Optimal Detection and Tracking of Randomly Moving Targets
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Abstract: This paper considers optimal joint de-
tection and tracking of targets that move randomly
on finite grids. Detection decisions and target posi-
tion estimates are based on raw radar measurements
corrupted by noise which may have heavy tails statis-
tics.

1 Introduction

The problem we consider is to detect and track mov-
ing targets using noisy radar measurements. Assum-
ing that the sensor device has a finite resolution, a
target is, at each instant n, either absent or cen-
tered in a given position on a finite discrete grid
that represents the different resolution cells of the
sensor. The recorded sensor measurements may cor-
respond to true returns from a target that is actual-
lly present and/or false returns representing spuri-
ous reflectors plus measurement noise. Real targets
move randomly along the finite discrete sensor grid
according to a known stochastic model.

The traditional approach to this problem involves
the separation of the detection and tracking tasks
[1]. By contrast, we propose to integrate the detec-
tion problem into the same framework in which the
tracking problem is solved.

We apply nonlinear stochastic filtering [4] to de-
sign the optimal joint tracker/detector. We use
a Bayesian estimation strategy to compute recur-
sively the posterior probability mass function (pmf)
of the target’s centroid position at the nth sensor
scan conditioned on all previous scans. This frame-
work allows us to consider both Gaussian and non-
Gaussian background noise and results in better per-
formance when compared to more conventional al-
gorithms such as the spatial matched filter and the
linearized Kalman-Bucy filter.
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2 Joint Detection/Tracking

We consider the simplest problem of tracking a single
target with 1D motion. We restrict possible targets
to the class of rigid bodies with translational mo-
tion and time-invariant signatures. In the absence
of rotation, the tracking problem reduces therefore
to tracking the target’s centroid, whose position at
each sensor scan n we denote by zp,.

Due to the finite resolution of the sensor, the range
of values that z, assumes is discretized by a lat-
tice where each site represents one of the resolu-
tion cells of the sensor. We assume a finite lattice
L ={l:l=1,...,L}, with z, restricted to taking
values in £. Once the centroid crosses the boundary
of the lattice, the target is declared to have become
absent. The target’s motion is described by a finite
state machine or discrete Markov chain (MC) with
state space L.

Given a set of observations (sensor returns) from
instant 0 up to instant n, our problem is to deter-
mine at instant n whether the target is absent or
present (detection) and, if it is present, to follow its
transitions in the lattice (tracking).

To incorporate the target detection problem into
the same framework in which the target tracking
problem is solved, we introduce an additional zero
state that represents the absence of target. The
scalar random variable z, is defined then on the
modified discrete lattice £ = {0,1,..., L} such that
zn = 1, 1 <1 < L, means that the target’s cen-
troid occupies cell 7 at instant n and z,, = 0 means
that the target is absent at instant n. The transi-
tion probabilities are stored in a (L + 1) x (L + 1)
transition matrix P7 whose general element (k, 7) is

Pr(k,j) = Prob(zn = k| za—1 = j) ®)
where 0 < k,j < L.

Our model for the nth sensor scan y,,, assuming
real returns, is given by

ma
Yn= Z k€, +k + Vn (2)

k=-m,
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where v, is the observation noise and e,, r € Z, is
a L x 1 vector defined as follows: if r =4, ¢ =1,
2, ..., L, e, has all entries zero except for the ith
position whose entry is 1. Otherwise, if r > L, e, is
an identically zero vector. The coeflicients a in (2)
define the shape of the target.

The optimal statistical solution for the detec-
tion/tracking problem in this context follows a
Bayesian estimation strategy. First, we define
I1/ [n] such that, for 0 < i < L,

I/ [n]=Pla.=1|y}) (3)
where vector

Yo =[Yoy1 -+ ¥n] (4)

collects all the observations from instant 0 up to in-
stant n. Vector IT [n] is the vector of the posterior
probabilities of the (L + 1) states at instant n given
the observations y§. Likewise, we define IT? [n] such
that
I [n]=Pz,=i| yg ') 0<i<L. (5)

The solution to the optimal joint detection and
tracking problem is now divided in two steps:

Prediction Step

Predict the next state of the target from the previ-
ous one using the Markov chain’s transition matrix.
By the Theorem of Total Probability and using the
fact that, conditioned on z,-1, z, is independent
from y5 !, we get

P(zn | ¥67') = D Plza | 2n-1)P (201 | ¥571)

Zn—1
(6)
In matrix notation, equation (6) is written as

?[n]=PrI/ [n-1] . (7
Filtering Step

Correct the prediction with the new information
given by the observations. From Bayes’ Law and
using the fact that, conditioned on z,, y, is inde-

1

pendent from y( ™', we can write

P(zn | ¥3) = Cop(¥n | 2a)P(zn | ¥87Y) . (8)

In matrix notation, equation (8) is rewritten as
the pointwise vector multiplication

0/ [n] = C,S, © I” [n] )
where

Sulil =plyn | za=1) 0<i<L.  (10)

The constant C,, is a normalization constant such
that

ZH{[n] =1. (11)

We now consider detection and tracking.

Detection

The probability of a target being absent at instant
n conditioned on the observations is given by I [n].
Representing by Ho the hypothesis that the target is
absent and by Hi, the hypothesis of target present,
the minimum probability of error detector follows
the decision strategy

Hy
mf(n] 2 1-Tf[n] . (12)

Hy

Tracking
We introduce now the conditional probability
Qf[n] = P(z.=1| target is present,y?)
I
_mn] (13)
()

A maximum a posteriori (MAP) tracking strategy
estimates the actual position of the target’s centroid
assuming that it is present as

fmap[n] = arg max Qf [n] . (14)

Remark: Tracking Gates

The main source of computational burden in this
algorithm comes from the fact that the raw algo-
rithm computes the posterior pmf of the position of
the target’s centroid over the entire surveillance re-
gion. A reasonable alternative is to define for the
target a particular tracking gate which is a smaller
subset of the larger surveillance region. The track-
ing algorithm now looks for each target only within
the corresponding gate. The tracking gates are de-
fined following an acquisition stage during which the
tracker looks for targets in the entire surveillance
space.

3 Simulation Examples

In the following simulations, we assume the simplest
possible MC model for the target’s centroid. Assum-
ing that the velocity of the target is decomposed into
a mean deterministic component plus a turbulent
random velocity, the 1D target motion is described
by -

Zn =2Zp-1+d+e, (15)



where z, is a defined on a discrete grid (1,2, ... L), d
is a positive integer representing the constant (posi-
tive) mean drift of the target and &, is a fluctuation
of the velocity around the mean drift. The fluctua-
tion is modeled as a random walk that takes values
{-1,0,1} with probabilities r, 1 — ¢ — r, and q re-
spectively. Both r and g were set at 0.40.

At a given sensor scan, we assume that at most
one target can be present. However, whenever a
present target becomes absent, a new target can
reappear randomly at any cell of the grid. The
probability of a new target entering the grid was
set at 0.30. A present target is assumed to be point-
wise with a constant unit signature, i.e., the coeffi-
cientes ax in (2) are such that ap = 1 and a; = 0,
~my <k <my, k#0.

3.1 Detection and tracking in a Gaus-
sian background

Assuming the measurement noise vector v, in (2)
to be Gaussian with zero mean and covariance R,
the probability density function (pdf) of the obser-
vations conditioned on the position of the target is
given simply by N(e,,,R) where N(.) is the Gauss
function with mean e,  and covariance R.

From the point of view of detection, the scheme
proposed in this paper corresponds to a minimum
probability of error detector in a Bayesian sense.If
instead of setting the threshold in (12) to 1, we vary
the threshold over a wide range, the detector can be
changed from a minirmmum probability of error test to
a Neyman-Pearson scheme.

For different values of threshold, the detector op-
erates at different (fixed) values of probability of
false alarm. Figure 1 shows experimental (Monte
Carlo) ROC curves showing different combinations
of probabilities of detection and false alarm assum-
ing white Gaussian noise (R = ¢2]I) with SNR per
scan equal to 10, 6 and 3 dB respectively. Each point
in the curves was obtained from an average on 20000
sensor scans with each scan corresponding to 80 cell
returns.

Even under relatively low levels of SNR, the ROC
curves tend to a “step-like” shape, i.e, for very low
levels of false alarm, we observe correspondingly
much higher levels of detection. The shape of the
ROC curves highlights the very good performance
of the detector, even in adverse noisy environments.

As far as tracking is concerned, the simplest track-
ing scheme, assuming no knowledge of the tar-
get’s motion, is the memoryless maximum likelihood
(ML) estimator based on one single sensor scan. Un-
der Gaussian noise, the ML estimator reduces to the
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Figure 1: Monte Carlo ROC curves, white Gaussian
noise, SNR= 10, 6 and 3 dB

spatial matched filter, which simply slides the tar-
get’s template along the noisy sensor image until it
finds the best match.

If we have just a pointwise target, i.e., ap = a and
a; = 0 otherwise, the spatial matched filter reduces
to a peak detector, given by

(16)

s = org g wn bl

One possible improvement on the raw peak de-
tector is to consider its output as a noisy obser-
vation of a state variable to which an approximate
linearized Kalman-Bucy filter (KBF) is associated.
In the linearized KBF, the position of the target is
the rounded output of a linear filter driven by white
Gaussian noise. The variance of the driving noise is
set to match approximately the Markov chain model.
The variance of the observations error is obtained
from a Monte Carlo estimate of the peak detector
error.

Figure 2 compares the tracking results for one sim-
ulated trajectory with white Gaussian clutter using:
1) the raw peak detector (dashed line), 2) the peak
detector corrected by a linearized KBF (dashdot-
ted line) and 3) the proposed PDF tracker (marked
by '+’). The solid line is the real trajectory and
the SNR. per scan is 10 dB. The total number of
cells is 300. As expected, the performance of the
peak detector is very poor. The linearized KBF im-
proves tracking due to inertia in the prediction step
that reduces the magnitude of peak detector errors.
However, the linearized KBF still performs far worse
than the nonlinear PDF tracker.

3.2 Detection and tracking in non-
Gaussian clutter

In this section, we consider a simulated experiment
where the recorded measurements at instant n cor-
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Figure 2: Tracking results for peak detector, lin-
earized KBF and PDF tracker, SNR= 10 dB

respond to a sampling of the returned complex en-
velope and are given by the even-sized vector

Yo = [yl vs, - vE UL (17)
where L is the number of resolution cells and
yk = sk +of
E ok k
y,, = 8 +v; 1<k<ZL (18)

represents some averaging of the samples of the low-
pass quadrature returns over a time interval At cor-
responding to the scan of one single resolution cell.

We arbitarily assume that the background noise
vector

Vo= vl vl vk el (19)
is such that the sequence of random variables
er =/ (vE)>+ (k) 1<k<L (20)

is identically distributed with a probability density
function different from a Rayleigh distribution. We
are interested in analyzing how the tracker per-
forms against a background noise whose envelope
has “longer tails” than a Rayleigh pdf. We are par-
ticularly interested in two statistical models for e,
narnely

Weibull-PDF

21
where ¢ is a shape parmeter and a is related to the
average power o2 of the quadrature components by

pe(e) =ace lexp(—ae®) e >0

20 = a2/ (1 + 2) ) (22)
C
K-PDF
b Ky (b
= K,_ >
pe(e) 2 T0) 1(be) e>0 (23)

where v is a shape parameter, I'(.) is the Eulerian
function, K,_i(.) is a modified Bessel function of
the second kind and b is related to o2 by

. 2v
2 _
b =7

(24)

Simulation of the background clutter

The background noise vector is generated using
the spherically invariant random vector (SIRV) tech-
nique introduced originally in the context of radar
clutter by Conte and Longo [2].

Specifically, let v = [vg, Us, .. UenUsy) be @ 2N x
1 vector representing the quadrature components of
clutter returns. All components of v are assumed to
have zero mean with common variance o%. We also
assume that the quadrature components v, are vy,
,i=1,... N are orthogonal. Vector v is said to be
a white SIRV if it has a joint multivariate pdf of the
form [2] .
vTy

pv(v) = 2m) "N oV han(=5—5) -

(25)
The class of functions han(y) in (25) is defined by
the expression

haw) = [ 5 expl- i ps(olds (20)

where ps(s) is a function greater or equal than zero
for all s > 0 to which we refer as the characteristic
pdf of the SIRV. The variance o2, in (25) is such that
o? = E [s?] 02, and E [s?] is defined as

o0
E[s*] =/ s’ps(s)ds . (27)
0
An analytic expression for heny can be obtained
from the previously defined envelope pdf of v, pg(e),
using the equation [2]
N—1

. d
han(y) = (_2)N ldyN-l

[owy™ 2 pelouy'’®)] -
(28)

It is clear from the previous equation that for a
given pdf envelope pg(e) to correspond to a valid
SIRV, hy(y) and its higher order derivatives must
be alternatively positive decreasing and negative in-
creasing, starting with ha(y) positive decreasing.
This requirement ensures that hen(y) > 0 for all
N=12,...

Equations (25) and (26) suggest a physical inter-
pretation of a white SIRV as a generalized Gaus-
sian random vector obtained by the product of a
Gaussian random vector w with zero mean and co-
variance o2I , by a nonnegative random variable s
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which is statistically independent from w and has a
pdf ps(s) that coincides with the characteristic pdf
of the SIRV.

In general, the modulating rv s is such that
E[s’] = 1 and, hence, the power of the white
SIRV componentes o coincides with the power o2,
of the premodulated white Gaussian noise compo-
nents.The characteristic pdf for given desired SIRV
statistics (corresponding to an envelope pdf which is
admissible according to the monothonicity criteria)
may be normally obtained [2] from the solution of
the integral equation in (26) for N = 1.

The appropriate ps(s), already normalized for
unit mean square (E [s?] = 1), for the K-distributed
envelope is given by the generalized chi-pdf [2]

20—

(s) = i Vexp(-vs?) 520 (29)
ps = T(u) S P § 2

where v is the shape parameter of the K-envelope as
in (23). The corresponding hyn is tabulated in [2]

as

2N v—N
han(y) = T«%}‘)‘ (b—\ég)_l— Kn_.(0/Y) -

(30)

In order to generate a 2L x 1 noise vector with
K-distributed envelope pdf, we generate windows
of white Gaussian noise of size 2V (with N <<
L) and modulate each windows with a random
number independently drawn from pg(s) in (31).
Clearly, if we use a sufficiently large number of
white Gaussian windows and subsequently compute
er = \/”ci,, +vzk over all windows, the actual his-
togram of e, should then closely match the desired
K distribution. The match is illustrated in figure
3, where the histogram of the envelope was com-
puted over 8000 generated complex quadrature clut-
ter samples and compared to the K-pdf in (23), with
v = 1.5. We normalize the power of the quadrature
components to 1 by setting the parameter b in (23)
to \/2_11

For a Weibull envelope as in (21), SIRV admissi-
bility holds for the parameter range 0 < b < 2. The
sirnulation, however, is more complex since there is
no closed form solution for the integral equation in
(26). We resort then to an alternative technique dis-
cussed in [3] which is based on the SIRV representa-
tion theorem in hyperspherical coordinates. If a 2V
x 1 white SIRV is represented in hyperspherical coor-
dinates, the statistics of the hyperphases are invari-
ant to the choice of the SIRV. Hence, any realization
of hyperphases obtained from a white Gaussian ran-
dom vector with zero mean and identity covariance
can be used to generate a white SIRV with the same

mean and covariance. The desired SIRV realization -

and the white Gaussian noise realization will differ
only in the hyperradius coordinate, which is related
to the SIRV metrics by the equation [3]

2N -1

pr(r) = 5’_\’7"—11“—(7\’_) (31)

han(r?) r>0 .

In order to illustrate the match between the de-
sired Weibull envelope and the envelope statistics
in the computer generated clutter, again we gen-
erate independent white noise windows of size 2V
and modulate each window by the corresponding
R/R,, where the modulating coefficients R are ran-
dom numbers drawn independently for each window
from the appropriate pg(r) and R, is the norm of
the white noise window. Figure 4 shows the very
good match between the histogram of the envelope
and the Weibull pdf in (21) for 8000 generated sam-
ples.

Simuation of ditier with X-dstributed ervelops
T

0. T —r
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Figure 3: Observed and desired envelope statistics
for K clutter

Simutation of dutier whh Welbul-dsiributed eveiops

Figure 4: Observed and desired envelope statistics
for Weibull clutter

Detection and Tracking Examples
In the following examples we assume the simplest
possible model for the target, i.e., a deterministic,
time-invariant return of the form
[k s5] = [00]

Cn “Sn

k # z,
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[se.s5.] = [10] 32)

k=2z,

where z, is the position of the target in the discrete
lattice £ at instant n.

In order to generate the measurement vector v,
for each sensor scan, we simply extract L/N sta-
tistically independent SIRV windows from the 8000
samples we used to draw the histograms in figure 5.
The window size was set to N = 2 (or 4 complex
returns).

We present initially an example corresponding to
tracking/detection of a single target against a white
K-Noise background. The parameters of the noise
are v = 1.5 and b = 1.7312. The sensor is assumed
to have 64 resolution cells, corresponding to 128 re-
turns at each time scan. The simulation includes
60 time scans. As before, there is only one target
present at each time scan but, once a target disap-
pears from the sensor range, another target can ap-
pear randomly at any resolution cell with a 30 per
cent probability. The average deterministic drift of a
present target corresponds to 4 cells and the fluctua-
tion probability of one cell around the deterministic
displacement is 0.40.

Figure 5 illustrates the performance of the tracker
over 60 time scans with SNR = 6 dB. The symbol
"+’ represents the correct position, while the symbol
’0’ represents the output of the tracker. Notice that
even under this extreme noise conditions, the over-
all performance of the tracker is fairly good. Early
misses when a new target appears are corrected as
more data becomes available to the tracker.
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Figure 5: Single target tracking in white K-noise,
SNR=6 dB

In the sequel, we present an example where a sin-
gle target is tracked against white Weibull clutter
with parameters a = 0.6777 and ¢ = 1.5. The real
trajectory is now plotted as a solid line when the tar-
get is present. The signal-to-noise ratio for a given
frame is 10 dB. Notice that, except for a miss at in-
stant 17, we achieve perfect detection/tracking with

very high immunity to false alarms.
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Figure 6: Single target tracking in white Weibull
noise, SNR=10 dB

4 Conclusion

In this paper, we present an optimal pdf joint detec-
tor/tracker for a single target moving randomly on
a finite discrete grid. Simulation examples assum-
ing both white Gaussian background noise and non-
Gaussian clutter with K and Weibull envelopes in-
dicate good detection/tracking performance even in
adverse noisy scenarios.The algorithm outperforms
conventional trackers such as the peak detector or
the linearized KBF. Examples with multiple targets
and spatially correlated noise are presented in future
papers.
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