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1 Feedback Linearization 
 
Similarly to the approach taken in sliding mode control, in this section we wish to exploit 
the form of the system equations to modify the dynamics to something more convenient. 
 
We consider a class of nonlinear systems of the form 
 

where : nf D → ℜ  and : n pG D ×→ ℜ  are defined on  a domain nD ⊂ ℜ , which contains 
the origin, and pose the question whether there exists a state feedback control 
 

 
and a change of variables 
 

 
that transforms the nonlinear system into an equivalent linear system. 
 
If the answer to this question is positive, we can induce linear behavior in nonlinear 
systems and apply the large number of tools and the well established theory of linear 
control to develop stabilizing controllers. 
 

1.1 Motivation  
 
Example 1.1: To introduce the idea of feedback linearization, let us start with the 
problem of stabilizing the origin of the pendulum equation. 
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If we choose the control 
 

( )1sin sin
a v

u x
c c

δ δ� �= + − +� �  

 
We can cancel the nonlinear term ( )1sin sina x δ δ� �+ −� � . This cancellation results in the 

linear system 
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Thus, the stabilization problem for the nonlinear system has been reduced to a 
stabilization problem for a controllable linear system. We can proceed to design a 
stabilizing linear state feedback control 
 

1 1 2 2v k x k x= − −  
 
to locate the eigenvalues of the closed loop system 
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in the open left half plane. The overall state feedback control law is given by 
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Clearly, we should not expect to be able to cancel nonlinearities in every nonlinear 
system. There must be a certain structural property of the system that allows us to perform 
such cancellation. Therefore, the ability to use feedback to convert a nonlinear state 
equation into a controllable linear state equation by canceling nonlinearities requires the 
nonlinear space equation to have the structure 
 

 
Where A  is n n× , B  is n p× , the pair ( ),A B  is controllable, the functions : n pα ℜ → ℜ  

and : n p pγ ×ℜ → ℜ  are defined in the domain nD ⊂ ℜ  that contains the origin, and the 
matrix ( )xγ  is nonsingular for every x D∈ . If the state equation takes the form 

( ) ( )x Ax B x u xγ α� �= + −� �� , then we can linearize it via the state feedback 
 

 
where ( ) ( )1x xβ γ −= , to obtain the linear state equation 
 

 
For stabilizing, we design v Kx= −  such that A BK−  is Hurwitz. The overall nonlinear 
stabilizing state feedback control is 

( ) ( )x Ax B x u xγ α� �= + −� ��

( ) ( )u x x vα β= +

x Ax Bv= +�
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Suppose the nonlinear state equation does not have the required structure. Does this mean 
we cannot linearize the system via feedback? The answer is no. Even if the state equation 
does not have the required structure for one choice of variables, it might do so for another 
choice. 
 
 
Example 1.2: Consider, for example the system 
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We cannot simply choose u  to cancel the nonlinear term 2sina x . However, if we first 
change the variables by the transformation 
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sin xxaz
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then 1z  and 2z  satisfy 
 

( )2
1

21
222

21

sincos.cos zu
a
z

axxaz

zz

−�



�
�
	

�==

=

−��

�

 

 
and the nonlinearities can be cancelled by the control 
 

2
1

2

1
cos

u x v
a x

= +  

 
which is well defined for 22 2xπ π− < < . The state equation in the new coordinates can 

be found by inverting the transformation to express ( )1 2,x x  in the term of ( )1 2,z z ; that is, 
 

1 1

1 2
2 sin

x z

z
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−
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which is well defined for 2a z a− < < . The transformed state equation is given by 
 

( ) ( )u x x Kxα β= −
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which is in the required form to use state feedback 

 � 
 
  
Definition 1.1: A nonlinear system 
 

 
where : nf D → ℜ  and : n pG D ×→ ℜ  are sufficiently smooth on a domain nD ⊂ ℜ , is 
said to be feedback linearizable (or input state linearizable) if there exists a 
diffeomorphism : nT D → ℜ  such that ( )zD T D=  contains the origin and a change of 

variables ( )z T x=  transforms the system ( ) ( )x f x G x u= +�  into the form 
 

 
with ( ),A B  controllable and ( )xγ  nonsingular for all x D∈ . 
 
 
Definition 1.2: f  is called smooth if f C∞∈ . That is, f  is continuous and all 
derivatives of all order are continuous. 
 
Definition 1.3: T  is a diffeomorphism if T  is smooth, and the inverse exists and is also 
smooth. 
  
  
Remark 1.1: When certain output variables are of interest, as in tracking control 
problems, the state model is described by state and output equations. Linearizing the state 
equation does not necessarily linearize the output equation. 
 
Example 1.3: Consider the previous system 
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2

2 1

sinx a x

x x u

=
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If the system has an output 2y x= , then the change of variables and state feedback control 
 

1 1z x= , 2 2sinz a x= , and 2
1

2

1
cos

u x v
a x

= +  

( ) ( )x f x G x u= +�

( ) ( )z Az B x u xγ α� �= + −� ��
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yield 
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While the state equation is linear, solving a tracking control problem for y  is still 
complicated by the nonlinearity of the output equation. 
 
 

1.1.1 Transformation Matrix ( )T x  
 
With the help of a Matrix ( )T x  we want to transform 
 

into the new system 
( ))()( xuxBAzz αγ −+=�  

Given the previous system with a coordinate transformation ( )z T x=  we derive 
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and obtain a system of partial differential equations 
 

�
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By solving this set of partial differential equations for T(x), the transformation is found. 
 
Remark 1.2: ( )T x  is not uniquely defined by this system of differential equations as 

shown when we consider any linear transformation z Mz=� . Then ( ) ( )T x MT x=�  will 

also satisfy this system but with 1A MAM −=�  and B MB=� .  
 

( ) ( )x f x G x u= +�
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We use this fact to choose the matrix A  and B  to be in the canonical controllability form. 
For simplicity we consider this for a single-input system.  In this case, the control 
canonical form is as follows. 
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Where the iα  are the coefficients of the characteristic polynomial of A: 
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Note that ),( CC BA  is feedback equivalent to a chain of integrators.  i.e. with the mapping 

�
−

=

+
1

0

n

i

i
i suu α� , the system is transformed to a chain of integrators.  Thus we consider 

the following system matrices: 
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Then with 
 

 
we obtain 
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Solving this system of partial differential equations we can find ( )T x . 

( )
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T x
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The following theorem, stated without proof, gives necessary and sufficient conditions for 
feedback linearizability of a single-input affine-in-control nonlinear system. 
 
We need some notations first. Let f, g be smooth vector fields on . The Lie-bracket of f 
and g is defined as . 
We also define 

 
 

A distribution D is a mapping that assigns to each point in the state space a subspace of 
the tangent space at that point. In other words, a distribution is a family of smooth vector 
fields that span a subspace of  at each point. A distribution is involutive if the Lie 
bracket of any two vector fields in the distribution lies in the distribution. To wit, if D is 
spanned by , then for each i, j, x, we have 

 
where  are smooth functions. Note that this is a natural generalization of the concept of 
linear dependence of vectors. We define the following special distributions: 

 
 
Theorem 1.1: A single input system  at a point x if and only if 

•  is a linearly independent family of vectors, and 
•  is involutive. 

 
  

1.2 Input-Output Linearization  
 
Consider the single-input-single-output system 
 

 
where f , g , and h  are sufficiently smooth in a domain nD ⊂ ℜ . The mappings 

: nf D → ℜ  and : ng D → ℜ  are called vector fields on D . 
 
Derive conditions which allow us to transform the system such that the input output map 
is linear. 
 
The derivative y�  is given by 
 

 
where 
 

( ) ( )
( )

x f x g x u

y h x

= +
=

�

( ) ( ) ( ) ( )f g

h
y f x g x u L h x L h x u

x
∂

� �= + = +� �∂
�
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is called the Lie Derivative of h  with respect to f . 
 
If ( ) 0gL h x = , then ( )fy L h x=� , independent of u . If we continue to calculate the second 

derivative of y , denoted by ( )2y , we obtain 
 

 
Once again, if ( ) 0g fL L h x = , then ( ) ( )2 2

fy L h x= , independent of u . Repeating this 

process, we see that if ( )h x  satisfies 
 

( )1 0i
g fL L h x− = , 1, 2,..., 1i ρ= − ; ( )1 0g fL L h xρ − ≠  

 
then u  does not appear in the equations of y , y� ,…, ( )1y ρ −  and appears in the equation of 

( )py  with a nonzero coefficient: 
 

 
The forgoing equation shows clearly that the system is input-output linearizable, since the 
state feedback control 
 

 
reduces the input-output map to 
 

 
which is a chain of ρ  integrators. In this case, the integer ρ  is called the relative degree 
of the system. 
 
Example 1.4: Consider the controlled van der Pol equation 
 

( )
1 2

2
2 1 1 21

x x

x x x x uε
=

= − + − +

�

�
 

 
with output 1y x= . Calculating the derivatives of the output, we obtain 
 

( ) ( )f

h
f x L h x

x
∂ =
∂

( ) ( ) ( ) ( ) ( ) ( )2 2f
f g f

L h
y f x g x u L h x L L h x u

x

∂
� �= + = +� �∂

( ) ( ) ( )1p
f g fy L h x L L h x uρ ρ −= +

( ) ( )1

1
f

g f

u L h x v
L L h x

ρ
ρ −

� �= − +� �

( )y vρ =
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( )
1 2

2
2 1 1 21

y x x

y x x x x uε
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Hence, the system has relative degree two in 2ℜ . For the output 2

1 2y x x= + , 
 

( )2
2 2 1 1 22 1y x x x x x uε� �= + − + − +� �

�  

 
and the system has relative degree one in { }2

0 2 0D x x= ∈ℜ ≠  

             
� 
 
 
Example 1.5: Correspondence to relative degree for Linear Systems 
 
Consider a linear system represented by the transfer function 

 
where m n<  and 0mb ≠ . A state model for the system can be taken as 
 

 
where 
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� �
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[ ]0 1

0 0m n
C b b

×
= � �  

 
This linear space model is a special case of ( ) ( )x f x g x u= +� , ( )y h x= , where 

( )f x Ax= , g B= , and ( )h x Cx= . To check the relative degree of the system, we 
calculate the derivative of the output. The first derivative is 
 

 

( )
1

1 0
1

1 0

...
...

m m
m m

n n
n

b s b s b
H s

s a s a

−
−
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x Ax Bu
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=
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If 1m n= − , then 1 0nCB b −= ≠  and the system has relative degree one. Otherwise, 

0CB =  and we continue to calculate the second derivative ( )2y . Noting that CA  is a row 

vector obtained by shifting the elements of C  one position to the right, while 2CA  is 
obtained by shifting the elements of C  two positions to the right, and so on, we see that 
 

1 0iCA B− = , for 1, 2,..., 1i n m= − − , and .1 0n m
mCA B b− = ≠  

 
Thus, u  appears first in the equation of ( )n my − , given by 
 

 
and the relative degree of the system is n m−  (the difference between the degrees of the 
denominator and numerator polynomials of ( )H s ). 
             
� 
 
 
Now let 
 

 
where ( )1 xφ  to ( )n xρφ −  are chosen such that 
 

 ( )1 0g x
x
φ∂ =

∂
, for 1 i n ρ≤ ≤ −  

 
This condition ensures that when we calculate 
 

 
the term u  cancels out. It is now easy to verify that the change of variables ( )z T x=  
transforms the system into 
 

( ) 1n m n m n my CA x CA Bu− − − −= +

( )

( )

( )

( )

( )

( )

( )

1

1

n def def

f
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x x

z T x
h x x

L h x

ρ

ρ

φ

φ φ η

ψ ξ

−

−

� �
� �
� �
� � � � � �
� � � � � �− − −= = = − − − = − − −� � � � � �
� � � � � �� �� �� �
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φη ∂
� �= +� �∂
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where pξ ∈ℜ , n ρη −∈ℜ , ( ), ,C C CA B C  is a canonical form representation of a chain of ρ  
integrators, where 
 

 

( ) ( )1
g fx L L h xργ −=  and ( ) ( )

( )1
f

g f

L h x
x

L L h x

ρ

ρα −= −  

  
We have kept α  and γ  expressed in the original coordinates. These functions are 
uniquely determined in terms of f , g , and h . They are independent of the choice of φ . 
They can be expressed in the new coordinates by setting 
 

( ) ( )( )1
0 , T zα η ξ α −=  and ( ) ( )( )1

0 , T zγ η ξ γ −=  

 
which, of course, will depend on the choice of φ . In this case, the equation can be 
rewritten as 

 
 
 
The three equations of the new system are said to be in the normal form. This form 
decomposes the system into an external part ξ  and an internal part η . The external part is 
linearized by the state feedback control 
 

 
where ( ) ( )1x xβ γ −= , while the internal part is made unobservable by the same control. 

The internal dynamics are described by ( )0 ,fη η ξ=� . Setting 0ξ =  in that equation 
results in 
  

 
which is called the zero dynamics of the system.  If the zero dynamics of the system are 
(globally) asymptotically stable, the system is called minimum phase. 
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c C

C

f

A B x u x

y C

η η ξ
ξ ξ γ α

ξ

=

� �= + −� �

=

�

�

( ) ( )
( )1

0 ,
x T z

f f x
x
φη ξ

−=

∂=
∂

( ) ( )0 0, ,c CA B uξ ξ γ η ξ α η ξ� �= + −� �
�

( ) ( )u x x vα β= +

( )0 ,0fη η=�
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Theorem 1.2: The origin 0z =  is an asymptotically stable equilibrium point of the 
linearized system if 0η =  is an asymptotically stable equilibrium point of 

 
In other words, a minimum phase input-output linearizable system can be stabilized by a 
feedback law 

)()()( xKTxxu βα −=  
 
Proof  
The idea is to construct a special Lyapunov function. By the converse Lyapunov theorem 

( )1V η∃  such that 
 

( ) ( )1
3,0

V
f η α η

η
∂ < −
∂

 

 
in some neighborhood of 0η = . Let 0TP P= >  be the solution of the Lyapunov equation 
 

( ) ( )T
P A BK A BK P I− + − = −  

 
Construct a second Lyapunov function 2V  
 

2
TV Pξ ξ=  

 

Then use ( ) ( )1, TV V k Pη ξ η ξ ξ= + , 0k >  
 
We want to check that the derivative of ( ),V η ξ  is negative 
 

( ) ( ) ( )

( ) ( ) ( )( )
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1

1

1 1
0 0

3 1

,
2

,0 ,0 ,
2

T

T

I

T

T

k

V k
V f P A BK A BK P

P

V V k
f f f

P

k k

η ξ ξ ξ
η ξ ξ

η η η ξ ξ ξ
η η ξ ξ

α ξ ξ ξ

−

∂
� �= + − + −� �∂

∂ ∂= + − −
∂ ∂

≤ − + −

�
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 	 	 	 	 	�
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We see that if 1k k< , then 0V <� . 

� 
 

( )0 ,0fη η=�
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Remark 1.1: This is a local result 
 
Remark 1.2: If the origin 0η =  is globally asymptotically stable for ( )0 ,0fη η=�  one 
might think that system can be globally stabilized. This is not the case. 
 
Remark 1.3: Global stability can be guaranteed if the system is input to state stable and 
linearizable. 
 
Remark 1.4: One may think that the system can be globally stabilized, or at least semi-
globally stabilized, by designing the linear feedback control v Kξ= −  to assign the 

eigenvalues of ( )A BK−  far to the left in the complex plane so that the solution of 

( )A BKξ ξ= −�  decay to zero arbitrarily fast. Then, the solution of ( )0 ,fη η ξ=�  will 

quickly approach the solution of ( )0 ,0fη η=� , which is well behaved, because its origin is 
globally asymptotically stable. 
 
 
 
Example 1.6: Consider the third-order system 
 

 
The linear feedback control 
 

 
assigns the eigenvalues of 
 

 
at k−  and k− . The exponential matrix 

 
shows that as k → ∞ , the solution ( )tξ  will decay to zero arbitrarily fast. Notice, 

however, that the coefficient of the ( )2,1  element of the exponential matrix is a quadratic 

function of k . It can be shown that the absolute value of this element reaches a maximum 

( ) 3
2

1 2

2

1
1

2

v

η ξ η

ξ ξ
ξ

= − +

=
=

�

�

�

2
1 22

def

v k k Kξ ξ ξ= − − = −

2

0 0
2

A BK
k k

� �
− = � �− −� �

( ) ( )
( )2

1
1

kt kt
A BK t

kt kt

kt e te
e

k te kt e

− −
−

− −

� �+
= � �− −� �
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value /k e  at 1 k . While this term can be made to decay to zero arbitrarily fast by 
choosing k  large, its transient behavior exhibits a peak of the order of k . The interaction 
of peaking with nonlinear growth could destabilize the system. In particular, for the initial 
states ( ) 00η η= , ( )1 0 1ξ = , and ( )2 0 0ξ = , we have ( ) 2

2
ktt k teξ −= −  and 

 

 
During the peaking period, the coefficient of 3η  is positive, causing ( )tη  to grow. 

Eventually, the coefficient of 3η  will become negative, but that might not happen soon 
enough , since the system might have a finite escape time. Indeed the solution 
 

 
shows that if 2

0 1η > , the system will have a finite escape time if k  is chosen large 
enough. 

 � 
 
 
Remark 1.5: It is useful to know that the zero dynamics can be characterized in the 
original coordinates. Noting that 
 

 
we see that if the output is identically zero, the solution of the state equation must be 
confined to the set 

 
and the input must be 
 

 
 
 
Example 1.7: The system 
 

( )2 31
1

2
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( ) ( )
2
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2

01 1 1kt
t
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ηη

η −
=

� �+ + + −� �

( ) ( ) ( ) ( )( )0 0y t t u t x tξ α≡ � ≡ � ≡

( ) ( ) ( ){ }* 1
0 0f fZ x D h x L h x L h xρ −= ∈ = = = =�

( ) ( ) *

*
def

x Z
u u x xα

∈
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has an open-loop equilibrium point at the origin. The derivatives of the output are 
 

 
Therefore, the system has relative degree two in 3ℜ . Using ( ) 1g fL L h x =  and 

( )2
1 3fL h x x x= , we obtain 

 
1γ =  and ( ) 1 3x x xα = −  

 
To characterize the zero dynamics, restrict to 
 

 
and take ( )* 0u u x= = . This process yields 
 

 
which shows that the system is minimum phase. To transform it into the normal form, we 
want to choose a function ( )xφ  such that 
 

( )0 0φ = , ( ) 0g x
x
φ∂ =

∂
 

 
and 
 

 
is a diffeomorphism on some domain containing the origin. The partial differential 
equation 
 

 
can be solved by separating variables to obtain 

2
3

1 1 2
3

2 3

3 1 3

2

2
1

x
x x u

x

x x

x x x u

y x

+= − +
+

=
= +
=

�

�

�

2 3

3 1 3

y x x

y x x x u

= =
= = +

� �

�� �

{ }*
2 3 0Z x x x= ∈ℜ = =

1 1x x= −�

( ) ( ) 2 3

T
T x x x xφ� �= � �

2
3
2

1 3 3

2
0

1
x

x x x
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which satisfies the condition ( )0 0φ = . The mapping ( )T x  is a global diffeomorphism, as 

can be seen by the fact that for any 3z ∈ℜ , the equation ( )T x z=  has a unique solution. 
Thus, the normal form 
 

 
is defined globally. 

� 
 
 
Remark 1.6: (Robustness) Feedback linearization is based on exact cancellation of 
nonlinearities, which is, in practice, not often practically possible. Most likely we have 
only approximations α̂ , β̂  and ( )T̂ x  of the true α , β , and ( )T x . The feedback control 
law has the form 
 

 
and the closed loop system 
 

 
Adding and subtracting BKξ  to the ξ�  equation we obtain 
 

  
where 
 

 
The local closed loop system differs from the nominal one by an additive perturbation. 
Thus, it is often assumed that in most cases no serious problems are to be expected. 

( ) 1
1 3 3tanx x x xφ −= − + +

( )

( )

2
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ξ ξ
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−
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=
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�
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,

ˆ ˆˆ

f
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η η ξ
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=
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�
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,f

A BK B z
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�

( ) ( ) ( ) ( )2 2 2
ˆ ˆ ˆˆz KT K T Tδ γ α α β β β� �= − − − − −
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Remark 1.7: In some cases it might be useful not to cancel all nonlinearities. For instance 
 

 
Take ( )u K a x= − + , 0K >  and we obtain 
 

 
which is asymptotically stable. 
 

3x ax bx u= − +�

3x Kx bx= − −�


