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Nonlinear estimation based on probabilistic inference forms a core component in most
modern GNC systems. The estimator optimally fuses observations from multiple sensors
with predictions from a nonlinear dynamic state-space model of the system under control.
The current industry standard and most widely used algorithm for this purpose is the
extended Kalman filter (EKF). Unfortunately, the EKF is based on a sub-optimal imple-
mentation of the recursive Bayesian estimation framework applied to Gaussian random
variables. This can seriously affect the accuracy or even lead to divergence of the system.
In this paper, we apply a new probabilistic framework, called Sigma-point Kalman Filters
(SPKF), to the same problem domain typically addressed by the EKF. SPKF methods
have proven to be far superior to standard EKF based estimation approaches in a wide
range of applications. Whereas the EKF can be viewed as a first-order method for dealing
with nonlinearities, an SPKF achieves second-order or higher accuracy. Remarkably, the
computational complexity of a SPKF is of the same order as the EKF. Furthermore, im-
plementation of the SPKF is often substantially easier and requires no analytic derivation
or Jacobians as in the EKF.

In this paper, we review the fundamental development of the SPKF family of algo-
rithms. These include specific variants such as the unscented Kalman filter (UKF),1 the
central-difference Kalman filter (CDKF),2 and numerically efficient and stable square-root
implementations.3–5 We also introduce a novel SPKF based method to fuse latency lagged
observations in a theoretically consistent fashion.

In the second part of the paper, we focus on the application of the SPKF to the in-
tegrated navigation problem as it relates to unmanned aerial vehicle (UAV) autonomy.
We specifically detail the development of a loosely coupled implementation for integrating
GPS measurements with an inertial measurement unit (IMU) and altimeter. The SPKF-
based sensor latency compensation technique mentioned above is used to accurately fuse
the lagged GPS measurements. A UAV (helicopter) test platform is used to demonstrate
the results. Performance metrics indicate an approximate 30% error reduction in both
attitude and position estimates relative to the baseline EKF implementation.

I. Introduction

Acentral and vital operation performed in all Kalman filters is the propagation of a Gaussian random
variable (GRV) through the system dynamics. In the EKF, the system state distribution and all relevant

noise densities are approximated by GRVs, which are then propagated analytically through a first-order lin-
earization of the nonlinear system. This can introduce large errors in the true posterior mean and covariance
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of the transformed GRV, which may lead to sub-optimal performance and sometimes divergence of the filter.
The SPKF addresses this problem by using a deterministic sampling approach. The state distribution is
again approximated by a GRV, but is now represented using a minimal set of carefully chosen weighted
sample points. These sample points completely capture the true mean and covariance of the GRV, and when
propagated through the true nonlinear system, captures the posterior mean and covariance accurately to
the 2nd order (Taylor series expansion) for any nonlinearity. The EKF, in contrast, only achieves first-order
accuracy. Remarkably, the computational complexity of the SPKF is the same order as that of the EKF.
Furthermore, implementation of the SPKF is often substantially easier and requires no analytic derivation or
Jacobians as in the EKF. SPKF methods have proven to be far superior to standard EKF based estimation
approaches in a wide range of applications in the areas of nonlinear state estimation, parameter estimation
(system identification) as well as dual estimation (machine learning).6–8

In the first part of the paper we review the general state-estimation framework employed by all Kalman
filters, after which we highlight the basic assumptions and flaws with using the EKF. We then introduce
and review the fundamental development of the SPKF family of algorithms. This presentation is based on
the general sigma-point approach for the calculation of the posterior statistics of a random variables that
undergoes a nonlinear transformation. The actual algorithmic specification of different SPKF variants such
as the unscented Kalman filter (UKF),1 central difference Kalman filter (CDKF),2 and numerically efficient
and stable square-root implementations3,4 are deferred to the appendices at the end of this paper. A number
of examples are provided to illustrate the difference in performance between the EKF and SPKF. We also
introduce a novel SPKF based method to fuse latency lagged observations. Previous approaches using the
EKF have a high computational cost and can be highly inaccurate due to nonlinearities.9

In the second part of the paper, we focus on the application of the SPKF to the integrated navigation
problem. In a typical integrated GPS/INS system, an EKF combines rate-gyro and accelerometer data
(from an IMU) with a kinematic or dynamic model of a vehicle movement. Other sensors such as barometric
altimeter or magnetic compass may also be integrated. GPS position and velocity measurements are then
used to correct INS errors using the same EKF. The navigational state of the vehicle to be estimated include
position, attitude, velocities, as well as INS sensor biases. In addition (for loosely coupled implementations),
the GPS receiver may employ its own EKF to solve position and velocity estimates (and timing) from
satellite pseudorange, phase, and Doppler data. Alternatively, in a tightly coupled approach, a single EKF
may be used to combine raw satellite signals with the IMU and other sensor measurements to make an
optimal estimation of the vehicles navigational state. We specifically detail the development of a loosely
coupled implementation for integrating GPS measurements with an IMU and altimeter within the context
of autonomous UAV guidance, navigation and control. The use of the SPKF directly replaces the EKF. We
report experimental results generated using both a high-fidelity UAV simulation system (for ground truth
comparison) as well as on real flight data using a fully instrumented XCell-90 RC helicopter platform.

II. The EKF and its Flaws

The general Kalman framework involves estimation of the state of a discrete-time nonlinear dynamic
system,

xk+1 = f (xk,vk) (1)
yk = h (xk,nk) (2)

where xk represent the unobserved state of the system and yk is the only observed signal. The process
noise vk drives the dynamic system, and the observation noise is given by nk. Note that we are not
assuming additivity of the noise sources. The system dynamic model f(·) and h(·) are assumed known. In
state-estimation, the EKF is the standard method of choice to achieve a recursive (approximate) maximum-
likelihood estimation of the state xk. Given the noisy observation yk, the recursive estimation for xk can be
expressed in the following form:10

x̂k = x̂−
k + Kk

(
yk − ŷ−

k

)
(3)

Pxk
= P−

xk
− KkPỹk

KT
k (4)

where x̂−
k is the optimal prediction of the state at time k conditioned on all of the observed information

up to and including time k − 1, and ŷ−
k is the optimal prediction of the observation at time k. P−

xk
is the
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covariance of x̂−
k , and Pỹk

is the covariance of ỹk = yk − ŷ−
k , termed the innovation. The optimal terms in

this recursion are given by

x̂−
k = E [f (x̂k−1,vk−1)] (5)

ŷ−
k = E

[
h

(
x̂−

k ,nk

)]
(6)

Kk = Pxkyk
P−1

ỹk
= E

[
(xk − x̂−

k )(yk − ŷ−
k )T

] × E
[
(yk − ŷ−

k )(yk − ŷ−
k )T

]−1
(7)

where the optimal prediction x̂−
k corresponds to the expectation of a nonlinear function of the random

variables x̂k−1 and vk−1 (see Eq. (5)). Similar interpretation holds for the optimal prediction of the
observation ŷ−

k in Eq. (6). The optimal gain term Kk is expressed as a function of posterior covariance
matrices in Eq. (7). Note these terms also require taking expectations of a nonlinear function of the prior state
estimate RVs. This recursion provides the optimal minimum mean-squared error (MMSE) linear estimator
of xk assuming all relevant random variables in the system can be efficiently and consistently modeled by
maintaining their first and second order moments, i.e., they can be accurately modeled as Gaussian random
variables (GRVs). We need not assume linearity of the system model f(·) and h(·).

The Kalman filter calculates the optimal quantities in Eqs. (5), (6) and (7) exactly in the linear case, and
can be viewed as an efficient method for analytically propagating a GRV through linear system dynamics.
For nonlinear models, however, the extended Kalman filter (EKF) approximates the optimal terms as:

x̂−
k ≈ f (x̂k−1, v̄) (8)

ŷ−
k ≈ h

(
x̂−

k , n̄
)

(9)

Kk ≈ P̂lin
xkyk

(
P̂lin

ỹk

)−1

(10)

where predictions are approximated as simply the function of the prior mean value for estimates (no expec-
tation taken). The noise means are denoted by v̄ and n̄, and are usually assumed to equal to zero. The
covariances are determined by linearizing the dynamic equations

xk+1 ≈ Fxk + Bvk (11)
= [∇xk

f(x,v)]xk + [∇vk
f(x,v)]vk (12)

yk ≈ Hxk + Dnk (13)
= [∇xk

h(x,n)]xk + [∇nk
h(x,n)]nk (14)

and then determining (approximating) the posterior covariance matrices analytically for the linear system,
i.e.,

P̂lin
x−

k

= FPxk−1F
T + BQk−1B

T (15)

P̂lin
xkyk

= P̂lin
x−

k

HT (16)

P̂lin
ỹk

= HP̂lin
x−

k

HT + DRkDT , (17)

where Pxk−1 is the posterior covariance of the state estimate at time k − 1, Q is the covariance matrix of
the process noise and R is the covariance matrix of the observation noise. In other words, in the EKF the
state distribution is approximated by a GRV, which is then propagated analytically through the first-order
linearization of the nonlinear system. This is equivalent to applying the linear Kalman filter covariance
update equations to the linearized system. As such, the EKF can be viewed as providing “first-order”
approximations to the optimal terms in Eq. (3). As mentioned earlier, these approximations used in the
EKF can result in large errors in the estimates and even divergence of the filter.

III. The Sigma-Point Kalman Filter

The sigma-point Kalman filter address the approximation issues of the EKF. This is achieved through
a fundamentally different approach for calculating the posterior 1st and 2nd order statistics of a random
variable that undergoes a nonlinear transformation. The state distribution is again represented by a GRV,
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Figure 1. Weighted sigma-points for a 2 dimensional Gaussian random variable (RV). These sigma-points lie along the
major eigen-axes of the RV’s covariance matrix and complete captures the first and second order statistics of the RV.
The height of each sigma-point indicates its relative weight.

but is now specified using a minimal set of deterministically chosen weighted sample points (See Fig. 1).
These samples, called sigma-points, completely capture the true mean and covariance of the prior random
variable, and when propagated through the true nonlinear system, captures the posterior mean and co-
variance accurately to the 2nd order (Taylor series expansion) for any nonlinearity (3rd order accuracy is
achieved if the prior random variable has a symmetric distribution, such as the exponential family of pdfs.)
The basic sigma-point approach (SPA) can be described as follows:1,5

The Sigma-point Approach (SPA)

1. A set of weighted samples (sigma-points) are deterministically calculated using the mean and square-
root decomposition of the covariance matrix of the prior random variable. As a minimal requirement
the sigma-point set must completely capture the first and second order moments of the prior random
variable. Higher order moments can be captured, if so desired, at the cost of using more sigma-points.

2. The sigma-points are propagated through the true nonlinear function using functional evaluations alone,
i.e., no analytical derivatives are used, in order to generate a posterior sigma-point set.

3. The posterior statistics are calculated (approximated) using tractable functions of the the propagated
sigma-points and weights. Typically these take on the form of simple weighted sample mean and co-
variance calculations of the posterior sigma-points.

To be more specific: Consider propagating a random variable x ∈ R
L through an arbitrary nonlinear function

y = g(x). Assume x has mean x̄ and covariance Px. To calculate the statistics of y, we form a set of 2L + 1

sigma-points {X i; i=0,...,2L} where X i ∈ R
L. The sigma-points are calculated using the following general

selection scheme:
X 0 = x̄
X i = x̄ + ζ

(√
Px

)
i

i=1,...,L

X i = x̄ − ζ
(√

Px

)
i

i=L+1,...,2L

(18)

where ζ is a scalar scaling factor that determines the spread of the sigma-points around x̄ and
(√

P
)

i
indicates the ith column of the matrix square-root of the covariance matrix P. Once the sigma-points are
calculated from the prior statistics as shown above, they are propagated through the nonlinear function,

Yi = g (X i) i=0,...,2L (19)

and the mean and covariance of y are approximated using a weighted sample mean and covariance of the
posterior sigma-points,
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Figure 2. 2D example of sigma-point approach.

ȳ ≈
2L∑
i=0

wm
i Yi (20)

Py ≈
2L∑
i=0

2L∑
j=0

wc
ijYiYT

j (21)

Pxy ≈
2L∑
i=0

2L∑
j=0

wc
ijX iYT

j , (22)

where wm
i and wc

ij are scalar weights. Note, all weights need not be positive valued. In fact, depending on the
specific sigma-point approach at hand, certain weights on the cross-terms are set equal to zero, i.e., wij = 0
for certain {i, j; i �= j}. The specific values of the weights (w) and the scaling factors (ζ) depend on the type
of sigma-point approach used: These include the unscented transformation1 and the Stirling-interpolation
based central difference transformation2 to name but two.

Note that the sigma-point approach differs substantially from general stochastic sampling techniques
such as Monte-Carlo integration which require orders of magnitude more sample points in an attempt to
propagate an accurate (possibly non-Gaussian) distribution of the state. The deceptively simple sigma-point
approach results in posterior approximations that are accurate to the third order for Gaussian inputs for
all nonlinearities. For non-Gaussian inputs, approximations are accurate to at least the second-order, with
the accuracy of third and higher order moments determined by the specific choice of weights and scaling
factors.5 Furthermore, no analytical Jacobians of the system equations need to be calculated as is the case
for the EKF. This makes the sigma-point approach very attractive for use in “black box” systems where
analytical expressions of the system dynamics are either not available or not in a form which allows for easy
linearization.

A simple comparative example of the sigma-point approach is shown in Figure 2 for a 2-dimensional
system: the left plot shows the true mean and covariance propagation using Monte Carlo sampling; the
center plots show the results using a linearization approach as would be done in the EKF; the right hand
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plots show the performance of the sigma-point approach (note, only 5 sigma-points are needed for the 2D
case). The superior performance of the sigma-point approach is clearly evident.

A. Implementing the SPKF Algorithm

The sigma-point Kalman filter is a straightforward extension of the sigma-point approach to the recursive
estimation in Eqs. (3)-(7), where the state RV is redefined as the concatenation of the original state and
noise variables: xa

k = [ xT
k vT

k nT
k

]T . The sigma-point selection scheme (Equation 18) is applied to this
new augmented state RV to calculate the corresponding sigma-point set,

{X a
k,i; i=0,...,2L

}
where X a

k,i ∈
R

Lx+Lv+Ln . The pseudo-code for the SPKF is given below:

• Initialization:

x̂0 = E[x0] , Px0 = E[(x0 − x̂0)(x0 − x̂0)
T ]

x̂a
0 = E [xa

0 ] =
[

x̂T
0 v̄T

0 n̄T
0

]T

Pa
0 = E

[
(xa

0 − x̂a
0)(xa

0 − x̂a
0)T

]

=

⎡
⎢⎣ Px0 0 0

0 Rv 0

0 0 Rn

⎤
⎥⎦

• For k = 1, . . . ,∞ :

1. Set t = k − 1
2. Calculate sigma-points:

X a
t =

[
x̂a

t x̂a
t + ζ

√
Pa

t x̂a
t − ζ

√
Pa

t

]
3. Time-update equations:

X x
k|t = f (X x

t , X v
t ,ut)

x̂−
k =

2L∑
i=0

wm
i X x

i,k|t

P−
xk

=

2L∑
i=0

2L∑
j=0

wc
ij

(X x
i,k|t

) (X x
j,k|t

)T

4. Measurement-update equations:

Yk|t = h
(X x

k|t, X n
t

)
ŷ−

k =

2L∑
i=0

wm
i Y i,k|t

Pỹk =
2L∑
i=0

2L∑
j=0

wc
ij

(Y i,k|t
) (Y i,k|t

)T

Pxkyk =

2L∑
i=0

2L∑
j=0

wc
ij

(X x
i,k|t

) (Y i,k|t
)T

Kk = PxkykP−1
ỹk

x̂k = x̂−
k + Kk

(
yk − ŷ−

k

)
Pxk = P−

xk
− KkPỹkKT

k

• Parameters: xa =
[

xT vT nT
]T

, X a =
[

(X x)T (X v)T (X n)T
]T

, ζ is scaling parameter that
determines the spread of the sigma-points around the prior mean, L is the dimension of the augmented state,
Rv is the process-noise covariance, Rn is the observation-noise covariance, and wm

i and wc
ij are the scalar

weights.
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The specific type of resulting SPKF is determined by the choice of sigma-point selection scheme (weights
& scaling factors) as well as the specific method by which the propagated sigma-points are combined in
order to calculate the posterior covariance matrices. In the Appendix we summarize two specific SPKF
approaches, the unscented Kalman filter (UKF)11 and the central difference Kalman filter (CDKF).2 We
also include the square-root implementations, which propagate (and update) directly the square-root of the
state covariance matrix, thus avoiding the need to perform a direct matrix square-root operation at each
time step.2,4 This provides increased computational efficiency as well as robust numerical stability. Other
variations include efficient implementations when the noise is assumed additive (allowing fewer sigma-points
to be used), or for special state-transition structures (as with pure parameter estimation).5,12 Note that the
overall computational complexity of the SPKF is the same as that of the EKF.

B. SPKF Application Examples

We provide two examples to illustrate the performance benefits of the SPKF. The first example corresponds
to noisy time-series estimation with neural networksa, and the second example is an inverted double pendulum
control system. Although we only present two examples here, the SPKF has already been successfully applied
to numerous other application.5,12,15–24 In all cases, the superiority over the EKF has been well documented.

1. Noisy chaotic time-series estimation

In this example a SPKF is used to estimate an underlying clean time-series corrupted by additive Gaussian
white noise. The time-series used is the Mackey-Glass-30 chaotic series25,26 that is described by the following
continuous time differential equation

dx(t)
dt

= −0.1x(t) +
0.2x(t − 3)

1 + x(t − 30)10
, (23)

where t is the continuous time variable and x(t) is the time-series amplitude at time t. For this experiment,
we modeled the discrete time version of this time series as a nonlinear autoregression

xk = f(xk−1, xk−2, . . . , xk−M ;w) + vk , (24)

where the model f (parameterized by w) was first approximated by training a feed-forward neural network
on a sampled clean sequence generated by Equation 23. The residual error after convergence was taken to be
the process noise variance, i.e., σ2

v . Next, white Gaussian noise was added to the clean Mackey-Glass series
to generate a noisy time-series yk = xk + nk. The corresponding state-space representation is given by

xk+1 = f(xk;w) + Bvk (25)
yk = Cxk + nk (26)

which can be expanded as⎡
⎢⎢⎢⎢⎣

xk+1

xk

...
xk−M+2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

f(xk, xk−1, . . . , xk−M+1;w)⎡
⎢⎢⎣

1 0 0 0

0
. . . 0

...
0 0 1 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

xk−1

...
xk−M+1

⎤
⎥⎥⎦

⎤
⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎣

1
0
...
0

⎤
⎥⎥⎥⎥⎦ vk (27)

yk =
[

1 0 · · · 0
] [

xk xk−1 · · · xk−M+1

]T

+ nk . (28)

In the estimation problem, the noisy-time series yk is the only observed input to either the EKF or SPKF
algorithms (all utilize the known neural network model). Note that for time-series estimation, both the EKF
and the SPKF are O(L2) complexity. Figure 3 shows sub-segments of the estimates generated by both the
EKF and the SPKF (the original noisy time-series has a 3dB SNR). The superior performance of the SPKF
algorithms are clearly visible. Table 1 summarizes the mean MSE as well as its variance for a Monte-Carlo
run of 200 randomly initialized experiments. For each run a different realization of both the process and

aSee Haykin13 or Bishop14 for a thorough review of neural network theory.
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SPKF

SPKF

Figure 3. Estimation of Mackey-Glass time-series with the EKF and SPKF using a known model.

observation noise was generated. As is clearly evident from both the table and the figure, the magnitude of
the EKF errors is much larger (close to 2 orders of magnitude) than those of the SPKFs. The EKF not only
has a worse average MSE performance, but the variance of the MSE is also extremely large. This is due to
the fact that every once in while (for some runs) the EKF completely diverges for a significant number of
samples, resulting in huge spikes in the estimates and corresponding MSE.

Table 1. Estimation of Mackey-Glass time-series with the EKF and SPKF using a known model. : Monte-Carlo
averaged (200 runs) estimation error.

Algorithm MSE (mean) MSE (var)

Extended Kalman filter (EKF) 60.90 4.475e8
Sigma-Point Kalman filter (SPKF) 0.1116 0.0341

2. Inverted Double Pendulum

An inverted double pendulum (See Figure 4) has states corresponding to cart position and velocity, and top
and bottom pendulum angle and angular velocity; and system parameters correspond the length and mass
of each pendulum, and the cart mass:

x =
[

x ẋ θ1 θ̇1 θ2 θ̇2

]
, w =

[
l1 l2 m1 m2 M

]
(29)

The continuous-time dynamics of the system (see Figure 4) are discretized with a sampling period of 0.02
seconds. The pendulum is stabilized by applying a control force, u to the cart. In this case we use a state
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Figure 4. Inverted double pendulum dual estimation and control experiment. Dynamic model and schematic of
control system (top plot). Estimation results are shown in the bottom plot: state estimates (top) and parameter
estimates(bottom).
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dependent Riccati equation (SDRE) controller to stabilize the system b. The observation corresponds to
noisy measurements of the cart position, cart velocity, and angle of the top pendulum. This is a challenging
problem, as no measurements are made for the bottom pendulum, nor for the angular velocity of the top
pendulum. For this experiment, the pendulum is initialized in a jack-knife position (+25/-25 degrees) with
a cart offset of 0.5 meters. The SDRE controller needs accurate estimates of the system state as well as
system parameters in order to accurately and robustly balance the pendulum. In our experiment, noisy
observations of the system states were available and the system parameters were also initialized to incorrect
values. A SPKF (a joint-UKF in this case) is used to estimate both the underlying system states and the true
system parameters using only the noisy observations at each time step, which is then fed back to the SDRE
controller for closed-loop control. Figure 4 illustrates the performance of this adaptive control system by
showing the evolution of the estimated and actual states (middle) as well as the system parameter estimates
(bottom). At the start of the simulation both the states and parameters are unknown (the control system
is unstable at this point). However, within one trial, the SPKF enables convergence and stabilization of the
pendulum without a single crash! This is in stark contrast to standard system identification and adaptive
control approaches, where numerous off-line trials, large amounts of training data and painstaking “hand-
tuning” are often needed. In this setup, the EKF is also able to balance the pendulum. However, the EKF
is less robust. Often the EKF estimated parameters converge to wrong values, thus requiring better initial
conditions and less noise on the observations.

IV. SPKF Based GPS/INS Integration

We now describe the application of the SPKF to the problem of loosely coupled GPS/INS integration for
guidance, navigation and control (GNC) of an unmanned aerial vehicle (UAV). The main subcomponents
of such a GNC system is a vehicle control system and a guidance & navigation system (GNS) as shown in
Figure 5. Our UAV research platform (software simulator, hardware-in-the-loop simulator & flight vehicle)
is based on a fully instrumented XCell-90 R/C helicopter (see Figure 5), originally designed by MIT’s
Laboratory for Information and Decision Systems.28 The avionics package includes an Inertial Sciences ISIS
MEMS based IMU, an Ashtech G12 10Hz GPS, a barometric altimeter and a DSP Design TP400 PC104
based flight computer running QNX-4. Our nonlinear control system (which requires state-estimates) is
based on an efficient state-dependent Riccati-equation (SDRE) framework that has proven to be significantly
superior and more robust than standard LQR methods.29,30

The existing GPS/INS navigation filter was based on an MIT designed high-performance hand-tuned
EKF implementation.31 Our proposed estimator simply replaced the EKF in MIT’s system with a SPKF
based estimator (SRCDKF). All our experimental results in later sections will use the original EKF based
navigation filter as a baseline reference. As a further extension, we also implemented a SPKF based sensor
latency compensation technique. We compared our SPKF based system performance to the baseline system
with specific focus on: 1) Improved six-degrees-of-freedom (6DOF) state estimation accuracy, 2) SPKF based
compensation for GPS latency, 3) Evaluation of improved closed-loop control envelope, and 4) Robustness to
GPS outages. We will next discuss the UAV specific system process and observation (measurement) models
used inside our SPKF (and EKF) based system.

A. Process Model

Even though we used a high-fidelity (70 parameters, 43 states) nonlinear dynamic model of UAV movement29
for our UAV simulators and control system design, due to its high computational complexity it is not ideally
suited for use within the navigation filter loop. For this reason we opted for the standard IMU driven
kinematic process model formulation that comprises an INS mechanization component32,33 and a IMU sensor
error model component. Because low cost MEMS based IMUs such as the one used in our avionics system
have large bias and scale factor errors we included these components into our state vector to be estimated.

bAn SDRE controller27 is designed by formulating the dynamic equations as xk+1 = A(xk)xk + B(xk)uk. Note, this
representation is not a linearization, but rather a reformulation of the nonlinear dynamics into a pseudo-linear form. Based on
this state-space representation, we design an optimal LQR controller, uk = −R−1BT (xk)P(xk)xk ≡ K(xk)xk, where P(xk)
is a solution of the standard Riccati equations using state-dependent matrices A(xk) and B(xk). The procedure is repeated at
every time step at the current state xk and provides local asymptotic stability of the plant.27 The approach has been found to
be far more robust than LQR controllers based on standard linearization techniques, and as well as many alternative “advanced”
nonlinear control approaches.
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Figure 5. (left) Instrumented X-Cell-90 helicopter in flight. (right) Schematic diagram of unmanned aerial vehicle
(UAV) guidance, navigation and control (GNC) system.

The estimated values of these error components are then used to correct the raw IMU acceleration and
gyro-rate measurements before they are used inside the INS mechanization equations of the process model.
The 16 dimensional state vector of our system is given by,

x =
[

pT vT eT aT
b ωT

b

]
(30)

where p = [ x y z ]T and v = [ vx vy vz ]T are the position and velocity vectors of the vehicle
in the navigation frame, e = [ e0 e1 e2 e3 ]T is the unity norm vehicle attitude quaternion, ab =
[ axb

ayb
azb

]T is the vector of IMU acceleration biases, and ωb = [ pb qb rb ]T is the IMU gyro rate
bias vector. Note that we could have include a separate scale factor in addition to the bias term in the state
vector. However, in our experiments, we found it sufficient to model the combined effect of the bias and
scale error terms as a single time-varying bias term.

The continuous time kinematic navigation equations (INS mechanization equations and error model)
operating on this state vector and driven by the error corrected IMU measurements are given below:

ṗ = v (31)

v̇ = Cn
b (ā − ar̃imu

) +
[

0 0 1
]T

g (32)

ė = −1
2
Ω̃ω̄e (33)

ȧb = wabk
(34)

ω̇b = wωbk
(35)

Cn
b is the direction cosine matrix (DCM) transforming vectors from the body frame to the navigation frame.

The DCM is a nonlinear function of the current attitude quaternion and is given by

Cn
b =

(
Cb

n

)T

= 2

⎡
⎢⎣ 0.5 − e2

2 − e2
3 e1e2 − e0e3 e1e3 + e0e2

e1e2 + e0e3 0.5 − e2
1 − e2

3 e2e3 − e0e1

e1e3 − e0e2 e2e3 + e0e1 0.5 − e2
1 − e2

2

⎤
⎥⎦ . (36)

The term g is the gravitational acceleration component and ā and ω̄ are the bias and noise corrected IMU
accelerometer and gyro rate measurements, i.e.,

ā = ã − ab − na (37)
ω̄ = ω̃ − ωb − Cb

nωc − nω . (38)

In the above equations ã and ω̃ are the raw measurements coming from the IMU, na and nω are the IMU
acceleration and gyro-rate measurement noise terms, and ωc is the rotational rate of the earth as measured
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in the navigation frame (Coriolis effect). In general, ωc is a function of the location of the navigational frame
relative to the earth frame and hence is time-varying as the navigation frame moves relative to the earth
frame. However, for our purposes (aggressive autonomous UAV flight within a very small airspace volume)
we assumed the navigation frame does not change relative to the earth frame resulting in a constant ωc for
a given origin location (lat/long) of our navigation frame. Ω̃ω̄ is a 4× 4 skew-symmetric matrix34 composed
of the error corrected IMU gyro-rate measurements, i.e.,

Ω̃ω̄ =

⎡
⎢⎢⎢⎣

0 ω̄p ω̄q ω̄r

−ω̄p 0 −ω̄r ω̄q

−ω̄q ω̄r 0 −ω̄p

−ω̄r −ω̄q ω̄p 0

⎤
⎥⎥⎥⎦ . (39)

In Eq. (32), ar̃imu
is the IMU-lever-arm coupling component due to the IMU not being located at the center

of gravity of the vehicle. This component can be ignored if the navigation filter computes the state estimate
at the IMU location. This IMU centric navigation solution can then simply be transformed to the center of
gravity location after the fact as needed by the vehicle control system.

The final components of the process model, Eqs. (34) and (35) models the time-varying nature of the IMU
sensor bias error terms. Usually, sensor error in an INS are modelled as a zero-mean, stationary, first-order
Gauss-Markov process.35 Since the biases and scale factors of low cost MEMS based IMU sensors exhibit
non-zero mean and non-stationary behaviour, the errors are modelled as a random walk, in order to improve
the tracking of these time-varying errors by the navigation filter. This does however require that the effect
of these errors be observable through the specific choice of measurement model.

The position and velocity discrete-time updates are calculated by the following simple first-order Euler
update

pk+1 = pk + ṗk · dt (40)
vk+1 = vk + v̇k · dt , (41)

where ṗk and v̇k are calculated using Eqs. (31) and (32) and dt is the integration time-step of the system
(in our system this was dictated by the IMU rate, i.e., dt = 10ms). The quaternion propagation equation
can be discretized with an analytical calculation of the exponent of the skew-symmetric matrix given by
Stevens.34 The discrete-time update can be written as

ek+1 = exp
(
−1

2
Ω̃ · dt

)
ek . (42)

If we further denote

∆φ = ω̄p · dt (43)
∆θ = ω̄q · dt (44)
∆ψ = ω̄r · dt , (45)

as effective rotations around the (body frame) roll, pitch and yaw axes undergone by the vehicle during the
time period dt, assuming that the angular rates ω̄p, ω̄q and ω̄r remained constant during that interval, we
can introduce the 4 × 4 skew-symmetric matrix

Φ∆ = Ω̃ · dt =

⎡
⎢⎢⎢⎣

0 ∆φ ∆θ ∆ψ

−∆φ 0 −∆ψ ∆θ

−∆θ ∆ψ 0 −∆φ

−∆ψ −∆θ ∆φ 0

⎤
⎥⎥⎥⎦ .

(46)

Using the definition of the matrix exponent and the skew symmetric property of Φ∆, we can write down the
following closed-form solution:

exp
(
−1

2
Φ∆

)
= I cos(s) − 1

2
Φ∆

sin(s)
s

, (47)
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where

s =
1
2

∥∥∥[
∆φ ∆θ ∆ψ

]∥∥∥ =
1
2

√
(∆φ)2 + (∆θ)2 + (∆ψ)2 . (48)

See Gavrilets31 and Van der Merwe5 for proofs of this closed-form solution. Eqs. (42) and (47) ensure (at
least theoretically) that the updated quaternion ek+1 has a unit norm. However, a small Lagrange multiplier
term can be added to the first component of Equation 47 to further maintain numerical stability and the
unity norm of the resulting quaternion. The resulting final solution for the time-update of the quaternion
vector is given by

ek+1 =
[
I (cos(s) + η · dt · λ) − 1

2
Φ∆

sin(s)
s

]
ek . (49)

where λ = 1 − ‖ek‖2 is the deviation of the square of the quaternion norm from unity due to numerical
integration errors, and η is the factor that determines the convergence speed of the numerical error. These
factors serve the role of the above mentioned Lagrange multiplier that ensures that the norm of the quaternion
remains close to unity.36 The constraint on the speed of convergence for stability of the numerical solution
is η · dt < 1.31

Finally, the discrete time random-walk process for the IMU sensor error terms are given by

abk+1 = abk
+ dt · wabk

(50)
ωbk+1 = ωbk

+ dt · wωbk
, (51)

where wabk
and wωbk

are zero-mean Gaussian random variables.
Note that these navigation equations are considered a direct formulation, as opposed to the alternative

indirect (error) formulation. This choice was made for consistency with the MIT EKF implementation. The
trade-offs between direct versus indirect formulations with the SPKF are currently being investigated.

B. Observation Models

Our system made use of 2 independent avionic sensors to aid the INS: a 10Hz, 50ms latency GPS (Ashtech
G12) and a barometric altimeter that measures absolute altitude as a function of ambient air pressure. The
observation models used in our system for these sensors (see below) are highly nonlinear, making the use of
the SPKF framework again preferable to an EKF solution.

GPS: Since our GPS antenna is not located at the same location in the body frame as the IMU, it not
only observes the bodies position and velocity in the navigation frame, but also the body’s attitude relative
to the navigation frame due to the “lever-arm effect”. More specifically, the GPS observation model is given
by:

pGPS
k = pk−N + Cn

b r̃gps + npk
(52)

vGPS
k = vk−N + Cn

b ωk−N × r̃gps + nvk
, (53)

where pk−N and vk−N are the time-delayed (by N samples due to sensor latency) 3D navigation-frame
position and velocity vectors of the vehicle, r̃gps is the location of the GPS antenna in the body frame
(relative to the IMU location), ωk−N are the true rotational rates of the vehicle at time k−N , and npk

and
nvk

are stochastic measurement noise terms. Here the noise terms are modeled as being time-dependent.
This is due to the fact that the accuracy of observations vary over time according to the current PDOP value
of the loosely coupled GPS solution. Since the DCM, Cn

b , in Eqs. (52) and (53) are a function of the attitude
quaternion, the GPS measurements provides information not only of the vehicles position and velocity, but
also of its attitude. This removes the need for an absolute attitude sensor such as a magnetic compass or
tilt-sensor. However, this will also result in the non-observability of the IMU sensor errors during prolonged
periods of GPS outages, which in turn can lead to significant INS drift.

The time delay (N samples) in the GPS model equations is due to the internal GPS processing latency
inherent to all loosely coupled GPS solutions. This implies that the latest GPS measurement relates to the
state of the vehicle as it was a number of samples in the past. If the specific latency of the GPS is small, it
can (and often is) ignored. However, if the latency is significant, care must be taken when fusing this lagged
information with the current estimate of the vehicle’s state in the measurement update step of the Kalman
filter.
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Barometric altimeter: Ambient air pressure provides an accurate source of sea-level altitude infor-
mation. Important sources of error are sensor quantization and measurement noise. We used a high-end
altimeter with 10−3psi (0.6 meters) resolution. The measurement noise was assumed to be zero-mean, white
and Gaussian. The observation model that incorporates these effects are:

zalt
k = − 1

ϕ
ln

[
ρq
0 �(ρ0 exp (ϕ · zk) + nza

) /ρq
0�

ρ0

]
(54)

where ρ0 is the nominal air pressure at sea-level, ϕ is the pressure decay rate with altitude constant
(1.16603×10−4psi/m), zk is the current navigation-frame z-axis position of the vehicle, ρq

0 is the air pressure
quantization resolution of the altimeter (10−3psi), zalt

k is the altimeter output and �·� is the integer flooring
function. This model is not only a nonlinear function of the state, but the measurement noise also effects
the output altitude measurement in a non-additive fashion. Again, for such a model the use of the SPKF
not only allows for a much simpler implementation than the EKF (no analytical derivatives need to be
calculated), but will also results in more accurate estimation results.

C. SPKF Based Sensor Latency Compensation

One of the big challenges in building a robust state estimator for loosely coupled GPS/INS systems is dealing
with the inherent measurement latency of the GPS sensor. As mentioned in the previous section, a GPS
sensors has a finite processing delay between when the GPS satellite signals are received for processing and
when the actual position and velocity measurement related to those signals becomes available. This implies
that the current GPS reading actually corresponds to the position and velocity state of the vehicle at some
point in the past. This time difference is called the measurement latency. For cheaper lower performance
GPS systems this latency can be several seconds, causing serious problems when these measurements are
fused (inside a Kalman filter) with the current prediction of the vehicle state. Short if ignoring the latency
issue completely, previous approaches either store all of the state estimates and observations during the
latency period and then re-run the complete filter when the latency lagged observation finally arrives, or
apply accumulated correction terms to the state estimate based on a time-convolved linearized approximation
of the system.9 The first approach, although accurate incurs an exceedingly high computational penalty,
precluding its use in real-time systems. The second approach on the other hand can be highly inaccurate if
the system process and measurement equations are significantly nonlinear.

For our SPKF based navigation filter, we derived a new approach to deal with the latency issue based
on accurately maintaining the relevant cross-covariance matrices across time. These terms are needed to
formulate a modified Kalman gain matrix, which is used to fuse the current prediction of the state with an
observation related to a prior (lagged) state of the system. The system process model is first augmented
such that a copy of the prior system state is maintained across time. The observation model is also adapted
to relate the current GPS observation to this lagged (but-maintained) state. The correct gain terms are then
automatically calculated inside the SPKF filter. The SPKF allows for such a simple solution due to the fact
that it does not need to linearize the system equations when calculating the relevant posterior statistics. For
a more detailed exposition of this method, see Appendix B.

V. Experimental Results

This section presents a number of experimental results comparing our proposed SPKF based GPS/INS
system with a similar system built around an EKF implementation. The first set of experiments were all
performed in simulation using the high-fidelity MIT-Draper-XCell-90 model based UAV simulator platform.31
All relevant avionic sensors (IMU, GPS, altimeter, etc.) as well as all actuators were accurately modeled,
including effects such as GPS latency and IMU sensor bias errors and drift. The purpose of the simulation
based experiments is to compare the performance of our new proposed SPKF approaches to that of the
existing EKF approach in a controlled (repeatable) environment where the ground truth state information
is available. This allows for objective comparison of estimation accuracy.

The second set of experiments were performed on real flight data using telemetry recordings of actual
autonomous flights performed by the UAV. Although ground truth information is not available for these
experiments to judge absolute accurate, it still allows for direct qualitative comparison between the EKF
and SPKF based systems. Specific performance issues related to real world events such as GPS outages were
investigated.
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A. Simulation Experiments

The first simulated experiment performed was used to provide quantitative comparisons between the EKF,
SPKF, and latency compensated SPKF. The helicopter was flown (in simulation) along a complex trajectory
that increased in “aggressiveness” over time. Figure 6 shows a 3D representation of this flight-plan trajectory
with the helicopter’s true attitude superimposed at certain intervals. The simulated flight included complex
acrobatic maneuvers such as rapid-rise-and-hover, figure-eights, split-s, etc. For this experiment we did not
“close the loop” for the flight control system. In other words, the control system used the true known states
of vehicle for the online calculation of the control law. The SPKF or EKF estimated state was not fed back
to the control system. This was done to ensure that the helicopter flew exactly the same flight profile when
comparing the performance of the different estimators.

Table 2 compares the average root-mean-square (RMS) estimation errors for the three different state
estimators. We also show (in brackets) the relative error reduction percentage for each of the two SPKF
estimators compared to the EKF. The normal SPKF is able to reduce the 3D position and velocity estimation
errors by about 10% and the roll and pitch angle estimation errors by about 20%.

Figure 6. Simulated UAV trajectory used for state estimation experiments.

The biggest improvement over the EKF, 55%, is in the estimation of the yaw (heading) angle. The
GPS latency compensated SPKF goes even further with a 33% reduction in position, velocity, roll angle
and pitch angle errors. The yaw angle error reduction is again the highest at 65%. We repeated this
experiment numerous times with different initializations and realizations of measurement noise as well as
flying different flight trajectories and all of the results consistently confirmed the same relative performance
between the different estimators as presented in this experiment. Clearly, even though the normal SPKF
already outperforms the EKF (as expected), correctly accounting for GPS latency is well worth the extra
effort. The position and velocity estimation errors are shown in the top two plots of Figure 7 and the Euler
angle estimation errors are shown in the bottom three plots. As before the SPKF clearly outperforms the
EKF with the largest improvement again evident in the yaw (heading) angle estimation error. Figure 7
indicates how the EKF has a very large error in the yaw estimate for the first 80 seconds of the flight. This
is due to a significant initial error in the underlying IMU bias error estimates. Even though the EKF and
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SPKF filters were initialized with exactly the same initial state estimatesc, the SPKF was able to converge
to the true biases in the IMU measurements much quicker and then track them more accurately. This

Table 2. UAV state estimation results : EKF vs. SPKF (with and without GPS latency compensation). The table
reports average (over complete flight trajectory) root-mean-square (RMS) estimation errors for the EKF, SPKF (without
GPS latency compensation) and SPKF (with GPS latency compensation) for the simulated flight shown in Figure 6.
The estimation error reduction percentages are shown for all filters (relative to EKF).

Algorithm Average RMS Error
position velocity Euler angles (degrees)

(m) (m/s) roll pitch yaw

EKF 2.1 0.57 0.25 0.32 2.29
SPKF (without latency compensation) 1.9 (10%) 0.52 (9%) 0.20 (20%) 0.26 (19%) 1.03 (55%)
SPKF (with latency compensation) 1.4 (32%) 0.38 (34%) 0.17 (32%) 0.21 (34%) 0.80 (65%)

result has been corroborated independently in Shin24 (experiments focused on in-flight IMU alignment).
This contributes (among other things) to more accurate Euler angle estimates. Although the average yaw
estimate error improvement for the SPKF over the whole trajectory is 65%, this value does not accurately
reflect the expected steady-state (after bias convergence) performance of the SPKF. Discounting this period,
the average error improvement after bias convergence (t > 80s) is 43%. The steady-state error improvement
of the SPKF over the EKF is thus 32%, 34% and 43% respectively for the roll, pitch and yaw angle estimates.

Another interesting performance characteristic to note from the Euler angle estimates in Figure 7 are
the frequent high peaks in the EKF’s estimation error plots. These coincide with the onsets of aggressive
maneuvers (banking, turns, rapid climbs, etc.) that pushes the vehicle into regimes of increased nonlinear
response. The linearization errors of the EKF will therefore be more severe at these times resulting in poor
estimation performance and increase estimation error. In contrast the SPKF is able to deal with these
increased nonlinearities quite satisfactorily.

In the second set of simulated experiments we “closed the loop” in the GNC system by feeding the
estimated states back to the SDRE control system. In other words, the vehicle control commands will
now be a function of the estimates generated by either the EKF or SPKF estimator and not of the “true”
vehicle states. This mimics (in simulation) the true interdependency between the estimation and control
system as would occur in the real flight hardware during a fully autonomous flight. The helicopter is
commanded to perform an aggressive high speed nose-in turn. This maneuver requires the helicopter to
fly along an imaginary circular trajectory while constantly pointing its nose towards the exact center of
the circle. Accurate position, velocity and especially yaw angle estimates are needed to follow the desired
flight plan with the desired attitude. Figure 8 shows the results of this experiment for both the EKF and
SPKF. The desired flight trajectory is indicated by the red curve, the true realized trajectory in blue and
the estimated trajectory in green. The true attitude of the helicopter is indicated by periodic renderings
of the vehicle itself along the flight path. Clearly for the SPKF case the estimated trajectory is not only
close to the true trajectory (small estimation error), but the true trajectory is close to the desired trajectory
which indicated good control performance. The EKF plots clearly shows worse performance according to
both these criteria. Also evident from the plots is the much improved yaw angle tracking performance of the
SPKF system compared to the EKF system. The helicopter renderings for the EKF indicate that the nose
is not consistently pointing at the true center of the desired circle. The SPKF system, on the other hand,
does much better in estimating and realizing the correct yaw attitude for this maneuver.

B. Real Flight Data Experiments

Figure 9 shows the estimation results of the SPKF compared to the EKF based system on real flight telemetry.
The UAV was flown under pilot guidance to a specified altitude at which point the system was switched

cNote, while Figure 7 seems to indicate that there is a difference in the initial conditions for the yaw estimates of the two
filters, this is actually due to a jump in the estimates after the first time step.
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Figure 7. State estimation results: EKF vs. SPKF (without GPS latency compensation: SPKF 1) vs. SPKF (with
GPS latency compensation: SPKF 2).
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Figure 8. Closed-loop control performance comparison.
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Figure 9. Estimated 3D position of test flight. The UAV lifted off and flew a complex sweeping S-maneuver until it
reached its hover altitude at about 50m. At this point it hovered for a number of seconds after which it attempted
to fly a horizontal square-profile. After the square was completed it hovered again for a number of seconds and then
landed.
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over to fully autonomous flight. The autonomous flight plan was as follows: First the UAV held steady in
hover for a number of seconds, after which it flew a square trajectory at a constant altitude of about 55-60
meters. Since no ground truth signal is available for absolute error comparison, we need to evaluate the
results on more subjective terms. For this purpose, a top-down (2D) projection of the estimation results is
quite insightful (see Figure 10).

Notice the significant number of GPS outages that occurred during the pilot guided ascent to the hovering
altitude (s-shaped curve). Clearly the SPKF appears to more accurately track the (assumed) true underlying
trajectory during this outage period. The EKF generated position estimate exhibits an erratic jump just
before the GPS measurements becomes available again (see Figure 10 at coordinates {40,−60}). This error
is due to the inherent nature of the INS solution (derived from integrating the bias compensated IMU gyro
and accelerometer data) to drift during periods of GPS outage. Since the SPKF performs a more accurate
time-update during these periods than the EKF, and possibly also more accurately tracks the underlying
IMU biases, the resulting SPKF estimates appear more robust to GPS outages in general. We are still
investigating these claims further.
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Figure 10. Estimated 2D position of test flight (top view)
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VI. Conclusions

In this paper we provided a review of Sigma-Point Kalman filter methods for probabilistic inference.
The SPKF provides superior performance over the current industry standard, EKF, by better accounting
for nonlinearities and accommodating asynchronous and lagged sensor measurements. The computational
complexity of the SPKF is equivalent to the EKF. Several examples were provided to illustrate the per-
formance benefits. We then focused on the detailed design of an integrated navigation system. Relative
to the EKF, the SPKF solution provided superior state estimation performance, better bias tracking, and
improved robustness to GPS outages. While performance comparisons were based on a specific UAV rotor
craft platform, the general implementation of the navigation filter and SPKF approach makes it applicable
to general integrated navigation systems, with performance gains expected independent of the vehicle or
specific sensors used.

We continue to investigate trade-offs between direct and indirect navigation equations, alternative quater-
nion representations, ability to track scale and bias, as well as robustness to GPS outages. Additional ex-
tensions include a tightly-coupled integration approach and additional sensor augmentations. We are also
investigating the utility of replacing the higher-end IMU in our INS system with a low-cost IMU (<$1000).
Such IMUs typically have worse error performance (higher bias, scale-factor & drift), which can hopefully
be compensated through the enhanced estimation performance of the SPKF based system.

Appendix A : SPKF Variant Pseudo-Code

This section provides the algorithmic pseudo-code for four different SPKF implementations. The first is
based on the unscented transformation (a SPA scheme proposed by Julier & Uhlmann1) and is called the
unscented Kalman filters (UKF). The second SPKF is based on the central-difference transformation (a SPA
scheme proposed separately by Norgaard et al.2 and Ito et al.37) and is called the central difference Kalman
filters (CDKF). We also provide the pseudo-code for numerical robust and efficient square-root versions of
these SPKFs. These algorithms, the square-root UKF (SR-UKF) and the square-root CDKF (SR-CDKF)
was first published by Van der Merwe & Wan.3,4

A. Unscented Kalman Filter (UKF)

• Initialization:

x̂0 = E[x0] , Px0 = E[(x0 − x̂0)(x0 − x̂0)
T ]

x̂a
0 = E [xa

0 ] =
[

x̂T
0 v̄T

0 n̄T
0

]T

Pa
0 = E

[
(xa

0 − x̂a
0)(xa

0 − x̂a
0)T

]

=

⎡
⎢⎣ Px0 0 0

0 Rv 0

0 0 Rn

⎤
⎥⎦

• For k = 1, . . . ,∞ :

1. Set t = k − 1
2. Calculate sigma-points:

X a
t =

[
x̂a

t x̂a
t + γ

√
Pa

t x̂a
t − γ

√
Pa

t

]
3. Time-update equations:

X x
k|t = f (X x

t , X v
t ,ut)

x̂−
k =

2L∑
i=0

wm
i X x

i,k|t

P−
xk

=
2L∑
i=0

wc
i

(X x
i,k|t − x̂−

k

) (X x
i,k|t − x̂−

k

)T
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4. Measurement-update equations:

Yk|t = h
(X x

k|t, X n
t

)
ŷ−

k =
2L∑
i=0

wm
i Y i,k|t

Pỹk =
2L∑
i=0

wc
i

(Y i,k|t − ŷ−
k

) (Y i,k|t − ŷ−
k

)T

Pxkyk =
2L∑
i=0

wc
i

(X x
i,k|t − x̂−

k

) (Y i,k|t − ŷ−
k

)T

Kk = PxkykP−1
ỹk

x̂k = x̂−
k + Kk

(
yk − ŷ−

k

)
Pxk = P−

xk
− KkPỹkKT

k

• Parameters: γ =
√

L + λ, wm
0 = λ/(L+λ), wc

0 = wm
0 +(1−α2 +β), wc

i = wm
i = 1/[2(L+λ)] for i = 1, . . . , 2L.

λ = α2(L+κ)−L is a compound scaling parameter, L is the dimension of the augmented state-vector, 0 < α ≤ 1
is the primary scaling factor determining the extent of the spread of the sigma-points around the prior mean.
Typical range for α is 1e − 3 < α ≤ 1. β is a secondary scaling factor used to emphasize the weighting on
the zeroth sigma-point for the posterior covariance calculation. β can be used to minimize certain higher-order
error terms based on known moments of the prior RV. For Gaussian priors, β = 2 is optimal. κ is a tertiary
scaling factor and is usually set equal to 0. In general, the optimal values of these scaling parameters will be
problem specific. For more detail on how to choose them, see Julier & Uhlmann.7

• General notes: The augmented state vector and sigma-point vector is given byxa =
[

xT vT nT
]T

, X a =[
(X x)T (X v)T (X n)T

]
. Rv and Rn are the process-noise and observation-noise covariance matrices.

• Linear-algebra operators (See Golub5,38 for more detail):
√·: matrix square-root using lower triangular

Cholesky decomposition.

B. Central Difference Kalman Filter (CDKF)

• Initialization:
x̂0 = E[x0] , Px0 = E[(x0 − x̂0)(x0 − x̂0)

T ]

• For k = 1, . . . ,∞ :

1. Set t = k − 1
2. Calculate sigma-points for time-update:

x̂av
t = [x̂t v̄]

Pav
t =

[
Pxk−1 0

0 Rv

]

X av
t =

[
x̂av

t x̂av
t + h

√
Pav

t x̂av
t − h

√
Pav

t

]
3. Time-update equations:

X x
k|t = f (X x

t , X v
t ,ut)

x̂−
k =

2L∑
i=0

wm
i X x

i,k|t

P−
xk

=

L∑
i=1

[
wc1

i

(X x
i,k|t − X x

L+i,k|t
)2

+

wc2
i

(X x
i,k|t + X x

L+i,k|t − 2X x
0,k|t

)2]
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4. Calculate sigma-points for measurement-update:

x̂an
k|t =

[
x̂−

k n̄
]

Pan
k|t =

[
P−

xk
0

0 Rn

]

X an
k|t =

[
x̂an

k|t x̂an
k|t + h

√
Pan

k|t x̂an
k|t − h

√
Pan

k|t
]

5. Measurement-update equations:

Yk|t = h
(X x

k|t, X n
k|t

)
ŷ−

k =
2L∑
i=0

wm
i Y i,k|t

Pỹk =

L∑
i=1

[
wc1

i

(Y i,k|t − YL+i,k|t
)2

+

wc2
i

(Y i,k|t + YL+i,k|t − 2Y0,k|t
)2]

Pxkyk =
√

wc1
1 P−

xk

[Y1:L,k|t − YL+1:2L,k|t
]T

Kk = PxkykP−1
ỹk

x̂k = x̂−
k + Kk

(
yk − ŷ−

k

)
Pxk = P−

xk
− KkPỹkKT

k

• Weights: wm
0 = (h2 −L)/h2, wm

i = 1/(2h2), wc1
i = 1/(4h2) and wc2

i = (h2 − 1)/(4h4) for i=1,...,2L where h ≥ 1
is the scalar central difference interval size which is optimally set equal to the square-root of the kurtosis of
the prior random variable.2 For Gaussian prior RVs, the optimal value is h =

√
3. The scaling factor h in the

CDKF plays the same role of α in the UKF, i.e., it determines the spread of the sigma-points around the prior
mean. L is the dimension of the augmented state vector.

• General note: Here we again augment the system state with the process noise and observation noise vectors (vk

and nk) as we did for the UKF. For the CDKF, however, we split this augmentation between the time-update
and measurement-update, i.e., for the time-update the augmented state vector and augmented covariance
matrix is given by

xav
k =

[
xT

k vT
k

]T

, Pav
k =

[
Pxk 0

0 Rv

]
,

and by

xan
k =

[
xT

k nT
k

]T

, Pan
k =

[
Pxk 0

0 Rn

]
,

for the measurement-update. Accordingly the sigma-point vectors are given by: X av =
[

(X x)T (X v)T
]T

and X an =
[

(X x)T (X n)T
]T

. Note: (·)2 is shorthand for the vector outer product, i.e., a2 .
= aaT .

C. Square-Root UKF (SRUKF)

• Initialization:

x̂0 = E [x0] , Sx0 =
√

E[(x0 − x̂0)(x0 − x̂0)T ]

x̂a
0 = E [xa] =

[
x̂0 v̄ n̄

]T

Sa
0 =

√
E [(xa

0 − x̂a
0)(xa

0 − x̂a
0)T ]

=

⎡
⎢⎣ Sx0 0 0

0 Sv 0

0 0 Sn

⎤
⎥⎦
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• For k = 1, . . . ,∞ :

1. Set t = k − 1

2. Calculate sigma-points:
X a

t =
[

x̂a
t x̂a

t + γSa
xt

x̂a
t − γSa

xt

]
3. Time-update equations:

X x
k|t = f (X a

t , X v
t ,ut)

x̂−
k =

2L∑
i=0

wm
i X x

i,k|t

S−
xk

= qr
{[√

wc
1

(X x
1:2L,k|t − x̂−

k

)]}
S−

xk
= cholupdate

{
S−

xk
, X x

0,k|t − x̂−
k , w

(c)
0

}
Yk|t = h

(X x
i,k|t, X n

t

)
ŷ−

k =

2L∑
i=0

wm
i Y i,k|t

4. Measurement-update equations:

Sỹk = qr
{[√

wc
1

(Y1:2L,k|t − ŷ−
k

)]}
Sỹk = cholupdate

{
Sỹk , Y0,k|t − ŷ−

k , w
(c)
0

}

Pxkyk =
2L∑
i=0

wc
i

(X x
i,k|t − x̂−

k

) (Y i,k|t − ŷ−
k

)T

Kk =
(
Pxkyk/ST

ỹk

)
/Sỹk

x̂k = x̂−
k + Kk

(
yk − ŷ−

k

)
U = KkSỹk

Sxk = cholupdate
{
S−

xk
,U,−1

}
• Weights & parameters: γ =

√
L + λ, wm

0 = λ/(L + λ), wc
0 = wm

0 + (1 − α2 + β), wc
i = wm

i = 1/[2(L + λ)]
for i = 1, . . . , 2L. λ = α2(L + κ) − L is a compound scaling parameter, L is the dimension of the augmented
state-vector, 0 < α ≤ 1 is the primary scaling factor determining the extent of the spread of the sigma-points
around the prior mean. Typical range for α is 1e−3 < α ≤ 1. β is a secondary scaling factor used to emphasize
the weighting on the zeroth sigma-point for the posterior covariance calculation. β can be used to minimize
certain higher-order error terms based on known moments of the prior RV. For Gaussian priors, β = 2 is
optimal. κ is a tertiary scaling factor and is usually set equal to 0. In general, the optimal values of these
scaling parameters will be problem specific. For more detail on how to choose them, see Julier & Uhlmann.7

• General notes: The augmented state vector and sigma-point vector is given by xa =
[

xT vT nT
]T

, X a =[
(X x)T (X v)T (X n)T

]
. Sv =

√
Rv and Sn =

√
Rn where Rv and Rn are the process-noise and

observation-noise covariance matrices.

• Linear-algebra operators (see Golub38 and Van der Merwe5 for more detail):
√·: matrix square-root using

lower triangular Cholesky decomposition. qr(A): lower-triangular part of R matrix resulting from economy
QR decomposition of data-matrix A. cholupdate {R,U,±ν}: N consecutive rank-1 Cholesky up(down)dates
of the lower-triangular Cholesky factor R by the N columns of

√
νU. / : Efficient least-squares pseudo inverse

implemented using triangular QR decomposition with pivoting.

D. Square-Root CDKF (SRCDKF)

• Initialization:
x̂0 = E [x0] , Sx0 =

√
E[(x0 − x̂0)(x0 − x̂0)T ]
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• For k = 1, . . . ,∞ :

1. Set t = k − 1

2. Calculate sigma points for time-update:

x̂av
t =

[
x̂t v̄

]
, Sav

t =

[
Sxt 0

0 Sv

]

X av
t =

[
x̂av

t x̂av
t + hSav

t x̂av
t − hSav

t

]
3. Time-update equations:

X x
k|t = f (X x

t , X v
t ,ut)

x̂−
k =

2L∑
i=0

wm
i X x

i,k|t

S−
xk

= qr
{[√

wc1
1

(X x
1:L,k|t − X x

L+1:2L,k|t
)

√
wc2

1

(X x
1:L,k|t + X x

L+1:2L,k|t − 2X x
0,k|t

)]}

4. Calculate sigma-points for measurement update:

x̂an
k|t =

[
x̂−

k n̄
]

, San
k|t =

[
S−

xk
0

0 Sn

]

X an
k|t =

[
x̂an

k|t x̂an
k|t + hSan

k|t x̂an
k|t − hSan

k|t

]
5. Measurement-update equations:

Yk|t = h
(X x

k|t, X n
k|t

)
ŷ−

k =
2L∑
i=0

wm
i Y i,k|t

Sỹk = qr
{[√

wc1
1

(Y1:L,k|t − YL+1:2L,k|t
)

√
wc2

1

(Y1:L,k|t − YL+1:2L,k|t − 2Y0,k|t
)]}

Pxkyk =
√

wc1
1 S−

xk

[Y1:L,k|t − YL+1:2L,k|t
]T

Kk =
(
Pxkyk/ST

ỹk

)
/Sỹk

x̂k = x̂−
k + Kk

(
yk − ŷ−

k

)
U = KkSỹk

Sxk = cholupdate
{
S−

xk
,U,−1

}
• Weights: wm

0 = (h2 −L)/h2, wm
i = 1/(2h2), wc1

i = 1/(4h2) and wc2
i = (h2 − 1)/(4h4) for i=1,...,2L where h ≥ 1

is the scalar central difference interval size which is optimally set equal to the square-root of the kurtosis of
the prior random variable.2 For Gaussian prior RVs, the optimal value is h =

√
3. The scaling factor h in the

CDKF plays the same role of α in the UKF, i.e., it determines the spread of the sigma-points around the prior
mean. L is the dimension of the augmented state vector.

• Other parameters: Sv =
√

Rv and Sn =
√

Rn where Rv and Rn are the process-noise and observation-noise
covariance matrices.

• Linear-algebra operators (see Golub38 and Van der Merwe5 for more detail):
√·: matrix square-root using

lower triangular Cholesky decomposition. qr(A): lower-triangular part of R matrix resulting from economy
QR decomposition of data-matrix A. cholupdate {R,U,±ν}: N consecutive rank-1 Cholesky up(down)dates
of the lower-triangular Cholesky factor R by the N columns of

√
νU. / : Efficient least-squares pseudo inverse

implemented using triangular QR decomposition with pivoting.
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• General note: Here we again augment the system state with the process noise and observation noise vectors (vk

and nk) as we did for the UKF. For the CDKF, however, we split this augmentation between the time-update
and measurement-update, i.e., for the time-update the augmented state vector and augmented covariance
matrix is given by

xav
k =

[
xT

k vT
k

]T

, Pav
k =

[
Pxk 0

0 Rv

]
,

and by

xan
k =

[
xT

k nT
k

]T

, Pan
k =

[
Pxk 0

0 Rn

]
,

for the measurement-update. Accordingly the sigma-point vectors are given by: X av =
[

(X x)T (X v)T
]T

and X an =
[

(X x)T (X n)T
]T

. Note: (·)2 is shorthand for the vector outer product, i.e., a2 .
= aaT .

Appendix B: Sensor Latency Compensation - Fusing Lagged Measurements

When fusing latency delayed measurements with the current best prediction of the vehicle’s state, care
must be taken to incorporate this information in a mathematically correct fashion. Figure 11 demonstrates
this issue graphically for a linear system given by

xk+1 = Akxk + Bkuk + vk (55)
yk = Ckxk + nk , (56)

where vk ∼ N(0,Rv) and nk ∼ N(0,Rn). The state estimation filter, in general, receives measurements from
a variety of sensors at each measurement-update step. Some measurements corresponds to the system state
at the current time, yk, given by Equation 56, while other latency-delayed measurements, y∗

k, correspond to
the system state at time l = k − N , i.e.,

y∗
k = C∗

l xl + n∗
k ,

where N is the sensor latency measured in sample periods, C∗
l is the measurement sensitivity matrix and n∗

k

is the observation noise for the delayed measurement with n∗
k ∼ N(0,R∗

n). The challenge now is this: how
do we optimally fuse these different sets of measurements with the current estimate of the system state?

A number of different solutions to the sensor latency problem has been suggested in the literature9,39,40

for application to linear systems through the use of modified linear Kalman filters. We will now briefly
review these different approaches.

The simplest to implement, but also the most inaccurate, solution is to simply ignore the fact that
the sensor measurement is lagged. A normal Kalman measurement update is then performed to fuse the
delayed sensor measurement with the current state estimate. This is the option that was used for the GPS
sensor fusion in MIT’s EKF based UAV state estimator.31 Their rationale was that the 50ms latency of the
Ashtech G12 GPS receiver was short enough to not cause significant errors if ignored.41 Even though this
assumption is probably reasonable for the specific time-delay at hand, we felt that valuable information in
the measurements were still being discarded using this approach and that compensating for the latency will
in fact result in a significant increase in estimation performance. This was experimentally confirmed earlier
in the Experimental Results section.

Another approach used to compensate for measurement latency is to simply recalculate the complete
time-trajectory of the filter through the delay period, when a lagged measurement is received. This requires
all of the observations (both lagged and non-lagged) as well as the system state estimates to be saved for
the complete latency duration, i.e. k̃ ∈ [k − N, k − N + 1, . . . k − 1, k]. Not only does this incur a large
storage cost for any significant sensor latency, but the computational burden also increases rapidly as the
recalculation period becomes longer. This has serious implications if the filter rate is such that new state
estimates has to be calculated within a short period of time. The only advantage of this approach is that
the resulting state estimates will be exact (for linear systems), i.e., no approximations with regard to the
sensor latency has been made. Unfortunately, due to the large storage and computational cost, this method
is almost never employed.

Another typical approximate solution used to deal with this latency problem is to store the value of the
state estimate corresponding to the latency-lagged sensor measurement, i.e., x̂k−N , in a buffer. When the
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System with a delayed measurement due to sensor latency.

Figure 11. System with a delayed measurement due to sensor latency: At time k the state estimation filter receives
two sets of sensor measurements from the system: A normal measurement yk corresponding to the system state at
time k, as well as a delayed measurement y∗

k corresponding to the system state at time l = k − N , where N is the
sensor latency (measured in sample periods).

lagged measurement y∗
k then eventually becomes available at time k, the “prediction of the observation”,

ŷ∗−
k , is calculated using the correct lagged state estimate x̂k−N , i.e.

ŷ∗−
k = C∗

k−N x̂k−N . (57)

The innovation based on this lagged prediction, y∗
k−ŷ∗−

k , is then fused using the standard Kalman measurement-
update with the current predicted state, i.e.

x̂k = x̂−
k + K

(
y∗

k − ŷ∗−
k

)
. (58)

Since the correct innovation is fused with the wrong state prediction, this method although better than the
first approach, is still sub-optimal.

In Alexander,39 a method is derived where it suffices to calculate a correction term which is then added to
the filter estimates when the latency-delayed measurements arrive. Referring to the standard Kalman filter
equations (Equations 3-7) and Figure 11, the measurement yl should be fused at time l = k − N , causing
a correction in the state estimate x̂−

l and a decrease in the state covariance P−
xl

. As the Kalman gain is a
function of this updated state covariance, the measurements occurring after this time (k > l) will all be fused
differently than if the measurement update for y∗

k is omitted. If therefore the measurement yl is delayed by
N samples (resulting in y∗

k) and fused at time k, the data update should reflect the fact that the N data
updates from time l to k, and therefore the state and covariance estimates, have all been affected by the delay
in a complex manner.9 Equations that account for this when fusing y∗

k at time k were derived39 but are of
such complexity that they are practically infeasible for most applicationsd. This approach was reformulated
into a practically implementable method (called Larsen’s method9) which does, however, require (at time
l) the measurement sensitivity matrix C∗

l and the observation noise covariance matrix R∗
n to be known at

time l (which is often the case). If these requirements are met, the filter covariance should be updated at
time l as if the measurement y∗

k is already available. This leads the measurements in the delay period to
be fused as if y∗

k had been fused at time l. At time k, when y∗
k actually becomes available, incorporating

the measurement (y∗
k) correctly is then greatly simplified, by adding the following correction term after the

non-lagged observation yk has been fused:

δx̂k = M∗Kl (y∗
k − C∗

l x̂l) (59)

If the latency delay is zero, M∗ is the identity matrix. For N > 0, M∗ is given by:

M∗ =
N−1∏
i=0

(
I − K

′
k−iCk−i

)
Ak−i−1 , (60)

dIn fact, the computational complexity is comparable to recalculating the complete Kalman filter through the complete delay
of Nlag samples,9 which is equivalent to the previously discussed exact method for latency compensation.
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where K
′

signifies Kalman gain matrices that have been calculated based on a covariance matrix updated
at time l with the covariance of the delayed measuremente. This implies that the covariance estimates of
the filter will be wrong in a period of N samples (before the delayed measurement arrives), causing normal
non-delayed measurements during this period to be fused sub-optimally. However, after the correction term
(Equation 59) is added, the filter state and covariance will once again be optimal. Take note that Equations 60
and 59 assumes a linear dynamic state-space model.

Larsen9 extended the previous approach further to a method that provides optimally fused estimates not
only at the instances when the delayed measurements arrive, but also during the interim period between these
updates. This is achieved by running a second parallel Kalman filter that generates optimal estimates in the
interim (between delayed measurements) period: At time l the first filter is updated according to Larsen’s
first method (shown above) incorporating the covariance of the not-yet-received delayed measurement y∗

k.
This filter, will generate non-optimal estimates until the delayed measurement is actually received, but
it will build up the correct terms needed for an optimal measurement update at that time. During this
interim period the second filter, which was not pre-updated at time l, will generate optimal estimates when
fusing non-delayed measurements. At time k, the correctly fused optimal estimate of the first filter (which
incorporated the delayed measurement) and its covariance is used to reinitialize the second filter. Using this
approach optimal estimates are available at all times. The downside is that two Kalman filters need to be
run in parallel which will double the computational complexity.

Of the approaches discussed above, Larsen’s modified two-filter method is the only approach that is both
computationally practical and produces optimal states estimates at all time. The method is, however, only
exact for linear systems. For nonlinear systems, the recursive calculation of the corrections terms (Equa-
tions 60 and 59) must be approximated through the use of linearized system matrices. If the linearization
errors are severe, it is expected that large errors may accumulate over time resulting in sub-optimal correc-
tions when the lagged measurements finally arrive.

E. SPKF Based Time Delayed Sensor Fusion

In this section, we introduce an alternative approach for optimally fusing latency delayed sensor data in
general nonlinear systems. In order to accurately fuse a N -sample lagged innovation vector

ỹk−N = yk−N − ŷ−
k−N (61)

with the current prediction of the system state x̂−
k , the Kalman update formulation of Eq. (3) is re-written

as
x̂k = x̂−

k + K̃k,N ỹk−N . (62)

In Eq. (62) the Kalman gain is again expressed in terms of the correct covariance terms, i.e.,

K̃k,N = Pxkỹk−N
P−1

ỹk−N
, (63)

where Pxkỹk−N
and Pỹk−N

are calculated by propagating sigma-points drawn from Pxkxk−N
and Pxk−N

(and corresponding lagged mean x̂k−N ) through the observation function h(·) and applying the standard
SPKF covariance calculation formulation of Eqs. (22) and (21). The optimal lagged observation prediction
is given by

ŷ−
k−N = E

[
h

(
x̂−

k−N ,nk−N

)]
(64)

which is also calculated using the standard sigma-point propagation technique of Eq. (20) after sigma-points
were drawn from {x̂k−N ,Pxk−N

}.
The key insight here is that we need to accurately maintain the lagged state estimate x̂k−N as well

as the correct lagged covariance and cross-covariance estimates Pxkxk−N
and Pxk−N

within the SPKF as
the system evolves from time k − N to the current time k. Note that Pxkxk−N

corresponds to the cross-
covariance-over-time between the system state at time k − N and the current time k, i.e., Pxkxk−N

=

E
[(

xk − x̂−
k

) (
xk−N − x̂−

k−N

)T
]
. One approximate method to do this was shown above, based on recursively

applying the linearized system model to propagate the needed covariance term (see Equations 59 and 60).
We will now present an alternative method to maintain the cross-covariance term through augmentation of
the system state and redefinition of the process model.

eSince the covariance update only depends on C∗
l and R∗

n and not y∗
k, it can be precalculated.
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This can be achieved within the SPKF framework by augmenting the state vector at time k − N with
the lagged state xlag = xk−N , i.e.,

x(a)
k−N =

[
xk−N

xlag

]
(65)

and then redefining the process models as

x(a)
k−N+1 = f̆

(
x(a)

k−N ,vk−N

)

=

[
f (xk−N ,vk−N )

xlag

]
(66)

=

[
xk−N+1

xlag

]

and the observation model (which is only valid at time k) by

y∗
k = h̆1

(
x(a)

k ,n(a)
k

)
= h (xlag,nlag) (67)
= h (xk−N ,nk−N )

for the lagged measurements, and by

yk = h̆2

(
x(a)

k ,n(a)
k

)
= h (xk,nk) (68)

for normal (non-delayed) measurements. Note, the augmented process model (Equations 66) updates the
first component of the augmented state using the original process model while keeping the second component,
xlag, constant. This approach will thus maintain the value of the system state at some prior point in time
and update the current state of the system. Further note that y∗

k = yk−N , i.e., an observation of the system
state at time k − N which is received at time k. Using this redefined state and process model from time
k −N to k within the normal SPKF framework will result in the following prediction of the state mean and
covariance at time k, just before the lagged measurement is fused:

x̂(a)−
k =

[
x̂−

k

x̂−
lag

]
=

[
x̂−

k

x̂−
k−N

]

P−
x

(a)
k

=

[
P−

xk
P−

xkxlag

P−
xlagxk

P−
xlag

]
=

[
P−

xk
P−

xkxk−N

P−
xk−Nxk

P−
xk−N

]

Sigma-points are now drawn from this prior distribution of the augmented state and propagated through
the redefined observation model (Eq. (67)) in order to calculate

P
x

(a)
k ỹk−N

=
[

PT
xkỹk−N

PT
xk−N ỹk−N

]T

and Pỹk−N
using the standard SPKF framework of Eqs. (22) and (21). These terms can then be used to

compute the correct Kalman gain

K̃k,N = P
x

(a)
k ỹk−N

P−1
ỹk−N

=

[
Pxkỹk−N

P−1
ỹk−N

Pxk−N ỹk−N
P−1

ỹk−N

]

needed to fuse the lagged measurement when it is received at time k.
An additional issue to be dealt with is how to update the augmented state during the latency period when

a normal (non time delayed) measurement arrives. For example, while the system is waiting for a lagged
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sensor (e.g. GPS) to output its measurement of the system state at time k − N , it receives a non-lagged
measurement from another sensor (e.g. altimeter), which must now be fused with the current estimate of the
system state. One solution to this problem is through the use of the Schmidt-Kalman filter .42 This alternate
formulation of the Kalman filter has the property that certain states are marked as “ancillary” whose values
are not updated. It uses the Joseph form43 of the measurement update equations and a modified Kalman
gain equation given by

K̃k,N = MP
x

(a)
k ỹk−N

P−1
ỹk−N

, (69)

where M is the indicator matrix that indicates which of the states must be updated and which are “ancillary”.
It is block diagonal with 1s in the diagonals for states which are updated and 0s for states which are not to
be updated. For our specific case at hand, M is given by

M =

[
I 0
0 0

]
. (70)

A second solution we propose, is to use a normal Kalman measurement update without the use of the
indicator matrix M and ancillary (non updated) states. The result of this will be that the original state
estimate, xlag in the augmented state vector (Equation 65) will no longer stay constant throughout the
latency period due to the measurement update performed on it. It will now be measurement-updated based
on subsequent information that has been observed. This deviates from Larsen’s method9 and should give
better results. In fact, what will happen is that the original state estimate xl (from which the delayed sensor
measurement is derived), will be improved during the latency period using future non-delayed observations.
This can be thought of as a smoothing operations. Here we use the term smoothing to simply imply that
past estimates of the system state can somehow be improved based on subsequent future observations of
measurement data. This is a well known result from signal-processing filter theory.44 Since we are waiting for
the lagged sensor during the latency period, data received in the interim can be used to improve our estimate
of the system state that the sensor will eventually be reporting on. When the delayed measurement then
finally arrives and the innovation is calculated using Equation 61, the prediction of the delayed observation
will be more accurate since it will now be calculated using the improved lagged state estimate. For a more
detailed exposition of this method see Van der Merwe.5

The advantage of the SPKF formulation for fusing time-delayed sensor measurements (as presented
above), is that the latency delayed measurements are incorporated using the exact same algorithmic frame-
work used to recursively estimate the normal states. The latency compensation framework benefits in the
same way from the second-order accuracy of the sigma-point approach. The disadvantage of this method,
compared to some of the simpler approximate methods, is that the state dimension (and hence the number of
sigma-points) doubles during the sensor latency period, resulting in an increase in computational complexity.
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