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TOPICS

❑ Introduction to signals theory: 
❑ classification of continuous- and discrete-time signals;

❑ unit impulse; 

❑ unit step; 

❑ transformation of the independent variable. 

❑ Introduction to systems theory: 
❑ continuous- and discrete-time systems; 

❑ causality; 

❑ time invariance; 

❑ linearity;

❑ convolution sum and integral; 

❑ system response to unit impulse and unit step.
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NOTATION

❑ Signals are expressed with lowercase letters. An exception is the family of 
harmonics: 𝜙 𝑡 . Some examples are: 𝑥(𝑡) is a general signal, 𝜇(𝑡) is the unit 
step signal, 𝛿 𝑡  is the unit impulse signal, 𝑢(𝑡) is the inpuand t signal, 𝑦(𝑡) is 
the output signal. Constants are also represented by lowercase letters. 𝑘 and 𝑡 
are usually used to define the independent variables.

❑ The mathematical operator of the expectation of (⋅) is denoted by ℰ(⋅). Letter 
𝒢(⋅) represents a general system.

❑ Sets are written using blackboard bold letters. Some examples are ℕ, ℤ, ℝ, ℂ 
that means the sets of natural, integer, real, and complex numbers, respectively.

❑ Capital letter 𝐸 means the total energy of a signal or a system, and 𝑃 the 
medium potency of a signal or system. 𝑇 is the period of a signal.
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PRELIMINARIES

❑  Signals and systems in the context of engineering 
are quite wide.

❑ In this course, we will analyze both considering 
continuous- and discrete-time domains.

❑  Both theory and practical applications are 
considered.

❑ Signals are functions of independent variables that 
carry out “information” or “data” about some 
phenomena.

❑ Systems deliver an output signal as a result of a 
transformation applied to input signals.
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𝑢(𝑡) 𝑦(𝑡)
𝓖(⋅)

𝑢 𝑡  and 𝑦(𝑡) are signals

𝒢(⋅) represents a system
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PRELIMINARIES

❑ Independent of the objective, we are 

interested in characterizing systems.

❑ It is important to know how systems 

respond to different input signals. An 

example is the behavior of an aircraft 

when subject to wind disturbance.

❑ Characterization of the disturbance.

❑ Understanding the behavior of the aircraft.
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INTRODUCTION TO SIGNALS THEORY

❑ Signals are functions of one or more independent variables. 

They enclose information or data.
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INTRODUCTION TO SIGNALS THEORY

❑ Signals are functions of one or more independent variables. 

They enclose information or data.
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ENERGY AND POWER OF SIGNALS

❑ Signals refer to different amounts of phenomena. They are associated 
with power and energy.

❑ The energy of a signal can be computed as (continuous-time signal)

𝐸 ≜ lim
𝑡→∞

න
−𝑡

𝑡

𝑥 𝜏 2 𝑑𝜏 = න
−∞

∞

𝑥 𝜏 2𝑑𝜏

     or (discrete-time signal)

𝐸 ≜ lim
𝑛→∞



𝑖=−𝑛

𝑛

𝑥 𝑖 2 = 

𝑖=−∞

∞

𝑥 𝑖 2
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ENERGY AND POWER OF A SIGNAL

❑ Analogously, the power associated with a signal can be 

computed as (continuous-time signal):

𝑃 ≜ lim
𝑡→∞

1

2𝑡
න
−𝑡

𝑡

𝑥 𝜏 2𝑑𝜏

    or (discrete-time signal):

𝑃 ≜ lim
𝑛→∞

1

2𝑛 + 1


𝑖=−𝑛

𝑛

𝑥 𝑖 2
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ENERGY AND POWER OF A SIGNAL

❑ In this case, consider the example of a generic signal

𝑥 𝑡 = 𝑒−𝑡𝑢(𝑡)

     for it, we have:

    𝐸 = 0
∞
𝑒−𝑡 2𝑑𝑡 =

1

2
and  𝑃 = lim

𝑡→∞

1

2𝑡
0
𝑡
𝑒−𝑡 2𝑑𝑡 = 0

❑ Analogously, consider the signal

𝑥 𝑛 = 2, ∀𝑛 ∈ ℤ

hence, 𝐸 = σ𝑖=−∞
∞ 2 2 = ∞. However, 𝑃 = lim

𝑛→∞

1

2𝑛+1
σ𝑖=−𝑛
𝑛 2 2 = 4
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ENERGY AND POWER OF A SIGNAL

❑ Finally, the signal

𝑥 𝑡 = 𝑡𝑢(𝑡)

     has energy and power calculated as

    𝐸 = 
0

∞
𝑡 2𝑑𝑡 = ∞ and  𝑃 = lim

𝑡→∞

1

2𝑡

0

𝑡
𝑡 2𝑑𝑒𝑠𝑒 = ∞

❑ All these quantities define measures of the intensity of each 

signal.
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ENERGY AND POWER OF A SIGNAL

❑ These examples shows that signals can be classified as:

❑ Finite energy

❑ Finite power

❑ Infinite energy and power

❑ The (Root Mean Square – RMS) of 𝑥(𝑡) equals the square root 
of 𝑃. This value is also known as the effective value of 𝑥(𝑡).
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CLASSIFICATION OF SIGNALS

❑ In addition to classifying signals into finite energy or finite 
power, signals can be classified into:

❑ Continuous-time signal and discrete-time signal (continuity over time)

❑ Analogous and digital (continuity of their values)

❑ Periodic and aperiodic (periodicity)

❑ Energy and Power signals (energy and power)

❑ Deterministic and stochastic (stochasticity)

❑ Even and Odd (symmetry)
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SIGNALS – CONTINUITY OVER TIME

❑ A signal 𝑥 𝑡  is said a continuous-time signal if  

∃ 𝑥 𝑡 , ∀𝑡 ∈ ℝ

❑ A signal 𝑥 𝑛  is said a discrete-time signal if 

ቊ
∃𝑥 𝑛 , ∀𝑛 ∈ ℤ

∄𝑥 𝑛 , ∀ 𝑛 ∈ ℝ\ℤ

❑ Continuous-time and discrete-time signals can be converted 

one into another using the Sampler and Holder elements.
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SIGNALS – CONTINUITY OF THEIR VALUES

❑ Analogous signals are those defined in a continuous range of 
values,

𝑥 𝑡 ∈ ℂ (𝑥 𝑛 ∈ ℂ)

❑ Instead, discrete (digital) signals are defined only in a discrete 
range of values,

𝑥 𝑡 ∈ 𝕂 ⊂ ℂ (𝑥 𝑛 ∈ 𝕂 ⊂ ℂ)

    where 𝕂 is a countable set.

❑ Analogous signals can be converted into digital ones and vice-
versa through A/D and D/A converters, respectively.
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SIGNALS – PERIODICITY

❑ A signal is said to be periodic if there is a constant 𝑡0 ∈ ℝ+
∗ (𝑘0 ∈ ℤ+

∗ ), 
such that

𝑥 𝑡 = 𝑥 𝑡 + 𝑡0 , ∀𝑡 ∈ ℝ (continuous-time signal)

𝑥 𝑛 = 𝑥 𝑛 + 𝑛0 , ∀𝑛 ∈ ℤ (discrete-time signal)

❑ The smallest value of 𝑡0 ∈ ℝ (𝑛0 ∈ ℤ) that satisfies Eq. 1(2), is called 
(fundamental) period of 𝑥 𝑡 𝑥 𝑛 .

❑ A signal is said to be aperiodic, if it is not periodic.
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(Eq. 1)

(Eq. 2)
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SIGNALS – THEIR ENERGY AND POWER

❑ A signal is said an energy signal if

𝐸 = ∞−
∞

𝑥 𝑡 2𝑑𝑡 < ∞ (continuous-time signal)

𝐸 = σ𝑛=−∞
∞ 𝑥 𝑛 2 < ∞ (discrete-time signal)

❑ And, it is said a power signal if

0 < 𝑃 = lim
𝑡→∞

1

2𝑡
𝑡−
𝑡
𝑥 𝜏 2𝑑𝜏 < ∞ (continuous-time signal)

0 < 𝑃 = lim
𝑛→∞

1

2𝑛+1
σ𝑖=−𝑛
𝑛 𝑥 𝑛 2 < ∞ (discrete-time signal)

❑ If 𝑃 and 𝐸 are not finite, the signal is neither an energy nor a 
power signal.
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(Eq. 3)

(Eq. 4)

(Eq. 5)

(Eq. 6)



G W GabrielAS-767 : SINAIS E SISTEMAS

SIGNALS – STOCHACITY

❑ A deterministic signal is such that signals we can determine at 
any instant of time.

𝑥 𝑡 𝑥 𝑛 is known ∀ 𝑡 ∈ ℝ 𝑛 ∈ ℤ

❑ A stochastic signal is such that we only determine a belief on 
some characteristic in any instant of time

ℰ 𝑥 𝑡 = ҧ𝑥 𝑡  (First order moment)

ℰ 𝑥 𝑡 − ҧ𝑥 𝑡
2

= 𝑃 (Second order central moment)

ℰ(⋅) is a mathematical operator that means the expectation of ⋅ .
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SIGNALS - SYMMETRY

❑ A signal is said to be even if
𝑥 𝑡 = 𝑥 −𝑡 , ∀𝑡 ∈ ℝ

𝑥 𝑛 = 𝑥 −𝑛 , ∀𝑛 ∈ ℤ

❑ A signal is said to be odd if
𝑥 𝑡 = −𝑥 −𝑡 , ∀𝑡 ∈ ℝ

𝑥 𝑛 = −𝑥 −𝑛 , ∀𝑛 ∈ ℤ

❑ Any odd signal is such that 𝑥 0 = 0(𝑥 0 = 0).

❑ A signal can be even, odd, not even nor odd.
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SIGNALS – EXAMPLES

20

𝑡

𝑥(𝑡)

𝑡

𝑥(𝑡)

𝑡

𝑥(𝑡)

Energy
Continuous-time

Analog

Aperiodic

Deterministic

Even

Power
Continuous-time

Digital

Periodic

Deterministic

Not Even Nor Odd

Power
Discrete-time

Analog

Periodic

Deterministic

Not Even Nor Odd
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TRANSFORMATION OF VARIABLES

❑ For signals, it is important to determine some transformations 

regarding the independent variable, such as:

❑ Translation in time

❑ Reflection in time

❑ Change of scale

❑ Translation in time is the displacement in time of a value of 

𝑏, leading to another signal in the form of

𝑦 𝑡 = 𝑥(𝑡 − 𝑏)

21



G W GabrielAS-767 : SINAIS E SISTEMAS

TRANSFORMATION OF VARIABLES

❑ The reflection in time of a signal 𝑥(𝑡) is another signal 

defined as

𝑦 𝑡 = 𝑥(−𝑡)

❑ A change of scale in time is a signal such that

𝑦 𝑡 = 𝑥(𝑎 ⋅ 𝑡)

❑ In this way, we can define any transformation in the form of 

𝑦 𝑡 = 𝑥(𝑎𝑡 + 𝑏)
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TRANSFORMATION OF VARIABLES

❑ Some examples are shown below.
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𝑡

𝑥(𝑡)

𝑡

𝑦 𝑡 = 𝑥(−𝑡 + 2)

𝑡

𝑥(𝑡)

𝑡

𝑦 𝑡 = x(2t)

𝑡

𝑥(𝑡)

𝑡

𝑦 𝑡 = 𝑥(−2𝑡 + 2)
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SIGNALS – SYMMETRY 

❑ Any signal can be decomposed into the sum of an even signal 
and an odd signal. Indeed,

𝑥 𝑡 = 𝑥𝑒 𝑡 + 𝑥𝑜 𝑡 =
1

2
𝑥 𝑡 + 𝑥 −𝑡 +

1

2
𝑥 𝑡 − 𝑥 −𝑡

❑ It is easily seen that

𝑥𝑒 −𝑡 =
1

2
𝑥 −𝑡 + 𝑥 𝑡 = x𝑒(𝑡) (EVEN signal)

𝑥𝑜 −𝑡 =
1

2
𝑥 −𝑡 − 𝑥 𝑡 = −x𝑜(𝑡) (ODD signal)

❑ The same property can be verified for a discrete-time signal.
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CONTINUOUS-TIME EXPONENTIAL 
SIGNAL

❑ Exponential signals are defined as

𝑥 𝑡 = 𝐶𝑒𝑎𝑡 , 𝐶 ∈ ℂ, 𝑎 ∈ ℂ

❑ Exponential with 𝒂 = 𝒓 ∈ ℝ and 𝑪 ∈ ℝ.
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𝑡

𝑥(𝑡)

𝑡

𝑥(𝑡)

𝑡

𝑥(𝑡)

𝐶
𝐶

𝐶

𝑎 > 0𝑎 = 0 𝑎 < 0
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CONTINUOUS-TIME EXPONENTIAL 
SIGNAL

❑ The exponential with 𝑪 = 𝟏 and 𝒂 = 𝒋𝝎𝟎, 𝝎𝟎 ∈ ℝ, is not a real 

signal but can be used to understand other real signals.

❑ The signal 𝑥 𝑡 = 𝑒𝑗𝜔0𝑡 is periodic, and hence

𝑒𝑗𝜔0𝑡 = 𝑒𝑗𝜔0(𝑡+𝑇) ⟹ 𝑒𝑗𝜔0𝑇 = 1

what happens for 𝜔0𝑇 = 2𝜋𝑘, with 𝑘 = 0,±1, ±2,⋯

❑ The smallest 𝑇 = 𝑇0 that satisfies 𝜔0𝑇 = 2𝜋𝑘 is called 

Fundamental Period, 𝑇0 =
2𝜋

𝜔0
.
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CONTINUOUS-TIME EXPONENTIAL 
SIGNAL

❑ Finally, for 𝑎 = 𝑟 + 𝑗𝜔0 and 𝐶 = 𝐶 𝑒𝑗𝜃, we have 𝑥 𝑡 =

𝐶 e𝑗𝜃𝑒 𝑟+𝑗𝜔0 𝑡. That is,

𝑥(𝑡) = 𝐶 𝑒𝑟𝑡𝑒𝑗 𝜔0𝑡+𝜃 = 𝐶 𝑒𝑟𝑡 cos 𝜔0𝑡 + 𝜃 + 𝑗 sin 𝜔0𝑡 + 𝜃
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𝑡

𝑥(𝑡)

𝑡

𝑥(𝑡)

𝑡

𝑥(𝑡)

𝐶
𝐶

𝐶

𝑟 > 0𝑟 = 0 𝑟 < 0
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CONTINUOUS-TIME SINUSOIDAL SIGNAL

❑ Analogous to the exponential function, the sinusoidal signal 

is periodic with fundamental frequency 𝜔0 = 2𝜋𝑓0 =
2𝜋

𝑇0
.
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𝑡

𝑥(𝑡)
𝑇0 =

2𝜋

𝜔0

𝐴 cos(𝜃)

𝑥 𝑡 = 𝐴 cos(𝜔0𝑡 + 𝜃)

❑ Exponential and Sinusoidal signals are power 
signals

𝑬 = න
−∞

∞

𝒆𝒋𝝎𝟎𝒕
𝟐
𝒅𝒕 = 

𝒌=−∞

∞

න
𝒌𝑻

𝒌+𝟏 𝑻

𝒆𝒋𝝎𝟎𝒕
𝟐
𝒅𝒕

= 

𝒌=−∞

∞

𝑻𝟎 = ∞⟹ 𝑷 =
𝟏

𝑻𝟎
න
𝒌𝑻

𝒌+𝟏 𝑻

𝒆𝒋𝝎𝟎𝒕
𝟐
𝒅𝒕 = 𝟏
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EXPONENTIAL AND SINUSOIDAL CT 
SIGNALS

❑ We define a family of harmonic signals such as 

𝜙𝑘 𝑡 = 𝑒𝑗 𝑘 𝜔0𝑡

    In this case, each fundamental period is
𝑇0

𝑘
=

2𝜋

𝑘 𝜔0
.

❑ Multiplying the frequency of the signal by an integer value, we 
compress the signal. The opposite effect is seen when we divide 
the frequency by an integer value. 

❑ That means that each signal with fundamental period
𝑇0

𝑘
is also 

asignal with period 𝑇0.
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DISCRETE-TIME EXPONENTIAL (SIGNAL)

❑ The discrete-time exponential signal is defined as

𝑥 𝑛 = 𝑒𝑗𝜔0𝑛 = 𝑒𝑗 𝜔0+2𝜋 𝑛, ∀𝑘 ∈ ℤ

❑ The oscillation rate does not increase with 𝜔0. Indeed, it increases 
with 𝜔0, for 0 < 𝜔0 < 𝜋, and decreases with 𝜔0, for 𝜋 < 𝜔0 < 2𝜋.

❑ The period of a discrete-time exponential signal is such that

𝑒𝑗𝜔0 𝑛+𝑁 = 𝑒𝑗𝜔0𝑛 ⟹ 𝜔0𝑁 = 2𝜋𝑚, for 𝑚 ∈ ℤ

    Hence, 𝒙 𝒏  is periodic if
𝝎𝟎

𝟐𝝅
 is rational. The fundamental period 

is calculated as 𝑁 = 𝑚
2𝜋

𝜔0
.
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DISCRETE-TIME EXPONENTIAL SIGNAL

31

𝑛

𝑥[𝑛]

𝑛

𝑥[𝑛]

𝑛

𝑥[𝑛]

𝑛

𝑥[𝑛]

𝑛

𝑥[𝑛]

𝑛

𝑥[𝑛]

cos(0𝑛) cos
𝜋𝑛

8
cos 𝜋𝑛

cos
7𝜋𝑛

4
cos

15𝜋𝑛

8

cos 2𝜋𝑛
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DISCRETE-TIME UNIT IMPULSE AND STEP

❑ The discrete-time unit impulse is defined as

𝛿 𝑛 = ቊ
0, 𝑛 ≠ 0
1, 𝑛 = 0

❑ The discrete-time unit step is defined as

𝜇 𝑛 = ቊ
0, 𝑛 < 0
1, 𝑛 ≥ 0

32

𝑛

𝛿[𝑛]

𝑛

𝑢[𝑛]
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DISCRETE-TIME UNIT IMPULSE AND STEP

❑They are related through 
𝛿 𝑛 = 𝜇 𝑛 − 𝜇 𝑛 − 1

𝜇 𝑛 = 

𝑖=−∞

𝑛

𝛿[𝑖] = 

𝑘=0

∞

𝛿[𝑛 − 𝑘]

    cumulative sum or sum of impulses.

❑ An important property of the unitary impulses is the selective property

𝑥 𝑛 𝛿 𝑛 − 𝑛0 = 𝑥 𝑛0 𝛿 𝑛 − 𝑛0

33

𝑘 = 𝑛 − 𝑖
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CONTINUOUS-TIME UNIT IMPULSE AND 
STEP

34

❑ The continuous-time unit step is defined as

𝜇 𝑡 = ቊ
0, 𝑡 < 0
1, 𝑡 > 0

which is discontinuous in 𝑡 = 0.

❑ The continuous-time unit impulse is defined as a short pulse 

of infinitesimal duration Δ

𝛿 𝑡 = lim
Δ→0

𝛿Δ(𝑡)

𝑡

𝑢(𝑡)

𝑡

𝛿(𝑡)

𝑡

𝛿(𝑡)

Δ

1

Δ 1
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CONTINUOUS-TIME UNIT IMPULSE AND 
STEP

35

❑ Analogously to the discrete-time case, the CT unit step and CT 
unit impulse also are related to each other through

𝜇 𝑡 = ∞−
𝑡
𝛿 𝜏 𝑑𝜏 = 0

∞
𝛿 𝑡 − 𝜎 𝑑𝜎   or    𝛿 𝑡 =

𝑑𝜇 𝑡

𝑑𝑡

❑ The seletive proporty for continuous-time unit impulse is that

𝑥(𝑡)𝛿(𝑡 − 𝑡0) = 𝑥(𝑡0)𝛿(𝑡 − 𝑡0)

𝜎 = 𝑡 − 𝜏
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INTRODUCTION TO SYSTEMS THEORY

❑ Systems are processes that modify input signals and respond 

with some behavior that can be foreseen in their output 

signals.

36

𝒢𝑐(⋅)
𝑢(𝑡) 𝑦(𝑡) = 𝒢𝑐 𝑢 𝑡

𝒢𝑑(⋅)
𝑢[𝑛] 𝑦[𝑛] = 𝒢𝑑 𝑢 𝑛
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INTRODUCTION TO SYSTEMS THEORY

❑ The symbol 𝒢(⋅) represents the transformation of the input signal 
implemented by the process. Generally speaking, it usually is represented 
by an ordinary differential equation (ODE), for continuous-time systems,  or 
difference equations, for discrete-time systems. This characteristic reflects 
the dynamics (memory) associated with the process of interest. Otherwise, 
the system is said to be algebraic (memoryless). (store past information)

𝑎𝑠𝑦 𝑛 − 𝑠 + 𝑎𝑠−1𝑦 𝑛 − 𝑠 + 1 +⋯+ 𝑎1𝑦 𝑛 − 1 + 𝑎0𝑦 𝑛

= 𝑏𝑝𝑢[𝑛 − 𝑝] + 𝑏𝑝−1𝑢 𝑛 − 𝑝 + 1 +⋯+ 𝑏1𝑢 𝑛 − 1 + 𝑏0𝑢 𝑛

𝑎𝑠𝑦
𝑠 + 𝑎𝑠−1𝑦

𝑠−1 +⋯+ 𝑎1𝑦
1 + 𝑎0𝑦

0 = 𝑏𝑝𝑢
𝑝 + 𝑏𝑝−1𝑢

𝑝−1 +⋯+ 𝑏1𝑢
1 + 𝑏0𝑢

0

37

(Difference Equation)

(ODE)
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INTRODUCTION TO SYSTEMS THEORY

❑ Example: RC circuit (continuous-time system)

38

𝑖(𝑡) 𝑣2(𝑡)𝑣1(𝑡) 𝑖 𝑡 =
𝑣1 𝑡 −𝑣2 𝑡

𝑅1
and 𝑖 𝑡 = 𝐶1

𝑑𝑣2 𝑡

𝑑𝑡

𝑑𝑖 𝑡

𝑑𝑡
+

1

𝑅1𝐶1
𝑖 𝑡 =

1

𝑅1

𝑑𝑣1 𝑡

𝑑𝑡

Substituting 𝑣1 𝑡 by 𝑢(𝑡) and 𝑖(𝑡) by 𝑦 𝑡 it 
follows that

ሶ𝑦 𝑡 +
1

𝑅1𝐶1
𝑦 𝑡 =

1

𝑅1
ሶ𝑢(𝑡)
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INTRODUCTION TO SYSTEMS THEORY

❑ Example: Bank saving (discrete-time system)

39

It is immediate that

𝑦 𝑛 − 1,01𝑦 𝑛 − 1 = 𝑥[𝑛]

Month Interest Contribution Value

0 1% 1.000,00 1.000,00

1 1% 0,00 1.010,00

⋯ 1% ⋯ ⋯

Initial value: 𝑦 0

Value in Month 1: 𝑦 1 = 1,01𝑦 0 + 𝑥 1

Value in Month 2: 𝑦 2 = 1,01𝑦 1 + 𝑥 2
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INTRODUCTION TO SYSTEMS THEORY

❑ Systems can be connected to other systems through block 

diagram álgebra (for continuous- and discrete-time systems):

❑ Parallel interconnection

❑ Series (cascade) interconnection

40

𝓖𝟏

𝓖𝟐

𝓖𝟐𝓖𝟏

𝒖(𝒕) 𝐲 𝒕 = 𝓖𝟏 𝒖 𝒕 + 𝓖𝟐 𝒖 𝒕+

+

𝐲 𝒕 = 𝓖𝟏 𝒖 𝒕 ∗ 𝓖𝟐 𝒖 𝒕𝒖(𝒕)
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INTRODUCTION TO SYSTEMS THEORY

❑ There is a wide variety of systems, but particularly causal, 

linear, time-invariant systems play an important class of control 

systems. 

❑ Main properties of systems

❑ Causality

❑ Time-invariance

❑ Linearity

❑ Stability

41
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SYSTEM PROPERTY: CAUSALITY

❑ A system is causal if its output 𝑦 𝑡 𝑦 𝑛  depends on only past 
and present values of the input 𝑢 𝑡 𝑢 𝑛 . 

❑ Examples of causal systems are

𝑦 𝑛 + 𝑦[𝑛 − 1] = 𝑥 𝑛 + 𝑥 𝑛 − 1

𝑦 𝑛 = 𝑥 −𝑛

❑ Examples of non-causal systems are

𝑦 𝑛 =
1

2𝑀 + 1


𝑖=−𝑀

𝑀

𝑥 𝑛 − 𝑖

42
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SYSTEM PROPERTY: TIME-INVARIANCE

❑ A system is time-invariant if its characteristics and properties 

do not change with time.

A system 𝒢𝑐 ⋅ 𝒢𝑑 ⋅  is time-invariant with output 𝑦 𝑡 = 𝒢𝑐 𝑢 𝑡

𝑦 𝑛 = 𝒢𝑑 𝑢 𝑛  to the input 𝑢 𝑡 𝑢 𝑛 , then

𝑦 𝑡 + 𝑡1 = 𝒢𝑐 𝑢 𝑡 + 𝑡1 , ∀𝑡, 𝑡1 ∈ ℝ

𝑦 𝑛 + 𝑛1 = 𝒢𝑐 𝑢 𝑛 + 𝑛1 , ∀𝑛, 𝑛1 ∈ ℤ

43

(Continuous-time system)

(Discrete-time system)
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SYSTEM PROPERTY: LINEARITY

❑ A system is linear if it satisfies the principle of superposition 

(additivity and homogeneity).

A system 𝒢𝑐 ⋅ 𝒢𝑑 ⋅  is linear with outputs 𝑦1 𝑡 = 𝒢𝑐 𝑢1 𝑡 ൫

൯

𝑦1 𝑛 =

𝒢𝑑 𝑢1 𝑛  and 𝑦2 𝑡 = 𝒢𝑐 𝑢2 𝑡 𝑦2 𝑛 = 𝒢𝑑 𝑢2 𝑛 , then

𝑦 𝑡 = 𝒢𝑐 𝑎𝑢1 𝑡 + 𝑏𝑢2 𝑡 = 𝑎𝑦1(𝑡) + 𝑏𝑦2 𝑡

𝑦 𝑛 = 𝒢𝑑 𝑎𝑢1 𝑛 + 𝑏𝑢2 𝑛 = 𝑎𝑦1 𝑛 + 𝑏𝑦2 𝑛

44

(Continuous-time system)

(Discrete-time system)
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SYSTEM PROPERTY: STABILITY

❑ A system is stable when bounded input produces bounded 

output. (BIBO stability)

❑ Examples:

❑ ℎ 𝑡 = 𝑒𝑢 𝑡  is an stable system

❑ ℎ 𝑡 = ln 𝑢 𝑡  is unstable

45
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CONVOLUTION SUM AND INTEGRAL

❑ The convolution sum is defined as

𝑥1 𝑛 ∗ 𝑥2 𝑛 = 

𝑖=−∞

∞

𝑥1 𝑛 − 𝑖 𝑥2 𝑖

❑ Analogously, the convolution integral is defined as

𝑥1 𝑡 ∗ 𝑥2 𝑡 = න
−∞

∞

𝑥1 𝑡 − 𝜏 𝑥2 𝜏 𝑑𝜏

46
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C
O

N
V

O
L

U
T

IO
N

 S
U

M

47

𝑛

𝑥2[𝑛]

𝑛

𝑥1[𝑛]

𝑛

𝑥1 𝑛 ∗ 𝑥2[𝑛]

𝑛

𝑥1[𝑛]

𝑛

𝑥2[𝑛]
∗

𝑛

𝑥2[𝑛]

𝑛

𝑥1[𝑛]

𝑛

𝑥1 𝑛 ∗ 𝑥2[𝑛]

𝑛

𝑥2[𝑛]

𝑛

𝑥1[𝑛]

𝑛

𝑥1 𝑛 ∗ 𝑥2[𝑛]

𝑛

𝑥2[𝑛]

𝑛

𝑥1[𝑛]

𝑛

𝑥1 𝑛 ∗ 𝑥2[𝑛]

𝑛

𝑥2[𝑛]

𝑛

𝑥1[𝑛]

𝑛

𝑥1 𝑛 ∗ 𝑥2[𝑛]

𝑛

𝑥2[𝑛]

𝑛

𝑥1[𝑛]

𝑛

𝑥1 𝑛 ∗ 𝑥2[𝑛]
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𝑡

𝑥1(𝑡)

1

𝑡

𝑥2(𝑡)
2

C
O

N
V

O
L

U
T

IO
N

 I
N

T
E

G
R

A
L

𝑛

𝑥1 𝑛 ∗ 𝑥2[𝑛]

∗

𝑛

𝑥1 𝑛 ∗ 𝑥2[𝑛]

𝑛

𝑥1 𝑛 ∗ 𝑥2[𝑛]

𝑛

𝑥1 𝑛 ∗ 𝑥2[𝑛]

𝑛

𝑥1 𝑛 ∗ 𝑥2[𝑛]

𝑛

𝑥1 𝑛 ∗ 𝑥2[𝑛]

𝑡

𝑥1(𝑡)

1

𝑡

𝑥2(𝑡)
2

𝑡

𝑥1(𝑡)

1

𝑡

𝑥2(𝑡)
2

𝑡

𝑥1(𝑡)

1

𝑡

𝑥2(𝑡)
2

𝑡

𝑥1(𝑡)

1

𝑡

𝑥2(𝑡)
2

𝑡

𝑥1(𝑡)

1

𝑡

𝑥2(𝑡)
2

𝑡

𝑥1(𝑡)

1

𝑡

𝑥2(𝑡)
2
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UNIT IMPULSE: SYSTEM RESPONSE

❑ In this context, any signal can be represented by the 

selective property of the unit impulse, that is,

𝑥 𝑛 = 𝑥 𝑛 ∗ 𝛿 𝑛 = 

𝑖=−∞

∞

𝑥 𝑖 𝛿[𝑛 − 𝑖] , ∀𝑛 ∈ ℤ

𝑥 𝑡 = 𝑥 𝑡 ∗ 𝛿 𝑡 = න
−∞

∞

𝑥 𝜏 𝛿 𝑡 − 𝜏 𝑑𝜏, ∀𝑡 ∈ ℝ

49
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UNIT IMPULSE: SYSTEM RESPONSE

❑ Considering previous properties, we can write the response of a 
discrete-time system to an input 𝑢 𝑛  as

𝑦 𝑛 = 𝒢𝑑 𝑢 𝑛 = 𝒢𝑑 

𝑖=−∞

∞

𝑢 𝑖 𝛿[𝑛 − 𝑖]

    if the system is linear, and hence it is true the superposition principle, 
then 

𝑦 𝑛 = 

𝑖=−∞

∞

𝒢𝑑 𝑢 𝑖 𝛿 𝑛 − 𝑖 = 

𝑖=−∞

∞

𝑢 𝑖 𝒢𝑑 𝛿 𝑛 − 𝑖 = 

𝑖=−∞

∞

𝑢 𝑖 ℎ𝑑 𝑛 − 𝑖

50
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UNIT IMPULSE: SYSTEM RESPONSE

❑ Similarly, for the continuous-time system

𝑦 𝑡 = 𝒢𝑐 𝑢 𝑡 = 𝒢𝑐 න
−∞

∞

𝑢 𝜏 𝛿 𝑡 − 𝜏 𝑑𝜏

    Considering a linear system,

𝑦 𝑡 = න
−∞

∞

𝒢𝑐 𝑢 𝜏 𝛿 𝑡 − 𝜏 𝑑𝜏 = න
−∞

∞

𝑢(𝜏)𝒢𝑐 𝛿 𝑡 − 𝜏 𝑑𝜏 = න
−∞

∞

𝑢 𝜏 ℎ_𝑐 𝑡 − 𝜏 𝑑𝜏

    where has been assumed the fact that  𝑢 𝜏  is the signal 𝑢(𝑡) evaluated at 𝑡 = 𝜏.

51
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UNIT IMPULSE: SYSTEM RESPONSE

❑ Linear systems are totally characterized by its response to the 

unit impulse.

❑ Example: Consider a linear system described by ሷy 𝑡 + ሶ𝑦(𝑡) =

𝑢 𝑡 , evolving from 𝑦 0 = 0, ሶ𝑦 0 = 1, with 𝑡 ∈ ℝ+. Determine 

the response of this system to the unit impulse.

52
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UNIT IMPULSE: SYSTEM RESPONSE

❑ Considering the method 

of undetermined 

coefficient:

ℎ 𝑡 = 𝑦ℎ 𝑡 + 𝑦𝑝 𝑡 ⟹ ℎ 𝑡 = 1 − 𝑒−𝑡

53

➢ The homogeneous solution is

ሷ𝑦ℎ 𝑡 + ሶ𝑦ℎ 𝑡 = 0

𝑦ℎ 𝑡 = 𝑎 + 𝑏e−𝑡

➢ And the particular solution is

ሷ𝑦ℎ 𝑡 + ሶ𝑦ℎ 𝑡 = 𝛿 𝑡 ⟹ 𝑦𝑝 𝑡 = 0

➢ Applying the initial conditions follows that

𝑦 𝑡 = 1 − 𝑒−𝑡
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❑  In general, since the impulsive signal is of difficult practical 
implementation, the response to the unit step is preferred.

❑ The response of a system to a signal 𝜇(𝑡) can be written as
𝑦 𝑡 = 𝜇 𝑡 ∗ ℎ 𝑡 𝑦 𝑛 = 𝜇 𝑛 ∗ ℎ 𝑛

❑ Consider a linear system described by ሶ𝑦 𝑡 + 𝑎𝑦 𝑡 = 𝑢 𝑡 , 
evolving from 𝑦 0 = 1, in the time interval 𝑡 ∈ ℝ+. Determine 
the response of this system to the unit step.

54

UNIT STEP: SYSTEM RESPONSE
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UNIT STEP: SYSTEM RESPONSE

❑ Two scenarios are analyzed:
❑ Response to the unit impulse

ሶℎ 𝑡 + 𝑎ℎ 𝑡 = 𝛿(𝑡)

     and

𝑦 𝑡 = 𝜇 𝑡 ∗ ℎ(𝑡)

❑ Response to the unit step

ሶ𝑦 𝑡 + 𝑎𝑦 𝑡 = 𝜇(𝑡)

55

(Undetermined Coefficient Method)

ℎ 𝑡 = 𝑦ℎ 𝑡 + 𝑦𝑝 𝑡 ⟹ ℎ 𝑡 = 𝑒−𝑎𝑡

Since,
➢ The homogeneous solution is

ሶ𝑦ℎ 𝑡 + 𝑎𝑦ℎ 𝑡 = 0
𝑑

𝑑𝑡
𝑦ℎ 𝑡 𝑒𝑎𝑡 = 0

𝑦ℎ 𝑡 = e−𝑎𝑡𝑦ℎ 0 ⟹ 𝑦ℎ 𝑡 = 𝑒−𝑎𝑡

➢ And the particular solution is

ሶ𝑦𝑝 𝑡 + 𝑎𝑦𝑝 𝑡 = 𝛿 𝑡 ⟹ 𝑦𝑝 𝑡 = 0
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UNIT STEP: SYSTEM RESPONSE

❑ Two scenarios are analyzed:
❑ Response to the unit impulse

ሶℎ 𝑡 + 𝑎ℎ 𝑡 = 𝛿(𝑡)

     and

𝑦 𝑡 = 𝜇 𝑡 ∗ ℎ(𝑡)

❑ Response to the unit step

ሶ𝑦 𝑡 + 𝑎𝑦 𝑡 = 𝜇(𝑡)

56

(Undetermined Coefficient Method)

The solution to the unit step is then

𝑦 𝑡 =
1

𝑎
−
1

𝑎
𝑒−𝑎𝑡

since, 𝑦 𝑡 = 𝑦𝛿 𝑡 ∗ 𝜇(𝑡) is the accumulation 
of 𝒚𝜹 𝒕  at each instant of time and 

𝑡

ℎ(𝑡)
𝑎

𝑡

𝜇(𝑡)
1

∗

𝑦 𝑡 = න
0

𝑡

𝑒−𝑎𝜏𝑑𝜏
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UNIT STEP: SYSTEM RESPONSE

❑ Two scenarios are analyzed:
❑ Response to the unit impulse

ሶ𝑦 𝑡 + 𝑎𝑦 𝑡 = 𝛿(𝑡)

     and

𝑦 𝑡 = 𝜇 𝑡 ∗ ℎ(𝑡)

❑ Response to the unit step

ሶ𝑦 𝑡 + 𝑎𝑦 𝑡 = 𝜇(𝑡)

57

(Undetermined Coefficient Method)

𝑦 𝑡 = 𝑦ℎ 𝑡 + 𝑦𝑝 𝑡 ⟹ 𝑦 𝑡 =
1

𝑎
−
1

𝑎
𝑒−𝑎𝑡

Since,
➢ The homogeneous solution is

𝑦ℎ 𝑡 = 𝑒−𝑎𝑡

➢ And the particular solution is

ሶ𝑦𝑝 𝑡 + 𝑎𝑦𝑝 𝑡 = 𝜇 𝑡 ⟹ 𝑦𝑝 𝑡 = 𝑐 =
1

𝑎
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EXERCISES

1.  Calculate the energy, E, and the power, P, associated with the 

signals 𝑥 𝑡 = 𝑒−2𝑡𝑢 𝑡 ; 𝑥 𝑛 =
1

2

𝑛
𝑢 𝑛 ; 𝑥 𝑛 = cos

𝜋

4
𝑛 ; and 

𝑥(𝑡) = σ𝑘=−∞
∞ 𝑡 𝑢 𝑡 + 2𝑘 + 1 − 𝑢 𝑡 + 2𝑘 − 1 . Classify each of 

them according to energy and power.

2. Consider the discrete-time signal

𝑥 𝑛 = 1 −

𝑖=2

∞

𝛿[𝑛 − 𝑖]

      Determine the values of 𝑎 and 𝑏, such that 𝑥 𝑛 = 𝑢[𝑎𝑛 − 𝑏].

58
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EXERCISES

3. Show that: if 𝑥[𝑛] is odd, then σ𝑛=−∞
∞ 𝑥 𝑛 = 0.

4. Suppose that 𝑥[𝑛] is even and 𝑦 𝑛  is odd. Then, 𝑥 𝑛 𝑦[𝑛] is 

odd.

5. Suppose 𝑥 𝑛 = 𝑥𝑒 𝑛 + 𝑥𝑜 𝑛 , with 𝑥𝑒 𝑛  even and 𝑥𝑜 𝑛 , 

odd. Show that



𝑛=−∞

∞

𝑥 𝑛 2 = 

𝑛=−∞

∞

𝑥𝑒 𝑛
2 + 

𝑛=−∞

∞

𝑥𝑜 𝑛
2
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EXERCISES

6. Suppose 𝑢 𝑛  is the input and 𝑦[𝑛], the output of a system, such 

that

𝑦 𝑛 = 𝑢 𝑛 − −1 𝑛−1𝑢[𝑛 − 1]

      Verify if this system is linear, time-varying, causal, and stable.

7. Consider a CT time-invariant system with input 𝑢(𝑡) and output 

𝑦(𝑡). Show that, if 𝑢 𝑡  is 𝑇-periodic, then 𝑦(𝑡) is also 𝑇-periodic.

8. Repeat the exercise 7, considering DT time-invariant system, with 

𝑇-periodic input, 𝑢[𝑛], and 𝑇-periodic output, 𝑦[𝑛].
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EXERCISES

9. Define the equation that describes the diagrams below. 

Verify the properties of linearity, time-invariance, causality, 

and stability for each case.

a.  

b.  

61

𝓖𝟏 ⋅ = ⋅ 𝟐

𝓖𝟐 ⋅ = 𝟏 − ⋅ 𝟐

𝓖𝟐 = 𝒕(⋅)𝓖𝟏 ⋅ =
𝒅 ⋅

𝒅𝒕

𝒖 𝒏 +

−

𝒖 𝒕

×

𝐜𝐨𝐬 𝝅𝒏

𝒚 𝒏

𝒚 𝒕
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EXERCISES

10.  Evaluate the convolution sum or integral, 𝑢 𝑛 ∗ ℎ 𝑛  or 𝑢 𝑡 ∗
ℎ 𝑡 , for each case
a)  𝑢 𝑛 = 2𝑛; ℎ 𝑛 = 𝜇 𝑛 − 𝜇[𝑛 − 10]

b) 𝑢 𝑡 = 𝑒−𝑡; h t = 𝜇 𝑡

11.  Determine the solution of the following systems to the unit 
impulse and to the unit step.
a)  ሶ𝑦 𝑡 + 𝑦 𝑡 = 𝑒−𝑡 , 𝑦 0 = 0

b) ሶ𝑦 𝑡 + 𝑦 𝑡 = 𝑒−𝑡 , 𝑦 0 = 1

c)  𝑦 𝑛 + 1 + 𝑦 𝑛 = 𝜇 𝑛 , 𝑦 0 = 0

d)  𝑦 𝑛 + 1 = 𝜇 𝑛 , 𝑦 0 = 1
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12.  Determine the output signal of the system

ሷ𝑦 𝑡 + 𝑦 𝑡 = 𝑢 𝑡 , 𝑦 0 = ሶ𝑦 0 = 0

        to the input 𝑢 𝑡 = sin(𝑡) in the time interval 𝑡 ∈ [0, +∞].
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