Processamento Estatístico de Sinais: Lista 2

Problema 1 Seja $\{\mathbf{X}_k\}$, $k \geq 0$, uma seqüência de vetores aleatórios gaussianos reais \mathbf{X}_k de dimensão $n \times 1$, e seja por outro lado $\{\mathbf{Y}_k\}$ uma seqüência de vetores aleatórios gaussianos \mathbf{Y}_k de dimensão $l \times 1$ tal que

$$\mathbf{Y}_k = \mathbf{H}_k \mathbf{X}_k + \mathbf{V}_k \qquad k \ge 0 \tag{1}$$

onde $\{\mathbf{V}_k\}$, $k \geq 0$, é uma seqüência independente, identicamente distribuída de vetores aleatórios reais de dimensão $l \times 1$ com $p(\mathbf{v}_k) = N(\mathbf{0}, \mathbf{R})$, $\forall k \geq 0$. As seqüências $\{\mathbf{X}_k\}$ e $\{\mathbf{V}_k\}$ são estatisticamente independentes e a seqüência de matrizes $l \times n$, $\{\mathbf{H}_k\}$, é assumida conhecida para $k \geq 0$.

Para um dada realização $\{\mathbf{y}_k\}$, $k \geq 0$, de $\{\mathbf{Y}_k\}$, introduza agora a seqüência de inovações $\{\underline{\nu}_k\}$, $k \geq 0$, tal que

$$\underline{\nu}_k = \mathbf{y}_k - \hat{\mathbf{y}}_{k|k-1} \qquad k \ge 0 \tag{2}$$

onde

$$\hat{\mathbf{y}}_{k|k-1} = E\left[\mathbf{Y}_k \mid \mathbf{y}_0 \dots \mathbf{y}_{k-1}\right] \qquad k \ge 1$$
(3)

$$\hat{\mathbf{y}}_{0|-1} = E[\mathbf{Y}_0] = \mathbf{H}_0 E[\mathbf{X}_0] \tag{4}$$

Verifique que qualquer vetor observado $\mathbf{y}_{0:k} = \begin{bmatrix} \mathbf{y}_0^T \mathbf{y}_1^T \dots \mathbf{y}_k^T \end{bmatrix}^T$ pode ser escrito na forma $\mathbf{b} + \mathbf{A}\underline{\nu}_{0:k}$ onde $\underline{\nu}_{0:k}$ é o vetor correspondente de inovações e a matriz \mathbf{A} é inversível.

Problema 2 Sejam $\{\mathbf{X}_k\}$ e $\{\mathbf{Y}_k\}$, $\mathbf{X}_k:\mathcal{S}\to\Re^N$, $\mathbf{Y}_k:\mathcal{S}\to\Re^L$, duas seqüências de vetores aleatórios definidas em um espaço de probabilidade $(\mathcal{S},\mathcal{F},P)$ e descritas pelo modelo dinâmico

$$\mathbf{X}_{k+1} = \mathbf{F}_k \mathbf{X}_k + \mathbf{G}_k \mathbf{W}_k + \mathbf{L}_k \mathbf{u}_k \qquad k \ge 0 \tag{5}$$

$$\mathbf{Y}_k = \mathbf{H}_k \mathbf{X}_k + \mathbf{V}_k \qquad k \ge 0 \tag{6}$$

onde \mathbf{u}_k é um sinal determinístico conhecido, e $\{\mathbf{W}_k\}$ e $\{\mathbf{V}_k\}$, $k \geq 0$, são seqüências de vetores aleatórios de média nula tais que

$$E\left\{ \begin{bmatrix} \mathbf{W}_k \\ \mathbf{V}_k \end{bmatrix} \begin{bmatrix} \mathbf{W}_l^T & \mathbf{V}_l^T \end{bmatrix} \right\} = \begin{bmatrix} \mathbf{Q}_k & \mathbf{S}_k \\ \mathbf{S}_k^T & \mathbf{R}_k \end{bmatrix} \delta_{kl} . \tag{7}$$

Em (7), δ_{kl} é o delta de Kronecker e \mathbf{R}_k e \mathbf{Q}_k são matrizes positivas definidas para qualquer $k \geq 0$.

Assumindo-se que \mathbf{X}_0 , $\{\mathbf{W}_k\}_{k\geq 0}$ e $\{\mathbf{V}_k\}_{k\geq 0}$, são mutuamente gaussianos e que $\{\mathbf{W}_k\}_{k\geq 0}$ e $\{\mathbf{V}_k\}_{k\geq 0}$ são independentes de \mathbf{X}_0 , mostre que

$$\hat{\mathbf{x}}_{k+1|k} = E\left[\mathbf{X}_{k+1} \mid \mathbf{y}_0, \dots, \mathbf{y}_k\right] = \mathbf{F}_k \hat{\mathbf{x}}_{k|k-1} + \mathbf{L}_k \mathbf{u}_k + \mathbf{K}_k (\mathbf{y}_k - \mathbf{H}_k \hat{\mathbf{x}}_{k|k-1})$$
(8)

com o ganho de Kalman (modificado) \mathbf{K}_k dado por

$$\mathbf{K}_k = (\mathbf{F}_k \mathbf{\Pi}_{k|k-1} \mathbf{H}_k^T + \mathbf{G}_k \mathbf{S}_k) (\mathbf{H}_k \mathbf{\Pi}_{k|k-1} \mathbf{H}_k^T + \mathbf{R}_k)^{-1} . \tag{9}$$

Na expressão (9), $\Pi_{k|k-1}$ é a matriz de covariância do erro do preditor, ou seja,

$$\mathbf{\Pi}_{k|k-1} = E\left[(\mathbf{X}_k - \hat{\mathbf{X}}_{k|k-1})(\mathbf{X}_k - \hat{\mathbf{X}}_{k|k-1})^T \right] . \tag{10}$$

Observação: A equação do filtro de Kalman vista em aula é um caso particular da equação (8) quando \mathbf{L}_k e \mathbf{S}_k são iguais a zero.

Problema 3 (Identificação de filtros FIR) Seja W um filtro FIR de comprimento L+1 tal que para uma dada seqüência de entrada, $\{x_n\}$, $n \in \mathcal{Z}$, obtém-se a seqüência de saída $\{d_n\}$ com

$$d_n = \sum_{k=0}^{L} w_k x_{n-k} .$$

Observando-se as seqüências de entrada $\{x_n\}$ e de saída, $\{d_n\}$, deseja-se obter um algoritmo recursivo para estimar os coeficientes desconhecidos $\mathbf{w} = [w_0 \ w_1 \dots w_L]^T$ do filtro W.

Para resolver o problema, introduza um vetor de pesos aleatório \mathbf{W}_n que varia no tempo de acordo com a equação

$$\mathbf{W}_{n+1} = \mathbf{W}_n + \mathbf{U}_n \qquad n \ge 0 \tag{11}$$

onde $\{\mathbf{U}_n\}$ é uma seqüência i.i.d. com fdp $N(\mathbf{0}, \mathbf{Q}_n)$. A seguir, para uma seqüência observada (fixa) de entradas, modele a saída do sistema d_n no instante n como uma amostra da variável aleatória D_n tal que

$$D_n = \mathbf{x}_n^T \mathbf{W}_n + V_n \qquad n \ge 0 \tag{12}$$

onde $\{V_n\}$ é outra seqüência i.i.d com fdp $N(0, \sigma_v^2)$ e

$$\mathbf{x}_n = [x_n \ x_{n-1} \ \dots \ x_{n-L}]^T \ .$$

As sequências $\{\mathbf{U}_n\}$, $\{V_n\}$ e a condição inicial \mathbf{W}_0 são assumidas conjuntamente gaussianas e mutuamente não-correlacionadas.

Defina agora

$$\hat{\mathbf{w}}_{n|n} = E\left[\mathbf{W}_n \mid d_0 \dots d_n\right] \tag{13}$$

$$\mathbf{S}_{n|n} = E\left[(\mathbf{W}_n - \hat{\mathbf{W}}_{n|n})(\mathbf{W}_n - \hat{\mathbf{W}}_{n|n})^T \right]$$
 (14)

e introduza em seguida a matriz

$$P_n = \frac{\lambda \,\mathbf{S}_{n+1|n}}{\sigma_n^2} \tag{15}$$

onde λ é uma constante tal que $0 < \lambda < 1$. Mostre que, se no modelo (11) tomarmos

$$Q_n = (\lambda^{-1} - 1)\mathbf{S}_{n|n} , \qquad (16)$$

então a aplicação direta das equações do filtro de Kalman para o modelo em espaço de estados dado pelas equações (11) e (12) leva ao seguinte algoritmo recursivo para o cálculo de $\hat{\mathbf{w}}_{n|n}$:

$$\hat{\mathbf{w}}_{n|n} = \hat{\mathbf{w}}_{n-1|n-1} + \frac{\mathbf{P}_{n-1}\mathbf{x}_n}{\mathbf{x}_n^T \mathbf{P}_{n-1}\mathbf{x}_n + \lambda} \left[d_n - \mathbf{x}_n^T \mathbf{w}_{n-1|n-1} \right]$$
(17)

$$\mathbf{P}_{n} = \frac{1}{\lambda} \left[\mathbf{P}_{n-1} - \frac{\mathbf{P}_{n-1} \mathbf{x}_{n} \mathbf{x}_{n}^{T} \mathbf{P}_{n-1}}{\mathbf{x}_{n}^{T} \mathbf{P}_{n-1} \mathbf{x}_{n} + \lambda} \right] . \tag{18}$$

Compare o algoritmo acima ao algoritmo RLS ("recursive least squares") da literatura de filtragem adaptativa.

Problema 4 (Estimação de Fase) Seja $\left\{ \mathbf{X}_k = \left[\Lambda_k \; \Theta_k \right]^T \right\}$, $k \geq 0$, uma seqüência de vetores aleatórios (reais) tal que

$$\mathbf{X}_{k+1} = \left[egin{array}{c} \Lambda_{k+1} \ \Theta_{k+1} \end{array}
ight] = \mathbf{F}\mathbf{X}_k + \mathbf{G}W_k$$

onde $\{W_k\}$ é uma seqüência de variáveis aleatórias (reais) tal que $E\{W_k\}=0$ e $E\{W_kW_l\}=q$ δ_{kl} . Seja agora $\{Y_k\},\ k\geq 0$, uma seqüência de observações aleatórias tal que

$$Y_k = \sqrt{2}\sin(\omega_0 k + \Theta_k) + V_k$$

onde $E\{V_k\}=0$ e $E\{V_kV_l\}=r\,\delta_{kl}$. Assuma ainda que $\mathbf{X}_0, \{W_k\}, k\geq 0$ e $\{V_k\}, k\geq 0$, são mutuamente independentes. Usando o filtro estendido de Kalman, verifique que a estimativa $\hat{\mathbf{x}}_{k|k}=E\left[\mathbf{X}_k\mid y_0\dots y_k\right]$ pode ser aproximadamente calculada pela recursão

$$\hat{\mathbf{x}}_{k|k} = \hat{\mathbf{x}}_{k|k-1} + \Pi_{k|k-1} \sqrt{2} \mathbf{I} (\cos \omega_0 k + \mathbf{I}^T \hat{\mathbf{x}}_{k|k-1}) \Omega_k^{-1} \left[y_k - \sqrt{2} sin(\omega_0 k + \mathbf{I}^T \hat{\mathbf{x}}_{k|k-1}) \right]$$

$$\Pi_{k|k} = \Pi_{k|k-1} - 2\Pi_{k|k-1} \mathbf{I} \mathbf{I}^T \Pi_{k|k-1} \Omega_k^{-1} \cos^2(w_0 k + \mathbf{I}^T \mathbf{x}_{k|k-1})$$

onde

$$\mathbf{l}^{T} = [0 \ 1]$$

$$\Omega_{k} = 2\mathbf{l}^{T} \Pi_{k|k-1} \mathbf{l} \cos^{2}(\omega_{0}k + \mathbf{l}^{T} \mathbf{x}_{k|k-1}) + r$$

$$\Pi_{k|k-1} \approx E \left[(\mathbf{X}_{k} - \hat{\mathbf{X}}_{k|k-1}) (\mathbf{X}_{k} - \hat{\mathbf{X}}_{k|k-1})^{T} \mid \mathbf{y}_{0:k-1} \right].$$

Problema 5 Seja $\{X_n\}$, $n \ge 1$, uma seqüência de variáveis aleatórias não-observadas tal que

$$X_n = \frac{1}{2}X_{n-1} + 25\frac{X_{n-1}}{1 + X_{n-1}^2} + 8\cos(1.2\,n) + U_{n-1} \qquad n \ge 1$$

onde $\{U_k\}$, $k \geq 0$, é uma seqüência de variáveis gaussianas independentes e identicamente distribuídas com média zero e variância σ_u^2 e \mathbf{X}_0 é uma variável aleatória gaussiana de média zero e variância σ_0^2 . Seja por outro lado $\{Y_n\}$, $n \geq 1$, uma outra seqüência de variáveis aleatórias tal que

$$Y_n = \frac{X_n^2}{20} + V_n \qquad n \ge 1$$

onde $\{V_k\}$, $k\geq 1$, é uma seqüência de variáveis gaussianas independentes e identicamente distribuídas com média zero e variância σ_v^2 .

- a) Assumindo-se que as variáveis aleatórias \mathbf{X}_0 , $\{V_k\}$ e $\{U_k\}$ são estatisticamente independentes e fazendo $\sigma_0^2 = \sigma_u^2 = 10$ e $\sigma_v^2 = 1$, simule uma realização $\{x_n\}$ da seqüência aleatória $\{X_n\}$ para $1 \le n \le 100$. Simule ainda a correspondente seqüência observada $\{y_n\}$, $1 \le n \le 100$, e plote as seqüências oculta e observada em função de n.
- b) Usando um filtro de partículas baseado na técnica SIR ("sampling/importance resampling") vista em aula, obtenha a estimativa MMSE $\hat{x}_{n\mid n}$ da variável oculta x_n no instante n dadas as observações y_1, y_2, \ldots, y_n para $1 \leq n \leq 100$. Plote $\left\{\hat{x}_{n\mid n}\right\}$ versus n e $\left\{\hat{x}_{n\mid n}\right\}$ versus $\{x_n\}$ para $1 \leq n \leq 100$. Repita esse exercício usando respectivamente $N_p = 1000$ e $N_p = 3000$ partículas.
- c) Repita o item (b) usando agora um filtro estendido de Kalman (EKF). Compare então o erro de estimação para o EKF e para o filtro de partículas.