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Abstract

In this paper we describe a new approach for generalised nonlinear �ltering� We show that
the technique is more accurate� more stable� and far easier to implement than an extended
Kalman �lter� Several examples are provided� including the application of the new �lter to
problems involving discontinuous functions�

� Introduction

Possibly the most important problem arising in tracking and control applications is the repres�
entation and maintenance of uncertainty� The state of a system� whether measured or estimated�
is rarely known perfectly because �a� measuring instruments and processes have limited preci�
sion� and�or �b� estimates of evolving systems are based on process models that fail to include
all governing parameters� The uncertainty associated with a state estimate can be represen�
ted most generally by a probability distribution incorporating all knowledge about the state�
Because the amount of knowledge about the state is inherently �nite� a complete parameterisa�
tion of the state probability distribution will also be �nite� Unfortunately� measurements of an
evolving system generally implies that the number of parameters necessary to specify the state
probability distribution will increase without bound��	�

In order to permit tractable algorithms for tracking and control applications� an approximate
state estimate must be generated� The most common approach is to maintain a �xed number of
moments of the state distribution so as to limit the computational demands of the algorithm to
the constraints of available resources� The most successful approach for �xed�moment estimation
is the Kalman �lter�
	� For linear systems the Kalman �lter provides the optimal solution for
maintaining a consistent estimate of the �rst two moments of the state distribution� the mean
and variance� The Kalman �lter �and its many variants� is the most widely used tracking and
control algorithm both because of its mathematical rigour� and because most measurement and
process models are inadequate to provide reliable information about higher order moments��� �	�

The Kalman �lter exploits the fact that �a� given only the mean and variance �or covariance
in multiple dimensions� of a distribution� the most conservative assumption that can be made
about the distribution is that it is a Gaussian having the given mean and variance� and �b� the





fact that the application of a linear operator to a Gaussian distribution always yields another
Gaussian distribution� Given the assumptions of �a� and �b� it is straightforward to show that
the Kalman �lter will yield the best possible estimate of the mean and variance of the state�
The requirement that the mean and variance of the state is measurable represents little practical
di�culty� but the requirement that all observation and process models be linear is rarely satis�ed
in nontrivial applications�

In order to apply the mechanics of the Kalman �lter to nonlinear problems� the extended Kalman
�lter �EKF� was developed��	� The EKF is not so much an extension of the Kalman �lter�
but a crude approach for approximating nonlinear systems with linear ones� More speci�cally�
the EKF simply calls for the replacement of every nonlinear transformation with a linearised
approximation� In this article we examine an alternative generalisation of the Kalman �lter that
accommodates nonlinear transformations through the use of a new representation of the mean
and variance information about the current state ��	� We will argue that the new approach is
superior to the EKF in every important respect�

In the next section we establish the mechanics and notation associated with the Kalman �lter�
and we show the steps where the EKF deviates from the ordinary Kalman �lter� In the sub�
sequent sections we describe the new approach and its applications to �ltering� The discussion
references a number of simple examples and a detailed application will be given�

� The Linear Filtering Paradigm

We seek the unbiased� minimum�mean squared error estimator of the state vector of the system
of interest� x�k�� The system evolves according to the discrete�time nonlinear state transition
equation

x�k � � � f �x�k��u�k � ��v�k � �� k � 	 ��

where f ��� �� �� �	 is the process model� x�k� is the state of the system at timestep k� u�k � � is
the input vector and v�k � � is a q�dimensional noise process�

The only information available about this system are its sequence of control inputs and a set of
observations� which are acquired at discrete times� These observations are related to the state
vector by the equation

z�k � � � h�x�k � ��u�k � �� k � 	 �w�k � �� ���

where z�k � � is the observation vector� h��� �� �	 is the observation model which transforms the
plant state space into observation space and w�k� is additive measurement noise�

We assume that the additive noise vectors� v�k� and w�k�� are Gaussian and form uncorrelated
white sequences� E �v�k�	 � E �w�k�	 � �� for all k� and
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The true system state vector is not known and must be estimated as it evolves through time�
The representation of this uncertainty arises in that the estimate is a probability distribution
conditioned on all prior observations and control inputs� However� determining the minimum
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mean squared error is equivalent to �nding the conditional mean� We use the notation �x�i j j�
to be the state estimate at time i conditioned on all observations up to time j�

�x�i j j� � E
h
x�i�jZj

i
���

where Zj � �z��� z���� � � � � z�j�	T � The conditional covariance of this estimate is

P�i j j� � E
h
fx�i� � �x�i j j�gfx�i� � �x�i j j�gT jZj

i
� �
�

In general it is extremely di�cult to determine the values of these quantities and a linear
estimator is often employed� This type of estimator incorporates observation information linearly
but does not require that the process and observation models are linear themselves� As shown
in ��	� the minimum mean squared estimator has a �predictor�corrector� structure ��� �	� First�
the current state estimate and covariance are transformed through the state transition and
observation equations� These quantities are also known as the one step ahead predictions since
they represent an estimate of the state of the system at time k �  given all observations up
to time k� The system is observed at time k �  and the observation information is used to
�update� these predictions to produce the estimates �x�k �  j k � � and P�k �  j k � �� The
update equations are

�x�k �  j k � � � �x�k �  j k� �W�k � ���k � � ���

and
P�k �  j k � � � P�k �  j k��W�k � �P���k �  j k�WT �k � �� ���

The vector ��k � � is the innovation� which is equal to the di�erence between the actual obser�
vation at k� z�k � �� and the prior mean observation� �z�k �  j k��

��k � � � z�k � �� �z�k �  j k�� ���

The covariance of this quantity is P���k �  j k�� W�k � � is the Kalman gain and its value is
given by

W�k � � � Pxz�k �  j k�P���� �k �  j k�� ��

Within this framework of the estimator problem the accuracy of the prior means and covariances
are the determining factors in estimator performance� The extended Kalman �lter and new �lter
both use the same structure but employ di�erent assumptions in determining the predicted
means and covariances�

� The extended Kalman �lter

The EKF assumes that

�x�k �  j k�EKF � f �E
h
x�k�jZk

i
�E �v�k � �	 �u�k � �� k � 	

� E
h
f �x�k��u�k � ��qq��� k � 	jZk

i
� ���

This is equivalent to the assumption that the estimated mean at the previous time step� �x�k j k��
is approximately equal to the true state of the system at that time� Therefore� assuming that
the size of the errors are small� the state dynamic model is expanded as a Taylor series about the
estimate �x�k j k�� By neglecting second and higher order terms� the state prediction propagates
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through the nonlinear equations whilst the state errors propagate through a separate linear
system� The predicted state and covariances are

�x�k �  j k�EKF � f ��x�k j k��u�k � �� k � 	� ���

P�k �  j k�EKF � JfP�k j k�J T
f �Q�k � �� ���

where Jf is the Jacobian matrix of the state transition equation f ��� �� �	 evaluated around �x�k j k�
and Q�k � � is the covariance of the dynamic driving noise injected during the transition from
k to k � �

By a similar process� the Taylor series for the observation equation is expanded about �x�k �  j k�
and is truncated at the �rst order� The predicted observation and observation covariances are

�z�k �  j k�EKF � h��x�k �  j k��u�k � �� k � 	� ���

P���k �  j k�EKF � JhP�k �  j k�J T
h �R�k � �� ���

The cross�covariance is
Pxz�k �  j k�EKF � P�k �  j k�J T

h � �
�

The form of the EKF is chosen to resemble that of the linear Kalman �lter which is optimal for
linear systems� However� the extended Kalman �lter is generally suboptimal for nonlinear sys�
tems� The estimates of �x�k �  j k�EKF � P�k �  j k�EKF � �z�k �  j k�EKF � Pzz�k �  j k�EKF

and Pxz�k �  j k�EKF are all made on the assumption that the errors in truncating the Taylor
series to the �rst order are small�

The impact of this assumption can be illustrated by considering the motion of a vehicle moving
along a circular arc� In the process model we shall describe� the state space is the position and
orientation of the vehicle� x�k� � �x�k�� y�k�� ��k�	T � The velocity of the vehicle is V �k� and the
radius of curvature is R�k�� The discrete�time process model for this system is

x�k � � � x�k� � R�k�

�
sin

�
��k� �

V �k��T

R�k�

�
� sin��k�

�
���

y�k � � � y�k� � R�k�

�
cos

�
��k� �

V �k��T

R�k�

�
� cos��k�

�
���

��k � � � ��k� �
V �k��T

R�k�
� ����

where these equations yield the exact solution for circular motion on an arc of constant radius�

It is assumed that the vehicle�s speed V �k� is disturbed by a zero�mean uncorrelated process�
The result� as shown in Figure  which represents the condition at time k� is that the covariance
ellipse in position uncertainty is orientated in the direction of travel�

Now consider the motion of the vehicle after it has turned through ��o� Figure � shows the true
position of the vehicle and its covariance ellipse at time k � � one step ahead from the time at
k� As can be seen� the covariance ellipse has been expanded and rotated� the initial uncertainty
in position is augmented by additional uncertainties of vehicle motion across the arc and the
change in rotation of the vehicle�

The EKF predicts the covariance forwards using Equation �� The Jacobian matrix for the state
transition equations is

Jf �

�
��  � �TV �k� cos��k�

�  ��TV �k� sin��k�
 � �

�
�� ���
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which is a constant velocity model tangential to the circle� The e�ect of this on covariance
prediction is shown in Figure �� While the mean position estimate is predicted forward using
the circular motion model� the covariance is linearly projected in the initial direction of travel�
This leads to a failure of the �lter to maintain the critical information that the largest component
of the uncertainty in the vehicle�s position is in the direction in which it is travelling� In other
words� the predicted covariance re�ects the uncertainty about the vehicle in its previous state
rather than its current state� This error must be compensated for by injecting additional dynamic
noise via Q�k� which expands the predicted covariance ellipse so that the true covariance ellipse
always lies within it� This is illustrated in Figure � which shows the true ellipse and one such
adjusted EKF�predicted ellipse�

Fig� �� Mean and covariance of a
vehicle at time t � m

Fig� �� True mean and covariance
prediction to time t � m��t

Fig� �� EKF prediction of mean with
linear covariance propagation

Fig� �� EKF prediction �adjusted� to
compensate for linearisation error

In summary� the failing of the EKF is its inability to make predictions of the system state�
the observations and the associated covariance matrices when the system and�or observation
models are non�linear� At the heart of this is the need to determine the mean and covariance
of a posterior distribution which is acted upon by a non�linear transformation when the prior
has a known mean and covariance and is assumed to be Gaussian� The EKF uses linearisations
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� the non�linear transformation is approximated using a linear transformation which leads to
appreciable errors for realistic observation models� process models� and their associated error
covariances� We seek an alternative� tractable� general method for calculating these statistics
without the need to use these linearising assumptions�

� A General Method for Predicting Mean and Covariance

To state the general problem� we have an n�dimensional vector random variable x with mean �x
and covariance Pxx and would like to predict the mean �y and covariance Pyy of a m�dimensional
vector random variable y where y is related to x by the non�linear transformation

y � g �x	 � ����

In �ltering there are two such transformations � x could be �x�k j k� and y is �x�k �  j k� �for
predicting the state� and x is �x�k j k� and y is �z�k �  j k� for predicting the observation�

We begin with the following intuition� With a �xed number of parameters it should be easier
to approximate a Gaussian distribution than it is to approximate an arbitrary nonlinear func�
tion�transformation� Following this intuition we wish to �nd a parameterisation which captures
the mean and covariance information while at the same time permitting the direct propagation
of the information through an arbitrary set of nonlinear equations� This can be accomplished
by generating a discrete distribution having the same �rst and second �and possibly higher�
moments� where each point in the discrete approximation can be directly transformed� The
mean and covariance of the transformed ensemble can then be computed as the estimate of the
nonlinear transformation of the original distribution�

Given an n�dimensional Gaussian distribution having covariance P� we can generate a set of
O�n� points having the same sample covariance from the columns �or rows� of the matrices
�pnP �the positive and negative roots�� This set of points is zero mean� but if the original
distribution has mean �x� then simply adding �x to each of the points yields a symmetric set of
�n points having the desired mean and covariance� Because the set is symmetric its odd central
moments are zero� so its �rst three moments are the same as the original Gaussian distribution�
This is the minimal number of points capable of encoding this information� A random sampling
of points from the distribution� on the other hand� will generally introduce spurious modes in the
transformed distribution even if the set of sample points has the correct mean and covariance� In
a �ltering application these modes will take the form of high frequency noise that may completely
obscure the signal�

We summarise the basic method as follows�

� Compute the set � of �n points from the rows or columns of the matrices
�pnP� This set is zero mean with covariance P� Compute a set of points
with the same covariance� but with mean �x� by translating each of the points
as X � � � �x�

�� Transform each point as Yi � g �Xi	 �
�� Compute �y and Pyy by computing the mean and covariance of the �n points

in the set fYig�
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Transformation
Nonlinear 

Fig��� Sigma points capturing the mean and covariance of the distribution are transformed

independently� The mean and covariance of the transformed sigma points de�ne the predicted state�

This formulation can be generalised by exploiting our freedom to choose which of the in�nite
number of possible square roots we use� �including non�square matrix roots� and by our freedom
to include any multiple of the mean� �x� in the set �i� Our freedom to choose an arbitrary matrix
square root comes from the fact that any square root can be found from any other root by
applying an orthonormal transformation ��	� If our original matrix is A then a matrix square
root

p
A� has the property that� p

A�

p
A
T

� � A�

Hoewever� if we de�ne a second matrix square root
p
A� �

p
A�U where U is an orthonormal

transformation� then

p
A�

p
A
T

� �
�p
A�U

	�p
A�U

	T
�

p
A�UU

T
p
A
T

�

�
p
A�

p
A
T

� �

We are not restricted to using orthogonal or symmetric matrix square roots which are numerically
sensitive and computationally expensive to �nd� Rather� e�cient and stable methods such as
the Cholesky decomposition can be used� a vital consideration for real�time application�

Using multiple copies of the mean obviously will not a�ect the mean of the set� and will only
a�ect the scaling factor for the calculation of the other points� The implications of this are
discussed below and described in more detail in Appendix A�

To illustrate the di�erence between the new method and linearisation� consider again the example
presented in the last section� The motion of the vehicle is a non�linear transform carried out over
time� Figures � and 
 show how the new method projects the position of the rotating vehicle
from the earlier example�

�If the matrix square root A is of the form AT
A� then the sigma points are formed from the columns of A�

However� for a root of the form AAT the rows of A are used�






Fig��� Vehicle travelling on a circular
path with uncertainty in speed

Fig��� New �lter correctly predicts
e�ects of rotation on the covariance

Rather than project the mean and covariance through separate equations� the covariance ellipse
is approximated by a discrete set of points as shown in Figure �� As shown in Figure 
� each
one of these points is separately projected along a circular path� and the �nal covariance ellipse
is rotated and scaled�

We summarise the general method�

� The set of translated sigma points is computed from the n� n matrix Pxx as

� �� �n rows or columns from �
q

�n � ��Pxx

X � � �x

X i � �i � �x�

which assures that

Pxx �


��n � ��

�nX
i��

�Xi � �x	�Xi � �x	T �

�� The transformed set of sigma points are evaluated for each of the �� �n points by

Yi � g �Xi	 ����

�� The predicted mean is computed as

�y �


n � �



�Y� �



�

�nX
i��

Xi
�
� ����

�� And the predicted covariance is computed as

Pyy �


n � �



��Y� � �y	�Y� � �y	T �



�

�nX
i��

�Yi � �y	�Yi � �y	T
�

����

Comparing this algorithm with the linearisation algorithm we see a number of signi�cant ad�
vantages�
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� It is not necessary to calculate the Jacobian or make any other approximations of g ��	�
� The prediction stage only consists of standard linear algebra operations �matrix square

roots� outer products� matrix and vector summation�

� The number of computations �including an e�cient matrix square root algorithm� scales
with dimensions at the same rate as linearisation�

� Constraints can be readily incorporated by applying the constraint to each of the projected
set Yi�

In Appendix A we analyse of the performance of the new transformation algorithm against
linearisation in detail� It is shown that the most natural framework to use to compare the
two algorithms is a Taylor Series expansion of g ��	 evaluated about �x� Linearisation introduces
errors in the mean calculation at second order and in the covariance at the fourth order� The
new method� however� yields errors in the mean and covariance which are both of fourth order�
Further� on an absolute term�by�term basis� the errors at all higher orders can be made smaller
than those introduced by linearisation� In many applications we expect the e�ects of the lower
order terms to be signi�cant� and so the reduction in errors can lead to signi�cant improvements
in estimation accuracy� This is demonstrated in a number of examples given below� When the
function is discontinuous linearised estimates are almost incapable of capturing this information�
If the discontinuity does not lie at the point of linearisation then the estimate does not contain
the information� If the linearisation point lies on the discontinuity then the Jacobian matrix
may not exist and hence the covariance cannot be predicted� The new �lter uses a distribution
of points and captures the e�ects of the discontinuity if it in�uences a signi�cant proportion of
the distribution�

The analysis also reveals the role which is played by �� it a�ects the scaling of the fourth and
higher moments of the distribution� Thus � is a convenient parameter for exploiting knowledge
�if available� about the higher moments of the given distribution �� It is shown that choosing
� � � for a scalar system leads to errors in the mean and covariance which are sixth order� For
multi�dimensional systems choosing � � ��n minimises the mean squared error up to the fourth
order� There is no restriction on the sign of � but� if � is negative� then we cannot interpret
the distribution of the sigma points as a probability distribution� Further� when � is negative
there is the possibility� as with all approximation algorithms� that the predicted covariance will
be non�positive semi�de�nite� In this case� we can use a modi�ed form of the algorithm for
calculating the covariance�

Pyy �


��n � ��

�nX
i��

�Yi � �y	�Yi � �y	T � ����

Both the original and modi�ed algorithms have the property that� as n � � tends to zero� the
mean tends to the value obtained by a truncated second order prediction algorithm� Further�
the modi�ed algorithm has the useful property that� in this limit� the covariance tends towards
that calculated by linearisation��

�This leads us to the conclusion that the method is applicable for any prior� symmetric� unimodal distribution
and not just Gaussian�

�This can be contrasted with an alternative approach of the initial intuition which was explored in ����� Under
that scheme no copies of the previously estimated mean are included in the sample set and the sigma points
are scaled using a parameter �� In the limit as � tends to in�nity this algorithm predicts the same mean and
covariance as the EKF� However when � � �� this method estimates the same mean and covariance as that of the
new �lter but with � � ��
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Any choice of � yields MMSE results for linear g ��	�

To show the signi�cant improvements which can be made using the new method instead of
linearisation� we consider the two following simple examples�

��� Example �� a simple continuous transform

Suppose there is a one�dimensional random y which is related to the random variable x by the
nonlinear transformation

y � g�x	 � x�� ��
�

Given that x is a normally distributed variable with mean �x and covariance ��x� what is the
mean and covariance of y� �y and ��y�

First consider the �true� situation �denoted by the subscript T �� The true random variable xT
is written as

xT � �x � �x� ����

which is the sum of the mean �x and �x� a zero mean� normal random variable with covariance
��x� The series expansion for one realisation of �x is

g��x � �x	 � �x� � ��x�x � ��x��� ����

Taking expectations�
�yT � �x� � ��x� ����

The mean squared error in this realisation is

�y � �y��T � ��x� � ��x�x � ��x�� � �x� � ��x�� ���

� ���x�x � �x� � ��x��

� ��x�� � ��x��x�� � ���x� � ���x���x�� � ���x�x�x � ��x�

Taking expectations of this gives the true covariance�

���y�T � E
h
��x��

i
� ��x���x � ��x ����

where the �rst term is the kurtosis of the series� From moment generating functions it can be
shown to have the value ���x �	� Therefore� the true covariance is

���y�T � ���x � ��x���x� ����

The linearisation algorithm predicts its mean from Equation �

�yLIN � G��x	 � �x� ����

and covariance from Equation �
���y�LIN � ��x���x� ����

Comparing these equations with those for the true system� it can be seen that the linearisation
assumptions eliminate a number of signi�cant terms in the mean and covariance� This leads to
a biased mean and an under prediction in the value of the covariance�
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Now consider the new algorithm� Using the steps given earlier� the position of the sigma points
are determined �rst� Since the system is one dimensional there are only three points of interest�
the two sigma points and the mean� Denoting the ith point by Xi� these points lie at

fX��X��X�g � f�x� �x� �� �x � �g � ����

where � �
p

�n � ����x and n � � Projecting these points through g��	 according to Equation ��
yields a new set of points Xi� that lie at

fX���X���X��g �
n

�x�� �x� � ��x� � ��� �x� � ��x� � ��
o
� ��
�

Applying Equation ��� the mean is calculated as

�y �


�� � ��

�
���x� � ��x� � �� � ����x

	
����

� �x� � ��x�

As can be seen� the predicted mean is equal to the true mean and is independent of �� This
result arises because of the properties of the new �lter�s projection equations� As explained
earlier� the mean and covariance are correctly predicted up to and including the second order
terms� Both errors and the scaling e�ects of � begin to act on the fourth order� Since the
mean is only a function of the �rst two orders� none of these properties of higher order moments
a�ect the results� The true covariance� however� is a function of the kurtosis of the distribution
and we expect the estimated value to contain a term related to �� Since the state space is one
dimensional� we use the original form of the covariance prediction equation �Equation ����

��y �


�� � ��

�
�nX
i��

fXi� � �yg� � ����x


����

� ���x � ��x���x�

To �nd a solution the value of � must be speci�ed� The kurtosis of the true distribution is ���x
and that of the sigma points is ��x� Since the kurtosis of the sigma points is scaled by an amount
� � ��� the kurtosis of both distributions only agree when � � �� By substituting in the above
equation� this result is con�rmed�

��� Example �� a simple discontinuous system

Fig�	� Part of the distribution re	ects

from the wall while the remainder passes

unimpeded�

We now consider an example of a discontinuous pro�
cess model in which we wish to estimate the mean
position of a projectile� �x�k�� y�k�	T � The projectiles
are initially released at time  from a random position
�x��� y��	T and travel at a constant and known speed
vx in the x direction� The path of the projectiles is
obscured by a wall� If a projectile hits the wall there
is an elastic� instantaneous impact� and the projectile
is re�ected back on itself at the same velocity as it
travels forwards� This situation is illustrated in the �g�
ure which also shows the covariance ellipse of the initial
distribution� We wish to estimate the mean position
and covariance of the position at time �� �x���� y���	T �

where �T
�
� t� � t��





The process model for this system is

x��� �



x�� � �Tvx y�� 	 ��
�Tvx � x�� y�� � �

����

y��� � y��� ���
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Fig��
� Normalised mean square error of

the EKF 
dashed line� and the new �lter


solid line��

At time  the estimated is �x��� y��	T � The error in
this estimate is Gaussian� zero mean and has covariance
P� j �� The true conditional mean and covariance
was determined using Monte Carlo simulation for dif�
ferent choices of the initial mean of y� The �gure shows
that the new �lter estimates the mean very closely� suf�
fering only small spikes as the translated sigma points
successively pass the wall� Further analysis shows that
the covariance for the �lter is only slightly larger than
the true covariance� but conservative enough to account
for the deviation of its estimated mean from the true
mean� The linearised method� however� bases its entire
estimate of the conditional mean on the projection of
the prior mean� so its estimates bear no resemblance
to the true mean except when most of the distribution
either hits or misses the wall�

As can be seen� in each case the new method gives signi�cant improvements over linearisation�
In the �rst example� the method is exact� In the second� the errors are much smaller�

� The New Filter

In the previous section we presented a method for determining the mean and covariance of a
distribution which is superior to linearisation in many important respects� In this section we
return to our original motivation and use this methodology to derive a �ltering algorithm� From
the discussion in Section �� the following steps must be carried out�

� predict the new state of the system �x�k �  j k� and covariance P�k �  j k�� This predic�
tion must include the e�ects of the process noise vector v�k � ��

� predict the expected observation �z�k �  j k� and the innovation covariance P���k �  j k��
and

� predict the cross�correlation matrix Pxz�k �  j k��

As will be shown� carrying out the latter two steps is trivial once we have established the �rst
step� In the general formulation� v�k � � can enter in a very �exible fashion� Components of it
can� for example� re�ect additive noises on �x�k j k�� u�k� or even on the time index k� Further�
the noise can be injected in a non�linear fashion as� for example� multiplicative terms� In the face
of such generality� it is not su�cient to treat the noise as separate� additional terms� Further�
if we follow the route of the EKF and simply add a process noise covariance term then we do
not account for the e�ect of the process noise on the mean� However� with the new method the

�



e�ects of process noise can be incorporated in a very simple fashion� We de�ne an augmented
�n � q� dimensional state vector �xa�k j k� where

�xa�k j k�
�
�

�
x�k�

v�k�


����

This augmented vector has mean

E ��xa�k j k�	 �

�
�x�k j k�

�q��


����

and covariance

Pa�kjk� �

�
P�k j k� Pxw�k j k�
Pwx�k j k� Q�k�

�
� ����

where� in general� Pxw�k j k� is the correlation between the injected noise and the error in the
current state estimate�

The non�linear transformation Equations �� to �� are now used on the ��n � q� sigma points
from �xa�k j k�� Repeating the equations here for clarity�

� The set of translated sigma points is computed from the �n� q�� �n� q� matrix Pa�kjk�
as

�a�kjk� �� ��n � q� rows or columns from �
q

�n � q � ��Pa�kjk�

X��k j k� � �xa�k j k��

Xi�k j k� � �ai �kjk� � �xa�k j k��

which assures that

Pa�kjk� �


��n � q � ��

��n�q�X
i��

�Xi�k j k�� �x�k j k�	�Xi�k j k�� �x�k j k�	T �

�� The transformed set of sigma points are evaluated for each of the �� ��n � q� points by

Xi�k �  j k� � f �Xi�k j k��u�k � �� k	 ����

�� The predicted mean is computed as

�x�k �  j k� �


n � q � �

��
��X��k �  j k� �



�

��n�q�X
i��

Xi�k �  j k�

��
� � ����

�� And the predicted covariance is computed as

P�k � jk� �


n � q � �



��X��k �  j k�� �x�k �  j k�	�X��k �  j k�� �x�k �  j k�	T

�


�

��n�q�X
i��

�Xi�k �  j k�� �x�k �  j k�	�Xi�k �  j k�� �x�k �  j k�	T
�
��
�

�



Using these equations ensures that the prediction with uncertainty in the state and process noise
yields estimation errors in fourth order and above�

To complete the description of the new �lter� the equivalent statistics for the innovation sequence
and the cross correlation must be determined� Instantiating each point through the observation
model to yield Zi�k �  j k� � h�Xi�k �  j k��u�k � �� k � 	� the mean observation is found
from

�z�k �  j k� �


n � q � �

��
��Z��k �  j k� �



�

��n�q�X
i��

Zi�k �  j k�

��
� � ����

and the covariance is determined from

Pzz�k �  j k� �


n � q � �

n
��Z��k �  j k�� �z�k �  j k�	�Z��k �  j k�� �z�k �  j k�	T

�


�

��n�q�X
i��

�Zi�k �  j k�� �z�k �  j k�	�Zi�k �  j k�� �z�k �  j k�	T
o
�����

The innovation covariance is equal to the sum of Pzz�k �  j k� and the observation noise cov�
ariance matrix�

P���k �  j k� � Pzz�k �  j k� �R�k � �� ����

Finally� noting that the additive disturbances w�k� and v�k� are uncorrelated� the cross correl�
ation matrix is

Pxz�k �  j k� �


n � q � �



� �X��k �  j k�� �x�k �  j k�	 �Z��k �  j k�� �z�k �  j k�	T

�


�

��n�q�X
i��

�Xi�k �  j k�� �x�k �  j k�	 �Zi�k �  j k�� �z�k �  j k�	T

��
� ����

When � is negative then P�k �  j k� may not be positive semide�nite� In that case a modi�ed
form of the covariance equation can be used� Further� in the limit as n � q � � tends to zero
the mean tends to that calculated by the truncated second order �lter� The modi�ed covariance
equation leads to the same covariance as that calculated by the EKF�

To summarize� we have presented a new �ltering algorithm based on a new method for de�
termining the mean and covariance of a probability distribution� The resulting �lter has many
advantages over the EKF� In particular� linearisation is not required� process noise can be readily
and consistently incorporated� and the estimates are accurate up to fourth order�

� Application

In this section we compare the performance of the new �lter against that of the EKF for a
problem which was initially presented in �	� We choose this example because it has signi�cant
nonlinearities in the process and observation models and has been analysed extensively in the
literature�

�



RADAR

LOCATION

RANGE

H

M

ALTITUDE

BODY

Fig��� The geometry of the

example

We wish to estimate the position� velocity and constant ballistic
coe�cient of a body as it re�enters the atmosphere at a very high
altitude at a very high velocity� Acceleration due to gravity is
negligible compared to the altitude and velocity dependent drag
terms� The body is constrained so that it falls vertically and
at discrete points in time the range of the body is measured
using a radar in the presence of white� uncorrelated noise� The
geometry of the situation is shown in Figure �� the radar is at an
altitude of H �������ft� and the horizontal range between the
body and the radar� M � is �������ft�� This system has three
states which are de�ned as follows�

� x��t� altitude �in feet�

� x��t� velocity �positive downwards� in feet per second�

� x��t� �constant� ballistic coe�cient �in per feet�

The continuous time dynamics of this system are

 x��t� � �x��t� � w��t� ����

 x��t� � �e��x��t�x��t��x��t� � w��t� ����

 x��t� � w��t� ����

where w��t�� w��t� and w��t� are zero mean� uncorrelated noises with covariances given by Q�t�
and � is a constant ��� ��	� which relates the air density with altitude� The range at time t�
z�t�� is

z�t� �

r�
M� � �x��t��H	�

	
� r�t� ����

where r�t� is the uncorrelated observation noise with covariance R�t� � ��ft��

Both �lters were implemented in discrete time and observations were taken once per second�
However� considering the nonlinearities of the process model and the high velocity �initially
������fts���� numerical integration of Equations �� to �� produced reasonable predictions of
the state variables only for extremely small time steps� In accordance with �	� a fourth order
Runge�Kutta scheme was employed with �� steps between each observation� This additional
complication did not greatly a�ect the implementation of the new �lter� The numerical scheme
was applied to predict the position of each sigma point individually and the mean and covariance
were calculated just before an observation was made� Since n � � we chose � � � to minimise
the maximum error up to the fourth order� With this choice of � there is no possibility of
predicting a non�positive semide�nite covariance matrix and Equation �
 was used� However�
the implementation of the EKF was a rather more involved process� The mean was calculated
using the numerical scheme� However� since the values of the state variables changed signi�cantly
across the time interval� Jf exhibited strong time variations as well� This could be compensated
for by repeatedly linearising the prediction equations and using Equation �� Let � be the
duration of each time step�

�
�
�

tk�� � tk
��

� ����

Then the covariance was propagated from the nth to n � th step using

P�tk � �n � �� j tk� � ��tk � �n � ��� tk � n��P�tk � n� j tk�

��T �tk � �n � ��� tk � n�� ��
�

�



where

��tk � �n � ��� tk � n�� � I� �Jf �
��

�
�Jf �� ����

and Jf was evaluated about tk � n�� The �nal predicted covariance� P�k �  j k�� was given by
P�tk � ��� j tk��

The initial true state of the system is

x���� � ���� ���ft�

x���� � ��� ���fts���
x���� � ���ft���

���
�� ����

and the initial estimates of these states are

�x��� j �� � ���� ���ft�

�x��� j �� � ��� ���fts���

�x��� j �� � �� ��	ft��

���
�� ����

with covariance

P�� j �� �

�
�� �
 � �

� �� �
 �
� � ���

�
�� ���

Thus the initial estimate of altitude and velocity is correct� while the initial estimate of the
ballistic parameter �x��� j �� is very bad� Physically� this corresponds to assuming that the body
is �heavy� whereas in reality the body is �light�� We wish to see how quickly the �lters converge
to the true state of the system and� to this end� no process noises are injected into the system�
Further� we set Q�k� � � for each �lter� These conditions are in accordance with those for
the original test �	� Referring to the earlier analysis we expect that there will be signi�cant
di�erences in the predictions made by the EKF and the new �lter which will� in turn� lead to
di�erences in the magnitudes of the state errors� Note that if both �lters are tuned with non�zero
Q�k�s� better performance will be achieved�

In Figure � we show the average magnitude of the state errors committed by each �lter across
a Monte Carlo simulation consisting of �� runs� As can be seen� there is initially very little
di�erence between the two �lters since� at high altitude� air density is low and x��k� has little
e�ect on body motion� However� after about �s the body has fallen su�ciently far and the e�ects
of drag become signi�cant� Here the performance for the two �lters di�ers quite dramatically�
Figure � shows the performance for the velocity estimates� As can be seen� there are large
error spikes for both �lters� These are related to the fact that� at �s� the altitude of the body
is the same as that of the radar� Range information provides less data about body motion and
so leads to increasing errors� Even so it can be seen that the EKF has a larger error spike in
this region and only slowly converges at lower altitudes� Finally Figure  shows the errors in
predicting x����� As can be seen� the error in the EKF estimate is converging to be an order of
magnitude larger than that for the new �lter�
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In Figures � and � we show the errors in the position estimates made by the EKF and the
new �lter and the associated estimates of the � standard deviation bounds� As can be seen� the
error in the EKF falls outside the deviation bounds after about ��s indicating that the �lter is
consistently over predicting the accuracy of its estimates� However� the errors in the new �lter
estimate always lie in the estimated bounds�
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Therefore we conclude that in this example the new �lter has substantial advantages both
in implementation and performance� The value of the �lter has been demonstrated in other
applications including high�speed road vehicle navigation ��!�	� map based localisation ��	 and
satellite navigation ��	�






� Conclusions

In this article we have shown that a recently proposed alternative to the extended Kalman �lter
is preferable in terms of performance and ease of implementation� More speci�cally� we have
shown�

� The new �lter is provably superior to the EKF in terms of expected error for all absolutely
continuous nonlinear transformations� The new �lter can be applied with non�di�erentiable
functions in which the EKF is unde�ned�

�� The new �lter avoids the derivation of Jacobian matrices for linearising nonlinear kinematic
and observation models� This makes the new �lter conducive to the creation of e�cient�
general purpose �black box� code libraries�

�� Our exposition of the �lter clearly demonstrates that the new �lter is a more direct gen�
eralisation of the linear Kalman �lter than is the EKF� In particular� we suggest that the
new approach is a true extension of the Kalman paradigm� whereas the so�called EKF is
more of a recipe for pounding nonlinear models into linear holes�

�� Empirical results for a highly nonlinear problem arising in vehicle control��	� satellite nav�
igation and fault detection��	 suggest that the new �lter yields results which are at least
as good as those obtained from a well�tuned EKF� Moreover� the performance of the new
�lter is more robust than the EKF when stressed�

The fact that the new �lter is provably superior to the EKF in every important performance
respect is su�cient evidence to conclude that the EKF is an obsolete methodology� The implic�
ations of the new �lter� however� go far beyond simply improving performance� The fact that
the new �lter does not require the derivation of Jacobians eliminates the major obstacle to the
development of high �delity kinematic models in practical applications� Real world engineering
experience with the EKF has led most implementors to conclude that the modelling of subtle
dynamic e�ects usually entails a large e�ort �deriving Jacobians� tuning the many fudge factors
necessitated by the EKF� etc�� that is usually defeated by linearisation errors� The new �lter�
on the other hand� permits highly complex models to be implemented and tested quickly�

In summary we should emphasize that the important result in this paper is a new method
for applying nonlinear transformations to multivariate Gaussian distributions� This result is
therefore not limited to nonlinear extensions of the Kalman �lter� It can be applied to almost
any �lter that employs linearisation approximations to nonlinear functions �e�g�� information
�lters� H� controllers� etc���

A Theoretical Analysis of Performance

In this section we compare the performance of the new prediction algorithm against that of
linearisation in terms of predicting the mean and covariance of the posterior random variable�
In the next section we lay out the basic framework of the analysis� which is the Taylor Series�
In the subsequent sections we examine the prediction of the mean and the covariance� Finally
we conclude with some loose comments about discontinuous functions�
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A�� The Multi�Dimensional Taylor Series

For the purpose of this analysis we assume that all nonlinear transformations are analytic across
the domain of all possible values of x� This condition means that the process model can be
expressed as a multidimensional Taylor series consisting of an arbitrary number of terms� As
the number of terms tends to in�nity� the residual in the series always tends to zero and so
the series always converges to the true value of the function� Note that these assumptions are
more restrictive than those required for both of the algorithms� To apply linearisation it must
be necessary to di�erentiate the function to form the Jacobian matrix� The new algorithm does
not even place this restriction�

If we now consider the prior variable x as a mean �x plus a zero�mean disturbance �x with
covariance P� then the Taylor series expansion for the non�linear transformation g�x	 about �x is

g��x��x	 � g��x	 �D�xg�
D�

�xg

�"
�
D�

�xg

�"
�
D�

�xg

�"
� � � � ����

The D�xg operator evaluates the total di�erential of g��	 when perturbed around a nominal
value �x by �x�

D�xg
�
�

��
�xTr

	
g�x	T

T ������
x��x

����

This operator can be arranged in two ways� First� the D operator can be expressed as Jg�x�
where Jg is the Jacobian matrix of g��	 evaluated about �x� Second� the operator can be written
as the scalar operator

D�x �
nX
i��

�xi
	

	xi
����

which acts on g��	 on a component�by�component basis� The ith term in the Taylor series for
g��	 is given by

Di
�xg

i"
�



i"

�
� nX
j��

�xj
	

	xj

�
A
i

g�x	

�������
x��x

����

This can be expressed as a sum of components� each of which is an ith order di�erential of g��	
with respect to x and an ith order product of �x� If �x is a random variable then the expected
value of the ith term in the Taylor series for g��x��x	 is

E

�
Di

�xg

i"

�
�



i"
E

�
��
�
� nX
j��

�xj
	

	xj

�
A
i

g�x	

�
��
�������
x��x

�


i"
E

�
��
�
� nX
j��

�xj
	

	xj

�
A
i
�
�� g�x	

�������
x��x

����

It is expressed in terms of the ith moments of the distribution of �x and the ith order partial
derivatives of g��	� To illustrate this� we consider a simple case where g��	 is the mapping from
a two dimensional space to another two�dimensional space� Letting x � �x�� x�	

T � y � �y�� y�	
T

and g�x	 � �g��x�� g��x�	T then

D�xg � �x�
	g

	x�
� �x�

	g

	x�
��
�

D�
�xg

�"
� �x�

� 	
�g

	x��
� �x��x�

	�g

	x�	x�
� �x�

� 	
�g

	x��
����
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When we compare the accuracy of the di�erent �lters� we shall employ the same nonlinear
equation g��	 and mean �x but with di�erent distributions �which are not necessarily probability
distributions� of �x� Using the above form� we can compare the performance of each �lter
simply by comparing the moments of �x without knowledge of the value or behaviour of the
state transition equations�

A�� Performance in predicting the mean of a continuous function

The predicted state estimate is found by taking expectations of Equation ���

�y � E
h
g��x��x	

i
� g��x	 � E

�
D�xg �

D�
�xg

�"
�
D�

�xg

�"
�
D�

�xg

�"
� � � �

�
����

For the true mean� denoted by the subscript T � �x is a zero�mean� Gaussian process with
covariance P� By symmetry� all odd ordered moments in this distribution are zero� Therefore
the expected value of all odd terms in this series are zero and

�yT � g��x	 � E

�
D�

�xg

�"
�
D�

�xg

�"
� � � �

�
�
��

The second order even terms can be written as

D�
�xg

�"
�
D�x �D�xg�

�"
�

�
�xTr�xTr

�"


g �

�
rT�x�xTr

�"


g� �
�

Using the second interpretation of the D operator and noting that E
h
�x�xT

i
� Pxx� the

second term in the Taylor series can be written as

E

�
D�

�xg

�"

�
�

�
rTPxxr

�"


g� �
��

Equation 
� can now be written as

�yT � g��x	 �

�
rTPxxr

�"


g � E

�
D�

�xg

�"
� � � �

�
� �
��

Linearisation however� truncates this series at the �rst order and predicts the conditional mean
as

�yLIN � g��x	� �
��

This estimate is independent of the covariance and higher moments of the distribution of �x�
However� comparing this with Equation 
� reveals that this is accurate only if the expected
value of the second and higher order terms in the series are zero� This is always true for a linear
system since the second and higher derivatives of the transformation are zero� However� for a
general nonlinear system these terms are non�zero and this condition does not hold� Therefore
errors are introduced at the second order�

The new �lter predicts the mean from the projected set of points using Equation ��� Consider
the Taylor series for the transition of each point Xi� This can be expressed as the Taylor series
about �x�

Yi � g�Xi	 � g��x	 �D�ig �
D�
�i
g

�"
�
D�
�i
g

�"
�
D�
�g f

�"
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��

��



where �i�k� � Xikk � �x� Applying Equation ��� the predicted estimate is

�y �


n � �



�g��x	 �
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�nX
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Comparing this series with the true series� we see that di�erent values for the predicted mean
occur only if the moments of�x and �i�k� are di�erent�� The distribution of �i�k� is symmetric�
All odd moments are zero and hence all odd terms sum to zero� Recalling that the sigma points
are found from the column �or row� vectors of the matrix square root of

p
�n � ���x� the second

order even term is
D�
�i

�"
�

�
rT�i�k��Ti �k�r

�"


g� �

�

Therefore the predicted mean is

�y � f ��x	 �

�
rTPxxr

�"


g�



��n � ��

�nX
i��

�
D�
�i
g

�"
� � � �


� �
��

Comparing this series with Equation 
� we see that the mean predicted by the new �lter agrees
with the true mean up to the third order and that errors are introduced in the fourth and higher
order terms� This does not necessarily guarantee that the estimate is more accurate since we
have not examined the behaviour of the higher order terms in the series� We now consider this
problem�

To examine the higher order errors we observe that the random vector �x with covariance Pxx

can be stochastically decoupled � it can be expressed in terms of an uncorrelated random vector
�x� with covariance I �where I is the identity matrix�� This decoupling is achieved by means
of the linear transformation

�x � A�k��x�� �
��

where A�k� is a matrix square root of Pxx� If aij is the ith element in the jth column vector of
A�k� then the D operator can be expressed as

D�x �
nX
i��

�x�i

�
� nX
j��

aij
	

	xj

�
A � ����

Similarly� we can identify a set of sigma points ��

i�k� which capture the mean and covariance
of a normal distribution with covariance identity� This set of points is related to �i�k� by

�i�k� � A�k���

i�k�� ���

where A�k� is� again� any matrix square root of Pxx
	 Rather than handle a correlated random

vector we now only need to consider the uncorrelated random vectors �x� and ��

i�k�� For the
Gaussian case it can be shown that the fourth order moments �or kurtosis� are �	

E
h
�x�i

�
i

� � �i�
E
h
�x�i

�
�x�j

�
i

�  �i
�j�

�Our terminology here is somewhat lax� We can only talk about moments of the sigma points if they are
a probability distribution 	 that is� when � � �� When � � � then we are referring to a weighted average of
components raised to a particular power�

�This result leads to an alternative insight into the sigma points 	 namely that the sigma points capture the
mean and covariance of a distribution with mean zero and covariance the identity� This distribution is scaled by
the square root of the covariance matrix and translated by the mean�

�



All other fourth order moments are zero� For the sigma points� the kurtosis of the jth components
are



��n � ��

�nX
i��

��ij
��k� � n � � �j ����

and all other fourth order products are zero�

This analysis shows the e�ect of �� Although the �rst three moments are unaltered� it a�ects
the scaling of the fourth and higher order moments of the distribution of �i�k�� If information
is known about the predicted distribution then this can be incorporated into the choice of � so
that the error in the predicted mean is minimised� However if there is no information about
the higher order terms of g��	� the best choice of � is motivated by ensuring that the errors
committed by the new algorithm are smaller than those committed using linearisation�

Comparing the kurtosis of the true distribution against that for the sigma points� we observe two
di�erences� First� the kurtosis of a single state has a value of � for the Gaussian distribution but
n � � for the sigma distribution� Therefore there is a di�erence in the scaling of the moments�
Second� the sigma point distribution has a zero cross kurtosis �and indeed they are zero for
all higher order moments as well� but the Gaussian distribution has nonzero cross kurtoses�
Therefore� except for the one dimensional case �when cross�kurtoses do not exist�� the �shape� of
the moments are di�erent� If � is chosen such that n�� � � then the kurtosis of the single states
for both distributions are the same� For a one dimensional state space� the errors are introduced
in the sixth and higher order moments� However� when the space is multidimensional fourth
order errors are introduced through the cross�kurtoses terms� Linearisation� by comparison�
assumes that all fourth order moments are zero� Therefore since the error in the kurtosis is
smaller for the new algorithm than that assumed by linearisation� the absolute errors in the
fourth order errors in predicting the conditional mean using the new algorithm are smaller than
those using linearisation�

To consider the sixth and higher order moments we consider how the values of the higher
order moments grow� For a Gaussian distribution these moments grow factorially� However�
the moments for the sigma point distribution grow geometrically with common factor n � ��
Therefore for any choice of � it is possible to select a su�ciently large order such that the
moments of the true series exceeds those for the sigma points� When n � � � � the moments
coincide at the fourth moment� For all higher terms� the Gaussian moments are larger in
magnitude than the sigma point moments� However the linearisation enforces the condition
that all of these higher order terms are zero� Therefore� on a term�by�term basis the errors in
the terms of the new algorithm are smaller than those for linearisation�

We observe that as n � � tends to zero� the kurtosis and higher order moments for the sigma
points tend to zero� The predicted mean converges to

lim
�n�����

�y � g��x	 �

�
rTPxxr

�"


g� ����

which is accurate to the second order� This prediction approximation is equivalent to that
employed in the well�known ��	 truncated second order �lter � the Taylor series expansion is
truncated after the second term in the series� Note� however� that this result is achieved without
the need to computer Jacobians and Hessians�

We conclude that the new algorithm can predict the mean more accurately than linearisation
for all continuous nonlinear transformations� Performance is determined by the choice of � since
this factor scales the fourth and higher order moments of the distribution� If information about

��



the true conditional mean �from� for example Monte Carlo simulations� then � can be adjusted
to minimise the error� If � � n� � � � then the absolute error in the predicted mean is smaller
than that with linearisation� We note that in many �ltering applications the �rst and second
terms are dominant and � has a minimal e�ect on estimation performance�

A�� Performance in predicting the covariance of a continuous function

The true �Pyy�T is given by

�Pyy�T � E
h
�y � �yT 	�y � �yT 	T

i
����

where the expectation is taken over the distribution of y� The realisation of the state error is

y� �yT � g��x��x	� �yT ����

� D�xg �
D�

�xg

�"
�
D�

�xg

�"
�
D�

�xg

�"
� E

�
D�

�xf

�"
�
D�

�xg

�"
� � � �

�

with substitutions from Equations �� and 
�� The true covariance is found by post multiplying
the state error by the transpose of itself and taking expectations� Recalling the symmetry of
�x� the expected value of all odd order terms of �x evaluate to zero and the true covariance is

�Pyy�T � E

�
D�xg�D�xg�T �

D�xg�D�
�xg�T

�"
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�xg�D�
�xg�T
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� E

�
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�
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�
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�xg

�"

�T
� � � � � ����

Recalling the identity
D�xg � Jg�x ��
�

and using the expected given in Equation 
�� we rewrite the above equation as

�Pyy�T � JgPxxJ T
g � E

�
D�xg�D�

�xg�T

�"
�
D�

�xg�D�
�xg�T

�� �"
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�xg�D�xg�T
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rTPxxr
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g
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g

�T
� � � � ����

The linearisation algorithm predicts the covariance using

�Pyy�LIN � JgPxxJ T
g � ����

which is the true series truncated after the �rst term� Therefore the errors in the predicted
covariance are in the fourth and higher orders� In general it is not possible to determine whether
the predicted covariance is conservative since this depends upon the higher order di�erentials of
g��	�

The new algorithm predicts the covariance using Equation �� which requires the values of Yi��y
and Y� � �y� These values are given by

Yi � �y � D�xg �
D�

�xg
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Noting that
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�nX
i��

D�ig�D�ig�T �


��n � ��

�nX
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Jg�i�k��Ti �k�J T
g

� JgPxxJ T
g � ����

the predicted covariance is

Pyy � JgPxxJ T
g ����
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Comparing this with the true series we see that the predicted covariance agrees with the true
covariance up to the second order terms in the series� Since the kurtoses of the true and
sigma point distributions are di�erent� errors are introduced at the fourth and higher orders�
By employing similar arguments as used with the conditional mean� we argue that the absolute
errors in the prediction of the covariance are smaller using this formulation than that used by the
EKF� However because we are attempting to faithfully approximate the covariance matrix� we
do not ensure that this approximation is positive semide�nite if � is negative� Similar problems
are experienced with other sophisticated schemes which approximate higher order moments or
probability density distributions ��� �	� The situation in which this arises can be illustrated by
considering the limit as n � � tends to zero�

lim
�n�����

Pyy � JgPxxJ T
g �

��
rTPxxr

�"


g

� ��
rTPxxr

�"


g

�T
� ����

The last term is of the order of covariance squared �and hence of the kurtosis of �x� but does
not scale with �� We can ensure positive semi�de�niteness at the cost of a more conservative
covariance prediction by calculating the �covariance� about �y�

�Pyy�MOD �


��n � ��

�
�nX
i��

�Yi � �y	�Yi � �y	T

� ����

Positive semi�de�niteness is guaranteed by the fact that the covariance matrix is evaluated as
the sum of outer products of vectors�

To quantify the errors committed by this new method of predicting the covariance� we examine
the Taylor expansion of Yi � �y which is

Yi � �y � D�xg �
D�

�xg
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Predicting the covariance using Equation �� yields

�Pyy�MOD � JgPxxJ T
g ��
�
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which does not include the subtractive terms� Therefore� in general� the covariance will be larger
using this form than that initially guided by our intuition� This form also has the useful property
that� in the limit as n � � tends to zero� the predicted covariance is

lim
�n�����

�Pyy�MOD � JgPxxJ T
g � ����

which is the same as that estimated through linearisation� but without the use of Jacobians

In conclusion this analysis shows that the covariance predicted by the new �lter is at least
as accurate as that predicted by the EKF� Although both approaches predict the covariance
correctly up to the second order� the absolute errors in the fourth and higher order terms for the
new �lter are smaller� However� the analysis also shows that the original method of calculating
the covariance may lead to a matrix which is not positive semide�nite� An alternative method for
calculating the covariance has been presented� This method ensures positive semi�de�niteness
and is still more accurate than the EKF� The performance of all three methods of covariance
prediction only converge with a linear system�

A�� Predicting the mean and covariance of discontinuous functions

The preceding analysis is valid only if the state transition equations are continuous across the
range of all possible values of the state estimates and predictions� However� in many practical
situations it is possible to conceive of discontinuous process models� which we now brie�y discuss�

x

f[  ]

xd

x

Fig��� A discontinuous state

transition equation�

Since the state transition equation has a �nite expected value� all
discontinuities must involve �nite discontinuities in behaviour
of the function� Further� suppose that f ��	 is piecewise approx�
imated by a number of continuous functions� as illustrated in
Figure �� Each continuous function has its own Taylor series
and when evaluating the function about a point the appropriate
Taylor series must be used� The EKF can exhibit two types
of behaviour� First� if the state estimate �x�k j k� does not lie
at a discontinuity then the projected state estimate and cov�
ariance will not re�ect the presence of the discontinuity at all�
Second� if the discontinuity lies at the state estimate� there are
di�culties in applying the EKF� Speci�cally� if the function is
non�di�erentiable at that point then it is not possible to predict
the covariance using the conventional EKF covariance prediction
equations�

The new �lter does not require that the state transition equation be di�erentiable and can be
used with any valid process model� However if the function is discontinuous then performance
will be worse than that for a continuous function� If a discontinuity does not lie within the
covariance ellipse formed by the sigma points then the state and covariance predictions do not
acknowledge the existence of it� However� if the discontinuity lies outside the sigma points then
it is unlikely that it a�ects a signi�cant proportion of the distribution� If the discontinuity

��



lies at a sigma point it is not possible� in general� to make any comments about performance�
However� if a discontinuity lies within the sigma points then �rst order errors are introduced
into the mean and covariance predictions� When the mean and covariance are calculated for
the new �lter� the relevant Taylor series for each sigma point must be employed� Odd terms do
not� in general� cancel out in these summations and an error is introduced into the �rst term
in the series� Although the �rst moment is correctly represented using the sigma points� it is
scaled by 


p
n � �� The size of this error can be reduced by reducing the value of � at the

cost of distorting the higher order terms in the series� Further� as n� � tends to zero the sigma
points converge towards one another and there is the possibility that the sigma points will miss
the discontinuity� This error is signi�cant only if a substantial proportion of the distribution is
a�ected by the discontinuity�

A�� Summary

We have considered the performance of the EKF and the new �lter prediction equations for both
continuous and discontinuous state transition equations� In general� when the process model is
continuous the errors in the EKF prediction are second order� The new �lter� however� is accurate
as far as the third order� and errors are only introduced at the fourth order� In many practical
applications the lower terms are signi�cant and the new �lter can be signi�cantly more accurate�
When the function is discontinuous the EKF only incorporates this fact in its estimates if the
discontinuity lies on the current state estimate� If the function is not di�erentiable at that point
the covariance cannot be calculated� The new �lter uses a distribution of points and captures
the e�ects of the discontinuity if it in�uences a signi�cant proportion of the distribution�
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