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which, by definition [8], is
L(v)=(-1)""J,(jv).
For small arguments (V <1) [9]
1/v\"
() =1,(2)=:(5) (17)

Combining (14b), (16), and (17), using only the n=—1, n=0,
and n=+1 terms of the summation in (14b), and using the
equality

(16)

I_p(v)=(=1)"J,(v) (18)

results in
Tt jo) = () 4+ D F ()= T ()] (199)
=J,(u)+ ju,(u). (19b)

Equation (19b) is denved from (19a) by utilizing the recurrence
relation [10]

Tu1(#) = T 1(u) =27, (u).
J; (w) is the derivative of J,,(u) with respect to . Similarly
N, (u+ jo)y =N, (u)+ jo

N (u).

Using two additional recurrence relationships

Ji(u) =—J(u)

(20)
(21)

(22a)

“

and

HORTIOREIAC) (220)

the resulting equations with the substitutions # = Br and v = — ar
are

Jo(kr) =J,(Br)+ jarJ (Br) (23a)
R(kr) = 5(8r) jar | () -2 | o)

For the Neumann functions
Ny(kr) = Ny(Br)+ jarN,(Br)

(ko) = M) - e (8- 222 asa)

(23¢)

The final analysis equations for radial-line stubs with attenuation
result from substituting (23a) through (23d), with the appropriate
arguments, into (5) and the latter, in turn, into (4).

III. RECOMMENDATIONS FOR STRIPLINE AND MICROSTRIP

For stripline, the dimension 4 in (4), (6), (12), and (13) should
be replaced by the ground-plane spacing b.

For microstrip, it is recommended® that the relative dielectric
constant ¢, should be replaced by an effective dielectric constant
€. calculated [11] for a microstrip of constant width w, where

w=(r,+ro)sin(%). (2%

A computer program has been written to test these equations
and to compare the results with the lossless formulation of
Vinding. For perfect conductors (R, = 0), the results were identi-

1This approximation, while providing reasonably accurate results, is not the
formulation for effective dielectric constant used in Super-Compact.

27

cal. For finite values of surface resistance, the equations correctly
calculated both the resistive and reactive portions of the input
impedance.

IV. CONCLUSION

New equations, useful for the accurate calculation of the
complex input impedance of lossy, radial-line stubs, have been
presented. This should lead to an improvement in the accuracy of
the predicted performance of circuits which contain these ele-
ments.

APPENDIX

For completeness, the equations due to Vinding, using the
notation of this paper, are included below.

Zy(kn) b cos[ 8(kn) = ¢(k7)]

Eo =TT Sl Wk~ (k) A
1207 | B(kr)+ NG (kr) |

Zo (k) = /e [Jl(kr)—i—N(kr)} (A2)

0(kr,) = tan™' [ Ng(kr,) /Jo (kr,)] (A3)

Y(kr) =tan"'[ - J,(kr,) /Ny (kr,)] (A4)

‘P(kro) = tanvl[——Jl(kro)/Nl(kro)]' (AS)
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Plot of Modal Field Distribution in Rectangular and
Circular Waveguides

C. S.LEE, 8. W. LEE, anD 8. L. CHUANG

The earliest plots of modal field distribution in rectangular /cir-
cular waveguides were given by Southworth (1936) [1], Barrow
(1936) [2], Schelkunoff (1937) [3], and Chu and Barrow (1937) [4].
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Fig. 1. Normalized modal cutoff frequencies for a 2:1 rectangular
waveguide.
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Fig. 2. Transverse modal field distribution for a 2:1 rectangular waveguide (first 36 modes).
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Fig. 3. Normalized modal cutoff frequencies for a square waveguide.
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Standard text and reference books present plots only for the first  the first 36 modes in a 2:1 rectangular waveguide (Figs. 1 and 2),
six or seven modes. In many applications, we are interested in  b) plots for the first 30 modes in a square waveguide (Figs. 3 and
plots for higher order modes. The purpose of this note is to 4), ¢) plots for the first 30 modes in a circular waveguide (Figs. 5
present three relatively complete sets of plots, namely, a) plots for and 6).

i

Fig. 4. Transverse modal field distribution for a square waveguide (first. 30 modes).
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Fig. 6. (Continued)

The density of the field lines is approximately proportional to the
field strength. These plots are done by a Cyber 175 computer.
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Computations of Frequencies and Intrinsic Q Factors
of TE,,, Modes of Dielectric Resonators

JERZY KRUPKA

Abstract —The Rayleigh~Ritz method is described, which is used to
calculate the resonant frequencies and intrinsic Q factors due to dielectric
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Fig. 6. Transverse modal field distribution for a circular waveguide (first 30 The author is with the Instytut Technologii Elektronowej, Politechnika
modes). Warszawska ul. Koszykowa 75, 00-662 Warszawa, Poland.
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