Copyrighted Material http://www.ElissarGlobal.com

A Beginner’s (Guide to
DIDO

(Ver. 7.3)
A MATLAB® Application Package for

*

Solving Optimal Control Problems

|. Michael Ross

Prepared For
Elissar, LLC

Document # TR-711

Elissar, LLC
P.O. Box 1365
Monterey, CA 93942

*For additional information, see “DIDO User’s Manual for Solving Hybrid Optimal Control
Problems,” to be released.

Copyrighted Material http://www.ElissarGlobal.com

Copyrighted Material http://www.ElissarGlobal.com

ii

Copyright (©1998-2007 I. M. Ross.

All rights reserved. This document is not for distribution without permis-
sion. Parts of this manual may be reproduced for brief excerpts in connection
with reviews or scholarly analysis. This manual must be properly cited if any
ideas are obtained as a result of reading this document. Use in any connection
with information storage and editing now known or hereafter developed is for-
bidden. The DIDO software is subject to copyright protection and can only be
used with a licence from Elissar, LLC or with the explicit written permission
of I. M. Ross. Unauthorized reproduction or distribution of this manual, or the
software, or portions of it may result is severe civil and criminal penalties. Ref:
The Digital Millennium Copyright Act of 1998.

Copyrighted Material http://www.ElissarGlobal.com

Copyrighted Material http://www.ElissarGlobal.com

Acknowledgments

The first version of DIDO was in 1998. The first object-oriented version of DIDO
was in 2001. Given its long history, I am indebted to a very large number of
people who helped make DIDO such a successful code that this section is really
not as exhaustive as it ought to be. As a result, I will restrict my thanks to the
most recent people who are responsible for the success of DIDO.

First and foremost, I am particularly grateful to my friend and colleague,
Fariba Fahroo, Professor of Applied Mathematics at the Naval Postgraduate
School who introduced me to the wonderful world of pseudospectral (PS) meth-
ods in 1997. Our research collaboration continues to inspire me in many ways.

To Chris D’Souza and Jeremy Rea who were early advocates of PS meth-
ods. Chris showed me how to efficiently solve hybrid optimal control problems
while Jeremy opened my eyes to looking for “hidden” singularities within DIDO
constructs. This also led me to a deeper appreciation of mathematical optimal
control theory.

I would also like to thank my many current and former students at the Naval
Postgraduate School who continue to amaze me by solving complex optimal
control problems. To Scott Josselyn and Pat Croley who showed me how to
write efficient DIDO files and effective ways to scale badly scaled problems.

To Pooya Sekhavat, who can work wonders with DIDO. Despite that I knew
how important scaling and balancing equations are to effective numerical com-
putations, Pooya showed me that they are even more important than I could
possibly imagine. The current manual pays homage to this extreme importance
of this critical step in running DIDO efficiently.

To Qi Gong, who helped me better understand the various intricacies of PS
methods and their relationship to control theory. His counter examples alone
are a testament to his genius.

To Walter Murray, who’s enormous time and patience helped me better
understand and appreciate the power of nonlinear programming theory, par-
ticularly the intricacies involved in sequential-quadratic programming methods,
interior point methods, warm-start techniques, and a whole host of interesting
numerical mathematics.

To the AA 4850 class of 2001 who enthusiastically supported the “dense”
version of DIDO and provided suggestions for modifications that have become
ever so useful to this day.

Copyrighted Material http://www.ElissarGlobal.com

Copyrighted Material http://www.ElissarGlobal.com

iv

THIS PAGE INTENTIONALLY LEFT ALMOST BLANK

Copyrighted Material http://www.ElissarGlobal.com

Copyrighted Material http://www.ElissarGlobal.com

TABLE OF CONTENTS v

Table of Contents

1 Introduction and Overview 1
2 Imnstalling and Using DIDO 3
2.1 BriefNotes 3
2.2 Please read the README file in the DIDO folder. 3
2.3 Installing DIDO 3
2.4 Testing the Installation 3
2.5 Limitations on the Free Version of DIDO 3

3 What’s New in DIDO 7.3 4
4 The Basic Problem 5
5 DIDO Expressions for the Basic Problem 7
5.1 State, Control and Other Primal Variables 7
5.2 User-Supplied M-files 8
52.1 MAfilecostfun oL 9

5.2.2 M-file dynamicsfun 9

5.2.3 M-fileeventfun. 9

524 Mflepathfun 0oL 9

6 Calling DIDO 10
6.1 Typical DIDO Inputs 10
6.1.1 Specification of Problem Bounds 10

6.1.2 Specification of the Algorithm 11

6.2 More Optional DIDO Inputs 11
6.2.1 User-Specified Starting Point [Optional] 11

6.2.2 Choosing a Mode for the DIDO Algorithm [Optional] . . 12

7 Illustrative Example 13
7.1 Setting up the DIDO Files 13
7.1.1 The Cost Function File 14

7.1.2 The Dynamics Function File 14

7.1.3 The Events Function File 15

7.1.4 TheProblem File 15

7.2 Sample Output 18

8 Verification and Validation of The Solution 19
8.1 Verifying Feasibility of The Solution 19
8.2 Verifying Optimality, Extremality 19
8.3 Getting Dual Variables 21

9 Illustrating V & V Techniques 23

Copyrighted Material http://www.ElissarGlobal.com

Copyrighted Material http://www.ElissarGlobal.com

TABLE OF CONTENTS vi
10 Procedure for a Trouble-Free DIDO Run 26
10.1 Writing the Problem 26
10.2 Solving the Problem 26
10.3 Scaling and Balancing the Equations 27
10.4 Avoiding Problem Singularities 27
10.5 Detecting Infeasibilities 28
10.6 Speeding up DIDO oo 29
10.7 Speed Bumps 29
11 Must Read Section 31
11.1 The Bad Brachistochrone Problem 31
11.2 Scaling and Balancing the Problem 31
11.3 How to Choose Good Designer Units 33

Copyrighted Material http://www.ElissarGlobal.com

Copyrighted Material http://www.ElissarGlobal.com

1 INTRODUCTION AND OVERVIEW 1

1 Introduction and Overview

DIDO* is a minimalist’s approach to solving complex optimal control problems.
That is, only the problem formulation is required as an input to DIDO, in a
manner that is nearly identical to writing it on a piece of paper. This unique
pencil-and-paper-like approach of coding DIDO files is made possible through
the use of DIDO expressions. The DIDO expressions are constructed in a man-
ner that makes optimal control programming intuitive. The input to DIDO is
as simple or complicated as only the problem formulation.

The current version of DIDO (7.x) is backward compatible all the way back
to DIDO 2001 («) — the first, object-oriented, public version released in the
Summer /Fall of 2001 [3]. We recommend new users use DIDO in the format
described in this manual. DIDO users may continue to use DIDO in the pre-
2005 format; however, this format will no longer be supported after 2011. We
urge old users to shift to this format as the differences are not substantial. The
current and forthcoming versions of DIDO are substantially more robust and
faster than all prior versions.

DIDO is a complete package. No other third-party software is required other
than MATLAB.

DIDO is capable of solving a broad class of Smooth and Nonsmooth Hybrid
Optimal Control problems defined over a time' interval [to,t] that may be
fixed or free. DIDO can also solve Dynamic Optimization problems that may
not be optimal control problems. In this context, an optimal control problem is
a dynamic optimization problem parameterized by control variables[4, 5].

Although DIDQ'’s capabilities are very broad, for the purposes of this intro-
ductory section, we describe a simpler problem to illustrate some of its main
features.

Consider an optimal control problem with an interior point constraint; that
is, a constraint at ¢, where o < t. < ty. With deceptive simplicity, the problem
may be posed as follows: Determine the state-control function-pair, [to,ts] —
{x € RN= u € RM«}, the event time ¢, and parameters p € R» that minimize
the Bolza cost functional,

tf
JIx(-),;u(); te; pl = E(v(x(-)); T'; p) +/ F(x(t),u(t); t; p) dt (1.1)
to
subject to the constraints,
x e F(x,u,t;p) xe€X(t;p), uelU(,x;p), peP, x(I)eE (1.2

where 7 is a restriction operator over I' = {tg, te, s} and F, X, U, P,H and E are
constraint sets described by an intersection of functional constraints given in the
form of inequalities and equalities. See Section 4 for an illustrative example.

*Contrary to popular belief, DIDO is not an acronym. It is named after Queen Dido of
Carthage (circa 850BC) who was the first person to solve a dynamic optimization problem
now referred to as an isoperimetric problem; see Refs.[1] and [2].

fThe independent variable need not be time.

Copyrighted Material http://www.ElissarGlobal.com

Copyrighted Material http://www.ElissarGlobal.com

1 INTRODUCTION AND OVERVIEW 2

The generality of the problem posed allows for fairly complex interior point
constraints, pre-defined segments, differentially-flat segments, transition condi-
tions, “mid-flight” changes in dynamics, multi-dynamical systems, mid-flight
changes in the cost function, switches, discrete events and a host of other possi-
bilities. Design and “inverse design” problems are also included. Such complex
problems arise naturally in many practical problems[6, 7, 8]; see Refs.[9, 10] and
[11] for a perspective on solving such problems.

The basic idea behind the solution method is an adaptive spectral algorithm
based on a pseudospectral approximation theory[12, 13, 14, 15, 16, 17, 18, 19].
The pseudospectral approach is significantly different from non-pseudospectral
methods used to solve such problems and hence the code is a realization of
a fundamentally different way of rapidly solving dynamic optimization prob-
lems. Currently, DIDO implements approximations of state and control func-
tions in Sobolev-Hilbert spaces[17] and employs a spectral algorithm based on
an active-set sequential quadratic programming method[20, 21, 22] tailored for
pseudospectral methods.

How to use DIDO is best illustrated by first considering a “smooth” problem
that we call the basic problem defined in Section 4. It is important to note
that although DIDO does not require input files corresponding to the necessary
conditions of optimality, it is extremely important for the user to develop these
conditions and use them as necessary conditions were meant to be used; namely,
as extremality tests on optimality for candidate optimal solutions. These tests,
reviewed in Section 8, are also substantially useful for debugging complex codes
based on practical problems. Failure to perform these tests may result in endless
frustration.

The correct way to use DIDO is as a tool for generating candidate solutions
to optimal control problems. Do not use DIDO as if it is some “direct” method.
Both the Pontryagin and Bellman tests can be easily performed for the candidate
optimal solution generated by DIDO. See Refs.[6], [10] and [23].

Copyrighted Material http://www.ElissarGlobal.com

Copyrighted Material http://www.ElissarGlobal.com

2 INSTALLING AND USING DIDO 3

2 Installing and Using DIDO

You must have a legal license to use either the free or the professional ver-
sion of DIDO. To obtain a legally licensed copy of DIDO email a request to
contact@elissar.biz. Assuming you have a legally licensed copy of DIDO,
please read the following items before installing and using the code:

2.1 Brief Notes

1. You must delete all prior versions of DIDO to ensure a successful run.

2. Tt is illegal for you to distribute or modify the DIDO code. Normally, you
will get a p-code of the DIDO software. You may not reverse-engineer the
p-code. You may not decompile, or de-code any parts of DIDO. Please read
the README file that came with the DIDO package. Should you need
additional utilities, please contact Elissar, LLC at contact@elissar.biz.

2.2 Please read the README file in the DIDO folder

2.3 Imstalling DIDO

Erase all copies and prior versions of DIDO If you do not do this, the code may
not work properly.

To install DIDO, simply copy the folder, DIDO_7.x, to your directory of
choice. Follow the instructions given in the README file.

2.4 Testing the Installation

At the MATLAB prompt, >>, type TestDIDO. If you get no error messages,
DIDO is quite likely installed correctly.

You may perform a further test by typing (at the MATLAB prompt), LanderProblem.
If this generates no error messages, DIDO is probably installed correctly.

2.5 Limitations on the Free Version of DIDO

The free version of DIDO is limited to fewer than:

4 state variables,

2 control variables,

30 node points, and

e 3 nonlinear path constraints.

Note also that you may not use the free version for profit or commercial
venture.

Copyrighted Material http://www.ElissarGlobal.com

Copyrighted Material http://www.ElissarGlobal.com

3 WHAT’S NEW IN DIDO 7.3 4

3 What’s New in DIDO 7.3

1. There is no need to specify a guess to initiate DIDQO’s algorithm. In
its default mode, DIDO can run without a guess. The user may over
ride DIDQO’s self-chosen starting point by specifying a potentially better
starting point via the structure algorithm through its field, guess.

2. A user may opt for different algorithm modes via the structure algorithm
through its field, mode. In its default mode DIDO will run under its nom-
inal mode. The solution obtained under this mode will be quite accurate
for most applications. For certain problems, the accuracy of the solution
may not improve as the number of nodes are increased. In this case, the
user may specify that DIDO run in its accurate mode. The run time in
this mode will be higher, but can generate a more accurate solution.

Users who have been using DIDO since the year 2001 may also use DIDO 7.3
and all its new features; however, those DIDO users (i.e. pre-2005) who have
not migrated to the simpler DIDO syntax may make avail of the new features
of DIDO by telling DIDO through its problem structure that they are using the
older format. Thus, all pre-2005 DIDO codes (including those compatible with
DIDO PR1) will run under DIDO 7.3 provided that the user adds the following
line before calling DIDO 7.3:

problem.format = 2001’

where problem is the name of your problem. For more specific information
on DIDOQO’s backward compatibility, please see the folder OldLanderFiles in the
ExampleProblems folder under the ForUser folder.

Copyrighted Material http://www.ElissarGlobal.com

Copyrighted Material http://www.ElissarGlobal.com

4 THE BASIC PROBLEM 5

4 The Basic Problem

Let x € RY and u € RN« where N,, N, € N. Here and through out the
rest of the manual, we will use the notation N, to mean an element of the
set, N, of Natural numbers, 1,2,3.... We define the basic problem as follows:
Determine the state-control function-pair, {x(-),u(-)}, and possibly the clock
times or event times[13], ¢ty and t; that minimize the Bolza cost functional,

T ()t t1] = Blx(to)- x(tp) tont) + [Fx(®)u(0)ae (41

to

subject to the dynamic constraints,
x(t) = f(x(t),u(t),t) (4.2)
endpoint- or event constraints,
e’ <e(x(to), x(ts),to, ty) < eV (4.3)
mixed state-control path constraints,
h’ < h(x(t),u(t),t) <hY (4.4)

and box constraints on the states, controls and clock times,

xl < x(t) <xY (4.5)
ul < u@t) <u? (4.6)
th< ty <ty (4.7)
th <ty <t§ (4.8)

By v > 0 for any generic vector, v, it is meant that all components of v are
nonnegative (i.e. v > 0 in strict mathematical notation).

Note that, theoretically, the box constraints on the state and control vari-
ables may be listed as part of the state-control path constraints given by the
h function, while the box constraints on the clock time may be listed as part
of the endpoint constraints given by the e function; however, from a numerical
perspective, it is far more efficient to separate the box constraints from the func-
tional ones. Furthermore, from a theoretical point of view, the box constraints
ensure that x(t) € X and u(t) € U where X C R and U C RV« are com-
pact sets that may be construed as the closure of the state and control spaces
respectively.

An equality constraint may be obtained by simply setting the lower bound
equal to the upper bound. If a problem does not have a finite bound, do not set
to —oo for the lower bound and +oo for the upper bound using Inf in MATLAB;
it is strongly advised that the user use some relatively large number instead of
Inf for a trouble-free run. See Section 10. It will be apparent later why we call

Copyrighted Material http://www.ElissarGlobal.com

Copyrighted Material http://www.ElissarGlobal.com

4 THE BASIC PROBLEM 6

the endpoint constraints, Eq.(4.3), events. In many cases, these conditions are
split as
eé <ep (X(to),to) e

ef <ey(x(ty) ty)

IN

(4.9)

e (4.10)

INA
=-qQ <@g

As far as the theory and the code goes, this split is irrelevant although it offers
a notional advantage.

The functions, E and F are called the endpoint cost and running cost
respectively. DIDO works best when the functions,

E: R xRV xRxR—R (4.11)
F: RNMexRVe xR—-R (4.12)
f: RYVe xRV xR - RN= (4.13)
e: RYe xRN xR xR — R (4.14)
h: RY xRM xR — RM (4.15)

called the problem data, are twice continuously differentiable (CZ-smooth)
with respect to their arguments. If this is not the case, DIDO may still run and
provide a reasonable answer, but the user must always check the validity of the
results.

The input to DIDO is as simple or complicated as is the problem formulation.
For instance, if a problem has no path constraints, then there is no need to define
a path function.

Faster run times may be possible when the problem posed has additional
structure than the one formulated above. We highly recommend that even
advanced users do not attempt alternative problem formulations before solving
the problem in this basic form. Various other options are possible, some of
which are discussed later.

For advanced problem formulation and solving it via DIDO, see Refs. [24]
and [25].

Copyrighted Material http://www.ElissarGlobal.com

Copyrighted Material http://www.ElissarGlobal.com

5 DIDO EXPRESSIONS FOR THE BASIC PROBLEM 7

5 DIDO Expressions for the Basic Problem

The input to DIDO is given by only two objects: problem and algorithm.
Anything that is not part of the problem formulation is part of the algorithm;
thus, a basic call to DIDO is as simple as the following one line command:

[cost, primal] = dido(problem, algorithm)

where [cost, primal] are typical DIDO outputs representing the candidate
optimal values of the cost functional, J, and the candidate optimal solution,

x(+)

u(-) = primal.controls

primal.states (5.1)

respectively.

5.1 State, Control and Other Primal Variables

Perhaps, the first thing for the user to understand clearly is that there is no
“propagation” of the equations of motion. The computations are inherently
parallel. This notion is critically important to using DIDO as well as for writ-
ing an efficient code. The states, controls and time are uniquely specified in
terms of a DIDO Structure Array, primal,’ with fields defined by states, con-
trols and nodes. The field nodes (and not, for instance, time) is used by
DIDO to remind the user that candidate optimal values for primal.states and
primal.controls are given by DIDO at certain discrete optimal points,?

primal.nodes = [tg, t1,...,tN]
where N,, = N + 1 is, currently, user-specified as
algorithm.nodes = N,

Future versions of DIDO will automatically choose N,, as well. How to choose
N,, will be apparent later; for most problems N,, ranges from about 15 to 150.
Note that the optimal points (i.e. nodes) chosen by DIDO are not uniform: they
are called the shifted Legendre-Gauss-Lobatto (LGL) points named after the
respective three wise men. The shifted LGL points are completely transparent
to the user; other types of “designer” nodes are also possible and discussed
later. In any case, the values of state and control time histories at these nodes
are described by,

fThe user may, of course, choose a variable name other than primal for the name of the
primal variables, but the names of the fields must be exactly as defined in this manual.

§These optimal points are known as the Legendre-Gauss-Lobatto points and represent the
most general distribution of optimal points for optimal control control problems; all other
collection of points (e.g. Legendre-Gauss) are optimal only for a limited number of special
problems [26].

Copyrighted Material http://www.ElissarGlobal.com

Copyrighted Material http://www.ElissarGlobal.com

5 DIDO EXPRESSIONS FOR THE BASIC PROBLEM 8
z1(to) - z1(tw)
primal.states = : : (5.3)
N, (to) -+ N, (tN)
ur(to) -+ wi(tn)
primal.controls = (5.4)
un, (to) -+ un,(tN)

In other words, time runs horizontally (column-wise) and each column is the
dimension of the relevant vector. Thus, primal is specified as:

e primal.states = N, x N,, real matrix;
e primal.controls = N, x N,, real matrix;

e primal.nodes = 1 X N,, real matrix;

5.2 User-Supplied M-files

As a result of the preceding formats, DIDO requires that the problem (defined
in Section 4) now be re-formulated to a vectorized form for efficient coding
in MATLAB. The user must supply all the functions defined in Section 4, as
functions of matrices. Thus the following four M-files must be provided by
the user (see Section 4):

function [E, F] = cost_fun(primal)

function zdot = dynamics_fun(primal)

function e = event_fun(primal) [optional]

function h = path_fun(primal) [optiona]

The names of all these function files can, of course, be chosen by the user.
DIDO requires that these names be organized in a DIDO Structure Array with
fields cost, dynamics, events and path each of which contain the strings of
the names of these functions:

e problem.cost = ‘cost_fun’;
e problem.dynamics = ‘dynamics_fun’;
e problem.events =‘event_fun’;

e problem.path = ‘path_fun’;

You may want to use a descriptive name for problem as this is printed on
the screen for easy reference.

Copyrighted Material http://www.ElissarGlobal.com

Copyrighted Material http://www.ElissarGlobal.com

5 DIDO EXPRESSIONS FOR THE BASIC PROBLEM 9

5.2.1 M-file cost_fun

The input to cost-fun is the Structure Array primal as described above. The
outputs are the Endpoint cost, F and the running cost, F'. The endpoint cost
is a numeric array (1 x 1 array) that can be obtained from primal.states(:, 1),
primal.nodes(1l), primal.states(:, end) and primal.nodes(end), since

e x(= primal.states(:, 1),

e x; = primal.states(:, end),
e iy = primal.nodes(l), and
e t; = primal.nodes(end).

The running cost is a 1 x N numeric array (row vector) of the running cost
evaluated at the discrete points, primal.nodes. (Recall time runs horizontally!)
If the problem has no E-term or an F-term, it must be set to zero. Do not
set either term to the empty matrix. If you do, you will get a MATLAB error
message: MATLAB segmentation violation detected !!!. This is, in part,
because in MATLAB, (4+ z = 0, not, «.

5.2.2 M-file dynamics_fun
This M-file must provide the differential equation,

x(t) = £(x(t), u(t), t) (5.5)

Thus, given the Structure Array primal, DIDO expects an N, x N, numeric
array, xdot, out of this M-file, containing the right-hand side of the differential
equation. This can easily be evaluated from primal.states, primal.controls,
and primal.nodes.

5.2.3 M-file event_fun

This M-file provides the event function e an N, x 1 numeric array that describes
the events: the boundary conditions for the basic problem. The output (N, x 1
numeric array) can be provided from primal.states(:, 1), primal.states(:, end),
primal.nodes(1) and primal.nodes(end), since xo = primal.states(:, 1), x; =
primal.states(:, end), tp = primal.nodes(1), and ¢y = primal.nodes(end).

5.2.4 M-file path_fun

This M-file provides the path constraints h at the nodes. That is, h is an
Np, x N,, numeric array that is obtained from primal.states, primal.controls
and primal.nodes.

If a problem does not have any path constraints, it is not necessary to define
this function, and hence the corresponding field in the structure problem.

Copyrighted Material http://www.ElissarGlobal.com

Copyrighted Material http://www.ElissarGlobal.com

6 CALLING DIDO 10

6 Calling DIDO

DIDO is typically called from a problem file. The problem file is a script file
that calls DIDO using one line command:

[cost, primal, dual] = dido(problem, algorithm)

where the output variable dual is optional but highly recommended as this is
one of the many strengths and utilities of DIDO. How to use the dual variables
is described in Section 8.

6.1 Typical DIDO Inputs

The problem input to DIDO essentially defines the problem, namely the prob-
lem functions and the problem bounds. The problem functions (see Section 4)
consists of the cost function, the dynamics function, the event function and the
path function:

e problem.cost = ‘cost_fun’;

e problem.dynamics = ‘dynamics_fun’;
e problem.events =‘event_fun’;

e problem.path = ‘path fun’;

The problem bounds are given by e”, eV h’ etc. (see Section 4) and are passed
to DIDO via the problem structure using the field bounds,

problem.bounds

6.1.1 Specification of Problem Bounds

All bounds on the problem are specified via a MATLAB structure array bounds
with the fields lower and upper nested by the appropriate variables; for exam-
ple, states and controls are nested by lower.states, upper.states, lower.controls
and upper.controls,

e x* = bounds.lower.states = [N, by 1] matrix;
e u’ = bounds.lower.controls = [N, by 1] matrix;
e xY = bounds.upper.states = [N, by 1] matrix;

e uY = bounds.upper.controls = [N, by 1] matrix;

Similarly, if event and path constraints are specified in the problem then,
the bounds corresponding to the event constraints ([el,eV]) and state-control

path constraints ([h”, hV]) must be specified by,

Copyrighted Material http://www.ElissarGlobal.com

Copyrighted Material http://www.ElissarGlobal.com

6 CALLING DIDO 11

bounds.lower.events = el [V, by 1] matrix

bounds.lower.path = h’ [N}, by 1] matrix;

e bounds.upper.events = eV [N, by 1] matrix;
e bounds.upper.path = hV [N, by 1] matrix;
The bounds on the clock times,

ty <to <t
L U
ty sty <ty

—~
o=
~—

are given by,

e bounds.lower.time = [té,tﬂ;

e bounds.upper.time = [t{,}];

6.1.2 Specification of the Algorithm

At a minimum the user must specify the desired level of accuracy of the solution
via the DIDO expression,
algorithm.nodes

Typical values for algorithm.nodes range from 15 to 150. Lower and higher
values may be chosen but are frequently unnecessary. Accurate solutions to even
highly complicated problem can be obtained with node values as low as 60.

6.2 More Optional DIDO Inputs

A number of additional inputs to DIDO may be specified for various purposes:
for a faster run time, for a more accurate solution etc. Some of these optional
input parameters are described here; for more information, see [25].

6.2.1 User-Specified Starting Point [Optional]

All algorithms require a starting point. In its default mode, DIDO initiates
the spectral algorithm autonomously by choosing an arbitrary starting point
based on some cognitive principles. The user may over ride this self-chosen
starting point by specifying a potentially better starting point via the structure
algorithm through its field, guess, as in,

algorithm.guess

The guess variable, guess, is defined by the three fields, states, controls and
time:

e guess.states = [N, by N3] matrix; (Ny > 2)

Copyrighted Material http://www.ElissarGlobal.com

Copyrighted Material http://www.ElissarGlobal.com

6 CALLING DIDO 12

e guess.controls = [N, by Ny| matrix; (Ny > 2)
e guess.time = [1 by Ny] matrix; (Ny > 2)

The number of points used in the guess, Na, need not be equal to N, the
number of nodes requested in the output (via algorithm.nodes), but Ny > 2.

DIDO can exploit good guesses for the problem solution. See Sec 10 for
further details.

6.2.2 Choosing a Mode for the DIDO Algorithm [Optional]

In its default mode, DIDO, will run in its “nominal” mode. A user may specify
alternative modes via the DIDO structure algorithm through its field, mode,
as in,

algorithm.mode

The input, algorithm.mode, is a character string that may be specified as
‘nominal’ (default) or ‘accurate’.

For most applications, the results from DIDO under the default mode are
quite accurate. The accurate mode is recommended only for certain pathological
problems. Note also that the Bellman procedure [23] generates quite accurate
results without an increase in the number of nodes.

Copyrighted Material http://www.ElissarGlobal.com

Copyrighted Material http://www.ElissarGlobal.com

7 ILLUSTRATIVE EXAMPLE 13

7 Illustrative Example

One particular formulation of Bernoulli’s classic Brachistochrone problem [5]
can be summarized as,

xT = [z,y,v] € X :{x:ngxng}
u= [fleU ={0:0"<0<0Y}
Minimize J[x(-),u(),tf] = ty
Subject to = wsinf
y= wcosf
) U= gcosf
(B{rac ' 1) (xO,y()avO) = (0’070)
to= 0
ty< tY

where g is a constant, equal to 9.8 m/s? for Earth. Note that, for computational
purposes, we set t¢ < tY where tV is some reasonably large (but not too large)
number. Similarly X and U must be large, but not too large spaces. Suppose
xf = yf =10 m. Then, this problem is reasonably scaled in metric units and
can be directly handled by DIDO without too much fuss; hence, we refer to
this as the Good Brachistochrone Problem. A Bad Brachistochrone Problem is
discussed in Section 11 and all users are strongly advised to read this section
before using DIDO to solve their own problem.

(0,0) X
0
\\\
\\\
\\ N
\\
\ __)°®
y AN
\,
\
\% \\
A \\
mo \f f
(x,y)
A

Figure 1: Schematic for the Brachistochrone problem.

7.1 Setting up the DIDO Files

The “Brac:1” formulation of the Brachistochrone problem has no path con-
straints thus, we only need to specify:

Copyrighted Material http://www.ElissarGlobal.com

Copyrighted Material http://www.ElissarGlobal.com

7 ILLUSTRATIVE EXAMPLE 14

e a cost function file,

e a dynamics function file,

e an event or endpoint function file, and

e a main or problem file that defines the problem.

Recall (see Section 5)

x(-) = primal.states
u(-) = primal.controls
t = primal.nodes
Thus, we have,
x = primal.states(l,:)

primal.states(2,:)

<
— — — —
I

<

= primal.states(3,:)

Q
C
(
(

/N N /N /N
>~ W N
NN NN

>

= primal.controls

7.1.1 The Cost Function File

function [EndpointCost, RunningCost] = BraciCost(primal)

Tl lolololofolofolofo ol fo o o o o ol T o T o T o T T o T o T T o To o To T o o o T T o o o o o o o o o o o o o o o o o oo

% Endpoint Cost for the Brac:1 Formulation of the Brachistochrone Prob
% Template for A Beginner’s Guide to DIDO

% I. Michael Ross

Tl lololo Tl Tl fo o o o o fo o o o o o o o o o o o o T T o o o o T o o o T o o o Jo T o T o o o o o o o o o o o o o o o o o

tf = primal.nodes(end);

EndpointCost
RunningCost

tf;
0;

% That’s it!
% Remember to fill the first output first!

7.1.2 The Dynamics Function File

function XDOT = BracliDynamics(primal)

T T Tototo o ol T ToToto 1o o ol T To ToTo o 1o o o o T To To o 1o o oo o o To Fo o 1o o oo o T To Fo o 1o o oo o T To T 1 1o oo o o o e
% Dynamics for the Brac:1 Formulation of the Brachistochrone Prob
% Template for A Beginner’s Guide to DIDO

% I. Michael Ross

Tl ToToto oo oo o ToToTo o o o o o ToToTo o o o o o o To To Fo o o oo o o T To o 1o o oo o o To Fo o 1o oo o o T To Fo o o oo o o T o

X

y

primal.states(1,:);
primal.states(2,:);

Copyrighted Material http://www.ElissarGlobal.com

Copyrighted Material

Copyrighted Material http://www.Eliss

7 ILLUSTRATIVE EXAMPLE

v = primal.states(3,:);

theta = primal.controls;

%
% Equations of Motion:
YA
xdot = v.*sin(theta);
ydot = v.*cos(theta);
vdot 9.8*cos(theta) ;
A
XDOT
YA

[xdot; ydot; vdot];

7.1.3 The Events Function File

function endpointFunction = BraclEvents(primal)

Tl loto 1o 1o To oo o oo to o 1o ToTo oo o o oo oo oo oo o o oo Fo oo o o o o oo oo o o o o o oo oo oo o o o o oo
% Endpoint function for the Brac: 1 Problem

% Template for a A Beginner’s Guide to DIDO

% I. Michael Ross

Tl thtoToToToto oo oo oo ToTo oo o o o to oo To o To o o o o o oo oo To o o o o oo oo T o o o oo oo oo oo o oo

x0 = primal.states(1,1); xf = primal.states(l,end);
yO = primal.states(2,1); yf = primal.states(2,end);
v0 = primal.states(3,1); vf = primal.states(3,end);

% preallocate the endpointFunction evaluation for good MATLAB computing
endpointFunction = zeros(5,1); % tO is specified in the problem file

YA
endpointFunction(1l) = x0;
endpointFunction(2) = yO0;
endpointFunction(3) = vO0;

Y- — -
endpointFunction(4) = xf;
endpointFunction(5) = yf;

%_ _ _

7.1.4 The Problem File
Tt et to T T To T To o e To o T T o T T o o o o T o o Fo o o T o o T o o To o o oo Vo oo o oo Fo o o Voo o Voo o Fo o o oo o oo o oo o oo o

% Problem (script) file for the Brachistochrone Problem Formulation, Br
% Template for A Beginner’s Guide to DIDO

% I. Michael Ross

Tl ToToto oo to o ToToTo oo o o o o Jo ToTo o 1o o o o o To JoFo o 1o o o o o Jo To To o 1o oo o o Yo To Fo o 1o oo o o o To o 1o o o o o o Jo Fo o 1o o oo

arGlobal.com

15

YYYYNA

ac: 1

T

http://www.ElissarGlobal.com

Copyrighted Material http://www.ElissarGlobal.com

7 ILLUSTRATIVE EXAMPLE 16

clear all; % always a good idea to begin with this!
F Y Yy O O O A O T O T Y Y Y Y Y o Y Y Y Y Y Y Y Y Y Y Y Y Y Y

A
% Problem variables:
Y- I

% states = (x, y, V)
% controls = theta

% bounds the state and control variables

%_

xL = 0; xU = 20;
yL = 0; yU = 20;
vL = 0; vU = 20;

bounds.lower.states = [xL; yL; vL];
bounds.upper.states = [xU; yU; vU];

bounds.lower.controls = [0];
bounds.upper.controls = [pil;

.
% bound the horizon

.

t0 = 0;

tfMax = 10; % swag for max tf

bounds.lower.time = [t0; t0];

bounds.upper.time = [t0; tfMax]; % Fixed time at tO and a possibly free time at tf

%_ _—

% Set up the bounds on the endpoint function

% See events file for definition of events function

bounds.lower.events = [0; 0; 0; 10; 10];
bounds.upper.events = bounds.lower.events; % equality event function bounds

5
% Define the problem using DIDO expresssions:
%

Brac_1.cost = ’BraclCost’;

Copyrighted Material http://www.ElissarGlobal.com

Copyrighted Material http://www.ElissarGlobal.com

7 ILLUSTRATIVE EXAMPLE 17

Brac_1.dynamics
Brac_1.events
%Path file not required for this problem formulation;

’BraclDynamics’;
’BraclEvents’;

Brac_1.bounds = bounds;
h
algorithm.nodes = [16]; % represents some measure of desired solution accuracy

% Call dido

tStart= cputime; % start CPU clock

[cost, primal, dual] = dido(Brac_1, algorithm);

runTime = cputime-tStart

% Ta da!

Tl ol o Tl fo o fo oo ol fo o o o fo o o o o T o o o o o o o o T T o Jo o o J o J o o o o o o o o o o o o o o oo
Tl lololololofolo ol oo o ol o T Fo T To T To o Jo T o T oo

h OUTPUT h

Tl lololo oo fo o oo o o o o o o o o o Jo o o o Jo o o Jo o o

x = primal.states(1,:);

y = primal.states(2,:);

v = primal.states(3,:);

t = primal.nodes;

%

figure; plot(t, x, ’-0’, t, y, ’-x’, t, v, ’=.7);

title(’Brachistochrone States: Brac 1’)
xlabel(’time’);

ylabel(’states’);

legend(’°x’, ’y’, ’v’);

A ——
figure; plot(t, dual.Hamiltonian);
title(’Brachistochrone Hamiltonian Evolution’);
legend(°H’);

xlabel(’time’);

ylabel(’Hamiltonian Value’);

figure; plot(t, dual.dynamics);
title(’Brachistochrone Costates: Brac 1)
xlabel(’time’);

ylabel(’costates’);

legend(’\lambda_x’, ’\lambda_y’, ’\lambda_v’);
%

Copyrighted Material http://www.ElissarGlobal.com

Copyrighted Material http://www.ElissarGlobal.com

7 ILLUSTRATIVE EXAMPLE 18

7.2 Sample Output

The files for the Brachistochrone problem are available (electronically) in the
folder ForUser.
A sample plot from a DIDO run are shown in Figures 2 and 3. Note that

Brachistochrone States: Brac 1

states

0 0.5 1 15 2
time

Figure 2: State trajectory from a DIDO run.

Brachistochrone Controls: Brac 1
1.4

1.2f

0.81

control

0.6

0.41

0.2F

0 0.5 1 1.5 2
time

Figure 3: Control trajectory from a DIDO run.

the control trajectory appears to be linear. It can be proven [5] that ¢ — 6 is
indeed a straight line. Thus, DIDO has indeed found the exact solution.

Copyrighted Material http://www.ElissarGlobal.com

Copyrighted Material http://www.ElissarGlobal.com

8 VERIFICATION AND VALIDATION OF THE SOLUTION 19

8 Verification and Validation of The Solution

Once DIDO finds a candidate optimal or near-optimal solution, the result can
be quickly and easily validated for

e ODE Feasibility
e Pontryagin Extremality

Although DIDO does not require an ODE solver or the development of necessary
conditions as an input file, the results generated by DIDO are best analyzed in
the true sense of the meaning of necessary conditions. In this context, this
section is most useful in debugging concept errors, coding errors and a host of
other “weird” errors.

8.1 Verifying Feasibility of The Solution

Since optimality implies feasibility a simple feasibility test can be easily per-
formed by propagating (“pushing forward”) x*(tg) (the DIDO output of the
initial state) through the differential equation,

x = f(x,u*(t),t)

where [t{;,t;‘c] — u* is the control output from DIDO. For most problems, one
can simply use a standard Runge-Kutta method for the propagator; for example,
ode45. Remember to use the SAME mathematical models for the propagator
as that used in DIDO. Various measures of error norms can now be used to
validate the feasibility of the solution. For example, suppose that the output
from ode45 is given by, [¢5, tj}] — X> ;.- Then, a simple method is to eyeball or
check to see if ¢ — x7 ;. passes through ¢ — x*. This is the concept of checking
for point-wise errors all along the trajectory including the hit or miss from the
target, x(ty).

A time-function ¢ — u* can be generated by interpolating the values of
u(t;) at the node points. DO NOT wuse Lagrange interpolation for this. Often
a simple linear interpolation suffices; however, it is quite possible that you may
get better results using cubic and spline interpolations.

If you have done everything correctly, this should indicate small errors. Re-
member, though, that this is a negative test: if you don’t get small errors,
something is wrong (perhaps in your M-files, implementation etc.). On the
other hand, an absence of errors does not indicate optimality, but feasibility
of the solution. To investigate optimality, you need to develop and check the
necessary conditions.

8.2 Verifying Optimality, Extremality

Assuming a successful DIDO run of the problem defined in Sec. 4, DIDO also
generates (automatically!) all the dual functions and variables associated with
the candidate optimal solution. Thus, one may use necessary conditions as

Copyrighted Material http://www.ElissarGlobal.com

Copyrighted Material http://www.ElissarGlobal.com

8 VERIFICATION AND VALIDATION OF THE SOLUTION 20

necessary (and not sufficient!) conditions: as a test on the optimality of a
candidate feasible solution.

Assuming feasibility, then, according to the Minimum Principle, given a
candidate optimal solution, [t5,t}] — (x*,u”), (i.e. a DIDO output) there
exists a collection of dual functions and variables such that certain statements
are true. Depending upon the problem, many, if not all of these statements can
be examined as a means to test the optimality of the DIDO run.

From the Minimum Principle, if [t7,¢}] — u* is an optimal control tra-

*

Jectory, then for each t € [t§,¢}], u* must satisfy the Hamiltonian Mini-
mization Condition[5, 4],

Minimize H(A,x,u,t)
Subjectto ueU

(HMC) {

where H is the control Hamiltonian (or the Pontryagin Hamiltonian), X is
a covector, and U is the control space. For the problem defined in Sec. 4, the
control space is both state and time dependent, given by,

U(x,t) := {u: h’ < h(x,u,t) < hU} N{u: ul <u< uU}
Thus, Problem HMC is a nonlinear programming problem (NLP) given by,

Minimize H(A,x,u,t)

u
(HMC) { Subject to h* < h(x,u,t) < hV
ul <u< u?

The Karush-Kuhn-Tucker (KKT) conditions for an NLP are the gradient nor-
mality condition and the complementarity conditions. The gradient nor-
mality condition for Problem HMC' is given by,

OH (, A, %, u, t)
—F— =0 8.1
7 (8.1)

where H is the Lagrangian of the Hamiltonian,
H(pu, A\, x,u,t) := HA, x,u,t) + pl h(x,u,t) + plx + plu (8.2)

t— p= (@, by, 1b,) are the covector functions associated with the path con-
straints, state-variable box constraints and control-variable box constraints re-
spectively. From the definition of the control Hamiltonian,

H(A x,u,t) := F(x,u,t) + ATf(x, u,t) (8.3)

an expression for the left hand side of Eq. (8.1) may be obtained quite eas-
ily. Substituting the relevant outputs from DIDO into this expression, one can
determine if Eq. (8.1) is satisfied to a reasonable level of numerical precision.

Copyrighted Material http://www.ElissarGlobal.com

Copyrighted Material http://www.ElissarGlobal.com

8 VERIFICATION AND VALIDATION OF THE SOLUTION 21

Similarity the complementarity conditions may also be checked. These are given

by,
<0 hi(x,u,t) = hE
=0 if hl <hi(x,u,t) <h¥
Hh,i >0 hi(x,u,t) = th (8.4)
unrestricted hiL — th
<0 z; = ak
=0 if xl <z <al
Ha i >0 z; = -'155] (85)
unrestricted le = g;?
and
=0 if ul<wu<dV
unrestricted ul =Y

If Egs. (8.1), (8.4)-(8.6) are satisfied, then the DIDO control trajectory, ¢ — u*,
is a KKT point for Problem HMC for each t € [t5,t7], and t — u* is called an
extremal control. If it can be shown (by further analysis) that the KKT point
is a (global) minimizer for Problem HMC' then the control trajectory, ¢t — u*,
obtained from DIDO is called a Pontryagin extremal control.

Arguably, the most important feature of DIDO is its ability to get accurate
values of the covector functions without solving for the associated necessary
conditions (the two-point-boundary-value problem). The Covector Mapping
Theorem[13, 9], implemented in DIDO, provides all the covector functions by
way of the structure array dual.

8.3 Getting Dual Variables

In order to obtain the dual variables, the output from DIDO must be written
as,

[cost, primal, dual] = dido(problem, algorithm)

The structure dual is self-explanatory and is given by,

o = dual.dynamics;
° Ly = dual.path

o L, = dual.states

o L, = dual.controls

Copyrighted Material http://www.ElissarGlobal.com

Copyrighted Material http://www.ElissarGlobal.com

8 VERIFICATION AND VALIDATION OF THE SOLUTION 22
o v, = dual.events
e H = dual. Hamiltonian
e [vy,,v4,;] = dual.clock

Copyrighted Material http://www.ElissarGlobal.com

Copyrighted Material http://www.ElissarGlobal.com

9 ILLUSTRATING V & V TECHNIQUES 23

9 Illustrating V & V Techniques

Recall the Brachistochrone problem from Section 7:

xI' = [z,y,v] €X :{x:ngxng}
u= [fleU ={0:0"<0<0Y}
Minimize J[x(-),u(),tf] = ty
Subject to &= wvsinf
y= wcosf
) U= gcosf
(Brac ' 1) (xO,y07v0) = (07070)
(zp,yp) = (2f,y7)
to= 0
ty< tY

Although one may consider only the “primal” problem for using DIDO, this is
not advisable, particularly for complex problems. This is because an examination
of the necessary conditions will often reveal information about the problem and
even debugging suggestions (!) that are simply not possible by consideration of
the primal problem alone. Furthermore, an easy analysis of the problem by way
of the dual variables is one of the most powerful features of DIDO. Ignoring this
is like driving your car in first gear on a freeway. In recognizing an effective way
to analyze and solve problems, consider the totality of necessary conditions. To
this end, we first construct the Pontryagin Hamiltonian (Cf. §8),

H(A x,u) := A\yvsinf + A\yvcos + A, g cosé

In the theoretical problem, u = [] is unconstrained; however, in the computa-
tional problem, note that u € U. Thus, the Hamiltonian minimization condition
is given by,

Minignize H(\ x,u)

Subject to 9L < 9 <9V

(HMC) {

Thus, the Lagrangian of the Hamiltonian is given by
H(p, A x,u,t) := HA X, u,t) + pgf (9.1)
Therefore, the KKT conditions for Problem HMC are

Azvcost — Ayvsin® — A, gsinf + pug =0

and
<0 0= o
pwe & =0 if 0L <<V (9.2)
>0 6 =0Y

Copyrighted Material http://www.ElissarGlobal.com

Copyrighted Material http://www.ElissarGlobal.com

9 ILLUSTRATING V & V TECHNIQUES 24

Since we desire to have 8% < # < §Y so that the computational problem matches
the desired problem, we need to make sure that A and @Y are sufficiently
large; i.e. non-binding constraints. If #© and 0V are set too right (i.e. binding
constraints), then DIDO will solve the problem given to it, and not the problem
“thought” by the user. Assuming a correctly posed problem, then, we must
have t — pg = 0. This can be checked via dual.controls. In this case, we have,

t— Agvcosf — Ayvsind — \,gsing =0 (9.3)

The Hamiltonian value condition and the Hamiltonian evolution equation pro-
vide the condition, t — H(A,x,u) = —1; that is,

t — Agusing + Ayvcosf + A\ygcosf = —1 (9.4)
An examination of the adjoint system, A = —0xH (A, x,u), indicates that,
Az(t) = constant A, (t) = constant (9.5)

Thus, Egs. 9.3-9.5 may be used to validate (or invalidate) a DIDO run.

DIDO Output

The costates are given by dual.dynamics and the Hamiltonian is given by
dual.Hamiltonian. A plot of these variables are shown in Figures 4 and 5. It

Brachistochrone Costates: Brac 1

-0.021

—0.04r

—-0.06

costates

—-0.08

— A
X
— A
y
A
v

-0.12 : : :
0 0.5 1 15 2

time

Figure 4: Costate trajectory from a DIDO run.

is quite apparent that ¢ — A; and ¢ —), are indeed constants. Furthermore,
not only is the Hamiltonian a constant at approximately 10~% precision, it is
also equal to —1 as required by theory. Thus, DIDO has indeed found the exact
optimal solution at a very high precision.

Copyrighted Material http://www.ElissarGlobal.com

Copyrighted Material http://www.ElissarGlobal.com

9 ILLUSTRATING V & V TECHNIQUES 25

Brachistochrone Hamiltonian Evolution
-0.99

-0.992f b

-0.994 b

-0.996 b

-0.998} b

-1.002f b

Hamiltonian Value
|
N
.

-1.004| b

-1.006} b

-1.008} b

-1.01 : . :
0 0.5 1 15 2

time

Figure 5: Hamiltonian evolution from a DIDO run; note the scale on the ordinate.

Copyrighted Material http://www.ElissarGlobal.com

Copyrighted Material http://www.ElissarGlobal.com

10 PROCEDURE FOR A TROUBLE-FREE DIDO RUN 26

10 Procedure for a Trouble-Free DIDO Run

The purpose of this procedure section is to help a new user in avoiding some of
the common pitfalls encountered by the novice. Even seasoned users may find
this section helpful.

10.1 Writing the Problem

Many first-time users tend to code a problem without writing (on a piece of
paper) a mathematical formulation of the problem. Avoid the temptation of
arrogance: this leads to a vast number of easily avoidable problems. Major-
ity of the mistakes can be traced to the decisions (or the lack of it)
made in the first 10 minutes!Y It is strongly recommended that you write
the problem you are solving! All it takes is a piece of paper and pencil.
This exercise includes the simple effort of recognizing any potential numerical
problems such as singularities or scaling issues (See §11). Remember, typing up
a code is not writing the problem no matter how similar the code is to the write
up. Scribbling is also not writing! To drive home this point further it might
help to know a wonderful fact: ten hours of coding can save you ten minutes of
writing! You will not be given any support with regards to your DIDO
results (or the lack of it) if you have not written the problem.

10.2 Solving the Problem

The Brachistochrone problem is a sufficiently simple problem (i.e. few variables
and constraints) that it can be coded in one step. Most practical problems
are not that simple. Many newcomers to optimization tend to code their “full
problem” right away. This is inadvisable regardless of your experience. After
resisting the temptation of arrogance in coding the full problem right away,
define the “simplest problem” first. For example, in astronautical applications,
a simpler problem can be defined where the only forces acting on the spacecraft
are inverse-square gravity and thrust. A “higher-order model” may then be
defined as one with .Js perturbations. A still higher-order model can then include
drag and so on. Similarly, depending on the problem, certain path constraints
can be ignored at first (e.g. g-load or heating-rate constraints).

Thus, the recommended procedure is as follows: For reasonably complex
problems define a “homotopy coding/debugging path” vis-a-vis modeling from
a simple problem to the desired problem. In respecting the complexity of the
problem at hand, set Problem P = P, and construct a sequence of problems,
P,,P,_1... that represents in some fashion a family of successively simpler
problems. Thus, for example, Problem P,,_5 may have fewer constraints and/or
a lower-fidelity dynamical model. Such problem formulations requires expertise
in the particular discipline that the problem belongs to: aerospace, mechanical,
economics etc. You are apparently the expert in this discipline. Solve problems
starting from Py all the way up to P, = P, the desired problem. This “homotopy

9 Augstine’s Laws.

Copyrighted Material http://www.ElissarGlobal.com

Copyrighted Material http://www.ElissarGlobal.com

10 PROCEDURE FOR A TROUBLE-FREE DIDO RUN 27

path” to problem solving will provide insights to the problem formulation as
well as the solution in addition to validating the acceptability of the fidelity of
a solution and/or the the problem formulation. Not only is this procedure more
likely to be free of modeling errors, but it also forces you to write your code in a
modular fashion so that a whole family of problems can be solved with relative
ease. This recommend procedure has almost nothing to do with DIDO, rather,
it is a basic “art” in trouble-free computer programming.

10.3 Scaling and Balancing the Equations

Optimization codes (or for that matter almost all numerical codes) behave in
a fundamentally superior fashion (accuracy, speed etc.) when the variables are
scaled properly. We strongly suggest that you scale and balance your problem
before you code it for use inside the DIDO loop. Often, conventional units (e.g.
Metric) are not suitable as units. In many problems, significantly superior units
can be found for numerical computation. For example, for an orbit transfer
problem, the initial radius of the orbit (or sometimes the radius of the planet)
provides a natural scale dimension for distance (than, for example kilometers
or miles). Thus, for example the semi-major axis for GEO is better coded as
6.61 DU (distance units in terms of radius of Earth) than 42164000 meters.
The unit of time is then chosen as the inverse of the Schuler frequency. This
naturally defines a unit for speed and so on. The canonical units for orbit
transfer problems are discussed in almost all books on Astrodynamics. For
other problems, astronautical or otherwise, such units may be naturally and
wisely chosen by the modeler. Sometimes canonical units do not provide good
scaling properties. Analyze the problem scales before coding.

While choosing scales, make sure the problem is well-balanced. Often a
poorly scaled problem will have serious numerical difficulties that can quickly
and easily be resolved by the very simple procedure of dividing the appropriate
quantities by their scaling counterparts.

10.4 Avoiding Problem Singularities

Numerical problems arise when the problem model has potential singularities.
In addition to the usual ones (like dividing by zero), problems will also arise
in apparently benign functions such as y/z. Note that this function is not
differentiable at x = 0. In addition, if x < 0 during the course of an iteration,
MATLAB will treat it to be complex and “expand the search space”. To avoid
numerical problems, repose the problem without using v/x (e.g. by squaring).
If this is not possible, it is always wise to impose bounds on the problem to
avoid these “singularities”. For example, including a constraint such as x > €
will avoid many headaches later. Using e instead of zero prevents a singularity
in the computation of the Jacobian. Note however, this may lead to bad scaling!

Copyrighted Material http://www.ElissarGlobal.com

Copyrighted Material http://www.ElissarGlobal.com

10 PROCEDURE FOR A TROUBLE-FREE DIDO RUN 28

Warning: Divide by Zero!

This message will appear on the screen when there is a division by zero. It might
appear benign since DIDO might continue to run and even generate seemingly
correct results. Correct results should not be assumed in the presence of such
warning signs. To avoid these warnings, check the following:

e Check the lower and upper bounds on all variables and functions. If the
evaluation of any variable or function at the bounds generates a division
by zero, change the bounds. For example, you might set the lower bound
on radius to be zero. Evaluating an inverse-square gravity field at the
lower bound generates a division by zero.

Future versions of DIDO will have singularity-avoidance techniques. Stay
tuned!

10.5 Detecting Infeasibilities

Suppose you want to solve a reasonably complex problem, say, Problem P. As
indicated in [10], this problem formulation is itself is an iterative process. Two
of the biggest mistakes many beginners make are

e Not recognizing that problem formulation is an iterative process, and
e Starting to solve Problem P in the first step!

The fist mistake is somewhat forgivable as it is a result of ignorance; the second
mistake, however, is an act of arrogance: the presumption that the problem can
be solved in one stroke. See Section 10.2 for ideas on how to solve complex
problems. This tried and true approach made sense hundreds of years ago and
makes more sense even today for the simple reason that DIDO can easily solve
problems that were once considered difficult. As a result of this capability, the
burden on the analyst is less about problem solving than verifying and validating
computed solutions.

Now, suppose that DIDO returns an infeasible flag. This raises the following
possibilities: Is a solution not being obtained because

1. Your computer code of Problem Py is incorrect, or
2. The problem does not have a solution, or
3. DIDO is failing?

These questions lie at the intersection of problem fidelity, software practice and
the seemingly abstract question of the existence of a solution. The most common
error beginners make is in claiming that DIDO is not working for Problem P.
Before jumping to this conclusion (particularly in foolishly attempting to solve
Problem P = P, in the first step) begin by solving Problem P, and work your
way up to Problem P = P,,. The simple purpose being that having successively

Copyrighted Material http://www.ElissarGlobal.com

Copyrighted Material http://www.ElissarGlobal.com

10 PROCEDURE FOR A TROUBLE-FREE DIDO RUN 29

solved say Problem Pj, it is far simpler to detect why a solution to Problem Py
is not forthcoming.

An important caveat in the successive solutions to problems of increasing
fidelity is that although we may have a feel for the existence of a solution to
Problem P = P,, this “feel” may not hold for Problem P, or may violate
some mathematical hypothesis required for the existence of a solution; see [10]
where the issue of Lipschitz continuity affects the existence of a solution to an
apparently benign reduction in the number of variables. Thus, an appreciation
for certain mathematical facts is far more important now than it was ever before.
A certain collection of preliminary mathematics required is discussed in [10].
Thus, in examining any problem formulation, the first question that needs to be
answered is: does a solution exist? The question of an existence of a solution,
once largely a purview of theoreticians, is now a major issue in solving practical
problems.

10.6 Speeding up DIDO

Although DIDO does not require a guess for initiating its algorithm, it has the
potential of taking a user-specified guess and providing a quick solution. We
assume that the problem modeler knows something about the problem. Most
engineers can design a “good guess” for the control. A good guess does not mean
a feasible solution. For complicated problems, we suggest you use common-
engineering-sense and generate a “dynamically feasible guess” for the states by
integrating the controls. That is, using “engineering intuition” guess u(t); then
determine x(¢) by a numerical integration (e.g. RK45) of x = f(x, u(t),t). It is
not necessary for your guess (control or states) to be feasible from the point of
view of satisfying the boundary conditions.

Remember also, that under mild assumptions, the DIDO’s spectral algorithm
is globally convergent. A good guess has the advantage of fewer iterations and
thus a faster run time. If you get an error message that the problem is infeasible,
there is a strong probability that the problem is not modeled correctly (if the
problem is indeed feasible) than a problem (issue) with the guess. Although it
may appear to be wise to bootstrap your iterations by using a coarse grid (i.e.
low N) first, remember not to use too coarse a grid, since the discrete problem
might not be feasible.

You can use the results of a DIDO run from a “preliminary” guess to
kick-start a new run using algorithm.guess = primal (where primal
is the output from a previous run).

10.7 Speed Bumps

What might appear to be minor computational burdens might actually end up
taking significant computational time. Paying attention to some of these details
can help make your code run faster but you risk not understanding your own
code when you try to debug it at some later timel. To alleviate these issues,

Copyrighted Material http://www.ElissarGlobal.com

Copyrighted Material http://www.ElissarGlobal.com

10 PROCEDURE FOR A TROUBLE-FREE DIDO RUN 30

it may be wise to heavily comment your code — no matter how trivial your
“trick”.

Copyrighted Material http://www.ElissarGlobal.com

Copyrighted Material http://www.ElissarGlobal.com

11 MUST READ SECTION 31

11 Must Read Section

A well-scaled Brachistochrone problem is one of the easiest problem to solve.
If a problem is very badly scaled, this can easily break DIDO (and almost all
numerical algorithms to date). As scaling and balancing are the most important
computational steps a user must perform in order to have a well-oiled, stable
code, particularly if CPU run times are critical, a Bad Brachistochrone Problem
is considered to illustrate the main points.

11.1 The Bad Brachistochrone Problem

Reconsider the “Brac 1” formulation of Bernoulli’s Brachistochrone problem,

x" = [x,y,v] u= [0]

Minimize J[x(-),u(:),ts] = tf
Subject to &= wvsinf
y= wcosf
. U= gcosf
(Brac: 1) (20, y0,v0) = (0,0,0)
(xf,yf) = (vayf)
to= 0
tp< Y

where g is a constant, equal to 9.8 m/s? for Earth. It is apparent by inspection
that if 7 and y/ are 1 or 10 m, then the problem is well-scaled in metric units.
Now suppose that

/=1 km=1000m and y/ =1m

Theoretically, this makes no difference, but computationally, the problem be-
comes difficult to manage due to poor scaling. It turns out that even when
the problem is well-scaled in metric units, better scaling may be achieved by
way of designer units[23]; hence, we consider the Brachistochrone problem for
arbitrary values of the problem constants, g, 2/ and y/.

11.2 Scaling and Balancing the Problem

Let
" =[z/X,y/Y,0/V] uw=[0/6)]

where X, Y,V and O are arbitrary numbers or designer units. Similarly let
t=t/T
where T is a designer unit of time. Then, ¢t = ¢T', and

r=zX, y=7Y, v=71V, 0=00

Copyrighted Material http://www.ElissarGlobal.com

Copyrighted Material http://www.ElissarGlobal.com

11 MUST READ SECTION 32

Denoting dz/dt as @ etc., note carefully how Brac:1 is re-written:

Minimize J[X(-),U(:),t5] = Tty

Subject to x T = oV sin(60)
QZ = 7V cos(6O)
(Brac: 1) T
5% = gcos(0O)

(g0750750760) = (07070a0)

(X7, Y7p) = (af,y7)

That is, the variables are scaled but the cost function and constraints are not
necessarily scaled. Typically, constraint scaling is not necessary, but in problems
that are truly badly scaled, constraint scaling may be necessary. Finally, for
DIDO, the Brachistochrone dynamics in the scaled variables are not in the
standard format because the left hand side of the dynamics must be x. Rewriting
the dynamics in this form has the natural effect of scaling the constraint; for
example, the & equation gets scaled by T/ X. Collecting all these ideas together,
we have a potentially well-scaled problem given by,

Minimize J[X(:),u(-),ts] =1

Subject to T

I
4
)]
B
=]

—~
>
@

~—

= Tyg
- == 00
(Brac: 1) Y Vv cos(06)

(EO750760) = (07()’0)

L zf yf
($f7yf) = (X’Y)

toy =

|
i

ty <

Note that the cost function in this formulation (J, not J) is scaled by 7. As will
be apparent shortly, this implies that the covectors also get scaled. Furthermore,

the cost function may also be scaled by any value (and not necessarily, T')

Copyrighted Material http://www.ElissarGlobal.com

Copyrighted Material http://www.ElissarGlobal.com

11 MUST READ SECTION 33

because minimizing a function or some multiple of the function generates the
same value for the independent variable (but not necessarily the cost value).
In any event, the problem in its metric units is easily recovered by setting all
values of the designer units to be one.

To incorporate Brac:1 within DIDO, we now need to add non-binding box
constraints,

xb<xt)<x¥ al<u@l) <a?

Failure to make them non-binding (because the “true” problem does not have
a box constraints) is one of the most common causes of coding errors. Setting
xL and XY to be very large may reduce DIDO’s CPU performance (i.e. run
slow). Experimenting with the bounds on the box constraints to determine
good, reasonable values for the box constraints is well worth the effort if the
CPU run time is critical for the application.

11.3 How to Choose Good Designer Units

As the input to DIDO is the scaled problem, its output is also “scaled” accord-
ingly. Failure in recognizing this point is also a common error. In performing V
& V, it is extremely important that DIDO users develop the necessary conditions
in the scaled or designer units.

The control Hamiltonian for the scaled problem is given by (see Eq. 8.3),

_ T 7 _ . _Tg
HXX,6) = Aw%fsm(a@) n Ay%fcosw@) n /\Uvg cos(80)

From the Hamiltonian value condition and the Hamiltonian evolution equation,
we have B
H(A(t),x(t),u(t)) = -1
This implies,
- TV

_ . - T7v_ — Tg B
)\ITv sin(00O) +)xy?v cos(00) +)\UV cos(00) = —1 (11.1)

Now, in the “good” Brachistochrone problem (Cf. §7), we had,

zf =10m and ¢/ =10m

and all units were “1”. An inspection of Figure 2 (see page 18) shows that v
and hence, v, varies from 0 to about 15. From Equation 11.1, this implies that
we should expect the costates to vary from 0 to about 0.1. This is precisely
the result in Figure 4. It is clear that these set of units (or metric units) would
generate a badly scaled problem if we have,

z/ =1km=1000m and 3/ =1m

A fundamental rule for balancing equations is to choose designer units in such a
manner that the states and costates are roughly the same order of magnitude.ll As

IT am indebted to Steve Paris for making this point and to Pooya Sekhavat for generating
some of the balancing rules discussed in this section.

Copyrighted Material http://www.ElissarGlobal.com

Copyrighted Material http://www.ElissarGlobal.com

11 MUST READ SECTION 34

noted in [5], the covectors do have physical meaning with co-units given by,

Cost UNITS
NITS= —M— 11.2
AU S State UNITS ()
Consequently, the units for the adjoint covectors are automatically set when one

chooses the units for the states; that is, we have,

NI <

(11.3)

As an example, if we choose
X=10=Y=V

in the good Brachistochrone problem with all other units as before (i.e. 1, or
metric), then the state variables will vary from approximately 0 to 1 (because
of the “physics” of the problem and its data; see Figure 2). Then, according
to Equation 11.3, the costates must vary from approximately 0 to 1 as well
(Cf. Figure 4). This analysis is borne out in Figure 6. Because the good

Scaled States and Controls Scaled Costates
16 T T T

1.41

1.2r

0.5 1 15 2 "o 0.5 1 15 2
Unscaled time Unscaled time

Figure 6: Scaled state and costate trajectory from a DIDO run; compare Figures
2, 3 and 4.

Brachistochrone problem is already well scaled in metric units DIDO works just
fine in either units. Note also that the designer units used above are not the
usual “canonical” units typically used in the literature. If we were to choose
canonical units, we must set,
X vV X
X = Y’ V = —, T = — = —
T g gl
In this case, all units get set automatically if any one of them is chosen to be a
specific number. For example, choosing X = 1m we get,

/1 X
X=Y=1m, T= ENO.?QS, V—?NS.lm/s

Copyrighted Material http://www.ElissarGlobal.com

Copyrighted Material http://www.ElissarGlobal.com

11 MUST READ SECTION 35

which has the effect of expanding the time scale by about a third, and hence
shrinking the velocity scale by about a third. A better choice of canonical units
might be to choose X = 2/ = 10m; in this case, the time unit is nearly 1 and
the velocity unit is nearly 10 and all the variables range from approximately 0
to 1 and the results will be nearly the same as that illustrated in Figure 6.

It is clear that metric units or canonical units would generate a badly scaled
problem if we have,

zf =1km=1000m and 3/ =1m

Based on the preceding discussions, one might hastily (and falsely) conclude
that we wish to choose X = 1000 and Y = 1 so that Z and § range from 0 to 1.
There are many reasons why this is false, one of which is the presumption that
t — y does not exceed y/. Note also, that this would imply that A, is multiplied
by 1000 (everything else remaining the same). Thus, a few trial runs of DIDO
might be necessary to determine a good scaling procedure (or alternatively, deep
physical insight!). Based on the physics of the good Brachistochrone problem,
we might guess that the solution to the bad Brachistochrone problem would
generate a “wild” variation in ¢ +— y. Thus, a more informative choice for the
units might be

X =100, Y=20, V=10, ©=1, T=10
Results from a DIDO run with these units are shown in Figure 7. This result

Bad Brachistochrone Problem
50 T T

—e— DIDO Solution
-50r! — Linear Solution

-100F

y (m)

-1501

-200F

-250F

-3001

-350

. . . .
0 200 400 600 800 1000
X (m)

Figure 7: DIDO's Brachistochrone solution vs linear solution; compare the scales
with Figures 2 and 3.

further amplifies the rationale behind the unit selection. Of course, the pro-
posed units are not the only “good” units. Systematic experimentation with
units can substantially improve DIDO’s performance, particularly with respect
to run time. It is worth observing that the cost (travel time) for the linear

Copyrighted Material http://www.ElissarGlobal.com

Copyrighted Material http://www.ElissarGlobal.com

11 MUST READ SECTION 36

solution is approximately 452 seconds while the optimal cost found by DIDO
is approximately 25 seconds. That DIDQ’s solution is at least an extremal is
illustrated in in Figure 8.

"Bad" Brachistochrone Costates: Brac 1 "Bad" Brachistochrone Hamiltonian Evolution
T T T -0. T T T T

0.5

-0.9921

-0.9941

-0.996

-0.998

costates

Hamiltonian Value
|
i

-1.002

-1.0041

-1.0061

-1.0081

time time

Figure 8: DIDO’s Costates and Hamiltonian for the "bad” Brachistochrone prob-
lem; compare with Figure 4.

Note that the preceding plots are in metric units. What DIDO actually sees
and solves for are the variables in the designer units. These DIDO-computed
variables are plotted in Figures 9. Note that the costate A, in designer units

Scaled DIDO Primals Scaled DIDO Duals

05

— scaled A
—— scaled A
— scaled A,

I
o
o

scaled values
Scaled values

!
N

-1.5F

2 2
0 0.5 1 15 2 25 0 0.5 1 15 2 25
Scaled time Scaled time

Figure 9: Variables in designer units solved by DIDO.

is indeed exactly equal to its value in metric units. This follows from Equation
11.3 and our choice of V =T = 10. Furthermore because X = 100, the value
of A, in designer units (= -0.127) is ten times larger (in absolute value) than
it metric value of -0.0127 s/m. Likewise, because ¥~ = 20, the value of A, (=
0.4510) in designer units is two times larger (in absolute value) than its metric
value of 0.2255 s/m.

The files for generating all these plots and analysis is in the folder Brachis-
tochroneProblems in the ForUser folder.

Copyrighted Material http://www.ElissarGlobal.com

Copyrighted Material http://www.ElissarGlobal.com

REFERENCES 37

References

[1] Nahin, P. J., When Least is Best, Princeton University Press, Princeton, N.J.,
2004.

[2] Young, L. C., Lectures on the Calculus of Variations and Optimal Control Theory,
Saunders, Philadelphia, PA, 1969.

[3] Ross, I. M. and Fahroo, F., “User’s Manual for DIDO 2001: A MATLAB Appli-
cation Package for Dynamic Optimization,” NPS Technical Report AA-01-003,
Department of Aeronautics and Astronautics, Naval Postgraduate School, Mon-
terey, CA, October 2001.

[4] Vinter, R., Optimal Control, Birkh&user, Boston, MA 2000.

[5] Ross, I. M., Control and Optimization: An Introduction to its Principles and
Applications, Electronic Edition, Naval Postgraduate School, Monterey, CA, Oc-
tober, 2006.

[6] Josselyn, S. and Ross, I. M., “A Rapid Verification Method for the Trajectory
Optimization of Reentry Vehicles,” Journal of Guidance, Control, and Dynamics,
Vol. 26, No. 3, 2003.

[7] Lu, P., Sun, H. and Tsai, B., “Closed-Loop Endoatmospheric Ascent Guidance,”
Journal of Guidance, Control and Dynamics, Vol.26, No. 2, 2003.

[8] Stevens, R. and Ross, I. M., “Preliminary Design of Earth-Mars Cyclers Using
Solar Sails,” Journal of Spacecraft and Rockets, Vol. 42, No. 1, Jan-Feb 2005,
pp. 132-137.

[9] Ross, I. M., and Fahroo, F., “A Perspective on Methods for Trajectory Optimiza-
tion,” Proceedings of the AIAA/AAS Astrodynamics Conference, Monterey, CA,
August 2002. Invited Paper No. ATAA 2002-4727.

[10] Ross, I. M., and Gong, Q., Emerging Principles in Fast Trajectory Optimization,
NPS Technical Report, GNC # 07-2, Monterey, CA 2007.

[11] Ross, I. M., “A Roadmap for Optimal Control: The Right Way to Commute,”
Annals of the New York Academy of Sciences, Vol. 1065, New York, N.Y., January
2006.

[12] Fahroo, F., and Ross, I. M., “Costate Estimation by a Legendre Pseudospectral
Method, Journal of Guidance, Control and Dynamics, Vol. 24, No. 2, pp. 270-277,
2001.

[13] Ross, I. M., and Fahroo, F., “Legendre Pseudospectral Approximations of Op-
timal Control Problems,” Lecture Notes in Control and Information Sciences,
Vol.295, Springer-Verlag, New York, 2003, pp. 327-342.

[14] Ross, I. M. and Fahroo, F., “A Unified Framework for Real-Time Optimal Con-
trol,” Proceedings of the IEEE Conference on Decision and Control, Maui, De-
cember, 2003.

[15] Ross, I. M. and Fahroo, F., “Pseudospectral Knotting Methods for Solving Op-
timal Control Problems,” Journal of Guidance, Control and Dynamics, Vol. 27,
No. 3, pp.397-405, 2004.

[16] Gong, G., Kang W., and Ross, I. M., “A Pseudospectral Method for the Optimal
Control of Constrained Feedback Linearizable Systems,” IEEE Transactions on
Automatic Control, Vol. 51, No. 7, July 2006, pp. 1115-1129.

Copyrighted Material http://www.ElissarGlobal.com

Copyrighted Material http://www.ElissarGlobal.com

REFERENCES 38

[17] Gong, Q., Ross, I. M., Kang, W., and Fahroo, F., “Connections Between the Cov-
ector Mapping Theorem and Convergence of Pseudospectral Methods for Optimal
Control, to appear in Computational Optimization and Applications, 2007.

[18] Gong, Q., Ross, I. M., Kang, W., and Fahroo, F., “On the Pseudospectral Cov-
ector Mapping Theorem for Nonlinear Optimal Control, 45th IEEE Conference
on Decision and Control, pp. 2679-2686, San Diago, CA, Dec. 2006.

[19] Ross, I. M. and Fahroo, F., “Issues in the Real-Time Computation of Optimal
Control,” Mathematical and Computer Modelling, An International Journal, Vol.
43, Issues 9-10, May 2006, pp.1172-1188. (Special Issue: Optimization and Control
for Military Applications).

[20] Eldersveld, S. K., “Large-Scale Sequential Quadratic Programming Algorithms,”
PhD thesis, Department of Operations Research, Stanford University, Stanford,
CA, 1991.

[21] Gill, P.E., Murray, W., and Saunders, M.A., “SNOPT: An SQP Algorithm for
Large-Scale Constrainted Optimization,” SIAM Review, Vol. 47, No. 1, 2005,
pp. 99-131.

[22] Fletcher, R., Leyffer, S. and Toint, P. L., “On the Global Convergence of a Fil-
terSQP Algorithm, SIAM Journal of Optimization, Vol. 13, 2002, pp. 4459.

[23] Ross, I. M., Gong, Q. and Sekhavat, P., “Low-Thrust, High-Accuracy Trajectory
Optimization,” Journal of Guidance Control and Dynamics, Vol. 30, No. 4, 2007,
pp. 921-933

[24] Ross, I. M. and D’Souza, C. D., “Hybrid Optimal Control Framework for Mission

Planning,” Journal of Guidance, Control and Dynamics, Vol. 28, No. 4, July-
August 2005, pp. 686-697.

[25] Ross, I. M., “DIDO User’s Manual for Solving Hybrid Optimal Control Prob-
lems,” (in preparation), Elissar, Monterey, CA 93940.

[26] Fahroo, F. and Ross, I. M., “On Discrete-Time Optimality Conditions for
Pseudospectral Methods,” Proceedings of the AIAA/AAS Astrodynamics Con-
ference, Keystone, CO, August 2006. AIAA-2006-6304

Copyrighted Material http://www.ElissarGlobal.com

