscow on 12 October 1892, one of his ‘opponents’
being N. E. Zhukovski (better known here as Joukowski—'the father of Russian
aviation’); this thesis was republished in French in 1908 and 1949, Russian in 1935,
and English (Lyapunov 1992). Lyapunov was promoted in the following year 1893
to an ordinary professorship at Kharkov.

Although Lyapunov continued his work on stability problems until 1902, he also
turned his attention to other topics, including potential theory and probability theory,
particularly the central limit theorem of Laplace. He was also an active participant
in activities of the Kharkov Mathematical Society, becoming its president and editor
of its Communications from 1899 to 1902.

In 1902, Lyapunov moved back to St. Petersburg where he had been appointed
Academician and the successor to his former teacher P. L. Chebyshev, who had died
in 1894. He was now able to devote himself entirely to research, returning to the
problem of forms of equilibrium of bodies of uniformly rotating fluid particles under
mutual Newtonian gravitational attraction. In particular, Lyapunov showed that
pear-shaped forms of rotating fluid were unstable. This result had important
consequences in astronomy, since it disproved the then current theories of formation
of satellites from bodies of rotating fluid e.g. the Earth-Moon system. G. H. Darwin
(son of the famous naturalist Charles Darwin) at Cambridge had proposed such a
mechanism at this time which naturally required pear-shaped bodies to be stable. In
1917, J. H. Jeans, in an Adams Prize Essay at Cambridge, was to confirm that
Lyapunov’s result was correct and that therefore Darwin’s theory was incorrect.

In June 1917, Lyapunov left St. Petersburg for Odessa on doctor’s orders, since
his wife was suffering badly from tuberculosis. However, in Odessa her condition
deteriorated, and on 31 October 1918 she died. Lyapunov himself was in poor health
and his eyesight was failing. The tragic events of the revolution, the burning of the
family estate on the River Volga including a great library built up by his father and
grandfather, and the illness of his wife had greatly depressed Lyapunov. On the day
his wife died, Lyapunov shot himself in the head with a pistol. He died on 3 November
1918, the day of his wife’s funeral. In a suicide note he asked to be buried with her.
The inscription on the gravestone reads:

The creator of the theory of stability of motion, the doctrine of equilibrium figures of
rotating liquid, methods of the qualitative theory of differential equations, author of the
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central limit theorem and other deep investigations in areas of mechanics and mathe-
matical analysis.

At this time, many of the later uses of Lyapunov’s work could hardly have been
foreseen. Some of these will be described in later sections of this paper.

2. Lyapunov’s doctoral thesis The general problem of the stability of motion

The thesis was first published by the Kharkov Mathematical Society (Lyapunov
1892). A translation into French by E. Davaux was published by the University of
Toulouse in 1908; this translation was reprinted as a book by Princeton University
Press in 1949. In March 1992, the International Journal of Control devoted its entire
issue to an English translation by A. T. Fuller of the French version (Lyapunov
1992). In the same issue, J. F. Barrett provided both a translation from Russian of
a biography of Lyapunov by Academician V. I. Smirnov and a bibliography of ail
Lyapunov’s works. Lyapunov’s thesis runs to 242 printed pages in this English
version. A number of important ideas are contained in the thesis, of which the
following four topics may be highlighted.

2.1 General definitions of stability of motion

Lyapunov’s thesis opens with some rather general definitions of the stability of
motion. These include various measures of stability of a point following a particular
time trajectory in an n-dimensional space. It is possible for a certain motion to be
stable with respect to some measures but unstable with respect to others. Here
Lyapunov gives as an example a particle in a circular orbit under an inverse-square
law of attraction: this motion is stable with respect to the length of the radius vector
and to the speed of the particle, but is unstable with respect to the rectangular
coordinates of its position.

Stability, in the sense of points in phase-space which are initially close together
subsequently staying close together, is lacking even in apparently well-behaved
Hamiltonian systems where

% = oH and p, = _H (i=1,.,n). 1
ap; ox;

Consequently phase-space volumes v are preserved, because

4

v(t) = v(0) epr trace J dt = 1(0),

0
since

" ( 0°H H
trace J = ) ( _ ) =0,
i=1 \0x,dp; dp, 0x;

where J is the Jacobian matrix formed from the right-hand sides of the Hamiltonian
equations. This result was originally due to Liouville (1809-82). Figure 2, from
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FiG. 2. Diffusion of trajectories.

Penrose (1990), shows how this volume preservation can nevertheless allow extensive
diffusion of the trajectories in phase space (of dimension 2n).

2.2 Characteristic numbers of functions and ‘Lyapunov exponents’

This second concept, also developed quite early on in Lyapunov’s thesis, is called by
him the ‘characteristic number’ of a function of time. Given a function x(t), then one
can define 4, such that x(¢) exp At is unbounded for 1 > A, and x(t) exp At — 0 as
t - oo for A < A,. The critical (real) number A, is the characteristic number of x(t).
For example, if x(t) = ¢, then i, =0; if x(t) = exp(—2t), then i, =2; and if
x(t) = exp(t sin t), then 4, = — 1.

In recent years, the term ‘characteristic exponent’ or ‘Lyapunov exponent’ has
been used in the context of chaotic motion. Here one is interested in whether or not
two points x,(t) and x,(t) in the state space of a dynamical system which are initially
very close together, stay close together in the subsequent motion. Here the function
of time, x(t), being considered is given by x(t) = |x,(t) — x,(¢)|, where |x,(0) — x,(0)|
is ‘small’. The largest characteristic or Lyapunov exponent can be defined as

NN NOEEX0
ot 60— %0

A chaotic motion is characterized by a positive Lyapunov exponent, which can be
regarded as minus one times the characteristic number as originally defined by
Lyapunov himself, and explained in the previous paragraph. Thus, in a chaotic
motion, the two points move apart as time increases, making accurate prediction of
the long term future impossible. More generally, for various attractors in state space
motions in an n-dimensional space R”", a set of n Lyapunov exponents may be defined,
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FiG. 3. Signs of Lyapunov exponents for various attractors,

and their signs characterize the attractor. This idea is illustrated for three-dimensional
state space in Fig. 3, taken from Ruelle (1989).

2.3 Lyapunov’s first method

Lyapunov’s first method provides theoretical validity for the often-used technique of
linearization. More precisely, given a set of nonlinear first-order differential equations

X =fi(xy o x,) (i=1,.,n), 2)

where the f; are analytic functions such that £i0,.,0)=0 (i=1,..,n), so that the
origin x = 0 is an equilibrium point, then a linearized set of equations

i=Jx 3

may be found by forming the Jacobian matrix J with the (i, j) entry

dfi(x) ..
Jy = [ g‘xj’ Lo Gj=1,..n),

or, equivalently, by expanding the f; as a power series about x = 0 and dropping all
terms except those linear in the x;s.
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If the matrix J has all its eigenvalues either negative or with negative real parts,
so that the linearized equation (3) is asymptotically stable, then so will be the original
nonlinear equation (2), at least for initial conditions x lying in a finite region about
the origin, that is to say, initial displacements x from the origin within this region
will decay to zero as time tends to infinity.

Lyapunov has an involved proof of this result involving a solution in series of the
original nonlinear equation in which the f; may also be functions of time. He also
examines at some length various ‘singular cases’, that is, cases in which J has
eigenvalues which are zero or have zero real parts. Here stability is determined by
the nonlinear terms in the power-series expansion of the f;. Specifically, the cases of
one zero eigenvalue and of two purely imaginary eigenvalues, +jA, were considered
in the thesis.

2.4 Lyapunov’s second method

“The fourth highlight of Lyapunov’s thesis has proved subsequently to be the most

important—this is his so-called ‘second’ or ‘direct’ method, making use of ‘Lyapunov
functions’. Once again, if we consider x =0 to be an equilibrium point of the
nonlinear differential equation (2), then it may prove possible to investigate the
stability of this equilibrium point by examining a positive-definite function V = V(x),
surrounding x = 0 with a nest of closed surfaces defined by V(x) = ¢ (¢ > 0). The rate
of change with respect to time of ¥ following a trajectory of (2) is easily calculated as

V= Z 6_V 9_' = 0_V fi(x).
=1 6x, dt i=1 6x,
If this is always negative (except at x = 0, where V' = 0), then it follows that the
trajectories must cross the surface V = constant in an inwards directions, and
consequently tend to the point x = 0 at time ¢ tends to infinity. A three-dimensional
example is shown in Fig. 4. Thus asymptotic stability has been proved without any
need to find explicit solutions of the nonlinear differential equation (2).

This powerful idea originated in Lyapunov’s mind from his knowledge of
astronomical problems and the earlier work of Lagrange, Laplace, Dirichlet, and
Liouville (Fuller 1992). In many astronomical problems, stability—rather than
asymptotic stability—is sought; in such cases, V is zero so that the disturbed motions
persist as oscillations on some surface V' = ¢ surrounding x = 0. The greater interest
in asymptotic stability shown in contemporary control theory did not develop
until the 20th century.

3. Applications of Lyapunov’s second method in control theory—developments in
Russia before 1960

3.1 Chetayev’s work at Kazan (1930s)

Lyapunov’s (1892) thesis contains many mathematical examples of his theory not
linked with physical stability problems (although Fuller’s (1992) English translation
adds an occasional control-engineering interpretation of Lyapunov’s examples (e.g.
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/ Trajectories

FiG. 4. Liapunov function contours and trajectories of ¥ = f(x).

in Section 41, Examples V and VI)). Practical use of Lyapunov’s stability theory in
the control field came many years later, notably in the work of N. G. Chetayev and
I. G. Malkin at the Kazan Aviation Institute in the 1930s (Chetayev 1961; Malkin
1952). A typical example of Chetayev’s application of Lyapunov’s second method
to aeronautical stability problems is provided by the classical problem of spin
stabilization of a rocket or artillery shell. The (simplified) model is shown in Fig. 5.
The corresponding equations of motion, obtained from the moving-axes equation

ay

w F o=\ = o~
XG" TE——=

z R
a

FiG. 5. Rotating rocket stability prbblcm.
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for angular momentum in conventional notation, are
AP + Ad?sin B cos B — Cnd cos f = eR sin f cos a,
Ad — 2Aafsin B + Cnp = eRsina,

where 4, C, n, ¢, and R are constants. Now two integrals of the motion exist, identified
as energy F, and angular momentum F;:

F, = $A(B* + a® cos® B) + eR(cos a cos f — 1)
F, = A(f sin o« — d cos B sin f cos «) + Cn(cos a cos f — 1).

A tentative Lyapunov function is formed as ¥ = F, — AF,, with ¥ = 0. Expanding
the trigonometric terms in F, and F, gives

V =4[Ad? + (Cni — eR) B? + 244af] + s AB* + (Cni — eR)a* — 244af]

+ higher-order terms.

. . ; . A + A4
The two quadratic f X d (B, 2) ha atrices . Each
q ic forms in (&, #) and (f, «) have matri [ifﬁ- Crd — eR:l

of these is positive definite if 4 > 0 and —AeR + ACni — A?A* > 0. A suitable
constant A can be found if 442 — Cnl + eR = 0 has two real roots, from which is
obtained the (well known) criterion for spin stabilization:

C?n? > 44eR.

3.2 Contributions of Lur’e and Letov

A nonlinear control problem discussed extensively by A. I. Lur’e (1957) and A. M.
Letov (1961) and dating back to the 1940s is illustrated in Fig. 6.

If we consider the demand np, to be zero, then the stability of the feedback loop
may be investigated by examining the nonlinear differential equations

y=Ky+mé, E=f(@), o=p'y-rE 4)
Up
y T
S (s1-K'm Py &,
4 g

V
-
A

|-

FiG. 6. The Lur'e-Letov nonlinear control problem.

Moo o
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where K is a constant matrix, m and p are constant vectors, and r is a non-negative
real number. The equations are first transformed by the ‘generalized Lur’e trans-
formation’

y=Dx — Db,
where D is any non-singular matrix such that Db = K~ 'm, to yield
¥=Ax + bf(6), & =c"x—rf(0), &)

where 4 = D™'KD. The nonlinearity f(o) is assumed to be continuous in o, with
f(0) =0, af(6) >0 (s #£0), and [§ f(s)do infinite. A Lyapunov function ¥V is
introduced as

V=x"Bx + J.df(d)) de,
0

with V= —x"Cx + 2f(6)g"x + f(6)c"x — rf*(s), where A"B+ BA = —C and
£ = Bb. The matrix C is positive-definite, and B also, if we assume that XK' (and
A = D™'KD) has all its eigenvalues with negative real parts. The Lyapunov derivative
V may be made negative-definite, either (if ¢ is given) by choosing the feedback
constant r such that

r>(g" +4")C (g + o),
or (if r is given) by choosing the vector ¢ as
c=—2g+2/rT"y,

where v'v < 1 and C = T' T, with T nonsingular.

3.3  Aizerman’s conjecture

The problem considered by Lur’e and Letov led M. A. Aizerman (1949) to make a
famous conjecture concerning the function f(c) appearing in equation (4) and Fig. 6.
This conjecture, as applied to this problem, is as follows. ‘If f(¢) is replaced by a
linear function ke, and if the resulting linearized form of (4) is asymptotically stable
for all constant k in the sector 0 < k < K, then the nonlinear system (4) will also be
asymptotically stable.” Here K is a constant such that 0 < af (06) < Ka? (o # 0); see
Fig. 7.

Unfortunately the general Aizerman conjecture is untrue; the following counter-
example was found by Krasovskii (1963), which is in a form different from equations
(4) and (5). Consider

Xy = x3 +f(xy),

x‘z = —X; — Xj.
If f(x,) is replaced by kx, then 0 < k < 1 ensures asymptotic stability. However, if
x—[e 31 +e H)x for Ix| < 1,
x —[e /1 + e ™)) signx for |x| > 1,

f(X)={

then 0 < xf(x) < x? (x # 0), but the trajectory starting at x, = l and x, =e~! — 1
has the equation
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f(9)

FiG. 7. f(o) for Aizerman’s conjecture.

X, =e ' —x,,

and x; - o and x, - —o0 ast - o0.
Aizerman’s conjecture stimulated later developments, in particular Popov’s
stability criterion (see Section 4.4).

4. Lyapunov’s second method in control theory—developments since 1960 (mainly
outside Russia)

4.1 Introduction

These developments started in the late 1950s and early 1960s and were greatly
stimulated by challenging control problems associated with the so-called ‘space race’
between the USA and USSR, set off by the launch of the Soviet Sputnik 1 (4 October
1957). Of particular significance in making Lyapunov’s second method better known
outside Russia were the 1st World Congress of the International Federation of
Automatic Control (IFAC), held in Moscow in June 1960, and a seminal article by
R. E. Kalman and J. E. Bertram in the Journal of the American Society of Mechanical
Engineers, published in the same month (Kalman & Bertram 1960). A group formed
by Professor Solomon Lefschetz at the Research Institute for Advanced Study at
Baltimore USA (of which R. E. Kalman and J. P. La Salle were members) was
particularly active at this time in making Russian mathematical techniques better
known. Cover-to-cover English translations of selected Russian journals also started
in these years. A very readable book on Lyapunov’s second method by Lefschetz and
La Salle appeared in 1961.

4.2 The Lyapunov Hermite—Routh—Hurwitz connection

A question raised by Kalman & Bertram (1960) was how Lyapunov’s second method
could be employed to recover classical results for linear differential equations such
as those derived by E. J. Routh (1877) and by A. Hurwitz (1895). The connection
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was firmly established by P. C. Parks (1964b) using a special solution of the Lyapunov

matrix equation (see also Section 4.3).

If the nth-order linear differential equation with real constant coefficients is

given by
p(D)y= (D" +a, D" +a,D"" % +-+4a,)y =0,

and its phase-space form by ¥ = Ax, where

- 0 1 0 7
0 0 1 0
A= . .
0 0 0 S |
- —4d, —Q,-; —G8,_, ~ —a;l

(6

()

is the companion matrix of (6). Then a Lyapunov function is ¥ = x" Hx, where

[a,a,_, 0 a,a,_4 0 -
0 —a,a,-3+ay_,0,_2 0
Auly-3 0
0
H =
0 —as +a,a,
0 as — a,a, + a,a, 0
—as + a,a, 0 —a; + a,a,
_ as 0 a, 0

in which the (i, j) element is

n—i
Y (=D aas sy (i +jeven, i),

k=0
H, =
Y7o (i +j odd, i > j),
Hy, (<,

where a, = 1 and a, = 0 for r > n. Here H is Hermite’s (1856) matrix, and

V=xT(HA+ ATH)x = —2(a,x, + a3%,_, +~)>.

as

a,

q |

®)

Clearly, V is negative semidefinite and, provided that a; # 0 for some odd j, can be
shown not be identically zero on any trajectory other than x =0, from which
a necessary and sufficient condition for stability is that H is positive definite.

A
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The principal minors of H starting from the bottom right-hand corner are
4,,4,4,, 4,4, ..., 4,_,4, where the 4, are the Hurwitz determinants of the equation
(6). For stability, the 4, must all be positive and p(s), appearing as p(D) in (6), is
then said to be a ‘Hurwitz polynomial’. The Hermite matrix was used by B. D. O.
Anderson (1972) to prove the Liénard—Chipart stability criterion and by M. Mansour
and Anderson (1992) to provide a Lyapunov proof of the celebrated Kharitonov
theorem (1978).

4.3 Construction of Lyapunov functions

The first applications of Lyapunov’s second method used integrals of motion, such
as energy and momentum, or quadratic forms and integrals of the nonlinearity as in
the Lur’e and Letov technique. In the 1960s, considerable efforts were made to devise
systematic methods of construction of Lyapunov functions.

The Lyapunov matrix equation Given nonlinear equations of the form

X = f(x) ®

with x e R" and f(0) = 0, one can usually extract the linear part in the form of the
matrix equation
X=Ax. (10)

If A has all its eigenvalues with negative real parts, then the origin x =0 is an
asymptotically stable equilibrium point of (10) and of (9) also. A suitable Lyapunov
function for (9) may however yield other useful information such as an approximation
to the region of attraction surrounding x = 0. Such a Lyapunov function can be a
quadratic form x7 Px, where P is found by solving the Lyapunov matrix equation

PA+A'P= -0, (11)

in which Q is a given arbitrary symmetric positive-definite matrix. This involves
solving 4n(n + 1) linear equations for the elements p;; (j 2 1) of the symmetric matrix
P. (This is always possible, provided that 4, + 4, # 0 for any i and j, where the 4,
are the eigenvalues of A.)

S. Barnett and C. Storey (1967) introduced a new way of solving (11) in the form

P=(S-1Q)a™
where S is the unique skew-symmetric matrix satisfying
SA+ATS=4ATQ - QA). (12)

Solving equation (12) involves the solution of 4n(n — 1) linear equations for the
elements of S: a reduction of n compared with the solution of (11). More importantly,
Barnett & Storey (1968) were able to exploit this idea to investigate the sensitivity
or robustness of the stability of (10).

An early application of the Lyapunov matrix equation was due to A. G. J.
MacFarlane (1963). He constructed performance functionals for the stable linear
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system (10) in the form

J rxTQxdr = (= 1y xT(0)P,, ,x(0),
0
where P,y A+ A'P,, =P, (s=1,.,r)and LA+ AP, = Q.

A typical application of the Lyapunov matrix equation to examine the effect of
bounded disturbances is the paper by P. A. Cook (1980). As an example, he considered
the damped pendulum equation

X + 2ex + sin x = u(t)

with |u(t)| < k for all ¢. A suitable quadratic Lyapunov function V' is found using (11)
with Q = 2¢l and then, from V, a sufficient condition on k to ensure that |x| < v for
all t is

k < ve/(1 — &%) — 3(v — sin v).

Integration by parts An important development in the construction of Lyapunov
functions was introduced by R. W. Brockett (1970). His result may be stated as
follows: given the linear constant-coefficient nth-order differential equation

p(D)y =0, (13)

where p(D) takes the form of equation (6) given earlier, then a Lyapunov function
for (13) is

V(x) = J{q(D)yp(D)y — [r(D)y1*} dt,

where x is the phase-space vector [y, Dy,.., D" 'y]7, q(s)/p(s) is a positive-real
function, and

Ev[4(s)p(—s)] = r(s)r(—>s),

with Ev(e) denoting the even part of the polynomial (¢) and r(s) being a
Hurwitz - polynomial. The importance of this technique is its connection with
frequency response, since it is a property of the positive-real function g(s)/p(s) that
Re[q(jw)/p(jw)] = 0 for all real w.

We note that some special choices of g(s) are possible: if g(s) is chosen as the
polynomial a,s"~! + a;5s"™3 + ass" % +- formed from p(s) by deleting alternate
terms, then ¥ = 4x" Hx, using the special Hermite form H given earlier in equation (8).
On the other hand, if q(s) is chosen as (d/ds) p(s) = ns".'1 +a(n—1s""2 4+ a,,
then it turns out that ¥ = —xT Hx; i.e. H turns up in V rather than V (Parks 1969),
so that the sufficient conditions obtained from ¥V are in fact necessary as well.

The variable-gradient method Of more general methods of constructing Lyapunov
functions, the so-called variable-gradient method of D. G. Schultz and J. E. Gibson
(1962) is prominent. Here the gradient of V, that is the vector

v aviT
=grad V= —,.,—|,
g=Er [axl 5x,]
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is considered as g = [¢,(x) ,..., g,(x)] 7, with the g,(x) given as

gi(x) = Z aU(x)x],
Jj=1
that is, as quasi-linear forms in x, ,..., x,. Two sets of conditions are imposed on g:
first, it has to be the gradient of a scalar function (V') so that the n x n curl matrix
of g is zero, i.e.

and secondly ¥ = gTx < 0, so that V is negative-definite or negative-semidefinite. ¥’
may be found by integration along any path from the origin to the general point x
(usually the path is chosen, for convenience of the integration, as parallel to each x;
axis in turn).

A variant of this procedure is due to D. R. Ingwerson (1961): here the Jacobian

matrix
o) - [513(::)]"

0x; dij=1

is calculated from (9) to give
X =J(x)x. (14)

The Lyapunov matrix equation J' (x)P(x) + P(x)J(x) = — Q is solved for P(x), and
a new matrix P,(x) is formed from P(x) by putting all x, = 0 in (P(x)),; except x;
and x;. The procedure then follows that of the variable-gradient method, taking

L] xj
gi(x) = Z j (Py(x;, éj))lj déjy
=1 Jo
the curl matrix being identically zero from the construction of g,.

The Zubov Method In a series of papers culminating in a book, V. I. Zubov (1962)
developed a scheme for solving the partial differential equation

(grad V) f(x) = —6(x), (15)

where 6(x) is a positive-definite or positive-semidefinite function. In particular, if f(x)
can be developed as a power series in the components x; of x, then ¥ can also be so
developed. In general, there is the danger of a combinatorial explosion in doing this,
but in simple examples the method works well and, in some cases, exact domains of
attraction can be found.

4.4  Popov’s stability criterion

Important developments by V. M. Popov (in Romania) and R. E. Kalman (in the
USA) led to a connection between frequency response and the existence of Lyapunov

B T e e e - - b e e s e
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u=0 R q(s)
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Y
(o)

/(:o) -/| c

Fi1G. 8. Feedback loop for Popov’s criterion.

functions. A neat form of these results is due to Brockett (1964) for the feedback loop
shown in Fig. 8, and may be stated as a theorem:

The null solution of the system shown in Fig. 8 is asymptotically stable for all
admissible f(o) if there is an a > 0 such that (1 + as)G(s) is a positive-real
function.

The key property of a positive-real function Z(s) is that Re Z(jw) = O for all real w.
The theorem leads to the graphical interpretation of Fig. 9, showing the modified
Nyquist plot of G(jw), in which w Im G(jw) is plotted against Re G(jw). In Fig. 9, this
modified Nyquist plot must lie to the right of a straight line through the origin with
slope 1/a—the ‘Popov line’—for asymptotic stability, as stated in the theorem. In
fact, this condition ensures the existence of a Lyapunov function of the type ‘quadratic
form plus integral of the non-linearity’, the quadratic form being found by Brockett’s
‘integration by parts’ technique.
If the non-linearity can be confined so that

0 < of(0) < ke?* (6 #0),

then a relaxation of the Popov condition may be made by moving the Popov
line a distance 1/k to the left of the origin of the modified Nyquist diagram as
shown in Fig. 10. For example, if G(s) in Fig. 8 is 1/(s® + as® + bs), with a,b > 0,

T

o lm G{jo)
4

Y

e

o Re G (jo) —>

&

s

FiG. 9. Popov line.

Bt
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o lm G{jw)

«—>»0 Re Gjw) ——»

FiG. 10. Displaced Popov line.

then the closed loop is asymptotically stable, provided that 0 < af(0) < aba?
for o # 0.

4.5 The circle criterion
Another form of time-varying feedback loop is shown in Fig. 11. This is a linear
problem since

p(D)x + k(t)g(D)x = u, (16)

where p(D)x = e and y = g(D)x. Brockett’s technique may be used here to prove
the ‘circle criterion™

Let G(s) be a rational function with more poles than zeros, no common factors,
and no poles in Re s > 0. If the conventional Nyquist plot G(jw) does not encircle
or enter the circular disc with diameter [ —1/§, — 1/a], then the null solution

u=0 als) Y
; AT

A 4

Ky X

Ikm

FiG. 11. Feedback loop for the circle criterion.

&
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FiG. 12. The circle criterion.

of equation (16) (with u = 0) is uniformly asymptotically stable if
0<p+esft)Sa—e<®
for some ¢ > 0.

This criterion is illustrated in Fig. 12, which shows the location of the circular disc
in the complex plane.

4.6 Sampled-data or discrete-time systems

Lyapunov functions may be constructed also for discrete-time systems. If the discrete
time is taken as ..., t — 1,t,t + 1,t + 2, ..., then the ‘derivative’ of the Lyapunov
function V| is taken as the difference ¥, — V,_,. Again quadratic forms may often be
used; so, for example, the stable linear discrete-time system

x, = Ax,_, ”

has a Lyapunov function x,” Px,, where P satisfies the discrete-time Lyapunov matrix
equation
ATPA—-P= -9, (18)

in which Q is positive-definite or positive-semidefinite. By a suitable choice of Q, the
necessary and sufficient stability condition that P is positive-definite can be identified
as the classical Shur—Cohn stability criterion for the eigenvalues of A4 to lie within
the unit circle of the complex plane (Parks 1964a; Jury 1974).

4.7 Special Lyapunov functions

Occasionally, special types of Lyapunov function may be employed. A good example
is the Lyapunov function

v=3 Ix (19)

iel

0TO0Z ‘T 1snbBny uo (qI7 oulared) Alsianiun alels uuad e hio speuinolpioyxoiowewi//:dny woly papeojumod


http://imamci.oxfordjournals.org

292 P. C. PARKS

devised by H. H. Rosenbrock (1963). If this is applied to the linear system
X = Ax, (20)

then it is sufficient to check that the trajectories of (20) are directed inwards at all
the vertices of the hypercubes defined by ¥ = constant surrounding x = 0. This will
be so if

ajj + izl Iaul s _81 < O (J =1 yeery n). (2])
ik f

An alternative Lyapunov function of a simple type is

V = max |x;],

when the condition corresponding to (21) is

ag+ Y lagl < —g <0 (i=1,.,n). (22)
I
Inequalities (21) and (22) will be recognized as Gershgorin’s (1931) sufficient
conditions for the stability of (20).

4.8 Lyapunov functions for partial differential equations

Many important physical processes are described by partial differential equations as
opposed to ordinary differential equations considered so far. In control-engineering
language, these are ‘distributed-parameter systems’, as opposed to ‘lumped-parameter
systems’. A. A. Movchan (1959) was among the first to extend Lyapunov’s second
method to distributed-parameter systems. The precise definitions of stability have to
be extended to normed metric spaces in which the Euclidean distance \/(x} + -+ x2)
used hitherto is replaced by norms such as

LG e

A simple example will illustrate these ideas.
Consider the damped vibrating string of Fig. 13 with equation of motion
a’y 3%y oy
—=m—=+c—=, 23
ox? or? ot (2
where y(x,t) is the lateral displacement of the string, m its (constant) line density,
¢ (>0) is a viscous damping constant, and T the constant tension in the string;
the boundary conditions are y(0,t) = y(I,t) = 0 (t € R). Consider the Lyapunov

functional
V= fxﬂo [-}T<ax> * %m E dx, (24)
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y
/?{)
(o) N— / X —>

F1G. 13. Vibrating string.

which will be recognized as the total potential and kinetic energy in the string. Then

. ! dy 02 dy 02
V=J (T—y 4 +m—y—y)dx. @5)
c=o \ Ox 0t dx ot ot?
Substituting for m 8y/dt* from the differential equation (23), integrating by parts
with respect to x, and using the boundary conditions, ¥ becomes

! 2
V= j — c(%) dx <0. (26)

x=0

Now, if a metric-space norm p is considered, where

] 2
oo
1]

it can be shown that ¥V — 0 as t - o and, since ¥ bounds lp? from above, where
A = min{4r?T/I?, m}, then p? — 0 also.

The Lyapunov functional technique may also be employed to determine the
stability of distributed-parameter control systems, as controls located at the
boundary, or at fixed points in space, or distributed in space will enter into the
expression for V. Conditions on the controls can ensure that ¥ < 0. Examples of this
technique will be found in Parks & Pritchard (1969).

A useful technique for constructing Lyapunov functionals for distributed-
parameter systems will also be found in Parks & Pritchard (1969) with further
examples in Parks & Pritchard (1972). If the partial differential equation is written
in an operator form Lu = 0, then a second operator M is formed by ‘differentiating’
L partially with respect to the symbol ‘d/0t’. A Lyapunov functional is found by
integration by parts applied to the integral j', j'x (Lu)(Mu) dx dt to obtain two groups

of sign-definite terms, viz.
f qu+jf Q dx dt.
x 1 X

V is now taken as V = j'q dx, and its time derivative is ¥ = —_f Q dx, because
fi J« (Lu)(Mu) dx dt = 0 (since Lu = 0).
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49 Recent Applications of Lyapunov’s second method to control problems

Here adaptive control, robotics, and neural networks will be particularly emphasized.

4.10 Adaptive control systems

The history of adaptive control can be traced back to the 1950s, and an early
milestone was the flight adaptive control symposium held at Wright Field, Dayton,
Ohio in 1959 (Gregory 1959). An important idea at this symposium was the
model-reference adaptive control (MRAC) system of Whitaker (Osburn et al. 1961).
Here an error signal is formed by subtracting the output of the real plant from the
output of an ideal model. This error is then used to adjust gains within the plant so
that it follows the model (Fig. 14).

The system is essentially nonlinear. Whitaker devised an algorithm for adaption
(the ‘M.LT. rule’) based on what today would be called ‘sensitivity’ arguments—
these, however, are heuristic rather than exact, and can lead to instability of the
adaptive loop. Parks (1966) was one of the first to recast the design of MRAC systems
using Lyapunov functions. This work also introduced a role for positive-real functions
in MRAC design. The procedure was improved by R. V. Monopoli (1974) and by
Y. D. Landau (1979), who introduced Popov’s (1973) hyperstability theory as an
alternative to the Lyapunov design procedure.

The Lyapunov design procedure This early work neglected some aspects of the
problem such as parameter convergence, and later work has emphasized the concepts
of ‘persistence’ of the input signals required to drive the adaptive loops, and of system
robustness. This followed a lively discussion initiated by Rohrs et al. (1985). Today
the subject has achieved a certain maturity and is the topic of several new books by
Goodwin & Sin (1984), Anderson et al. (1986), Narendra & Annaswamy (1989),
Astrom & Wittenmark (1989), and Sastry & Bodson (1989). Lyapunov-function
techniques are used extensively, but are combined with various results from functional
analysis and the use of ‘averaging’ techniques for solving time-varying differential
equations.

2/
> Model >
+
Input Error e
—_———e
r(t) /
y Z
> Controller > Plant
yi 9,
| Adaptive _
algorithm <

Fi1G. 14. Model-reference adaptive control.
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F1G. 15. Lyapunov design of gain adaption loop.

As a simple example of the Lyapunov-function technique, consider the gain
adaption loop shown in Fig. 15. The Lyapunov function

V =e"Pe + A(x + ym)?,

where PA+ A"P= —Q,x = K — K_,m = B'e" Pbr, . and y are positive constants,
and B’ = 1/, has

V=—e Qe— 2lym?,
using the stable adjustment law for K_:
K, =m+ ym. (28)

If y = 0, the original problem considered by Parks (1966) is obtained. Here a matrix
differential equation may be written in terms of e = 0, — 0, that is,

[j B [—B’:TPr ﬂ[j (29)

This is a linear equation, but with time-varying coefficients on account of r(t), the
system input. In Anderson et al. (1986), a more general equation of this type is

considered, i.e.
él_ A b7 (1) l:e:,
[é]‘[—e«ﬁ(z)ﬁ 0 ] 0r 0

or, recognizing ¢ (s/ — A)~ b as a scalar transfer function H(s) and eliminating e, the
vector differential equation

0(t) = —ed(t)H(s){¢ 0}

is obtained, where H(s){¢ "0} denotes that ¢ 70, a scalar, is filtered by the transfer
function H(s). In this description of the adaptive system, 0(t) is described as the
‘parameter error vector’, ¢(t) as a ‘regressor vector’ generated by the adaptive system
and its input, and ¢ is the ‘adaptive gain’.
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Now a tentative Lyapunov function for (30) is
V=e"Pe+ 4070, (31

for which ¥V = —eTQe if 1 = 1/¢, while P satisfies the following Lyapunov matrix
equation with constraint:

PA+ATP= -0, Pb=c. 32)

The existence of a solution to the two equations (32) is assured by the celebrated
‘MKY’ or Meyer-Kalman-Yakubovich lemma (Kalman 1963), which requires the
transfer function H(s) = ¢"(s] — A)~ ' b to be a positive-real function. In addition, for
convergence of the parameter error vector to zero, it is necessary that ¢(t) is
‘persistently exciting’, or that there is a suitable input continually driving the system
and providing signals to operate the adaption mechanism.

4.11 Robotics

Typical robotic systems consist of a number of mechanical linkages which are rapidly
moving relative to one another, and thus changing their moments and products of
inertia as measured about the axes about which controlling torques are applied.
Adaptive controls using Lyapunov functions to assure stability seem attractive in
this situation. A pioneer in this use of the Lyapunov-function technique has been
J. J. E. Slotine (Slotine & Li 1987; Slotine 1988). A simple two-link example of such
a robot is shown in Fig. 16, taken from R. Johansson (1990). Typically the equations

F1G. 16. Two-link manipulator, from Johansson (1990).
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of motion are obtained from the classical rigid-body dynamical theory using
Lagrange’s equation of motion, and may be written

M(q)§ + C(q, )4 + glg) = t. (33)

Here ¢, ¢, and § are vectors representing respectively the angular position, velocity,
and acceleration of the joints, 7 is a vector of torques applied to the joints, M = M '
is a moment-of-inertia matrix, C a matrix representing Coriolis, centripetal, and
frictional forces, and g(gq) represents a vector of gravitational torques.

In a typical Lyapunov design procedure, such as that of Johansson (1990), the
model-reference adaptive control (MRAC) approach is used. A model for ¢ is set up as

qr + qur + qur = Kr’ (34)

where K;, K, and K are matrices chosen to give desirable damping, stifiness, and
gain characteristics. A difference vector § = ¢ — ¢, is then formed, and the design
attempts to eliminate the position and velocity errors § and §. A full error state vector
x(¢) is constructed consisting of §, §, and 6, the latter being a vector of parameter
errors, and a Lyapunov function candidate is the quadratic form in x(t) given by

V=x"P(g)x, (35)
for which ¥ can be shown to be of the form
V=—@G"§)04§9" <0. (36)

Some simulated results for the system of Fig. 16, taken from Johansson (1990) are
shown in Fig. 17. A sudden change in the mass m, from 1 kg to 10 kg took place at
timet=1s(m, =1kg !, =1, =1m).

A certain maturity is also apparent in this field. Two recent books which both use
Lyapunov-function techniques are Craig (1988) and Slotine & Li (1991), but new
research continues to appear—see, for example, Qu et al. (1992).

4.12  Artificial neural networks

Artificial neural networks and their applications are the subject of intensive research
activity at the present time, with many new books and journals being published and
conference programmes established. Significant applications of neural networks in
the control field are also being developed (Miller et al. 1990; Warwick et al. 1992).
Neural networks are essentially nonlinear in their operation, and so it is not surprising
that Lyapunov functions have appeared in this literature, in particular to establish
stability of equilibrium states of the Hopfield net (Hopfield 1982; Grossberg 1988).
This is a fully connected network (see Fig. 18) forming an ‘associative memory’ which
can store patterns and has the ability to recover the exact stored patterns when
presented initially with partial or distorted versions of them. Thus the device has a
number of stable equilibrium points with surrounding domains of attraction: a
distorted pattern presented to the net is an initial point in one of these domains; in
subsequent operations, the trajectory leads to the domain’s equilibrium point: the
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FiG. 18. Hopfield net.

exact stored pattern. The number of patterns that can be stored in this way appears
to be given approximately by 0.14N where N is the number of neurons in the network.

The input to node or neuron is ) ,t,x;+ I, where t; are the ‘weights’ or
interactions between nodes, with t; = ¢;; and t;; = 0; here x; are the outputs of the
nodes and I, are the external inputs. The output x, from node i is given as x;, = y; if
the input is less than or equal to u;, and x; = 7, if the input exceeds u;, where 5, > p;
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and y; is the ‘threshold’ of neuron i. A Lyapunov-like function is given by

V= —%XTTI—ZI,XI+ZM,XI, (37)
i i
where T is the matrix with entries t;;. Now the change in V' due to a change Ax; in x; is

AV= ‘-(Z tijx1+ll—ul)AX(; (38)
]

here Ax; may be 0 or (9, — v;), where the sign is plus if Z, tyx;+ I —u; >0 and
minus if Y ; t;,x; + I; — u; < 0. Thus ¥ can only decrease, and stability of the given
equilibrium point can be established.

The stability theory of control systems employing artificial neural networks has
yet to be developed. K. S. Narendra (Miller et al. 1990: p. 126) states that ‘our
knowledge of the stability of dynamical adaptive systems using artificial neural
networks is quite rudimentary at the present time and considerable work remains to
be done ... new concepts and methods based on stability theory will have to be
explored’. So far, only partial results are available, such as the proof of convergence
of the associative memory for the cerebellar model articulation controller (CMAC)
of J. S. Albus (1975). This is given by Parks and Militzer (1989), where a rather trivial
Lyapunov function ¥ = x"x is employed. V is reduced as (discrete) time proceeds
by an orthogonal projection algorithm for adjusting the ‘weights’ in the memory.
The algorithm was originally invented by S. Kaczmarz (1937) for solving sets of linear
algebraic equations by iteration, and rediscovered by Albus.

Lyapunov-function arguments appear in a more decisive role in a recent paper by
R. M. Sanner and J. J. E. Slotine (1991) which uses Gaussian radial basis functions
to compensate for plant nonlinearities and to develop a convergence weight-
adjustment algorithm.

4.13 Other new concepts

A limited number of pages restricts discussion of many other current applications of
Lyapunov’s stability theory. One may note, however, the concept of ‘stability radius’
developed in a series of papers on robustness of linear systems by D. Hinrichsen and
A. J. Pritchard (1992) involving ‘Lyapunov functions of maximum robustness’. The
authors remark that they ‘believe that this procedure (of going from matrices to
polynomials) is both theoretically more productive and numerically more secure than
the converse method, which tackles robustness problems for matrices by applying
polynomial techniques (e.g. Kharitonov’s theorem) to their characteristic poly-
nomials’.

Another current application of Lyapunov stability theory is the proof of stability
of so called ‘receding-horizon control’ of nonlinear systems developed by H.
Michalska and D. Q. Mayne (1990, 1991) as the solution of a constrained optimal
control problem.

Finally, Lyapunov-like arguments are used by Brockett (1991a)—see also Brockett
(1991b)—with the intriguing title ‘Dynamical systems that sort lists, diagonalize
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matrices, and solve linear programming problems’. This concerns equilibrium states
of the n x n matrix differential equation

H = H*N — 2HNH + NH?, (39)

where H is a real symmetric and /N a real diagonal matrix. One remarkable property
of the solution H(t) of (39) is that, if N is a diagonal matrix with differing elements
Nyt s N, then H(o0) is a diagonal matrix consisting of the eigenvalues of H(0)
ordered according to the relative magnitudes of Ny, , ..., N,,.
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