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Resampling schemes for a particle filter based on the differential
evolution (DE) algorithm are presented. By using these schemes,
several types of differential evolution particle filters (DEPFs) are pro-
posed. In the proposed filters, the unscented Kalman filter is utilised to
generate the importance proposal distribution and the different DE
algorithms are used as the resampling scheme. Simulation results
demonstrate that the proposed DEPFs outperform the sequential im-
portance resampling algorithm, the regularised particle filter, and the
unscented particle filter.

Introduction: In recent years, the particle filter (PF), as an effective
estimator for the nonlinear filtering problem, has been widely used in
many fields, including signal processing, biostatistics, economics, and
engineering. The PF is a Monte Carlo (MC) method for implementing
recursive Bayesian estimation. It exploits some random particles with
associated weights to approximate the true posterior density function.
The basic PF goes back to the 1950s, but the PF was not used in practical
applications until 1993 when Gordon et al. [1] proposed the sequential
importance resampling (SIR) algorithm. The SIR resamples particles
from a discrete approximation of the posterior density to eliminate the
so-called particle degeneracy problem. But the resampling process of
SIR leads to loss of diversity among the particles, i.e. the particle impov-
erishment problem [2]. To improve the performance of the PF, choosing
a good proposal distribution, and/or modifying the resampling scheme
are often adopted. For example, in [3], the extended Kalman filter (EKF)
Gaussian approximation is used as the proposal distribution for a PF, and
in [4], the EKF proposal is replaced by an unscented Kalman filter
(UKF) proposal, and the unscented particle filter (UPF) is proposed.
Musso et al. [5] presented the regularised particle filter (RPF). Unlike
the SIR, the RPF resamples from a continuous approximation of the pos-
terior density to alleviate the particle impoverishment problem.

In this Letter, we regard the resampling process as an optimisation
problem, and present differential evolution (DE) based resampling
schemes for the PF. With the use of the presented resampling
schemes, four types of particle filters are proposed. We refer to them
as differential evolution particle filters (DEPFs). In the DEPFs, once
the particles are sampled from the UKF proposal distribution, the pre-
sented resampling schemes are adopted to generate the resampled
particles.

Problem formulation: Many nonlinear filtering problems can be written
in the form of the dynamic state space (DSS) model as follows:

xk = f (xk−1, uk−1) (system equation) (1)

zk = h(xk , vk ) (observation equation) (2)

where xk and zk are the state variable and observation at time k, respect-
ively. f (†) and h(†) are some known functions, system noise uk21 and
observation noise vk are random vectors of given distributions. The
DSS model represents the time-varying dynamics of an unobserved
xk, as the distribution p(xk | xk21). The distribution p(zk|xk) represents
the observation equation conditioned on the unknown xk, which is to
be estimated. The system equation represents a system evolving with
time k, and the initial state is given by distribution p(x0). The objective
is to estimate recursively in time the filtering distribution p(xk | z0:k) and
the predictive distribution p(xk+1 | z0:k) at time k given all the obser-
vations z0:k ; {z0, . . . ,zk}.

Proposed resampling schemes and particle filters: PFs rely on import-
ance sampling, so the design of proposal distributions that can approxi-
mate the posterior distribution well is very important [4]. To utilise fully
the current observation information, as has been done in [4], the UKF is
utilised to generate the proposal distribution. Let {x(i)

k : i = 1, . . . ,N}
denote the state particles at time k, where N is the number of particles.

Define x0:k ; {x0, . . . , xk}. Let {x̂(i)
k : i = 1, . . . ,N} be the particles

drawn from the UKF proposal distribution q(x(i)
k | x(i)

0:k−1, z1:k ), i.e.

x̂(i) � q(x(i)
k | x(i)

0:k−1, z1:k ) = N (�x(i)
k , P̂

(i)
k ), where N(�x(i)k , P̂

(i)
k ) is the

Gaussian distribution (with mean �x(i)
k and covariance P̂

(i)
k ) obtained by

using UKF. In this Letter, because of space limitations, we do not
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show the computation process of the mean and covariance matrix of
the UKF proposal distribution, the detailed computation process can
be found in [4]. The weight of x̂(i)

k is calculated by

w(i)
k / w(i)

k−1

p(zk | x̂(i)
k )p(x̂(i)

k | x(i)
k−1)

q(x̂(i)
k | x(i)

0:k−1, z1:k )
(3)

normalising the weight as w̃(i)
k = w(i)

k /
∑N

i=1 w(i)
k . Then, a resampling

process will be executed to obtain a new set of particles denoted by
{ẋ(i)

k : i = 1, . . . ,N} from {(x̂(i)
k , w̃(i)

k : i = 1, . . . ,N}.
As stated above, in this Letter, the resampling process is treated as an

optimisation problem, and effective resampling schemes based on the
DE algorithm are presented. DE is a population-based stochastic algo-
rithm for global optimisation, which has earned a reputation as a very
effective global optimiser [6]. In the presented resampling schemes,
the particles {x̂(i)

k : i = 1, . . . ,N} are regarded as the target vectors
of the current population, and the corresponding weights
{w̃(i)

k : i = 1, . . . ,N} as the objective functions of the target vectors,
respectively. Unlike the traditional resampling schemes, there is no elim-
ination and replication of particles, the DE resampling schemes recom-
bine the particles by using an iterative process of mutation, crossover and
selection. As a result, a new set of diverse particles will be propagated.

Let {Ex,g = (X l,g) : l = 1, . . . , L, g = 1, . . . ,G} denote the current
population of DE, which consists of L D-dimensional target vectors
{X l,g = (X j,l,g) : j = 1, . . . ,D}, where g denotes the number of gener-
ations, and j the dimensionality. We regard the particles
{x̂(i)

k : i = 1, . . . ,N} as the target vectors {X l,g : l = 1, . . . , L} of the
current population, and the corresponding weights as the objective func-
tions {f (X l,g) : l = 1, . . . , L}, in this case N ¼ L.

Then a mutation step will be executed. In this step, the perturbation of
a base vector Xr1,g by using a difference vector based mutation
V l,g = X r1,g + F × (X r2,g − X r3,g) creates a mutation vector
{V l,g = (Vj,l,g), j = 1, . . . ,D}, where F [ (0,1+) is the scale factor
that controls the rate at which the population evolves. Once the Vl,g

is obtained, its objective function is calculated as f (V l,g) =

f̂ (V l,g)/
∑L

l f̂ (V l,g), where f̂ (V l,g) =
p(zk |V l,g)p(V l,g | x(i)

k−1)
q(V l,g | x(i)

k−1, zk )
, here i ¼

l. In fact, Vl,g can also be in the form of V l,g = X r1,g + F × (X r2,g−
X r3,g + X r4,g − X r5,g) or V l,g = Xbest,g + F × (X r2,g − X r3,g) or
V l,g = Xbest,g + F × (X r2,g − X r3,g + X r4,g − X r5,g), and different
forms of V l,g have led to various variants of DE [6]. Xbest,g is the
target vector with the largest value of the objective function in the
current population. The base vector index r1 and the difference vector
indexes r2–r5 are randomly selected once per mutant. All the random
indexes and the mutation vector’s index l should be mutually exclusive.
In what follows, the DEPFs using the above-mentioned different
mutation forms of the DE algorithms are called DPF1, DPF2, DPF3
and DPF4 for short, respectively.

The next step is crossover, which mixes parameters of the Vl,g and the
Xl,g to generate the trial vector {U l,g = (Uj,l,g), j = 1, . . . ,D}. The
crossover is defined as:

U l,g = Uj,l,g = V j,l,g if (randj[0, 1) ≤ Cr or j = jrand)
X j,l,g otherwise

{
(4)

where Cr [ [0, 1] is the crossover probability, randj[0,1) is a uniform
random number generator, and the random index jrand is taken from
the mutant [7]. Following the crossover is the selection step. In this
step, Ul,g and Xl,g which has a higher value of objective function will
survive into the next generation, that is

X l,g+1 = U l,g if f (U l,g) ≥ f (X l,g)
X l,g otherwise

{
(5)

When the new population is propagated, the process of mutation,
crossover and selection is repeated until the optimum is found or a pre-
specified maximum G of the number of generations is reached. The
above steps describe the presented resampling schemes. A single iter-
ation of the proposed particle filters based on DE resampling schemes
is given as follows:

† Calculate the UKF proposal distribution N(�x(i)k , P̂
(i)
k } and sample

{x̂(i)
k : i = 1, . . . ,N} from it, evaluate the weights {w(i)

k : i = 1, . . . ,N}
by (3) and normalise the weights.
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† Exploit DE algorithms which are based on different mutations to
obtain {ẋ(i)

k , ˙̃w
(i)
k : i = 1, . . . ,N} according to (4)–(5), where ˙̃w

(i)
k is the

weight of ẋ(i)k .
† Estimate the system state xk by xk =

∑N
i=1 ẋ(i)

k
˙̃w
(i)
k .

Simulations: To compare the performance of the proposed filters to
those of the SIR, the RPF and the UPF, we consider the following
non-stationary problem:

xk = 1 + sin(0.04pk) + 0.5xk−1 + uk−1 (6)

zk = 0.2x2
k + vk 1 ≤ k ≤ 30

0.5xk − 2 + vk 30 , k ≤ T

{
(7)

where uk21 is a Gamma(3,2) random variable, vk � N(0, 0.00001), and
the total observation time is T ¼ 50. The parameters of the UKF are the
same as those in [4]. In the proposed filters, F ¼ 0.9, Cr ¼ 0.6, and the
maximum number of generations is G ¼ 20. First, 500 MC simulations
and 10 particles are used. Fig. 1 shows the variation of estimation root
mean squared error (RMSE) with observation time for all particle
filters, where DSIR denotes the SIR based on the DE resampling
scheme. It can be seen that the DSIR outperforms the SIR, and the
RMSEs of the DEPFs are smaller than those of the SIR, the RPF and
the UPF. In addition, the DPF3 has the best performance among the pro-
posed DEPFs. Secondly, 200 MC tests and 200, 100, and 10 particles
are used, respectively. The results of mean and variance of the 200
RMSE for 200 MC tests are shown in Table 1. It is shown that the
DPF3 needs a smaller number of particles than that of the SIR, RPF
and UPF to obtain accurate estimations of the state. With 10 particles,
the DPF3 outperforms the SIR and the RPF using 200 particles. With
100 particles, the DPF3 outperforms the UPF using 200 particles. By
using the DE schemes, the diversity of the particles is increased. As a
result, the performance of estimation is improved.
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Fig. 1 RMSE of SIR, RPF, UPF, DSIR and DEPFs for 500 MC simulations,
where N ¼ 10

Table 1: Mean and variance of 200 RMSE of SIR, RPF, UPF, and
DPF3 for 200 MC simulations

Algorithm Mean Variance N

RPF 0.4222 0.0377

200
PF 0.4576 0.0631

UPF 0.0830 0.0117

DPF3 0.0573 0.0068

RPF 0.5604 0.0375

100
PF 0.5680 0.0613

UPF 0.0922 0.0086

DPF3 0.0778 0.0051

RPF 1.0467 0.0302

10
PF 0.9687 0.0334

UPF 0.5024 0.0097

DPF3 0.2332 0.0082
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Conclusion: Using the presented resampling schemes, the differential
evolution particle filters are proposed. Simulation results demonstrate
that the proposed filters have improved performance compared with
that of the SIR, the RPF and the UPF.
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