Prof. Gabriela W. Gabriel Instituto Tecnológico de Aeronáutica IEE-S / ITA - Sala 195 - Ramal 5991 ggabriel@ita.br / gabriela.gabriel@gp.ita.br www.ele.ita.br/~ggabriel

São José dos Campos, 13/04/2025.

EES-32 CONTROLE CLÁSSICO II

Estabilidade de sistemas discretos.

Prof. G. W. Gabriel

TÓPICOS

BIBO Estabilidade de Sistemas Discretos.

Método de Tustin com Prewarping.

Discretização de Requisitos.

Extensão do Critério de Estabilidade de Routh-Hurwitz para Sistemas Discretos.

Lugar Geométrico das Raízes

Resposta em Frequência de Sistemas Discretos.

BIBO ESTABILIDADE DE SISTEMAS DISCRETOS

(**BIBO Estabilidade**) Um sistema discreto causal descrito pela sua resposta ao impulso g[k] é BIBO (*Bounded Input Bounded Output*) estável se, e somente se,

ESTABILIDADE DE SISTEMAS DISCRETOS

Um sistema discreto com função de transferência G(z) é estável se, e somente se, todos os polos de G(z) encontram-se dentro do círculo de raio unitário.

Neste caso, se p_i , $i = 1, 2, \dots, n$, são todos polos simples do sistema G(z) $g[k] = \sum_{i=1}^n a_i (p_i)^k$

Então $|p_i| < 1$ garante a convergência da resposta ao impulso de G(z). Por outro lado, o domínio de validade de G(z) é dado por $|z| > \max_i |p_i|$.

ESTABILIDADE DE SISTEMAS DISCRETOS

Neste caso, estas regiões, no plano complexo, são

Note que, da discretização pelo Mapeamento Casado de polos e zeros

$$z = e^{pT}, p = \alpha + \beta j$$

$$z = e^{\alpha T} e^{\beta T j}$$

Assim, $Re\{s\} < 0 \Leftrightarrow |z| < 1$

Sistema estável em s gera um sistema estável em z.

Para a integração **Retangular** *Forward*

$$s = \frac{1}{T}(z-1), s = \alpha + \beta j =$$
$$z = (T\alpha + 1) + T\beta j$$

 $Re\{s\} < 0 \iff Re\{z\} < 1$

Sistemas estáveis em s, podem gerar sistemas instáveis em z.

Segundo a integração **Retangular Backward**

$$s = \frac{1}{T} \frac{(z-1)}{z}, z = \alpha + \beta j$$

$$s = \frac{1}{T} \frac{\left((\alpha - 1) + \beta j\right)}{\alpha + \beta j}$$
$$Re\{s\} < 0 \iff \left(\alpha - \frac{1}{2}\right)^2 + \beta^2 < \frac{1}{4}$$

Sistemas estáveis em s, sempre geram sistemas estáveis em z.

9

ESTABILIDADE DE SISTEMAS DISCRETIZADOS

Quando utilizamos a aproximação por integração forward devemos SEMPRE assegurar a ESTABILIDADE DO SISTEMA DISCRETIZADO.

$$|z| < 1 \implies |1 + Ts| < 1, \text{ sendo } s = \frac{1}{T}(z - 1) \implies T < \frac{2a}{a^2 + b^2}$$

Sistemas com polos reais $\implies T < \frac{2}{a}$

Sistemas de segunda ordem $a = \xi \omega_n$ e $b = \omega_n \sqrt{1 - \xi^2}$ $T < \frac{2\xi}{\omega_n}$

ESTABILIDADE DE SISTEMAS DISCRETIZADOS

Para frequências próximas da frequência de Nyquist, é recomendável o uso de métodos que provoquem menos distorções no mapeamento plano-s / plano-z.

O método de Tustin não é adequado para aproximar funções que contenham derivadas puras, dado que levará a uma resposta oscilatória devido ao polo em z = -1.

ESTABILIDADE DE SISTEMAS DISCRETIZADOS

- Tanto o método de Tustin quanto o mapeamento casado de polos e zeros geram funções próprias. Caso indesejado deve-se utilizar o mapeamento casado que gera funções estritamente próprias.
- Embora o método de Tustin seja exato no mapeamento Re{s} < 0 em |z| < 1, há uma distorção (warping) no domínio da frequência. Para isso, utiliza-se a técnica de prewarping nas frequências de interesse.</p>

MÉTODO DE TUSTIN COM PREWARPING

A resposta em frequência de $G_d(z)$ é calculada a partir de $G_d(e^{j\omega T})$, com $s = j\omega \in G_d(z)$ a função discretizada de G(s).

Aplicando-se o método de Tustin para $s = j\omega_c$ e $z = e^{j\omega_d T}$,

$$\omega_c = \frac{2}{T} \tan\left(\frac{\omega_d T}{2}\right)$$

Assim, podemos implementar o método de Tustin com Prewarping através da relação

$$\frac{2}{T} = \frac{\omega_c}{\tan\left(\omega_c \frac{T}{2}\right)},$$

para ω_c uma frequência de interesse!

MÉTODO DE TUSTIN COM PREWARPING

Desta forma o método de Tustin com Prewarping consiste em utilizar a relação

$$s = \frac{\omega_c}{\tan\left(\omega_c \frac{T}{2}\right)} \frac{z-1}{z+1}$$

com ω_c uma frequência de interesse!

Exemplo: Estudar os sistemas

a)
$$G(s) = 9\frac{s+1}{s+3}$$
, T = 0,2 s
b) $G(s) = \frac{1}{(s+2)^2}$, T = 0,25 s.

Como visto anteriormente, a relação entre a Transformada de Laplace e a Transformada Z, dá-se através da relação

$$z = e^{sT} = e^{\sigma T} e^{j\omega T} = e^{\sigma T} e^{j(\omega T + 2\pi k)}$$

onde $s = \sigma + j\omega$. Para este mapeamento é verdadeiro que:

- 1) Pontos sobre $s = j\omega$ são mapeados sobre a circunferência de raio unitário;
- 2) Pontos de $Re\{s\} < 0$ são mapeados em |z| < 1;
- 3) Pontos de $Re\{s\} > 0$ são mapeados em |z| > 1;
- 4) Os pontos do plano que diferem entre si de uma múltiplo inteiro da frequência de amostragem $\omega_s = 2\pi/T_s$, são mapeamos em um mesmo ponto do plano-z.

Destas relações podemos estabelecer relação entre os requisitos de desempenho especificados para G(s) no domínio do plano-z.

Parâmetro $\sigma = \xi \omega_n$ (mesma taxa de decaimento)

Parâmetro ω_d (mesmo tempo de pico)

Desta forma, há uma relação entre a região na qual os polos do sistema no plano-s deverão estar e a região que conterá os polos do sistema no plano-z.

Erro em regime estacionário

Tipo do sistema

Um sistema é discreto é do tipo N se ele possuir N polos em z = 1.

Assim,

. . .

$$G(z) = \frac{1}{(1-z^{-1})^N} \frac{B(z)}{A(z)}; \ A(1) \neq 0; \ B(1) \neq 0$$

 $N = 0 \longrightarrow G(z) \text{ é do tipo } 0$ $N = 1 \longrightarrow G(z) \text{ é do tipo } 1$

Erro em regime estacionário

Seja o sistema

• O erro em regime estacionário é dado por $E(z) = \frac{1}{1+G(z)} R(z)$. Assim,

$$e_{ss} = \lim_{k \to \infty} e[k] = \lim_{z \to 1} \left[(1 - z^{-1}) \frac{1}{1 + G(z)} R(z) \right]$$

Erro estático de posição (definido em relação à entrada degrau unitário)

Para $R(z) = \frac{1}{1-z^{-1}}$, a saída em regime estacionário será

$$e_{ss} = \lim_{z \to 1} \frac{1}{1 + G(z)} = \frac{1}{1 + K_p}$$

sendo $K_p = \lim_{z \to 1} \frac{1}{(1-z^{-1})^N} \frac{B(z)}{A(z)}$ (Constante de erro estático de posição).

Assim, e_{ss} → 0 somente se K_p → ∞, que ocorrerá se o sistema for pelo menos do tipo
 1.

Erro estático de velocidade (definido em relação à entrada rampa unitária)

Para $R(z) = \frac{Tz^{-1}}{(1-z^{-1})^2}$, a saída em regime estacionário será $e_{ss} = \lim_{z \to 1} \frac{T}{(1-z^{-1})G(z)} = \frac{1}{K_v}$ sendo $K_v = \lim_{z \to 1} \frac{1}{T(1-z^{-1})^{N-1}} \frac{B(z)}{A(z)}$ (Constante de erro estático de velocidade).

Assim, $e_{ss} \rightarrow 0$ somente se $K_v \rightarrow \infty$, que ocorrerá se o sistema for pelo menos do tipo 2.

Erro estático de aceleração (definido em relação à entrada parábola unitária)

Para $R(z) = \frac{T^2(1+z^{-1})z^{-1}}{2(1-z^{-1})^3}$, a saída em regime estacionário será

$$e_{ss} = \lim_{z \to 1} \frac{T^2}{(1 - z^{-1})^2 G(z)} = \frac{1}{K_a}$$

sendo $K_a = \lim_{z \to 1} \frac{1}{T^2 (1-z^{-1})^{N-2}} \frac{B(z)}{A(z)}$ (Constante de erro estático de aceleração).

Assim, $e_{ss} \rightarrow 0$ somente se $K_a \rightarrow \infty$, que ocorrerá se o sistema for pelo menos do tipo **3**.

Erro em regime estacionário

	Erro Estacionário de Posição	Erro Estacionário de Velocidade	Erro Estacionário de Aceleração
Tipo 0	$\frac{1}{1+K_p}$	∞	∞
Tipo 1	0	$\frac{1}{K_{\nu}}$	∞
Tipo 2	0	0	$\frac{1}{K_a}$
Tipo 3	0	0	0

EXTENSÃO DO CRITÉRIO DE ESTABILIDADE DE ROUTH-HURWITZ

Para a estabilidade do sistema discreto requer-se que |z| < 1. A transformação bilinear

$$z = \frac{1+s}{1-s}$$

permite que o mapeamento seja

$$Re\{s\} < 0 \iff |z| < 1$$

que independe do período de amostragem.

EXTENSÃO DO CRITÉRIO DE ESTABILIDADE DE ROUTH-HURWITZ

A equação característica discrete $\Delta(z) = 0$ terá todas as suas raízes localizadas no interior do círculo unitário (|z| < 1), se

$$\Delta_m(s) = \Delta\left(\frac{1+s}{1-s}\right) = 0$$

possuir todas suas raízes no semiplano esquerdo complexo.

EXTENSÃO DO CRITÉRIO DE ESTABILIDADE DE ROUTH-HURWITZ

Exemplo: Projeto o ganho K que torna o sistema discreto realimentado estável.

Para este sistema a equação característica é

$$\Delta(z) = (z - 2)(z - 0,5) + k(z - 0,25) = 0$$

Utilizando Routh-Hurwitz com a transformação bilinear, obtem-se K.

Para o caso de sistemas discretos, o mesmo procedimento para a construção do LGR pode ser adotado, uma vez que a equação característica de

é idêntica à equação característica do caso contínuo, sendo dada por $\Delta(z) = 1 + k\bar{G}_d(z) = 0 \implies \bar{G}_d = \frac{N_d(z)}{D_d(z)} = -\frac{1}{k}$

 $\frac{\text{CONDIÇÃO DE MÓDULO}}{|\overline{G}_d(z)| = \frac{1}{\kappa}}$

CONDIÇÃO DE FASE

 $\angle \overline{G}_d(z) = (2K+1)\pi, K \in \mathbb{N}$

REGRA 1: *m* ramos do LGR começam nos polos de $\overline{G}_d(z)$ e terminam em seus *m* zeros, com $n \ge m$.

REGRA 2: n - m ramos do LGR tendem para ∞ de forma assintótica a n - m retas, sendo

$$\sigma = \frac{\sum_{i=1}^{n} p_i - \sum_{i=1}^{m} z_i}{n - m} \qquad \theta_K = \frac{2K - 1}{n - m} \pi, K = 1, 2, \cdots, n - m$$

 σ é o coeficiente linear e θ_K , o coeficiente angular das assíntotas.

REGRA 3: Todos os pontos do eixo real À ESQUERDA de uma quantidade ÍMPAR de polos e zeros pertencem ao LGR.

REGRA 4: O LGR é SIMÉTRICO em relação ao EIXO REAL. O cruzamento de seus ramos com o eixo imaginário pode ser obtido por Routh-Hurwitz após aplicado a $\Delta(z) = 0$ a transformação bilinear z = (1 + s)/(1 - s).

REGRA 5: O CRUZAMENTO DE RAMOS do LGR pode ser obtido fazendo

 $D_d(z)'N_d(z) - N_d(z)'D_d(z) = 0$

REGRA 6: ANGULOS DE SAÍDA E CHEGADA do LGR podem ser determinados através da CONDIÇÃO DE ÂNGULO.

Exemplo: Esboçar o LGR para o sistema descrito por

$$\bar{G}(z) = \frac{0,368(z+0,717)}{(z-1)(z-0,368)}$$

$$\overline{\Delta}(s) = 1 + k\overline{G}(s)$$

= (2,736 - 0,104k)s² + (1,264 - 0,5277k)s + 0,6319k

Solução:

REGRA 1 – Há 2 ramos no LGR sendo 1 deles assintótico.

REGRA 2 – A assíntota parte de $\sigma = 1 + 0,368 + 0,717 = 2,085$ com ângulo de $\theta = 180^{\circ}$.

REGRA 3 – Pertencem ao LGR, os pontos compreendidos entre $] - \infty, -0,717] \cup [0,368,1].$

REGRA 4 – Pontos de cruzamento com a circunferência de raio unitário.

 $(2,736 - 0,104k)s^{2} + (1,264 - 0,5277k)s + 0,6319k$

<i>s</i> ²	(2,736 – 0,104 <i>k</i>)	0,6319 <i>k</i>
<i>s</i> ¹	(1,264 – 0,5277k)	
<i>s</i> ⁰	0,6319 <i>k</i>	

$$1,264 - 0,5277k = 0$$

$$k = 2,3953$$

$$2,4869s^{2} + 1,5136 = 0$$

$$s = \frac{z - 1}{z + 1} \rightarrow z = 0,2432 \pm 0,97j$$

REGRA 5 – Cruzamento entre ramos:

$$(z + 0,717)(2z - 1,368) - (z - 1)(z - 0,368) = 0$$

$$z^{2} + 1.434z - 1.3489 = 0$$

$$z = -2,0819; \quad z = 0,6479$$

REGRA 6 – Ângulos de partida e chegada nos polos e zeros: 0 ou π .

PROJETO UTILIZANDO O LGR

- Analogamente como realizado para os sistemas contínuos, também é possível realizar projeto de controle para sistemas discretos utilizando o LGR.
- Para isso, deve-se traduzir os requisitos do sistema contínuo para o domínio discreto.
- Exemplo: Projetar um controlador do tipo proporcional para que o sistema realimentado do exemplo anterior tenha overshoot máximo de 10%.

PROJETO UTILIZANDO O LGR

