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Unité CONPRI - Ecole Nationale d’ Ingénieurs de Gabès
Route de Medenine, 6029 Gabès, Tunisie

ahmedsaid.nouri@enig.rnu.tn ridha@ieee.org

Abstract. In this paper, we propose a methodology relative to the ap-
plication of a sliding mode control to linear multivariable systems. This
methodology is based on the decomposition of the system in several
subsystems controllable each by only one component of the input. The
application of the proposed strategy in the case of a sliding mode con-
trol to the multivariable system led, in addition to the simplicity offered
by the decomposition, to satisfactory simulation results in terms of the
desired performances in closed loop.
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1 Introduction

The variable structure control proved itself in regulation and tracking aspects
[1, 5, 9, 12]. But this type of control was often criticized because of the chattering
problem caused by the discontinuous control. Some ameliorations are proposed:
the equivalent control [13], the continuous function in a band around the sliding
surface [11], the generalized variable structure control [3, 9] and the higher or-
der sliding mode control [8, 9]. These ameliorations could extend the application
area to the control of hydraulic actuators [9], pneumatic actuators [9, 14],... etc.
For the multivariable systems case and in the most previous work, the appli-
cation of the variable structure control is carried out by supposing that the
multivariable system is composed in several inter-connected subsystems and the
control law is obtained by considering the interactions as external disturbances
([15] ...).
In this paper, we propose an implementation methodology of the sliding mode
control on multi-input systems by assuming the state feedback control idea [4].
The contribution of the proposed methodology is highlighted by numerical sim-
ulation on an academic example.
In this paper, we initially give an overview on the sliding mode control, then we
present the decomposition of a multivariable system in subsystems where each
one is controllable by only one component of the input [4] and finally can lead to
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an implementation methodology of the sliding mode control on linear multivari-
able systems. An illustration, through an academic example, of the suggested
methodology is given in section 3 of this paper.

2 Variable Structure and Sliding Mode Control

The sliding mode control constitutes the natural framework to deal with the
discontinuous systems or with the systems having a variable structure.
Let’s consider, first of all, the case of a continuous system defined by the differ-
ential equation: ẋ = f(x, u) where u ∈ U is the control, U is a convex set of
Rm. We define a control law under a state feedback form and having discontinu-
ities on surfaces defined in the state space. In the case of a monovariable system
where u can take the values u− or u+ and in the case of a surface S (set of the
state space defined by the equation S(x) = 0) having a codimension one, the
state feedback is defined by u = u+ if S > 0 and u = u− if S < 0 with u+ 6= u−.
Let’s consider now a surface S = 0 defined in Rn. It divides the state space
into two regions S > 0 and S < 0.
For a system having a behavior defined by the commutation between two vectors
fields f+ for S > 0 and f− for S < 0, the two vectors fields f+ and f− point to
the surface S. In this manner, any trajectory beginning its movement out of S,
will join it [7, 9].
The system described above is well defined, outside of the surface S (by one of
the two vectors fields f+ or f−); however, on S, the behavior is not defined and
can be imposed.
If the system is naturally discontinuous, it is defined by a given finite set of vector
fields on which the system can commutate according to the position of the state
space. In the two cases of discontinuities (natural or caused by a discontinuous
control), the system is described by a differential equation with discontinuous
right hand. The system is well defined outside the surface, the solutions can be
obtained from the classical theory of differential equations. But on the surface
where the system is not defined exactly, the system behavior is to be defined
according to a given direction (we note that the classical theory of the differen-
tial equations ceases to be valid, since the considered system does not verify the
traditional conditions of existence of the Cauchy-Lipschitz theorem because of
the discontinuity of the state vector on the commutation surface).
In the case where the surface is defined as a surface using the system output as
a component of the system’s state, the dynamic behavior that we seek to de-
fine on the commutation surface sliding can be considered as being the internal
dynamics of controlled system corresponding to the behavior of the closed loop
system.

Let x0 a point such as S(x0) = 0 where the rank of ∂S/∂x is one in x0. It
exists a neighborhood X of x0 such as S ∈ X which is a differential manifold
(its codimension is one; S divide X in two regions characterized by the points x
such as S(x) > 0 and S(x) < 0).
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We suppose that Lf+S(x0) < 0 and Lf−S(x0) > 0, It exists a neighborhood
of x0 in X where the inequalities remain valid.
We suppose that the neighborhood is equal to X (for simplification).

Definition
If under the action of the vector fields, the state checks the following inequalities:

x ∈ X⇒
{

Lf+S < 0
Lf−S > 0

then a sliding mode exists on S (locally) [10].

Figure 1 shows the various possible configurations, and specifies the correspond-
ing sliding mode on S [6].

S(x)=0

F
+

F
−

(a)

S(x)=0

F
+

F
−

(b)

S(x)=0

F
+

F
−

(c)

Fig. 1. Principle of the sliding mode (a - b: No Sliding Mode; c: Sliding Mode).

In literature, the previous definition is presented in several forms :

– A sliding mode exists on S if the projection of the segment generated by
f+(x) and f−(x) x ∈ S on a line crossing surface (parallel to tangent
space) at the point where the sliding mode exists, contains 0 at its interior

– In the case of the continuous systems (discontinuity due to the nature of the
control), a sliding mode exists on S if the system has in x ∈ S ⊂ X a relative
degree equal to one [10].

– A sliding mode exists on S if SṠ < 0 under the action of the commutation
law (the variety S is attractive).

The dynamics on surface S is not being determined, the problem is to define
the behavior of the state once the surface is reached. The theory of the ordinary
differential equations ceases to be valid because of the discontinuity of the sec-
ond member (the theorem assumptions of Cauchy-Lipschitz are not filled). In
literature, most researchers were interested in this problem of continuity of the
differential equations solutions to deduce from it the equation which describes
the dynamic behavior of the state on the discontinuous surface [2, 13]. We are
interested here in the approaches of Filippov [2] and of Utkin [13].

Filippov approach [2]:
Let F a family of vector fields. The system is defined by a strategy of commuta-
tion of F elements, so that a variety S becomes attractive and such a strategy
of commutation implies a sliding mode on S. According to this approach, the
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sliding dynamic equation which results from the application of such a family of
vector fields, is given by the vector field pertaining to the intersection of tangent
space to the sliding variety with the convex envelope generated by the family
F = {fi(X) : i ∈ I}. The sliding dynamics in x ∈ S, is given, within the meaning
of Filippov, by the intersection:

Conv(F )x ∩ TxS

where Conv(F )x is the space generated by f+ and f− in x, Conv() its closing,
Tx ∈ S the tangent space to S on x. The sliding dynamic is given by [6]:

{
x ∈ S
f∗ = λ f+ + (1− λ)f− = f− + λ (f+ − f−)

and takes the following value :

λ =
〈∂S, f−〉

〈∂S, (f− − f+)〉
where < ., . > is the scalar product.

Utkin approach [6, 13]:
In this approach, we consider systems where the discontinuity is due to the
nature of the control. The considered system is :

ẋ = f(x, u)with u(x) discontinuous in x

The sliding dynamic is the dynamic which results in replacing u by the value
which makes the sliding surface invariant under the action of the field called
equivalent. Let’s consider the system defined by the following equations:

ẋ = f(x, u) u ∈ U ⊂ R

u(x) =
{

u+(x) si S(x) > 0
u−(x) si S(x) < 0

The system defined above, presents a sliding behavior. The sliding dynamic is
given by :

f∗ = feq(x) = f(x, ueq)

where ueq is the equivalent control which makes the surface invariant. For x ∈ S,
ueq verifies the following inequality :

min(u−(x), u+(x)) < ueq < max(u−(x), u+(x))

Remarks

– As shown in figure 2, the dynamics of Filippov and Utkin are generally
different. They cannot even be ”collinear”. Indeed, each one corresponds to
a different situation according to whether we deal with discontinuous system
by nature (Filippov), or with a system which is made discontinuous by the
choice of discontinuous state feedback around S (Utkin). Moreover, it is
shown that they are equivalent in the case of systems linear in control.
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– There are other approaches to define the dynamics on the sliding surface.
One of these approaches, is the convex one which shows that sliding dynamics
belongs to the intersection between tangent space and smallest closed convex
space containing the vectors fields f(x, u) for u ∈ U where U is the set of
admissible controls.

Fig. 2. Filippov’s and Utkin’s fields.

3 Variable structure control for the multivariable system

Let’s consider a multivariable linear system described by the following equation:
{

ẋ(t) = Ax(t) + Bu(t)
y(t) = Lx(t) (1)

where :

– x ∈ Rn : state vector .
– A ∈ Rnxn : state matrix.
– u ∈ Rm : input vector.
– B ∈ Rnxm : matrix.
– y ∈ Rp : output vector.
– L ∈ Rpxn : matrix.

The sliding surface, chosen linear, is:

S(x) = CT x

where C ∈ Rmxn is a parameter matrix.
Assume that the control is composed of two terms, u = ueq + ∆u [9, 13]. The
equivalent control ueq expression is given by [9, 13]:

Ṡ(x) = 0 ⇒ CT ẋ = CT (Ax+Bu) ⇒ ueq(t) = − (
CT B

)−1
CT (Ax(t)) if

(
CT B

)−1
exists
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 TC B exists

−
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and the control is:

u(t) = − (
CT B

)−1
CT (Ax(t)) + ∆u where ∆u = −k sign (S(x))

where k is a gain chosen to eliminate the perturbation effect.
So, to apply the variable structure control to a multivariable system, we must

have the existence of
(
CT B

)−1.
To overcome this condition, we propose in this paper a methodology based

on the decomposition of the multivariable system into subsystems controllable
each by one component of the input.

4 Decomposition of a multivariable system to subsystems
controllable each by only one component of the input
[4]

Let’s consider the multivariable linear system described by equation (1).
The condition of governability of the system with regard to the inputs set is :

rank
[
B AB · · · An−1B

]
= n (2)

Generally, the system will be completely governable only with the action of
several components of the input. We give the two possible cases.

4.1 The case where the system is completely gouvernable by one
component of the input ui:

In this case, we have :

rank
[
bi Abi · · · An−1bi

]
= n (3)

So, the system is completely controllable by the component ui of the input vector
u. This case is equivalent to the monovariable system case. The control is carried
out on the component ui.
The system having as input u and as output y is completely controllable by the
component ui of the input. Thus the variable structure control can be calculated
as follows:
For a system of order n, the sliding surface (presumed linear according to the
states of the system) is:

S(x) =
n∑

i=1

cixi avec cn = 1 (4)

The control u must verify the sliding condition:

S(x)Ṡ(x) < 0 (5)
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One of the solutions can be chosen as the basic form (component ui)

ui = −Msign(S(x)) (6)

Then, the control vector is :

u =
[
0 · · · 0 ui = −M sign(S) 0 · · · 0 ]T (7)

Simulation example:
Let’s consider the following system :

{
ẋ(t) = Ax(t) + B u(t)
y(t) = C x(t)

A =



−1 0 0
0 2 0
0 0 −3


 ; B =




1 1
1 0
1 2


 ; C =

[
1 0 1
0 1 0

]

We remark here that u1 control all modes (-1; 2; -3). So, the system is completely
controllable by u1 and it can be described, after a change of variable, by :

˙̃x(t) = Ã x̃(t) + B̃ u(t)

with : Ã =




0 1 0
0 0 1
6 −1 −4


 ; B̃ =




0 x
0 x
1 x




Here, we have a third order system and the sliding mode control is:

S =
3∑

i=1

cix̃i = c1x̃1 + c2x̃2 + x̃3 c1 = 10 c2 = 7

u1 = −M sign(S); u2 = 0; M = 20; such as SṠ < 0.

u =
[−M sign(S)

0

]

In the error space, the surface equation becomes:

S =
3∑

i=1

ciei = c1e1 + c2e2 + e3

with ei = x̃i − x0i and x0i (i = 1, 2, 3) the initial condition or the reference
trajectory.
The simulations results for a sinusoidal reference are given in figure 3. The last
one shows a relatively perfect tracking.
The evolution of the trajectory in the phase space is given by figure 4. After a
certain search time, the trajectory slides until convergence towards the origin.
The obtained result are completely coherent with the theoretical affirmation.
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Fig. 3. Evolution of the output and the reference.

Fig. 4. The trajectory in the phase space.

4.2 The case where the system is not completely controllable by
only one component of the input

Decomposition into sub-systems controllable each by one component
of the input
If the system is controllable, it is always possible to decompose it into r sub-
systems:

– each one is controllable by only one component of the input;
– they are treated on a hierarchical basis so that :

• the sub-system Σr reacts on the sub-systems Σr−1 ... Σ2 , Σ1.
• the sub-system Σr−1 reacts on the sub-systems Σr−2 ...Σ2 , Σ1.
• ...
• the sub-system Σ2 reacts on the sub-system Σ1.

The diagram block of the decomposition is given by figure 5 [4].
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dimension n1

Sub-system Σ1

Sub-system Σ2

Sub-system Σr

dimension nr

dimension n2

u1

u2

ur

˜xr

˜x2

˜x1

u
∗

Fig. 5. System decomposition into sub-systems controllable each by one component of
the input.

Refereing to the last figure, we can write :

u∗ =
[
ur+1 ur+2 · · · um

]T
si r < m (8)

The state equation of the sub-system Σi has the following form :

˙̃xi = Aiix̃i + [Aii+1x̃i+1 + · · ·+ Airx̃r] + b̃iui + βiu
∗ (9)

with :

n =
r∑

i=1

ni

n and ni represent respectively the dimension of the global system and the
dimension of the sub-system Σi.

Variable structure control synthesis
The sub-system Σi is defined by the state equation (9) having the dimension ni

and the control ui. The sliding surface, chosen linear, has the following form :

Si =
ni∑

i=1

cix̃i

The control can be chosen in the classical form :

ui = −Mi sign(Si);

where Mi and ci verify the sliding condition SiṠi < 0.
Then, the global control is :

u =
[
u1 · · · ur u∗

]T
u∗ is a null vector
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The sliding mode is carried out if and only if :

∀i ∈ {1, · · · , r} SiṠi < 0

So, The sliding is carried out on the intersection of surfaces Si = 0.

Simulation example
Let’s consider the following system :

{
ẋ(t) = Ax(t) + B u(t)
y(t) = C x(t)

A =




0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0


 ; B =




0 0
0 1
0 0
1 0


 ; C =

[
1 0 0 0
0 0 0 1

]

The sub-system Σ1 is controllable by u1 and has a dimension equal to 2. The
associated characteristic polynomial is :

ϕ1(p) = p2

The state equation of the sub-system Σ1 is :

˙̃x1 = A11x̃1 + b̃1u1

A11 =
[

0 1
0 0

]
b̃1 =

[
0
1

]

The sub-system Σ2 is controllable by u2 and has a dimension equal to 2. The
associated characteristic polynomial is :

ϕ2(p) = p2

The state equation of the sub-system Σ2 is :

˙̃x2 = A22x̃2 + b̃2u2

A22 =
[

0 1
0 0

]
b̃2 =

[
0
1

]

Variable structure control synthesis:

Sub-system Σ1 :

The sliding surface is chosen linear:

S1 =
2∑

i=1

c1ix̃1i = c11x̃11 + c12x̃12

In the error space, the surface equation becomes:

S1 =
2∑

i=1

c1ie1i = c11e11 + c12e12
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with e1i = x̃1i − x01i and x01i (i = 1, 2) the initial condition.
The control is taken in the simplest form u1 = −M1 sign(S1); M1 and c1i must
verify the condition S1Ṡ1 < 0.
For this case, we have chosen the following values : c11 = 2.5, c12 = 1,M1 = 10.

Sub-system Σ2 :

The sliding surface is chosen linear:

S2 =
2∑

i=1

c2ix̃2i = c21x̃21 + c22x̃22

In the error space, the surface equation becomes:

S2 =
2∑

i=1

c2ie2i = c21e21 + c22e22

with e2i = x̃2i − x02i and x02i (i = 1, 2) the initial condition.
The control is taken in the simplest form u2 = −M2 sign(S2); M2 and c2i must
verify the condition S2Ṡ2 < 0.
For the present case, we have chosen the following values: c21 = 5, c22 = 1,M2 =
10.

The simulation results are given in figures 6, 7 and 8.
Figure 6 shows the evolution of the two sliding surfaces. The sliding mode is
effective at the end of 0.1 s. Figure 7 represents the evolution of the phase
trajectory for the two subsystems. It is noticed that the phase trajectory, once
it reaches the surface, it slides on it one until reaching the origin.
Figure 8 gives an idea on the evolution of the various variables for subsystem 1
(the output, the phase plan, sliding surface and the control).
The decomposition in subsystems controllable each by only one component of the
input returns the implementation of the multivariable sliding mode control which
is much easier because the subsystems obtained are monovariable linear systems.
The synthesis of the control is, therefore, carried out on linear monovariable
systems.
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(b) Evolution of S2(t)

Fig. 6. Regulation case.
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Fig. 7. Phase Plane.

5 Conclusion

We have proposed a methodology of implementation of the sliding mode con-
trol on a multivariable systems by using a decomposition of the system in r
subsystems controllable each by only one component of the input. Simulations
presented show satisfactory results for the sliding mode control. This decompo-
sition is valid in the case of linear systems. In the case of non linear systems, we
can use the above methodology by linearizing the system around a functional
point and consider the interactions as external disturbances.
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