MULTIFRAME BAYESIAN TRACKING OF CLUTTERED TARGETS WITH
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ABSTRACT

We present in this paper a multiframe Bayesian algo-
rithm for detection and tracking of heavily cluttered
rigid bodies with random translational and rotational
motion. Monte Carlo simulations with synthetic tar-
gets and clutter show that the proposed algorithm a-
chieves substantial performance gains over the common
association of a maximum likelihood position estimator
and a linearized Kalman-Bucy filter.

1. INTRODUCTION

We introduced in [1] a new Bayesian algorithm for opti-
mal multiframe detection and tracking of rigid objects
in a sequence of two-dimensional (2D) images. Previous
solutions to this problem [2] are based on the ad-hoc
separation of the detection and tracking tasks into two
separate stages. Typically, a single frame detector gen-
erates preliminary estimates of the position of targets of
interest. These estimates are subsequently associated
to a linearized tracking filter, generally a Kalman-Bucy
filter (KBf). By contrast, the algorithm described in [1]
is a nonlinear, integrated multiframe detector/tracker
that incorporates the models for target motion, target
signature, and clutter into a single framework, using as
data the sequence of raw sensor images.

The discussion in [1] was restricted to targets with
random translational motion and known templates. In
the present paper, we extend the algorithm to targets
with random rotations. Stochastic rotational motion
makes it more difficult to estimate the target position
since the orientation of the spatial distribution of tar-
get signatures around the target centroid varies from
frame to frame and is no longer known to the tracker.
In addition, target images are also heavily obscured by
clutter arising from spurious reflectors in the view of the
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sensor. We model the background clutter as a 2D corre-
lated, noncausal, Gauss-Markov random field (GMTrf)
[3]. This model is capable of accurately describing a
wide variety of backgrounds [3], ranging from smooth
patterns to highly structured texture. We evaluate
the tracking performance of the proposed algorithm
through Monte Carlo simulations. Our results show
substantial improvements over traditional schemes such
as the usual association of a single frame maximum like-
lihood (ML) position estimator and a linearized KBf
tracker.

2. PROBLEM FORMULATION

A sensor device, e.g., a high resolution radar or an in-
frared (IR) camera, generates a sequence of cluttered
images of possible targets of interest. The goal is to
determine at each frame whether targets are present
or not, and, if a target is declared present, to estimate
its location. Due to the sensor’s finite resolution, the
sensor image is discretized by a 2D finite lattice. For
simplicity, we consider the situation when there is at
most one target present at each sensor frame. The tar-
get template rotates randomly from frame to frame.
We assume that there is a finite number of possible
template states, with each state representing one pos-
sible spatial orientation of the target. In addition, the
target centroid is also randomly translated from frame
to frame. The translational and rotational motions are
described by two hidden Markov models (HMMs) with
known transition probabilities.

2.1. Sensor and Target Model

We define a 2D rectangular region of size (r; +75s+1) x
(I +15+1) that contains all possible rotated templates
for the target of interest. To model situations when
targets move in and out of the sensor grid, we define
the centroid lattice £ ={(¢,7): -rs +1 <i < L+,
—ls+1<j< M+1;}, where L and M are the num-
ber of resolution cells in each dimension. The centroid
lattice collects all possible values of the target centroid



position for which at least one target pixel may lie in-
side the sensor’s image. 4

Let £ be an equivalent 1D representation of the cen-
troid lattice £ obtained by row lexicographic ordering.
We build an integrated framework for detection and
tracking by augmenting £ with an additional dummy
state that represents the absence of the target. For
convenience, we assign to the absent state the index
(L+7r;+7)(M+1;+1;) + 1. The final 1D extended
lattice is

L={L1<I<(L+ri+r)(M+L+1)+1} . (1)

Target Model Let z, € L denote the target centroid
position during the nth frame. Let m be the number of
target template states in the sensor image and denote
by s, € T = {0, 1, ..., m — 1} the state of the target
template at instant n. We model the clutter-free image
of a target that is present as the nonlinear function

Ts s
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(2)
In(2),for 1 <i<L,1<j<M,E; ,isanLxM
matrix whose entries are all zero, except for the element
(7,7) which is one. For any (i,5) ¢ L1 x L3, where
L1 ={l:1<!<L}and Lo = {l:1<I< M}, E;; is
identically zero. Finally, when no target is present,
the target model returns a null image, ie., if 2z, =
(L4ri+rs) (M+1L+15)+1, we make F(zp, $,) = Orxm,
Vs, € I.

The coefficients ax,; in (2) are called the target sig-
nature coefficients and vary according to the template
model s,. For a given s,, the signature coeflicients are
the product of a binary parameter cg,;(s,) € B=0, 1,
which defines the target shape, and a real coefficient
ok,1(sn) € R, that specifies the pixel intensities of the
target. For simplicity, we assume in this paper that the
pixel intensities are constant and time-invariant for all
template models. Randomly varying pixel intensities
are subject of ongoing research.

F [Zn(imjn)a Sn] =

2.2. Measurements and Clutter Model

Spurious reflectors and environmental noise in the view
of the sensor corrupt the measurements with clutter.
For a single target scenario, the model for the nth sen-
sor frame is the L x M matrix

Y, =F(z,8,) + V,, 3)
where z, is the position of the target centroid in the

equivalent 1D extended lattice (including the absent
state), F(.) is the 2D extended target model described
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.in the previous subsection and V,, is the background

clutter frame.

In general, each clutter frame V,, may exhibit a spa-
tial correlation. We describe the clutter’s spatial corre-
lation using the spatially homogeneous Gauss-Markov
random field (GMrf) model [3]. Since there is no pre-
ferred direction in space, we allow the neighborhood
region around pixel (7, j) in the GMrf model to be non-
causal with respect to all possible orderings in the 2D
plane. For example, a a first order noncausal GMrf is
described by the finite difference equation model

Vali, §) = By [Va(i — 1, 5) + V(i + 1, j)]
+ BrlVal(i, § — 1)+ Vali, j + D]+ Un(, 5) (4)

where U, (7, ) is a Gaussian prediction error term that
is statistically orthogonal to all V,,(k, 1), (k, 1) # (¢, j).
A set of boundary conditions is added to specify equa-
tion (4) near the boundaries of the lattice.

2.3. Motion and Template State Models

The probability of a displacement of the target centroid
between two consecutive sensor frames is described by
the matrix Ty such that

(k,r) € LxL.

(%)
On the other hand, the changes in the target template
from one state to another are specified by the matrix
Ts, where

Ti(k,7) = Prob(zp, = k| zpn_1 =71)

Ty(k,r) = Prob(s, = k| sp_1=7) (k,r)eIxT.

(6)

3. DETECTION/TRACKING
ALGORITHMS

Let y,, be the 1D row-lexicographed vector representa-
tion of the 2D sensor image Y,, and introduce the vec-
tor Y = [yg vyl ... yZ]T. We derive next an algo-
rithm for the recursive computation of P(z, = 1,8, =
k| YD), leLl keI Weassume as a first ap-
proximation that the random sequences {z,} and {s,},
n > 0, are statistically independent, and that both se-
quences are also independent of the clutter frames se-
quence {V,}, n > 0. The algorithm consists of three
steps.

Filtering Step From Bayes’ law and using the assump-
tion that the sequence of clutter frames {V,} is inde-
pendent, identically distributed (i.i.d), we write

P(Zn’ Sn | Y(7)L) = Cnp(Yn i Zny Sn) P(Zny Sn I Yo_l)
(7
where C,, is a normalization factor that is independent
of 2z, and s,.



Rotation Prediction Under the assumption that s, is
independent of {z,}, and {V,}, n > 0, and modeling
{sn} as afirst order discrete Markov chain, we conclude
that, conditioned on s,_1, s, is independent of Y3 *,
and therefore we write

P(zn, sn | Y571) = Z [P(sn | 8n-1) x

Sn—1

P(zn, $n1 | Yg_l)] . (8)

Translation Prediction Using a similar reasoning as in
the previous step, we get

Pz, sp1 | Y5 ) =D [P(zn | 2n-1) x

Zn—1

P(ono1, 5n1 | Y371 - (9)

The marginal posterior probability of the centroid po-
sition z, conditioned on the observations is

P(zn | Y3)= Y P(zn, s | Y§).
sn€ZL

(10)

We present in the sequel the multiframe detection and
tracking algorithms.

Multiframe Detection Let Ly = (L+r;+7s) (M+1;+15).
Denote by Hp the hypothesis that the target is absent
and, by H,, the hypothesis that the target is present.
Assuming equal cost for misses and false alarms and
zero cost for correct decisions, the minimum probability
of error Bayes detector is the test

Pen=Li+1]Yp) D

1—P(2p, =Ly +1| Y(;)ﬁ1

H,
P(Ho | Yg)'>

1&
P 1Y) 5,

(11)

Multiframe Tracking Introduce the conditional proba-
bility vector Qf [n] such that, for all I € £

Qf [n]

P(z, = 1| target is present, Y})
Pz =1] Y§)

— 12
1-Plzn=L1 +1|Y}) (12

where £ is the 1D equivalent centroid lattice, see sec-
tion 2. The maximum a posteriori (MAP) estimate
of the the target’s centroid position assuming that the
target is present is

Zmap [n] = arg I}lEaEXQ{["] ' (13)

4. TRACKING PERFORMANCE

We examine next the tracking performance of the Bayes
algorithm using synthetic data. The illustrative sim-
ulated targets are 2D triangular-shaped objects with
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Figure 1: Initial frame: (a) Clutter-free target image,
(b) Simulated sensor image, PSNR, = 3 dB.

constant pixel intensity and size 9 x 9. The targets
are cluttered by a first order, highly correlated GMrf
background with 8, = 8, = 0.24.

At each sensor scan, there is only a single target
present. The target moves in a 150 x 150 discrete grid
with constant nominal velocities of 2 resolution cells
per frame in both the horizontal and vertical direc-
tions. The target centroid position fluctuates around
its nominal location according to a first order 2D ran-
dom walk model. If the nominal centroid position is the
pixel (i, j), there is an equal probability p = 0.20 that
the real centroid position be any of the pixels (z — 1, j),
(i+1, 7), (¢, j+1), or (¢, j—1). In addition to the trans-
lational motion, the triangular template of a target that
is present rotates randomly around its centroid.

Figures 1 (a) and (b) show examples respectively of
the clutter-free target image and the target plus clutter
(sensor) image with peak signal-to-noise ratio (PSNR)
equal to 3 dB at instant n = 0. The target is centered
at the coordinates (42, 23). Figures 2 (a) and (b) show
respectively the clutter-free and target plus clutter im-
ages of the same target at instant n = 11 for the same
level of PSNR. The target centroid has moved randomly
to position (61, 43), while the target template has un-
dergone a 90 degrees random rotation. The simulated
target departures at instant zero from an unknown ran-
dom location in the 50 x 50 upper left corner of the
image and is subsequently tracked over 45 consecutive
sensor frames. For computational simplicity, but with-
out loss of generality, we consider in the simulation only
4 different angular positions for the template, respec-
tively 0, 90, 180 and 270 degrees. The probability of
a 90 degrees rotation between two frames is set to 0.8.
For the nonlinear Bayes tracker, figure 3(a) shows the
evolution over time of the standard deviation of the
error in the centroid’s vertical position estimate. The
standard deviation is expressed in number of pixels and
evaluated by repeating the experiment 130 times with



Figure 2: Eleventh frame: (a) Clutter-free target im-
age, (b) Simulated sensor image, PSNR = 3 dB.

two values of PSNR, respectively 3 and 0 dB. The corre-
sponding curves for the horizontal position estimate are
qualitatively similar and are omitted for lack of space.
We see from figure 3(a) that the initial localization er-
ror declines with time as new measurements become
available to the tracker. The initial and steady-state
errors, as well as the target acquisition time, increase
as PSNR decreases.

Next, we compare the nonlinear Bayes tracker with
the alternative suboptimal association of a single frame
maximum likelihood (ML) tracker and a linearized Kal-
man Bucy filter. The single frame ML estimate of the
centroid position, assuming the target is present and
using the hypothesis of independence between s,, and
Zn, 18 given by

imL = argH;?XZP(Yn l Sn, zn) P(sn) . (14)

Sn

The “a priori” probabilities of the template state s,, are
computed from the Markov chain that describes the se-
quence {s,}. On the other hand, for a given value of s,,
and assuming GMrf clutter, the kernel p(y, | zn, Sn),
for all z, € L, is basically computed [1, 4] using a non-
causal differential operator (whose weights depend on
the GMrf parameters 5, and 3, ), followed by a 2D cor-
relation filter that is matched to the template s,. The
output of the single frame ML tracker is treated as
a preliminary position estimate which is subsequently
incorporated as a noisy measurement of the true tar-
get position into a multiframe, linearized Kalman filter
(KBf). The KBf is used to compensate the large errors
in the ML tracker’s position estimates.

Figure 3(b) plots the standard deviation over time
of the error in the vertical position estimate for the
nonlinear Bayes tracker from section 3 and the subop-
timal linearized KBf tracker described in the previous
paragraphs, in a scenario of PSNR equal to 6 dB. We
see from the plot that the KBf tracker has much higher
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Figure 3: (a) Performance of the nonlinear Bayes

tracker in correlated GMrf clutter; (b) Performance of
the nonlinear Bayes tracker vs the linearized KBf.

initial and steady state position estimate errors and a
longer target acquisition time when compared to the

Bayes tracker.
5. SUMMARY

We present in this paper a Bayesian algorithm for mul-
tiframe detection and tracking of extended targets in
a sequence of 2D cluttered images. The targets move
randomly in a finite 2D grid and also have randomly-
rotating templates. Performance studies using Monte
Carlo simulations show that there is a significant im-
provement over traditional trackers such as the usual
association of a maximum likelihood position estimator
and a linearized Kalman-Bucy filter.
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