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A Tutorial on Particle Filters for On-line

Non-linear /Non-Gaussian Bayesian Tracking

Sanjeev Arulampalam, Simon Maskell, Neil Gordon and Tim Clapp

Abstract—Increasingly for many application areas it is be-
coming important to include elements of non-linearity and
non-Gaussianity, in order to model accurately the underly-
ing dynamics of a physical system. Moreover, it is typically
crucial to process data on-line as it arrives, both from the
point of view of storage costs and also for rapid adapta-
tion to changing signal characteristics. In this paper we
review both optimal and suboptimal Bayesian algorithms
for non-linear/non-Gaussian tracking problems, with a fo-
cus on Particle filters. Particle filters are sequential Monte
Carlo methods based upon point mass (or ‘particle’) repre-
sentations of probability densities, which can be applied to
any state space model, and which generalise the traditional
Kalman filtering methods. Several variants of the particle
filter such as SIR, ASIR, and RPF, are introduced within a
generic framework of the Sequential Importance Sampling
(SIS) algorithm. These are discussed and compared with
the standard EKF through an illustrative example.

Keywords — Particle Filters, Sequential Monte Carlo, Bayesian,

Non-linear/Non-Gaussian, Tracking.

I. INTRODUCTION

Many problems in science require estimation of the state
of a system that changes over time using a sequence of noisy
measurements made on the system. In this article we shall
concentrate on the state space approach to modelling dy-
namic systems and the focus will be on the discrete-time
formulation of the problem. Thus, difference equations
are used to model the evolution of the system with time,
and measurements are assumed to be available at discrete
times. For dynamic state estimation, the discrete-time ap-
proach is widespread and convenient.

The state space approach to time-series modelling fo-
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cuses attention on the state vector of a system. The state
vector contains all relevant information required to describe
the system under investigation. For example, in tracking
problems this information could be related to the kinematic
characteristics of the target. Alternatively, in an economet-
rics problem it could be related to monetary flow, interest
rates, inflation etc. The measurement vector represents
(noisy) observations that are related to the state vector.
The measurement vector is generally (but not necessarily)
of lower dimension than the state vector. The state space
approach is convenient for handling multivariate data and
non-linear/non-Gaussian processes and it provides a signif-
icant advantage over traditional time-series techniques for
these problems. A full description is provided in [41]. Also,
many varied examples illustrating the application of non-
linear /non-Gaussian state space models are given in [26].
In order to analyse and make inference about a dynamic
system at least two models are required. Firstly, a model
describing the evolution of the state with time (the system
model), and secondly a model relating the noisy measure-
ments to the state (the measurement model). We shall
assume that these models are available in a probabilistic
form. The probabilistic state space formulation and the
requirement for the updating of information on receipt of
new measurements are ideally suited for the Bayesian ap-
proach. This provides a rigorous general framework for

dynamic state estimation problems.

In the Bayesian approach to dynamic state estimation
one attempts to construct the posterior probability density
function (pdf) of the state based on all available informa-
tion, including the set of received measurements. Since
this pdf embodies all available statistical information, it
may be said to be the complete solution to the estima-
tion problem. In principle, an optimal (with respect to any
criterion) estimate of the state may be obtained from the
pdf. A measure of the accuracy of the estimate may also
be obtained. For many problems an estimate is required
every time that a measurement is received. In this case a
recursive filter is a convenient solution. A recursive filter-
ing approach means that received data can be processed
sequentially rather than as a batch, so that it is not neces-
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sary to store the complete data set nor to reprocess exist-
ing data if a new measurement becomes available!. Such
a filter consists of essentially two stages: prediction and
update. The prediction stage uses the system model to
predict the state pdf forwards from one measurement time
to the next. Since the state is usually subject to unknown
disturbances (modelled as random noise) prediction gen-
erally translates, deforms and spreads the state pdf. The
update operation uses the latest measurement to modify
the prediction pdf. This is achieved using Bayes theorem
which is the mechanism for updating knowledge about the
target state in the light of extra information from new data.

We begin in Section II with a description of the non-
linear tracking problem and its optimal Bayesian solution.
When certain constraints hold, this optimal solution is
The Kalman filter and grid-based filter, de-
scribed in Section III, are two such solutions. Often, the

tractable.

optimal solution is intractable. The methods outlined in
Section IV take several different approximation strategies
to the optimal solution. These approaches include the ex-
tended Kalman filter, approximate grid-based filters and
particle filters. Finally, in Section VI, we use a simple scalar
example to illustrate some points about the approaches dis-
cussed up to this point and then draw conclusions in Sec-
tion VII. This paper is a tutorial and so, to facilitate easy
implementation, ‘pseudo-code’ for algorithms has been in-
cluded at relevant points.

II. NON-LINEAR BAYESIAN TRACKING

To define the problem of tracking, consider the evolution
of the state sequence {x, k € N} of a target, given by

X = £ (Xp—1, Vi—1), (1)

where fj, : R x R — R"= is a possibly non-linear func-
tion of the state xx_1, {vi—1,k € N} is an ii.d process
noise sequence, n,,n, are dimensions of the state and pro-
cess noise vectors, respectively and N is the set of natural
numbers. The objective of tracking is to recursively esti-
mate X, from measurements

7, = hy(xg,np), (2)

where hy : 7= x ™ — Rz is a possibly non-linear func-
tion, {ng,k € N} is an i.i.d measurement noise sequence,

IIn this paper we assume no out-of-sequence measurements - in
the presence of out-of-sequence measurements, the order of times to
which the mesaurements relate can differ from the order in which
the measurements are processed. For a particle filter solution to the
problem of relaxing this assumption see [32].

and n,,n, are dimensions of the measurement and mea-
surement noise vectors, respectively. In particular, we seek
filtered estimates of x; based on the set of all available
measurements z1., = {z;,i = 1,...,k} up to time k.

From a Bayesian perspective, the tracking problem is to
recursively calculate some degree of belief in the state x
at time k, taking different values, given the data z;.; up to
time k. Thus, it is required to construct the pdf p(xg|z1.x).
p(x0), of
the state vector, also known as the prior, is available (zg

It is assumed that the initial pdf, p(xg|zo) =

being the set of no measurements). Then, in principle, the
pdf p(xx|z1.1) may be obtained recursively in two stages:
prediction and update.

Suppose that the required pdf p(xj_1|z1.4—1) at time
k — 1 is available. The prediction stage involves using the
system model (1) to obtain the prior pdf of the state at
time k via the Chapman-Kolmogorov equation:

P(Xp|21:8—1) = ‘/P(Xk|xk71)P(Xk71|Z1:k71)ka71 (3)

Note that in (3), use has been made of the fact that
D(Xp|Xp—1,21.6—1) = p(Xk|xk—1) as (1) describes a Markov
process of order one. The probabilistic model of the state
evolution, p(xg|xk—1), is defined by the system equation
(1) and the known statistics of vp_;.

At time step k, a measurement z; becomes available,
and this may be used to update the prior (update stage)
via Bayes’ rule:

Pz |x5)p(Xk|Z1:6-1)

p(Xk|Z1:k> - P(Zk|z1:k—1) ’ (4)

where the normalising constant

P(Zk|Z1:k—1) = /p(zklxk>p(xklzlzkfl)dxk (5)

depends on the likelihood function p(z|xy ), defined by the
measurement model (2) and the known statistics of ng. In
the update stage (4), the measurement z;, is used to modify
the prior density to obtain the required posterior density
of the current state.

The recurrence relations (3) and (4) form the basis for

the optimal Bayesian solution?

. This recursive propaga-
tion of the posterior density is only a conceptual solution
in that in general, it cannot be determined analytically.
Solutions do exist in a restrictive set of cases, including the
Kalman filter and grid-based filters described in the next
section. We also describe how, when the analytic solution

2For clarity, the optimal Bayesian solution solves the problem of

recursively calculating the exact posterior density. An optimal algo-
rithm is a method for deducing this solution.
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is intractable, extended Kalman filters, approximate grid-
based filters, and particle filters, approximate the optimal

Bayesian solution.

ITI. OrPTIMAL ALGORITHMS
A. The Kalman Filter

The Kalman filter assumes that the posterior density at
every time step is Gaussian and hence parameterised by a
mean and covariance.

If p(xp_1]|z1:1—1) is Gaussian, it can be proved that
P (Xi|z1.1) is also Gaussian, provided that certain assump-
tions hold [21]:

e vi_1 and ng are drawn from Gaussian distributions of
known parameters

o fi(X_1,vE_1) is known and is a linear function of x;_;
and Vi—1

o hy(xy,ng) is a known linear function of x; and ny
That is, (1) and (2) can be re-written as:

(6)
(7)

F and Hy, are known matrices defining the linear functions.

X = Fpxp_1 + v

7z = Hipxp + ny

The covariances of vig_1 and n; are respectively Qr_; and
Ry.
zero mean and are statistically independent.

Here we consider the case when vi_; and n; have
Note that
the system and measurement matrices Fy, and Hy, as well
as noise parameters Q1 and Ry, are allowed to be time
variant.

The Kalman filter algorithm, derived using (3) and (4),
can then be viewed as the following recursive relationship:

(8)

P(Xp 1|21k 1) =N (K13 Mp—1k—15 Pee1jb—1)

P(xXk|Z1:6—1) =N (Xk5Mp—15 Prjp—1) 9)
p(Xkl|Z1:6) =N (Xk; Mp)is Prje) (10)

where
Mgr—1 =Femp_qp—1 (11)
Pop1 =Qp—1 + Fi Py ypp 1 Fy (12)
My =Mep—1 + Ki(ze — Hympp—)  (13)
Prik =Prip—1 — Ke Hi Prji—1 (14)

and where N (z;m, P) is a Gaussian density with argument
x, mean m and covariance P and:

Sy =
Ky =

HyPyx—1 H{ + Ry,
Py 1 HES,

(15)
(16)

are the covariance of the innovation term z; — Hymy,_1,
and the Kalman gain, respectively. In the above equations,
the transpose of a matrix M is denoted by M 7.

This is the optimal solution to the tracking problem — if
the (highly restrictive) assumptions hold. The implication
is that no algorithm can ever do better than a Kalman
It should be
noted thal it is possible (o derive the same resulls using
a Least Squares (LS) argument [22]. All the distributions

are then described by their means and covariances and the

filter in this linear Gaussian environment.

algorithm remains unaltered, but are not constrained to
be Gaussian. Assuming the means and covariances to be
unbiased and consistent, the filter then optimally derives
the mean and covariance of the posterior. However, this
posterior is not necessarily Gaussian and so, if optimality
is the ability of an algorithm to calculate the posterior, the
filter is then not certain to be optimal.

Similarly, if smoothed estimates of the states are re-
quired, that is estimates of p(xy|z1.44¢) where £ > 03,
then the Kalman smoother is the optimal estimator of
D (Xk|Z1:k+¢). This holds if £ is fixed, fized-lag smoothing, if
a batch of data are considered and 0 < £ < k, fized-interval
smoothing or if the state at a particular time is of interest,
k is fixed, fixed-point smoothing. The problem of calculat-
ing smoothed densities is of interest because the densities
at time k are then conditional not only on measurements
up to and including time index k, but also on future mea-
surements. Since there is more information on which to
base the estimation, these smoothed densities are typically

tighter than the filtered densities.

Though this is true, there is an algorithmic issue that
should be highlighted here. It is possible to formulate a
backwards-time Kalman filter that recurses through the
data sequence from the final data to the first and then
combines the estimates from the forward and backward
passes to obtain overall smoothed estimates [20]. A dif-
ferent formulation implicitly calculates the backwards-time
state estimates and covariances, recursively estimating the
smoothed quantities [38]. Both techniques are prone to
having to calculate matrix inverses that do not necessar-
ily exist. Instead, it is preferable to propagate different
quantities using an information filter when carrying out
the backwards-time recursion [4].

3If £ = 0 then the problem reduces to the estimation of p(xg|21.x)
considered up to this point.
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B. Grid-based methods

Grid-based methods provide the optimal recursion of
the filtered density, p(xi|z1.), if the state space is dis-
crete and consists of a finite number of states. Suppose
the state space at time k — 1 consists of discrete states
xz_l, i =1,...,Ns. For each state XZ—D let the condi-
tional probability of that state, given measurements up to
time & — 1 be denoted by w,"cfllkfl, that is, Pr(xy 1 =
Xk |Z1k-1) = w,"cillkil. Then, the posterior pdf at k — 1
can be written as

N,
Pk 1lzie 1) = D wiog 8k 1 — XG_y)

i=1

(17)

where §(-) is the Dirac delta measure. Substitution of (17)
into (3) and (4) yields the prediction and update equations,

respectively:

N
P(Xelzrk 1) = D why 4 6(xk — X}) (18)
i=1
N
P(Xk|218) = > whp6(xk — X}, (19)
i=1
where
A NS . .
Whig—1 = Zwi,”k,lp(xﬁxi_l), (20)
j=1
N W1 P(2k X))

N -
ijl wi|k,1p(zk|xi)

The above assumes that p(xi|x] ) and p(z|x%) are
known, but does not constrain the particular form of these
discrete densities. Again, this is the optimal solution if the
assumptions made hold.

IV. SUB-OPTIMAL ALGORITHMS

In many situations of interest, the assumptions made
above do not hold. The Kalman filter and grid-based meth-
ods cannot therefore be used as described — approximations
are necessary. In this section, we consider three approxi-
mate non-linear Bayesian filters: a) extended Kalman fil-
ter, b) Approximate grid-based methods, and c¢) Particle
filters.

A. Extended Kalman Filter

If (1) and (2) cannot be rewritten in the form of (6) and
(7) because the functions are non-linear, then a local lin-
earisation of the equations may be a sufficient description
of the non-linearity. The extended Kalman filter (EKF),

is based upon this approximation. p(xg|z;.;) is approxi-
mated by a Gaussian:

p(Xp1|s1:k—1) AN (Xe—1; Mg —1)k—1, Pe—1jk—1) (22)
P(Xp|Z1:k—1) RN (Xe; Mpep—15 Prje—1) (23)
P(Xe|z1:) RN (Xp; Mg, Proji) (24)

where

MElk—1 :fk(mkfllkfl)
Pripg—1 =Qr—1 + FkPk—1|k—1FkT
My =Mpp—1 + Ki(z2e — he(mpp—1))

Pk =Piji—1 — KiHy Py

and where now fi(.) and hy(.) are non-linear functions and
ﬁ’k and H + are local linearisations of these non-linear func-

tions (ie. matrices):

~ dfy, (z)
F =
' wel (20)
T=Mp—1\k—1
5 dhy(z)
H = —
K o | (30)
T=Mp k-1
Sy = HyPy—1HL + Ry (31)
Ky = Py HES! (32)

The EKF as described above utilises the first term in a
Taylor expansion of the non-linear function. A higher or-
der EKF that retains further terms in the Taylor expan-
sion exists, but the additional complexity has prohibited
its widespread use.

Recently, the unscented transform has been used in an
EKF framework [23], [42], [43]. The resulting filter, known
as the “Unscented Kalman Filter”, considers a set of points
that are deterministically selected from the Gaussian ap-
proximation to p(X|z1.;). These points are all propagated
through the true non-linearity and the parameters of the
Gaussian approximation are then re-estimated. For some
problems, this filter has been shown to give better perfor-
mance than a standard EKF since it better approximates
the non-linearity; the parameters of the Gaussian approxi-
mation are improved.

However, the EKF always approximates p(xj|z1.;) to be
Gaussian. If the true density is non-Gaussian (eg. if it is
bi-modal or heavily skewed) then a Gaussian can never de-
scribe it well. In such cases, approximate grid-based filters
and particle filters will yield an improvement in perfor-
mance in comparison to that of an EKF [1].
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B. Approximate Grid-Based Methods

If the state space is continuous, but can be decom-
posed into N; ‘cells’, {x}c 1= 1,...,]\75}, then a grid-
based method can be used to approximate the posterior
density. Specifically, suppose the approximation to the pos-
terior pdf at k — 1 is given by

N,

Pk 1lze 1) & > whog S0k 1 — XG_y)
i=1

(33)

Then, the prediction and update equations can be written

as N
P(Xklz1n 1) & Y whyy 1 8(xk — x}) (34)
i=1
N
P(xk|z1:4) &Y whip6(x, — x}) (35)
i=1
where
N, 4
wheor 2 2 wlon [ pbisl )k (36)
j=1 XEX]
i A w/Z‘ﬂ|k—1 fxeXi p(Zk|X)dX
Wy = . (37)

N,
Zj:l wi|k71 fxexi p(ze|x)dx

Here ii_l denotes the centre of the j-th cell at time index
k — 1. The integrals in (36) and (37) arise due to the fact
that the grid points x};, i = 1,..., Ng, represent regions
of continuous state space, and thus the probabilities must
be integrated over these regions. In practice, to simplify
computation, a further approximation is made in the eval-
uation of wilk. Specifically, these weights are computed at

the centre of the ‘cell’ corresponding to XZ:

N,
Whik 1 D wl g pEIRL ), (38)
j=1
; W1 P(2k X))
whi (39)

N —
Zj:1 wi|k,1p(zk|xi)

The grid must be sufficiently dense to get a good ap-
proximation to the continuous state space. As the dimen-
sionality of the state space increases, the computational
cost of the approach therefore increases dramatically. If
the state space is not finite in extent, then using a grid-
based approach necessitates some truncation of the state
space. Another disadvantage of grid-based methods is that
the state space must be predefined and therefore cannot
be partitioned unevenly to give greater resolution in high
probability density regions, unless prior knowledge is used.

Hidden Markov model (HMM) filters [30], [35], [36], [39]
are an application of such approximate grid-based methods

in a fixed-interval smoothing context and have been used
extensively in speech processing. In HMM based tracking,
a common approach is to use the Viterbi algorithm [18] to
calculate the maximum a-posteriori estimate of the path
through the trellis, that is the sequence of discrete states
that maximises the probability of the state sequence given
the data. Another approach, due to Baum-Welch [35], is
to calculate the probability of each discrete state at each

time epoch given the entire data sequence?.

V. PARTICLE FILTERING METHODS
A. The Sequential Importance Sampling (SIS) Algorithm

The Sequential Importance Sampling (SIS) algorithm
is a Monte Carlo (MC) method that forms the basis for
most sequential Monte Carlo filters developed over the past
decades —see [13], [14]. This sequential Monte Carlo (SMC)
approach is known variously as bootstrap filtering [17], the
condensation algorithm [29], particle filtering [6], interact-
ing particle approximations [10], [11] and survival of the
fittest [24]. Tt is a technique for implementing a recursive
Bayesian filter by Monte Carlo simulations. The key idea
is to represent the required posterior deunsity function by a
set, of random samples with associated weights and to com-
pute estimates based on these samples and weights. As the
number of samples becomes very large, this Monte Carlo
characterisation becomes an equivalent representation to
the usual functional description of the posterior pdf, and
the SIS filter approaches the optimal Bayesian estimate.

In order to develop the details of the algorithm, let
{x} ., wi} 5\21 denote a Random Measure that characterises
the posterior pdf p(xo.x|z1.%), where {x},,i = 0,..., Ny}
is a sct of support points with associated weights {w,’c,z =
1,..., Nz} and % = {x;,§ = 0,...,k} is the set of all
states up to time k. The weights are normalised such that
zlw}£ = 1. Then, the posterior density at k£ can be ap-
proximated as

N,
p(Xo:k|Z1:) & Zwllcfs(XO:k = X0:k )

i=1

(40)

We therefore have a discrete weighted approximation to
the true posterior, p(Xo.i|21:x). The weights are chosen
using the principle of Importance Sampling [3], [12]. This
principle relies on the following: Suppose p(z) x 7 (x) is a
probability density from which it is difficult to draw sam-
ples, but for which #(x) can be evaluated (and so p(z) up to

4The Viterbi and Baum-Welch algorithms are frequently applied
when the state space is approximated to be discrete. The algorithms
are optimal if and only if the underlying state space is truly discrete
in nature.
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proportionality). Also, let z° ~ ¢(z),i =1,..., N, be sam-
ples that are easily generated from a proposal ¢(-), called
an Importance density. Then, a weighted approximation to
the density p(-) is given by

N, ) )
p(z) ~ Z w'é(z — ") (41)
where ( )
w' o(a) (42)

is the normalised weight of the i-th particle.

So, if the samples, x} , , were drawn from an importance
density, ¢(Xo.x|z1.1) then the weights in (40) are defined by
(42) to be

i p(x6:k|z1:k) (43)

Q(X(l);k|zlzk)

Returning to the sequential case, at each iteration,

one could have samples constituting an approximation

t0 p(X0.k—1|%1.k—1), and want to approximate p(Xo.x|21.%)

with a new set of samples. If the importance density is
chosen to factorise such that

q(Xo:x|21:6) = ¢(Xp|X0:sk—1, Z1:0) ¢ (X0:k—1|Z1:6—1)  (44)

then one can obtain samples x), ~ ¢(Xo.k|z1.k) by
augmenting each of the existing samples x{, ;, ~
q(X0:k—1|%1:1—1) with the new state x}€ ~ (Xg|X0:k—1, Z1:k )-
To derive the weight update equation, p(xo.k|z1.x) is
first expressed in terms of p(Xo.p—1|21:x—1), p(Zr|xr) and
p(xp|xrp—1). Note that (4) can be derived by integrating
(45).

D (Zr|Xo:k, Z1:6—1) P (X0:k | Z1:5—1)

P (2zk|z1:6—1)
_ D (Zx|Xo:ks Z1:k—1) P (Xi|Xo:k—1, Z1:k—1)
B P (Ze]Z1:6-1)

D (Xo:k|Z1:0) =

X P (Xo:k—1|Z1:6-1) (45)

Zp|X Xpe | Xp—
:p( k| k)p( kl b 1)p<X0:k71|Z1:k71>
p(Zk|Z1:k—1)

op (ze|%k) p (Xe|Xe—1) P (Xoik—1|21:6-1) (46)

By substituting (44) and (46) into (43), the weight up-

date equation can then be shown to be

wh o p(Zkl).(?c)P(X2|X2*1)p'(xézkfllzlzkfl)
G %0115 21240 (X0. 5,1 |21:6-1)
. plze|xhp(xg|x; )

kot q(X;g |X(i);k_17 Zl:k)

Furthermore, if ¢(xg|x0.6—1,%1:k) = ¢(Xk|Xp—1, %), then
the importance density becomes only dependent on xj_;
and z;. This is particularly useful in the common case
when only a filtered estimate of p(xg|z1.1) is required at
each time step. From this point on, we shall assume such
a case, except when explicitly stated otherwise. In such
scenarios, only x§ need be stored, and so one can discard
the path, Xé:kfp and history of observations, zy.;_1. The
modified weight is then

p(zk|x2)p(X2|Xz—1)
q(x}[x}_ 1, 2k)

wy, X Wy,_;

(48)

and the posterior filtered density p(xy|z1.x) can be ap-
proximated as

N,
p(xklzie) & ) wid(xp —x}) (49)
i=1
where the weights are defined in (48). It can be shown
that as Ny — oo the approximation (49) approaches the
true posterior density p(xg|z1.%).
The SIS algorithm thus consists of recursive propagation
of the weights and support points as each measurement is
received sequentially. A pseudo-code description of this

algorithm is given by algorithm 1.

ALGORITHM 1: SIS PARTICLE FILTER

[{X§c7wllc}£\;1] = SIS [{X;;fl?wlifl}ﬁ\;sl’zk]
e« FORi=1:N;,

— Draw x} ~ q(xg|x%_;,2r)

— Assign the particle a weight, w, according to (48)
« END FOR

A.1 Degeneracy Problem

A common problem with the SIS particle filter is the
degeneracy phenomenon, where after a few iterations, all
but one particle will have negligible weight. It has been
shown [12] that the variance of the importance weights can
only increase over time, and thus it is impossible to avoid
the degeneracy phenomenon. This degeneracy implies that
a large computational effort is devoted to updating parti-
cles whose contribution to the approximation to p(xx|z1.x)
is almost zero. A suitable measure of degeneracy of the al-
gorithm is the effective sample size Ny, introduced in [3]
and [28], and defined as

N

% 50
14 Var(w}") (50)

Neps =
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where w}’ = p(x}|2z1.1)/q(X, X} ,2Zx) is referred to as the
“truc weight”. This cannot be cvaluated cxactly, but an
estimate m of N¢gy can be obtained by

Nt = = (51)
> i (wp)?
where wi is the normalised weight obtained using (47).
Notice that N.p; < Ny, and small N,y indicates severe
degeneracy. Clearly, the degeneracy problem is an unde-
sirable effect in particle filters. The brute force approach
to reducing its effect is to use a very large N,. This is of-
ten impractical, and so we rely on two other methods: a)
Good choice of importance density, and b) Use of resam-
pling. These are described next.

A.2 Good Choice of Importance Density

The first method involves choosing the importance den-
sity, q(xx|xi_;,2x), to minimise Var(w}’) so that Nejs
is maximised. The optimal importance density function
which minimises the variance of the true weights, w};i, con-

ditioned upon x¢_, and z; has been shown [12] to be

q(Xk|X}_ 1 2k )opt =P(Xk|X}_y, 24)
_p(zk|xk,X§s—1)p(X1€|X§s—1) (52)
p (Zk|X2—1)

Substitution of (52) into (48) yields

w, o< wh_yp (z|xh_y)
= wi / p(axlxl) p (<ulxt 1) dxf.  (53)

This choice of importance density is optimal since for a
given xi_,, wi takes the same value whatever sample is
drawn from ¢(xp|x},_,,2k)op:s- Hence, conditional on x%_,
Var(w;’) = 0. This is the variance of the different w}
resulting from different sampled x¢ .

This optimal importance density suffers from two ma-
jor drawbacks. It requires the ability to sample from
p(xk|xi_,,z;) and to evaluate the integral over the new
state. In the general case it may not be straightforward to
do either of these things. There are two cases when use of
the optimal importance density is possible.

The first case is when x; is a member of a finite set.
In such cases, the integral in (53) becomes a sum and
sampling from p(xj|x}_,,z) is possible. An example of
an application when x; is a member of a finite set is a
Jump-Markov Linear System for tracking maneuvering tar-
gets [15], whereby the discrete modal state (defining the
maneuver index) is tracked using a particle filter and (con-
ditioned on the maneuver index) the continuous base state
is tracked using a Kalman filter.

Analytic evaluation is possible for a second class of mod-
cls for which p(xx|xi |,zx) is Gaussian [12], [9]. This can
occur if the dynamics are non-linear and the measurements

linear. Such a system is given by

xp =fi(Xp—1) + Vi1, (54)
z, =Hpxy + ny, (55)
where
Vi—1 ~N (V21500 <1, Qr—1), (56)
ng ~N(ng; 0p, <1, Ri), (57)

and f, : £"» — K" is a non-linear function, H; € R"=*"=
is an observation matrix, and vip_; and n; are mutually
independent i.i.d Gaussian sequences with Q_; > 0 and
Ry, > 0. Defining

1= +HIR'Hy (58)
my = X, (Q];,llfk(xk—l) + H,?R,;lzk) s (59)

one obtains
P(Xp|Xk—1,2k) = N (Xp; M1, i) (60)

and
p(zr|Xk_1) = N(ze; Hefp(xp 1), Qi1 + HyRLHT). (61)

For many other models, such analytic evaluations are not
possible. However, it is possible to construct suboptimal
approximations to the optimal importance density by using
local linearisation techniques [12]. Such linearisations use
an importance density that is a Gaussian approximation to
p(Xk|Xk—1,2r). Another approach is to estimate a Gaus-
sian approximation to p(Xj|Xr—1,%,) using the unscented
transform [40]. The authors’ opinion is that the additional
computational cost of using such an importance density is
often more than offset by a reduction in the number of
samples required to achieve a certain level of performance.

Finally, it is often convenient to choose the importance
density to be the prior.

q(xx|x} 1, 24) = p(xx|xi_q) (62)
Substitution of (62) into (48) then yields
wy, o< wi,_1p(zx|x}). (63)

This would seem to be the most common choice of impor-
tance density since it is intuitive and simple to implement.
However, there are a plethora of other densities that can
be used and, as illustrated by section VI, the choice is the
crucial design step in the design of a particle filter.
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A.3 Resampling

The second method by which the effects of degeneracy
can be reduced is to use resampling whenever a significant
degeneracy is observed (ie. when N.¢; falls below some
threshold, Np). The basic idea of resampling is to elimi-
nate particles which have small weights and to concentrate
on particles with large weights. The resampling step in-
volves generating a new set {x."}~°, by resampling (with
replacement) Ny times from an approximate discrete rep-

resentation of p(Xg|z1.k) given by

N
p(Xk|z1:k) & Y who(xs — x})

i=1

(64)

so that Pr(x}" = xi) = wi The resulting sample is in fact
an i.i.d sample from the discrete density (64), and so the
weights are now reset to wi = 1/N;. It is possible to im-
plement this resampling procedure in O(N;) operations by
sampling N, ordered uniforms using an algorithm based on
order statistics [37], [6]. Note that other efficient (in terms
of reduced MC variation) resampling schemes such as strat-
ified sampling and residual sampling [28] may be applied as
alternatives to this algorithm. Systematic resampling [25]
is the scheme preferred by the authors (since it is simple to
implement, takes O(N,) time and minimises the MC vari-
ation) and its operation is described in algorithm 2, where
Ula, b] is the Uniform distribution on the interval [a, b] (in-
clusive of the limits). For each resampled particle xi*, this
resampling algorithm also stores the index of its parent,
denoted by i/. This may appear unnecessary here and is,
but it proves useful in section V-B.2.

A generic particle filter is then as described by algo-
rithm 3.

Although the resampling step reduces the effects of the
degeneracy problem, it introduces other practical prob-
lems. First, it limits the opportunity to parallelize since
all the particles must be combined. Second, the particles
which have high weights wi are statistically selected many
times. This leads to a loss of diversity among the particles
as the resultant sample will contain many repeated points.
This problem, known as sample impoverishment, is severe
in the case of small process noise. In fact, for the case of
very small process noise all particles will collapse to a single
point within a few iterations®. Thirdly, since the diversity

51If the process noise is zero then using a particle filter is not en-
tirely appropriate. Particle filtering is a method well suited to the
estimation of dynamic states. If static states, which can be regarded

as parameters, need to be estimated then alternative approaches are
necessary [7], [27].

of the paths of the particles is reduced, any smoothed esti-
mates based on the particles’ paths degenerate®. Schemes
exist to counteract this effect. One approach considers the
states for the particles to be pre-determined by the for-
ward filter and then obtains the smoothed estimates by
re-calculating the particles’ weights via a recursion from
the final to the first time step [16]. Another approach is to
use MCMC [5].

ALGORITHM 2: RESAMPLING ALGORITHM

[{x",wi,i7} 2] = RESAMPLE [{x},w} }}¥"]
¢ Initialise the CDF: ¢; =0
e FORi=2: N,

— Construct CDF: ¢; = ¢;_( + w,lc
« END FOR
o Start at the bottom of the CDF: i =1
o Draw a starting point: u; ~ U[0, N ]
« FOR j=1:N;

— Move along the CDF: u; = uy + N7 '(j — 1)
— WHILE u; > ¢;

x g =1+1

— END WHILE

— Assign sample: xi* = xi

— Assign weight: w] = N

— Assign parent: ¢/ =i
« END FOR

ALGORITHM 3: GENERIC PARTICLE FILTER

[{X2>wll¢}f\§1] =PF [{Xthwlicfl }ﬁisl?zk]
¢« FORi=1:N;

— Draw x} ~ q(xx|xt_,,2x)

— Assign the particle a weight, wi, according to (48)
« END FOR
« Calculate total weight: ¢ = SUM [{wi}}¥e ]
¢« FORi=1:N;

— Normalise: wi =t lw}
+« END FOR
o Calculate J@ using (51)
« IF Noj; < Ny

— Resample using algorithm 2:

« [{xd,wh, 1] = RESAMPLE [{xi, w }1%]
« END IF

There have been some systematic techniques proposed

8Since the particles actually represent paths through the state
space, by storing the trajectory taken by each particle, fixed-lag and
fixed-point smoothed estimates of the state can be obtained [4].
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recently to solve the problem of sample impoverishment.
One such technique is the resample-move algorithm [19],
which is not be described in detail in this paper. Although
this technique draws conceptually on the same technologies
of importance sampling-resampling and MCMC sampling,
it avoids sample impoverishment. It does this in a rigorous
manner that ensures the particles asymtotically approxi-
mate samples from the posterior and so is the method of
choice of the authors. An alternative solution to the same
problem is regularisation [31], which is discussed in Section
V-B.3. This approach is frequently found to improve per-
formance despite a less rigorous derivation and is included
here in preference to the resample-move algorithm since its

use is so widespread.

A4 Techniques for Circumventing the Use of a Sub-
Optimal Importance Density

It is often the case that a good importance density is
not available. For example, if the prior p(xy|xz—_1) is used
as the importance density and is a much broader distribu-
tion than the likelihood, p(zs|xs), then only a few particles
will have a high weight. Methods exist for encouraging the
particles to be in the right place; the use of bridging den-
sities [8] and progressive correction [33] both introduce in-
termediate distributions between the prior and likelihood.
The particles are then re-weighted according to these in-
termediate distributions and resampled. This “herds” the
particles into the right part of the state space.

Another approach known as partitioned sampling [29]
is useful if the likelihood is very peaked, but can be fac-
torised into a number of broader distributions. Typically,
this occurs because each of the partitioned distributions
are functions of some (not all) of the states. By treating
each of these partitioned distributions in turn and resam-
pling on the basis of each such partitioned distribution, the
particles are again herded towards the peaked likelihood.

B. Other Related Particle Filters

The Sequential Importance Sampling algorithm pre-
sented in Section V-A forms the basis for most particle
filters that have been developed so far. The various ver-
sions of particle filters proposed in the literature can be re-
garded as special cases of this general SIS algorithm. These
special cases can be derived from the SIS algorithm by an
appropriate choice of importance sampling density and/or
modification of the resampling step. Below, we present
three particle filters proposed in the literature and show
how these may be derived from the SIS algorithm. The
particle filters considered are (i) Sampling Importance Re-

sampling (SIR) filter (ii) Auxiliary Sampling Importance
Resampling (ASIR) filter, and (iii) Regularised Particle fil-
ter (RPF).

B.1 Sampling Importance Resampling Filter

The Sampling Importance Resampling (SIR) filter pro-
posed in [17] is a Monte Carlo method that can be applied
to recursive Bayesian filtering problems. The assumptions
required to use the SIR filter are very weak. The state
dynamics and measurement functions, fi(-,-) and hg(:,")
in (1) and (2) respectively, need to be known, and it is
required to be able to sample realisations from the pro-
cess noise distribution of vg_1 and from the prior. Finally,
the likelihood function p(zg|xy) needs to be available for
pointwise evaluation (at least up to proportionality). The
SIR algorithm can be easily derived from the SIS algo-
rithm by an appropriate choice of: (i) The importance
density: q(xi|x% |,71.x) is chosen to be the prior density
p(xk|xi ), and (ii) Resampling step: to be applied at ev-
ery time index.

The above choice of importance density implies that we
need samples from p(x|x% ;). A sample xi ~ p(xi|xi ;)
can be generated by first generating a process noise sample
vi | ~ py(vi_1) and setting xi = fi,(x}_,,vi ), where
Py () is the pdf of vy_;. For this particular choice of im-

portance density, it is evident that the weights are given
by

wh o Wiy p(ze]x},)- (65)
However, noting that resampling is applied at every time

index, we have 71)2,71 =1/N Viandso

wh o plzlxd). (66)
The weights given by the proportionality in (66) are nor-
malised before the resampling stage. An iteration of the
algorithm is then described by algorithm 4.

As the importance sampling density for the SIR filter is
independent of measurement zg, the state space is explored
without any knowledge of the observations. Therefore, this
filter can be inefficient and is sensitive to outliers. Further-
more, as resampling is applied at every iteration, this can
result in rapid loss of diversity in particles. However, the
SIR method does have the advantage that the importance
weights are easily evaluated and the importance density
can be easily sampled.
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ALGORITHM 4: SIR PARTICLE FILTER

[{xh, wi i) = SIR [{x}_,,wi_, }}2), 2]
¢« FORi=1:N;
— Draw x} ~ p(xx|x}_,)
— Calculate wi = p(z|xL)
« END FOR
o Calculate total weight: ¢ = SUM [{wi} Y]
e« FORi=1:N;
— Normalise: wé =t tw!
« END FOR.
« Resample using algorithm 2:
= [{x}, wi, _}é\él] = RESAMPLE [{X;wwlls}iisl]

B.2 Auxiliary Sampling Importance Resampling filter

The Auxiliary Sampling Importance Resampling (ASIR)
filter was introduced by Pitt & Shephard [34] as a variant
of the standard SIR filter. This filter can be derived from

the SIS framework by introducing an importance density

q(Xk,4|Z1.) which samples the pair {xi,ij};-v:sl, where i/
refers to the index of the particle at & — 1.
By applying Bayes’ rule, a proportionality can be derived

for p(xkv Z.|z1:k) as
(2 |x%)P(Xk, 0| 21:5—1)
= plze|xp)p(xk|i, 21.6—1)p(0]21:86—1)

= plzelxe)p(xe|x)_1)wh_,

p(xknilzl:k) X

(67)

The ASIR filter operates by obtaining a sample from the
joint density p(xg,%|z1.), and then omitting the indices ¢
in the pair (xg,i) to produce a sample {x?€ };VZI from the
marginalised density p(xg|z1.x). The importance density
used to draw the sample {xi,ij };VZI is defined to satisfy

the proportionality

q(xk, ilzse) o pla|ui)p(xklxg 1wk (63)

where pé is some characterisation of xj, given x4_,. This
could be the mean, in which case ) = E[x;|x},_,], or a
sample, py ~ p(xx|x;_,). By writing

q(xk, i|21:0) = q(i]22:6) g (X7, 21:1), (69)
and defining
a(xili 714) £ pxafxioy), (70)
it follows from (68) that
q(ilzve) o< plag|pg)wi_;.- (71)

The sample, {xi,ij };V:SI, is then assigned a weight pro-

portional to the ratio of the RHS of (67) to (68):

e Plablpedix )
k k—1 i
(el 7[21.0)

_ p(Zk|Xi) (72)

p(zelud))

The algorithm then becomes that described by algo-
rithm 5.

ALGORITHM 5: AUXILIARY PARTICLE FILTER

[{xi,wi )] = APF [{x}_,,wi_ oy, 2]
« FORi=1:N;
— Calculate !
— Calculate wi = q(i|z1.4) o p(zi|pt)wi .
« END FOR
o Calculate total weight: ¢ = SUM [{wi}Y ]
« FORi=1:N,
— Normalise: wi = ¢ tw!
« END FOR
+ Resample using algorithm 2:
- [{- _7ij}§v:51] = RESAMPLE [{ngwllc}iisl]
« FORj=1:N,
— Draw Xi ~ q(xg|id, 21.) = p(x“x}j_l), as in the SIR
filter.
— Assign weight w! using (72)
« END FOR
o Calculate total weight: ¢ = SUM [{wi}Y ]
« FORi=1:N;
— Normalise: wi = ¢ tw!
« END FOR

Although unnecessary, the original ASIR filter as pro-
posed in [34] consisted of one more step, namely a resam-
pling stage, to produce an i.i.d sample {xi,ij};»v:sl with
equal weights.

Compared to the SIR filter, the advantage of the ASIR
filter is that it naturally generates points from the sample
at k — 1 which, conditioned on the current measurement,
ASIR can
be viewed as resampling at the previous time step, based

are most likely to be close to the true state.

on some point estimates, ut, that characterise p(xg|x ;).
If the process noise is small, so p(xg|xL ) is well charac-
terised by p},, then ASIR is often not so sensitive to outliers
as SIR, and the weights w! are more even. However, if the
process noise is large, a single point does not characterise
p(xk|xi ) well and ASIR resamples based on a poor ap-
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proximation of p(x|xi ;). In such scenarios, the use of
ASIR then degrades performance.

B.3 The Regularised Particle Filter

Recall that resampling was suggested in section V-B.1,
as a method to reduce the degeneracy problem which is
prevalent in particle filters. However, it was pointed out
that resampling in turn introduced other problems, and
in particular, the problem of loss of diversity among the
particles. This arises due to the fact that in the resampling
stage, samples are drawn from a discrete distribution rather
than a continuous one. If this problem is not addressed
properly, it may lead to “particle collapse”, a sever case of
sample impoverishment where all N, particles occupy the
same point in the state space, giving a poor representation
of the posterior density. A modified particle filter known
as the Regularised Particle Filter (RPF) was proposed [31]
as a potential solution to the above problem.

The Regularised Particle filter is identical to the SIR fil-
ter except for the resampling stage. The RPF resamples
from a continuous approximation of the posterior density
p(Xg|2z1.) while the SIR resamples from the discrete ap-
proximation (64). Specifically, in the RPF, samples are
drawn from the approximation

N,

p(xklzie) & Y wi Kn(x, — x}) (73)
i=1
where 1
X
Kp(x) = hTmK (ﬁ) (74)

is the re-scaled Kernel density K(-), h > 0 is the Kernel
bandwidth (a scalar parameter), n, is the dimension of
the state vector x, and wt, i = 1,..., Ny, are normalised
weights. The Kernel density is a symmetric probability

density function such that
/xK(x)dx 0, /||x||2K(x)dx <o

The Kernel K (-) and bandwidth h are chosen to minimise
the Mean Integrated Square Error (MISE) between the true
posterior density and the corresponding regularised empir-
ical representation in (73), defined as

MISE(p) :EU [B(xk|z1.6) — p(xpl2Z1:)]" dxic|  (75)

where p(+|-) denotes the approximation to p(xz|z1.x) given
by the RHS of (73)7. In the special case of all the samples
7 As observed by one of the anonymous reviewers, it is worth noting

that the use of the Kernel approximation become increasingly less
appropriate as the dimensionality of the state increases.

having the same weight, the optimal choice of the Kernel
is the Epanechnikov Kernel [31],

=212
K= { 2O IRD

if ||x|| < 1

otherwise

(76)

where ¢, is the volume of the unit hypersphere in R"=.
Furthermore, when the underlying density is Gaussian with
a unit covariance matrix, the optimal choice for the band-
width is [31]

1
hopt = AN (77)

A = [8¢; M (ny +4)(2y/7) "] 7o F (78)

ALGORITHM 6: REGULARISED PARTICLE FILTER,

[{X2*>w2}£\21] = RPF [{X271>w271}£\§17Zk]
e« FORi=1:N,
— Draw x}, ~ q(xg|xi_,,zg)
— Assign the particle a weight, w},, according to (48)
« END FOR
o Calculate total weight: ¢ = SUM [{w}} ¥ ]
« FORi=1:N,
— Normalise: wi =t~ w},
« END FOR
o Calculate J@ using (51)
« IF Noj; < Ny
— Calculate the empirical covariance matrix Sy of
{xh w3
— Compute Dy, such that D, DY = S;.
— Resample using algorithm 2:
* [{xj, w}, _}5\21] = RESAMPLE [{X§c>wllc}i\21]
— FORi=1:N;
¥ Draw € ~ K from the Epanechnikov Kernel
* x};* = Xz + hoptDkei
— END FOR
« END IF

Though the results of (76) and (77)-(78) are optimal only
in the special case of equally weighted particles and under-
lying Gaussian density, these results can still be used in the
general case to obtain a suboptimal filter. One iteration of
the RPF is described by algorithm 6. The RPF only differs
from the generic particle filter described by algorithm 3 as
a result of the addition of the regularisation steps when
conducting the resampling. Note also that the calculation
of the empirical covariance matrix Sy is carried out prior
to the resampling and so is a function of both the xi and
wfc This is done since the accuracy of any estimate of a
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function of the distribution can only decrease as a result of
the resampling - if quantitics such as the mean and covari-
ance of the samples are to be output then these should be
calculated prior to resampling.

By following the above procedure, we generate an i.i.d
random sample {x:*}N* drawn from (73).

In terms of complexity, the RPF is comparable to SIR
since it only requires N, additional generations from the
Kernel K(-) at each time step. The RPF has the theoretic
disadvantage that the samples are no longer guaranteed
to asymtotically approximate those from the posterior. In
practical scenarios, the RPF performance is better than
the SIR in cases where sample impoverishment is severe,
for example when the process noise is small.

VI. EXAMPLE

Here we consider the following set of equations as an

illustrative example:

P (Xplxp_1) =N (xp; B (Xp—1, k), Qr—1) (79)
%2
i) = (o0 3k 7 (50)
or equivalently
xp = fo(xp_1,k) + vt (81)
- Xy (82)
Z, = 20 n;
where
Xp—1 25X
£ (-1, k) = + + 8cos(1.2k) (83)

2 1+x;_;

and where vi_; and n; are zero mean Gaussian random
variables with variances Qr—1 and Ry respectively. We use
Qr—1 = 10 and Ry = 1. This example has been analysed
before in many publications [5], [17], [25].

We consider the performance of the algorithms detailed
in table I.

and discuss resulting issues, we consider one exemplar run.

In order to qualitatively gauge performance

In order to quantify performance, we use the traditional
measure of performance, the Root Mean Squared Error,
RMSE. Tt should be noted that this measure of perfor-
mance is not exceptionally meaningful for this multimodal
problem. However, it has been used extensively in the lit-
erature and is included here for that reason and because it
facilitates quantitative comparison.

For reference, the true states for the exemplar run are
shown in figure 1 and the measurements in figure 2.

The approximate grid-based method uses 50 states with
centres equally spaced on [-25,25]. All the particle fil-
ters have 50 particles and employ resampling at every

time step (Np = Ny). The auxiliary particle filter uses
pi ~ p(xg|xt ;). The regularised particle filter uses the
Kernel and bandwidth described in section V-B.3.

To visualise the densities inferred by the approximate
grid-based and particle filters, the total probability mass at
any time in each of 50 equally spaced regions on [—25, 25] is
shown as images in figures 5 through 9. At any given time
(and so in any vertical slice through the image), darker
regions represent higher probability than lighter regions.
A graduated scale relating intensity to probability mass in
a pixel is shown next to each image.

A. Extended Kalman Filter

The extended Kalman filter’s local linearisation and
Gaussian approximation are not a suflicient description
of the non-linear and non-Gaussian nature of the exam-
ple. Once the EKF cannot adequately approximate the
bimodal nature of the underlying posterior, the Gaussian
approximation fails - the EKF is prone to either choosing
the ‘wrong’ mode or just sitting on the average between the
modes. As a result of this inability to adequately approxi-
mate the density, the linearisation approximation becomes
poor.

This can be seen from figure 3. The mean of the filter
is rarely close to the true state. Were the density to be
Gaussian, one would expect the state to be within two
standard deviations of the mean approximately 95% of the
time. From figure 4, it is evident that there are times when
the distribution is sufficiently broad to capture the true
state in this region, but that there are also times when the
filter becomes highly over-confident of a biased estimate of
the state. The implication of this is that it is very difficult
to detect inconsistent EKF errors automatically on-line.

The RMSE measure indicates that the EKF is the least
accurate of the algorithms at approximating the posterior.
The approximations made by the EKF are inappropriate
in this example.

B. Approximate Grid-Based Filter

This example is low dimensional and so one would expect
that an approximate grid-based approach would perform
well. Figure 5 shows this is indeed the case. The grid-
based approximation is able to model the multi-modality
of the problem.

Using the approximate grid-based filter rather than an
EKF yields a marked reduction in RMS errors. A particle
filter with IV, particles conducts O(Ny) operations per iter-
ation whereas an approximate grid-based filter carries out
O(N?2) operations with N, cells. It is therefore surprising
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Algorithm Proposal Section | Figures | RMSE
Extended Kalman filter N/A IV-A 3.4 23.19
Approximate grid-Based Filter | N/A IV-B 5 6.09
SIR Particle filter p(xe|xi_q) V-B.1 |6 5.54
Auxiliary Particle filter p(xk|x}_;) V-B2 |7 5.35
Regularised Particle filter p(xk|xt_;) V-B3 |8 5.55
‘Likelihood’ Particle filter p(xXg|sk)p(selze) | A 9 5.30

TARLE T

TABLE OF TIE ALGORITIIMS USED, TIIE SECTIONS OF TIIE ARTICLE AND FIGURES WIIICII RELATE TO TIHE ALGORITIIMS, AND RMSE VALUES

(AVERAGED OVER 100 MC RUNS).

that the RMS ervors for the approximate grid are larger
than those of the particle filter. The authors suspect this
is an artifact of the grid being fixed - the resolution of the
algorithm is predefined and the fixed position of the grid
points means that the grid points near +25 contribute sig-
nificantly to the error when the true state is far from these

values.

C. SIR Particle Filter

Using the prior distribution as the importance density is
in some sense regarded as a standard SIR particle filter and
80 is an appropriate particle filter algorithm with which to
begin. As can be seen from figure 6, the SIR particle filter
gives disappointing results with the low number of parti-
cles used here. The speckled appearance of the figure is
a result of sampling a low number of particles from the
(broad) prior. It is an artifact resulting from the inade-
quate amount of sampling.

The RMSE metric shows a marginal improvement over
the approximate grid-based filter. To achieve smaller errors
one could simply increase the number of particles, but here
we shall now investigate the effect of using the alternative
particle filter algorithms described up to this point.

D. Auziliary Particle Filter

One way to reduce errors might be that the proposed
particle positions are chosen badly. One might therefore
think that choosing the proposed particles in a more in-
telligent manner would yield better results. An auxiliary
particle filter would then seem to be an appropriate candi-
date replacement algorithm for STR. Here we have Ni as a
sample from p(xg|xt ;).

As shown by figure 7, for this example, the auxiliary
particle filter performs well. There is arguably less speckle
in figure 7 than in 6 and the probability mass appears to

be better concentrated around the true state. However,

one might think this problem is not very well suited to
an auxiliary particle filter since the prior is often much
broader than the likelihood. When the prior is broad, those
particles with a noise realisation that happens to have a
high likelihood are resampled many times. There is no
guarantee that other samples from the prior will also lie in
the same region of the state space since only a single point
is being used to characterise the filtered density for each
particle.

The RMS errors are slightly reduced from those for SIR.

E. Regularised Particle Filter

Using the regularised particle filter results in a smooth-
ing of the approximation to the posterior. This is appar-
ent from figure 8. The speckle is reduced and the peaks
broadened when compared to the previous particle filters’
images.

The regularised particle filter gives very similar RMS er-
rors to the SIR particle filter. The regularisation does not
result in a significant reduction in errors for this data set.

F. ‘Likelihood’ Particle Filter

All the aforementioned particle filters share the prior as
a proposal density. For this example, much of the time,
the likelihood is far tighter than the prior. As a result,
the posterior is closer in similarity to the likelihood than
to the prior. The importance density is an approximation
to the posterior. So, using a better approximation based
on the likelihood, rather than the prior, can be expected
to improve performance.

Figure 9 shows that the use of such an importance den-
sity (see Appendix for details) yields a reduction in speckle
and that the peaks of the density are closer on average to
the true state than for any of the other particle filters.

The RMS errors are similar to those for the Auxiliary
particle filter.
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Fig. 1. Figure of the true values of the state, x;, as a function of k

for the exemplar run.

G. Crucial Step in the Application of a Particle Filter

The RMS errors indicate that, in highly non-linear envi-
ronments, a non-linear filter such as an approximate grid-
based filter or particle filter offers an improvement in per-
formance over an EKF. This improvement results from ap-
proximating the density rather than the models.

When using a particle filter, one can often expect and fre-
quently achieve an improvement in performance by using
far more particles or alternatively by employing regularisa-
tion or using an auxiliary particle filter. For this example,
a slight improvement in RMS errors is possible by using an
importance density other than p(x;|x§_,). The authors as-
sert that an importance density tuned to a particular prob-
lem will yield an appropriate trade off between the number
of particles and the computational expense necessary for
each particle, giving the best qualitative performance with
affordable computational effort.

The crucial point to convey is that all the refinements
of the particle filter assume that the choice of importance
density has already been made. Choosing the importance
density to be well suited to a given application requires
careful thought. The choice made is crucial.

VII. CONCLUSIONS

For a particular problem, if the assumptions of the
Kalman filter or grid-based filters hold then no other al-
gorithm can out-perform them. However, in a variety of
real scenarios, the assumptions do not hold and approxi-
mate techniques must be employed.

The extended Kalman filter approximates the models

25 T T T T T

I

N0

Fig. 2. Figure of the measurements, z;, of the states, xz, shown in
figure 1 for the same exemplar run.
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Fig. 3. Figure of the evolution of the EKF’s mean estimate of the
state.

used for the dynamics and measurement process, in or-
der to be able to approximate the probability density by a
Gaussian. Approximate grid-based filters approximate the
continuous state space as a set of discrete regions. This ne-
cessitates the pre-definition of these regions and becomes
prohibitively computationally expensive when dealing with
high dimensional state spaces [3]. Particle filtering approx-
imates the density directly as a finite number of samples.
A number of different types of particle filter exist and some
have been shown to outperform others when used for par-
ticular applications. However, when designing a particle
filter for a particular application, it is the choice of impor-
tance density that is critical.
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Fig. 4. Figure of the evolution of the upper and lower 20 positions of
the state as estimated by the EKF (dotted) with the true state
also shown (solid).
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Fig. 5. Image representing evolution of probability density for ap-

proximate grid-based filter.
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APPRENDIX

I. IMPORTANCE DENSITY FOR ‘LIKELIHOOD' PARTICLE
FiLTER

This appendix describes the importance density for the
‘Likelihood’ particle filter, which is intended to illustrate
the crucial nature of the choice of importance density in
a particle filter. This importance density is not intended
to be generically applicable, but to be one chosen to work
well for the specific problem and parameters described in
section VI.

To keep the notation simple, throughout this appendix
st = (x1)2. For a uniform prior on sy, the density p(si|z,)
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can be written by Bayes rule as

p(zZklsk) sk >0

. (84)
0 otherwise

p(sklzr) o< {

We can then sample st ~ p(si|zx) (samples, si, are
repeatedly drawn from p(sg|zr) o< p(zg|sk) until one is
drawn such that p(sg|z;) > 0, ie. one such that s > 0).
Then p(x|st) can be chosen to be a pair of delta functions.

5<xk—\/¥>+6<xk+@)
2

This can then be used to form a ‘Likelihood’ based im-

p(xklsy) = (85)

portance density which samples X;; conditional on z; and

independently from x}_,.

q(xk|xh_1,%1k) o p(xk|sk)p(sk|2zk) (86)

The weight of the sample can be calculated according to
(47).

p(zk]x})p(x %} 1)
Q(X}c |X%71 ) Zl:k)
i p(Zk|X§;)P(X§;|X§;—1) (88)

=Wk—1 CAPERYNR;
p(xk|sk)p(sk|zk)
p(x |z )p(Ze)p(X, X5 _1 )

=k ) (<L [s)p(sL ) (89)

wy, Xwj,_;

(87)

Now, p(xi|si) = 1, p(zx) and p(x}) are constant, so

disappear, leaving

p(xj |7e)

o5, 2¢) 90)

wi x wlic—lp(xuxi—l)
Now, the ratio of p(x}|zx) to p(si|zy) needs careful con-
sideration. Though the values of p(xi|zx) and p(si|zx)
might be initially thought to be proportional, they are
probability densities defined with respect to a different
measure (ie. a different parameterisation of the space).
Since p(x|z) integrates to unity over dxy while p(sg|z;)
integrates to unity over dsy, the ratio of the probability
densities is then proportional to the inverse of the ratio of
the lengths, dx; and dsy. The ratio of p(x}|zx) to p(si|zx)
is the determinant of the Jacobian of the transformation
from s to xg.

dSk

p(Xilzr) | dsk
ka

- = 2Xk
p(sylze)

An expression for the weight is then forthcoming

p(XﬂZk) i i i i
p(SZ|Zk) oc wy,_y p(Xg x5 )%},

(92)

The particle filter that results from this sampling proce-

wj, o wh P(XR[XE )

dure is given in algorithm 7.

So, rather than draw samples from the state evolution
distribution and then weight them according to their like-
lihood, samples are drawn from the likelihood and then
assigned weights on the basis of the state evolution distri-

bution.
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ALGORITHM 7: ‘LIKELIHOOD’ PARTICLE FILTER

[{X2>wi}f\§1] = LPF [{x}_,,wj_, }ﬁiswzk]
e« FORi=1:N;
REPEAT
Draw s} ~ p (s|zx)  p (2k|sk)
— UNTIL s} >0
IF U[0,1] > 1
X = VA
— ELSE

e xf = A
END TF

- wj, = wi_y p(X x|y )x;,
« END FOR
o Calculate total weight: ¢ = SUM [{wi}Y*)]
e« FORi=1:N;

— Normalise: w! =t~ w!
« END FOR
o Calculate J@ using (51)
« IF No;; < Ny

— Resample using algorithm 2:

* [{x, wi, _}5\21] = RESAMPLE [{X;wwlls}iisl]
« END IF

*
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