

DEPARTAMENTO DE CIÊNCIA E TECNOLOGIA AEROESPACIAL

INSTITUTO TECNOLÓGICO DE AERONÁUTICA

Exercício Avaliativo – 02

Disciplina: EES-32 – Controle Clássico II - Professora: Gabriela Gabriel	
Nome:	
Data:	

Instruções:

• Exercício individual. Tempo: 30 min.

Considere o sistema realimentado apresentado na Figura 1. Considerando que $\mathcal{C}(z)$ é implementado através de um computador com a lei

$$u[k+1] = 12e[k+1] - 4e[k]$$

e considerando que para o projeto foi utilizado uma aproximação segundo Tustin, estime o tempo de estabilização para $\epsilon=2\%$ e o máximo sobressinal do sistema realimentado contínuo equivalente.

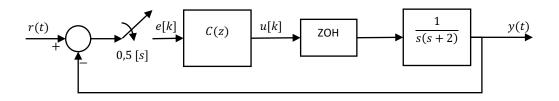
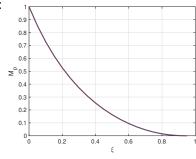


Figura 1 – Circuito amostrado realimentado.

Dados:

Sistema de primeira ordem padrão: $t_s = 4\tau$ [s];


Sistema de segunda ordem padrão: $t_{s}(\epsilon)=-\frac{\ln(\epsilon)}{\xi\omega_{n}}\ [s] \to t_{s}(2\%)=\frac{4}{\xi\omega_{n}}\ [s];$

Relação entre fator de amortecimento ξ e máximo sobressinal M_p :

Aproximações para Discretização:

Tustin:
$$s = \frac{2}{T_S} \frac{z-1}{z+1}$$
; Euler FW: $s = \frac{z-1}{T_S}$; Euler BW: $s = \frac{z-1}{zT_S}$;

$$\text{ZOH: } \mathcal{C}(z) = (1-z^{-1})\mathcal{Z}\left\{\mathcal{L}^{-1}\left\{\frac{\mathcal{C}(s)}{s}\right\}_{t=kT_s}\right\}$$

